Previous topic

numpy.sign

Next topic

numpy.maximum

numpy.heaviside

numpy.heaviside(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'heaviside'>

Compute the Heaviside step function.

The Heaviside step function is defined as:

                      0   if x1 < 0
heaviside(x1, x2) =  x2   if x1 == 0
                      1   if x1 > 0

where x2 is often taken to be 0.5, but 0 and 1 are also sometimes used.

Parameters:
x1 : array_like

Input values.

x2 : array_like

The value of the function when x1 is 0.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:
out : ndarray or scalar

The output array, element-wise Heaviside step function of x1. This is a scalar if both x1 and x2 are scalars.

Notes

New in version 1.13.0.

References

Examples

>>> np.heaviside([-1.5, 0, 2.0], 0.5)
array([ 0. ,  0.5,  1. ])
>>> np.heaviside([-1.5, 0, 2.0], 1)
array([ 0.,  1.,  1.])