Previous topic

numpy.asarray

Next topic

numpy.ascontiguousarray

This is documentation for an old release of NumPy (version 1.13). Read this page in the documentation of the latest stable release (version 2.2).

numpy.asanyarray

numpy.asanyarray(a, dtype=None, order=None)[source]

Convert the input to an ndarray, but pass ndarray subclasses through.

Parameters:

a : array_like

Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’.

Returns:

out : ndarray or an ndarray subclass

Array interpretation of a. If a is an ndarray or a subclass of ndarray, it is returned as-is and no copy is performed.

See also

asarray
Similar function which always returns ndarrays.
ascontiguousarray
Convert input to a contiguous array.
asfarray
Convert input to a floating point ndarray.
asfortranarray
Convert input to an ndarray with column-major memory order.
asarray_chkfinite
Similar function which checks input for NaNs and Infs.
fromiter
Create an array from an iterator.
fromfunction
Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray(a)
array([1, 2])

Instances of ndarray subclasses are passed through as-is:

>>> a = np.matrix([1, 2])
>>> np.asanyarray(a) is a
True