Previous topic

numpy.zeros

Next topic

numpy.full

This is documentation for an old release of NumPy (version 1.15). Read this page in the documentation of the latest stable release (version 2.2).

numpy.zeros_like

numpy.zeros_like(a, dtype=None, order='K', subok=True)[source]

Return an array of zeros with the same shape and type as a given array.

Parameters:
a : array_like

The shape and data-type of a define these same attributes of the returned array.

dtype : data-type, optional

Overrides the data type of the result.

New in version 1.6.0.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible.

New in version 1.6.0.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.

Returns:
out : ndarray

Array of zeros with the same shape and type as a.

See also

empty_like
Return an empty array with shape and type of input.
ones_like
Return an array of ones with shape and type of input.
full_like
Return a new array with shape of input filled with value.
zeros
Return a new array setting values to zero.

Examples

>>>
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],
       [0, 0, 0]])
>>>
>>> y = np.arange(3, dtype=float)
>>> y
array([ 0.,  1.,  2.])
>>> np.zeros_like(y)
array([ 0.,  0.,  0.])