NumPy

numpy.heaviside

numpy.heaviside(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'heaviside'>

Compute the Heaviside step function.

The Heaviside step function is defined as:

                      0   if x1 < 0
heaviside(x1, x2) =  x2   if x1 == 0
                      1   if x1 > 0

where x2 is often taken to be 0.5, but 0 and 1 are also sometimes used.

Parameters
x1array_like

Input values.

x2array_like

The value of the function when x1 is 0. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

outndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

wherearray_like, optional

This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None, locations within it where the condition is False will remain uninitialized.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns
outndarray or scalar

The output array, element-wise Heaviside step function of x1. This is a scalar if both x1 and x2 are scalars.

Notes

New in version 1.13.0.

References

Examples

>>> np.heaviside([-1.5, 0, 2.0], 0.5)
array([ 0. ,  0.5,  1. ])
>>> np.heaviside([-1.5, 0, 2.0], 1)
array([ 0.,  1.,  1.])

Previous topic

numpy.sign

Next topic

numpy.maximum