numpy.random.beta(a, b, size=None)

Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function

f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
(1 - x)^{\beta - 1},

where the normalization, B, is the beta function,

B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
(1 - t)^{\beta - 1} dt.

It is often seen in Bayesian inference and order statistics.


New code should use the beta method of a default_rng() instance instead; see random-quick-start.

afloat or array_like of floats

Alpha, positive (>0).

bfloat or array_like of floats

Beta, positive (>0).

sizeint or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is returned if a and b are both scalars. Otherwise, np.broadcast(a, b).size samples are drawn.

outndarray or scalar

Drawn samples from the parameterized beta distribution.

See also


which should be used for new code.

Previous topic


Next topic