NumPy

Previous topic

numpy.ones

Next topic

numpy.zeros

This is documentation for an old release of NumPy (version 1.18). Read this page in the documentation of the latest stable release (version 2.2).

numpy.ones_like

numpy.ones_like(a, dtype=None, order='K', subok=True, shape=None)[source]

Return an array of ones with the same shape and type as a given array.

Parameters
aarray_like

The shape and data-type of a define these same attributes of the returned array.

dtypedata-type, optional

Overrides the data type of the result.

New in version 1.6.0.

order{‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible.

New in version 1.6.0.

subokbool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.

shapeint or sequence of ints, optional.

Overrides the shape of the result. If order=’K’ and the number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

New in version 1.17.0.

Returns
outndarray

Array of ones with the same shape and type as a.

See also

empty_like

Return an empty array with shape and type of input.

zeros_like

Return an array of zeros with shape and type of input.

full_like

Return a new array with shape of input filled with value.

ones

Return a new array setting values to one.

Examples

>>>
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],
       [1, 1, 1]])
>>>
>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.])
>>> np.ones_like(y)
array([1.,  1.,  1.])