Previous topic

numpy.ma.dstack

Next topic

numpy.ma.hsplit

This is documentation for an old release of NumPy (version 1.15). Read this page in the documentation of the latest stable release (version 2.2).

numpy.ma.hstack

numpy.ma.hstack(tup) = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first axis. Rebuilds arrays divided by hsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations.

Parameters:
tup : sequence of ndarrays

The arrays must have the same shape along all but the second axis, except 1-D arrays which can be any length.

Returns:
stacked : ndarray

The array formed by stacking the given arrays.

See also

stack
Join a sequence of arrays along a new axis.
vstack
Stack arrays in sequence vertically (row wise).
dstack
Stack arrays in sequence depth wise (along third axis).
concatenate
Join a sequence of arrays along an existing axis.
hsplit
Split array along second axis.
block
Assemble arrays from blocks.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>>
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
       [2, 3],
       [3, 4]])