NumPy

Previous topic

numpy.polynomial.polyutils.PolyBase

Next topic

numpy.polynomial.polyutils.trimseq

This is documentation for an old release of NumPy (version 1.19). Read this page in the documentation of the latest stable release (version 2.2).

numpy.polynomial.polyutils.as_series

numpy.polynomial.polyutils.as_series(alist, trim=True)[source]

Return argument as a list of 1-d arrays.

The returned list contains array(s) of dtype double, complex double, or object. A 1-d argument of shape (N,) is parsed into N arrays of size one; a 2-d argument of shape (M,N) is parsed into M arrays of size N (i.e., is “parsed by row”); and a higher dimensional array raises a Value Error if it is not first reshaped into either a 1-d or 2-d array.

Parameters
alistarray_like

A 1- or 2-d array_like

trimboolean, optional

When True, trailing zeros are removed from the inputs. When False, the inputs are passed through intact.

Returns
[a1, a2,…]list of 1-D arrays

A copy of the input data as a list of 1-d arrays.

Raises
ValueError

Raised when as_series cannot convert its input to 1-d arrays, or at least one of the resulting arrays is empty.

Examples

>>>
>>> from numpy.polynomial import polyutils as pu
>>> a = np.arange(4)
>>> pu.as_series(a)
[array([0.]), array([1.]), array([2.]), array([3.])]
>>> b = np.arange(6).reshape((2,3))
>>> pu.as_series(b)
[array([0., 1., 2.]), array([3., 4., 5.])]
>>>
>>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
[array([1.]), array([0., 1., 2.]), array([0., 1.])]
>>>
>>> pu.as_series([2, [1.1, 0.]])
[array([2.]), array([1.1])]
>>>
>>> pu.as_series([2, [1.1, 0.]], trim=False)
[array([2.]), array([1.1, 0. ])]