NumPy

Previous topic

numpy.result_type

Next topic

numpy.obj2sctype

This is documentation for an old release of NumPy (version 1.19). Read this page in the documentation of the latest stable release (version 2.2).

numpy.common_type

numpy.common_type(*arrays)[source]

Return a scalar type which is common to the input arrays.

The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype.

All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information.

Parameters
array1, array2, …ndarrays

Input arrays.

Returns
outdata type code

Data type code.

See also

dtype, mintypecode

Examples

>>>
>>> np.common_type(np.arange(2, dtype=np.float32))
<class 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<class 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<class 'numpy.complex128'>