Previous topic

numpy.matlib.rand

Next topic

Miscellaneous routines

This is documentation for an old release of NumPy (version 1.14). Read this page in the documentation of the latest stable release (version 2.2).

numpy.matlib.randn

numpy.matlib.randn(*args)[source]

Return a random matrix with data from the “standard normal” distribution.

randn generates a matrix filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1.

Parameters:

*args : Arguments

Shape of the output. If given as N integers, each integer specifies the size of one dimension. If given as a tuple, this tuple gives the complete shape.

Returns:

Z : matrix of floats

A matrix of floating-point samples drawn from the standard normal distribution.

See also

rand, random.randn

Notes

For random samples from N(\mu, \sigma^2), use:

sigma * np.matlib.randn(...) + mu

Examples

>>> import numpy.matlib
>>> np.matlib.randn(1)
matrix([[-0.09542833]])                                 #random
>>> np.matlib.randn(1, 2, 3)
matrix([[ 0.16198284,  0.0194571 ,  0.18312985],
        [-0.7509172 ,  1.61055   ,  0.45298599]])       #random

Two-by-four matrix of samples from N(3, 6.25):

>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[ 4.74085004,  8.89381862,  4.09042411,  4.83721922],
        [ 7.52373709,  5.07933944, -2.64043543,  0.45610557]])  #random