numpy.ma.inner¶
- 
numpy.ma.inner(a, b)[source]¶
- Inner product of two arrays. - Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. - Parameters
- a, barray_like
- If a and b are nonscalar, their last dimensions must match. 
 
- Returns
- outndarray
- out.shape = a.shape[:-1] + b.shape[:-1] 
 
- Raises
- ValueError
- If the last dimension of a and b has different size. 
 
 - See also - tensordot
- Sum products over arbitrary axes. 
- dot
- Generalised matrix product, using second last dimension of b. 
- einsum
- Einstein summation convention. 
 - Notes - Masked values are replaced by 0. - For vectors (1-D arrays) it computes the ordinary inner-product: - np.inner(a, b) = sum(a[:]*b[:]) - More generally, if ndim(a) = r > 0 and ndim(b) = s > 0: - np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) - or explicitly: - np.inner(a, b)[i0,...,ir-1,j0,...,js-1] = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:]) - In addition a or b may be scalars, in which case: - np.inner(a,b) = a*b - Examples - Ordinary inner product for vectors: - >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2 - A multidimensional example: - >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14, 38, 62], [ 86, 110, 134]]) - An example where b is a scalar: - >>> np.inner(np.eye(2), 7) array([[7., 0.], [0., 7.]]) 
