Miscellaneous#
IEEE 754 floating point special values#
Special values defined in numpy: nan, inf
NaNs can be used as a poor-man’s mask (if you don’t care what the original value was)
Note: cannot use equality to test NaNs. E.g.:
>>> myarr = np.array([1., 0., np.nan, 3.])
>>> np.nonzero(myarr == np.nan)
(array([], dtype=int64),)
>>> np.nan == np.nan # is always False! Use special numpy functions instead.
False
>>> myarr[myarr == np.nan] = 0. # doesn't work
>>> myarr
array([ 1., 0., nan, 3.])
>>> myarr[np.isnan(myarr)] = 0. # use this instead find
>>> myarr
array([1., 0., 0., 3.])
Other related special value functions:
isnan- True if value is nanisinf- True if value is infisfinite- True if not nan or infnan_to_num- Map nan to 0, inf to max float, -inf to min float
The following corresponds to the usual functions except that nans are excluded from the results:
>>> x = np.arange(10.)
>>> x[3] = np.nan
>>> x.sum()
nan
>>> np.nansum(x)
42.0