Previous topic

numpy.ma.count

Next topic

numpy.ma.getmask

This is documentation for an old release of NumPy (version 1.15). Read this page in the documentation of the latest stable release (version 2.2).

numpy.ma.count_masked

numpy.ma.count_masked(arr, axis=None)[source]

Count the number of masked elements along the given axis.

Parameters:
arr : array_like

An array with (possibly) masked elements.

axis : int, optional

Axis along which to count. If None (default), a flattened version of the array is used.

Returns:
count : int, ndarray

The total number of masked elements (axis=None) or the number of masked elements along each slice of the given axis.

See also

MaskedArray.count
Count non-masked elements.

Examples

>>>
>>> import numpy.ma as ma
>>> a = np.arange(9).reshape((3,3))
>>> a = ma.array(a)
>>> a[1, 0] = ma.masked
>>> a[1, 2] = ma.masked
>>> a[2, 1] = ma.masked
>>> a
masked_array(data =
 [[0 1 2]
 [-- 4 --]
 [6 -- 8]],
      mask =
 [[False False False]
 [ True False  True]
 [False  True False]],
      fill_value=999999)
>>> ma.count_masked(a)
3

When the axis keyword is used an array is returned.

>>>
>>> ma.count_masked(a, axis=0)
array([1, 1, 1])
>>> ma.count_masked(a, axis=1)
array([0, 2, 1])