Previous topic

numpy.isinf

Next topic

numpy.isneginf

numpy.isnan

numpy.isnan(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'isnan'>

Test element-wise for NaN and return result as a boolean array.

Parameters:

x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:

y : ndarray or bool

For scalar input, the result is a new boolean with value True if the input is NaN; otherwise the value is False.

For array input, the result is a boolean array of the same dimensions as the input and the values are True if the corresponding element of the input is NaN; otherwise the values are False.

See also

isinf, isneginf, isposinf, isfinite, isnat

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity.

Examples

>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan([np.log(-1.),1.,np.log(0)])
array([ True, False, False], dtype=bool)