Previous topic

numpy.einsum

Next topic

numpy.kron

This is documentation for an old release of NumPy (version 1.13). Read this page in the documentation of the latest stable release (version 2.2).

numpy.linalg.matrix_power

numpy.linalg.matrix_power(M, n)[source]

Raise a square matrix to the (integer) power n.

For positive integers n, the power is computed by repeated matrix squarings and matrix multiplications. If n == 0, the identity matrix of the same shape as M is returned. If n < 0, the inverse is computed and then raised to the abs(n).

Parameters:

M : ndarray or matrix object

Matrix to be “powered.” Must be square, i.e. M.shape == (m, m), with m a positive integer.

n : int

The exponent can be any integer or long integer, positive, negative, or zero.

Returns:

M**n : ndarray or matrix object

The return value is the same shape and type as M; if the exponent is positive or zero then the type of the elements is the same as those of M. If the exponent is negative the elements are floating-point.

Raises:

LinAlgError

If the matrix is not numerically invertible.

See also

matrix
Provides an equivalent function as the exponentiation operator (**, not ^).

Examples

>>> from numpy import linalg as LA
>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
>>> LA.matrix_power(i, 3) # should = -i
array([[ 0, -1],
       [ 1,  0]])
>>> LA.matrix_power(np.matrix(i), 3) # matrix arg returns matrix
matrix([[ 0, -1],
        [ 1,  0]])
>>> LA.matrix_power(i, 0)
array([[1, 0],
       [0, 1]])
>>> LA.matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
array([[ 0.,  1.],
       [-1.,  0.]])

Somewhat more sophisticated example

>>> q = np.zeros((4, 4))
>>> q[0:2, 0:2] = -i
>>> q[2:4, 2:4] = i
>>> q # one of the three quaternion units not equal to 1
array([[ 0., -1.,  0.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.],
       [ 0.,  0., -1.,  0.]])
>>> LA.matrix_power(q, 2) # = -np.eye(4)
array([[-1.,  0.,  0.,  0.],
       [ 0., -1.,  0.,  0.],
       [ 0.,  0., -1.,  0.],
       [ 0.,  0.,  0., -1.]])