Previous topic

numpy.argmin

Next topic

numpy.argwhere

numpy.nanargmin

numpy.nanargmin(a, axis=None)[source]

Return the indices of the minimum values in the specified axis ignoring NaNs. For all-NaN slices ValueError is raised. Warning: the results cannot be trusted if a slice contains only NaNs and Infs.

Parameters:
a : array_like

Input data.

axis : int, optional

Axis along which to operate. By default flattened input is used.

Returns:
index_array : ndarray

An array of indices or a single index value.

See also

argmin, nanargmax

Examples

>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmin(a)
0
>>> np.nanargmin(a)
2
>>> np.nanargmin(a, axis=0)
array([1, 1])
>>> np.nanargmin(a, axis=1)
array([1, 0])