numpy.asarray

numpy.asarray(a, dtype=None, order=None, *, like=None)

Convert the input to an array.

Parameters
aarray_like

Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

dtypedata-type, optional

By default, the data-type is inferred from the input data.

order{‘C’, ‘F’, ‘A’, ‘K’}, optional

Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to ‘K’.

likearray_like

Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.

New in version 1.20.0.

Returns
outndarray

Array interpretation of a. No copy is performed if the input is already an ndarray with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.

See also

asanyarray

Similar function which passes through subclasses.

ascontiguousarray

Convert input to a contiguous array.

asfarray

Convert input to a floating point ndarray.

asfortranarray

Convert input to an ndarray with column-major memory order.

asarray_chkfinite

Similar function which checks input for NaNs and Infs.

fromiter

Create an array from an iterator.

fromfunction

Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True
>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray)
True
>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True