Previous topic

numpy.r

Next topic

numpy.nonzero

This is documentation for an old release of NumPy (version 1.13). Read this page in the documentation of the latest stable release (version 2.2).

numpy.s

numpy.s_ = <numpy.lib.index_tricks.IndexExpression object>

A nicer way to build up index tuples for arrays.

Note

Use one of the two predefined instances index_exp or s_ rather than directly using IndexExpression.

For any index combination, including slicing and axis insertion, a[indices] is the same as a[np.index_exp[indices]] for any array a. However, np.index_exp[indices] can be used anywhere in Python code and returns a tuple of slice objects that can be used in the construction of complex index expressions.

Parameters:

maketuple : bool

If True, always returns a tuple.

See also

index_exp
Predefined instance that always returns a tuple: index_exp = IndexExpression(maketuple=True).
s_
Predefined instance without tuple conversion: s_ = IndexExpression(maketuple=False).

Notes

You can do all this with slice() plus a few special objects, but there’s a lot to remember and this version is simpler because it uses the standard array indexing syntax.

Examples

>>> np.s_[2::2]
slice(2, None, 2)
>>> np.index_exp[2::2]
(slice(2, None, 2),)
>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
array([2, 4])