Previous topic

numpy.polynomial.chebyshev.chebfit

Next topic

numpy.polynomial.chebyshev.chebvander2d

This is documentation for an old release of NumPy (version 1.15). Read this page in the documentation of the latest stable release (version 2.2).

numpy.polynomial.chebyshev.chebvander

numpy.polynomial.chebyshev.chebvander(x, deg)[source]

Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is defined by

V[..., i] = T_i(x),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the Chebyshev polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = chebvander(x, n), then np.dot(V, c) and chebval(x, c) are the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of Chebyshev series of the same degree and sample points.

Parameters:
x : array_like

Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

Returns:
vander : ndarray

The pseudo Vandermonde matrix. The shape of the returned matrix is x.shape + (deg + 1,), where The last index is the degree of the corresponding Chebyshev polynomial. The dtype will be the same as the converted x.