Previous topic

numpy.flatnonzero

Next topic

numpy.extract

This is documentation for an old release of NumPy (version 1.15). Read this page in the documentation of the latest stable release (version 2.2).

numpy.searchsorted

numpy.searchsorted(a, v, side='left', sorter=None)[source]

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the indices, the order of a would be preserved.

Assuming that a is sorted:

side returned index i satisfies
left a[i-1] < v <= a[i]
right a[i-1] <= v < a[i]
Parameters:
a : 1-D array_like

Input array. If sorter is None, then it must be sorted in ascending order, otherwise sorter must be an array of indices that sort it.

v : array_like

Values to insert into a.

side : {‘left’, ‘right’}, optional

If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of a).

sorter : 1-D array_like, optional

Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort.

New in version 1.7.0.

Returns:
indices : array of ints

Array of insertion points with the same shape as v.

See also

sort
Return a sorted copy of an array.
histogram
Produce histogram from 1-D data.

Notes

Binary search is used to find the required insertion points.

As of NumPy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced sort order is documented in sort.

This function is a faster version of the builtin python bisect.bisect_left (side='left') and bisect.bisect_right (side='right') functions, which is also vectorized in the v argument.

Examples

>>>
>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])