Previous topic

numpy.square

Next topic

numpy.fabs

This is documentation for an old release of NumPy (version 1.15). Read this page in the documentation of the latest stable release (version 2.2).

numpy.absolute

numpy.absolute(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'absolute'>

Calculate the absolute value element-wise.

np.abs is a shorthand for this function.

Parameters:
x : array_like

Input array.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:
absolute : ndarray

An ndarray containing the absolute value of each element in x. For complex input, a + ib, the absolute value is \sqrt{ a^2 + b^2 }. This is a scalar if x is a scalar.

Examples

>>>
>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([ 1.2,  1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308

Plot the function over [-10, 10]:

>>>
>>> import matplotlib.pyplot as plt
>>>
>>> x = np.linspace(start=-10, stop=10, num=101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()
../../_images/numpy-absolute-1_00_00.png

Plot the function over the complex plane:

>>>
>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10], cmap='gray')
>>> plt.show()
../../_images/numpy-absolute-1_01_00.png