Previous topic

numpy.ma.concatenate

Next topic

numpy.ma.hstack

This is documentation for an old release of NumPy (version 1.13). Read this page in the documentation of the latest stable release (version 2.2).

numpy.ma.dstack

numpy.ma.dstack(tup) = <numpy.ma.extras._fromnxfunction_seq instance>

Stack arrays in sequence depth wise (along third axis).

Takes a sequence of arrays and stack them along the third axis to make a single array. Rebuilds arrays divided by dsplit. This is a simple way to stack 2D arrays (images) into a single 3D array for processing.

This function continues to be supported for backward compatibility, but you should prefer np.concatenate or np.stack. The np.stack function was added in NumPy 1.10.

Parameters:

tup : sequence of arrays

Arrays to stack. All of them must have the same shape along all but the third axis.

Returns:

stacked : ndarray

The array formed by stacking the given arrays.

See also

stack
Join a sequence of arrays along a new axis.
vstack
Stack along first axis.
hstack
Stack along second axis.
concatenate
Join a sequence of arrays along an existing axis.
dsplit
Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
        [2, 3],
        [3, 4]]])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
       [[2, 3]],
       [[3, 4]]])