NumPy

Previous topic

numpy.polynomial.legendre.legfit

Next topic

numpy.polynomial.legendre.legvander2d

This is documentation for an old release of NumPy (version 1.18). Read this page in the documentation of the latest stable release (version 2.2).

numpy.polynomial.legendre.legvander

numpy.polynomial.legendre.legvander(x, deg)[source]

Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is defined by

V[..., i] = L_i(x)

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the Legendre polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = legvander(x, n), then np.dot(V, c) and legval(x, c) are the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of Legendre series of the same degree and sample points.

Parameters
xarray_like

Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

degint

Degree of the resulting matrix.

Returns
vanderndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape + (deg + 1,), where The last index is the degree of the corresponding Legendre polynomial. The dtype will be the same as the converted x.