Previous topic

numpy.multiply

Next topic

numpy.power

This is documentation for an old release of NumPy (version 1.13). Read this page in the documentation of the latest stable release (version 2.2).

numpy.divide

numpy.divide(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'divide'>

Divide arguments element-wise.

Parameters:

x1 : array_like

Dividend array.

x2 : array_like

Divisor array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:

y : ndarray or scalar

The quotient x1/x2, element-wise. Returns a scalar if both x1 and x2 are scalars.

See also

seterr
Set whether to raise or warn on overflow, underflow and division by zero.

Notes

Equivalent to x1 / x2 in terms of array-broadcasting.

Behavior on division by zero can be changed using seterr.

In Python 2, when both x1 and x2 are of an integer type, divide will behave like floor_divide. In Python 3, it behaves like true_divide.

Examples

>>> np.divide(2.0, 4.0)
0.5
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.divide(x1, x2)
array([[ NaN,  1. ,  1. ],
       [ Inf,  4. ,  2.5],
       [ Inf,  7. ,  4. ]])

Note the behavior with integer types (Python 2 only):

>>> np.divide(2, 4)
0
>>> np.divide(2, 4.)
0.5

Division by zero always yields zero in integer arithmetic (again, Python 2 only), and does not raise an exception or a warning:

>>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int))
array([0, 0])

Division by zero can, however, be caught using seterr:

>>> old_err_state = np.seterr(divide='raise')
>>> np.divide(1, 0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
FloatingPointError: divide by zero encountered in divide
>>> ignored_states = np.seterr(**old_err_state)
>>> np.divide(1, 0)
0