numpy.ma.frombuffer#
- ma.frombuffer(buffer, dtype=float, count=- 1, offset=0, *, like=None) = <numpy.ma.core._convert2ma object>#
Interpret a buffer as a 1-dimensional array.
- Parameters
- bufferbuffer_like
An object that exposes the buffer interface.
- dtypedata-type, optional
Data-type of the returned array; default: float.
- countint, optional
Number of items to read.
-1means all data in the buffer.- offsetint, optional
Start reading the buffer from this offset (in bytes); default: 0.
- likearray_like, optional
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
likesupports the__array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
- Returns
- out: MaskedArray
Notes
If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:
>>> dt = np.dtype(int) >>> dt = dt.newbyteorder('>') >>> np.frombuffer(buf, dtype=dt)
The data of the resulting array will not be byteswapped, but will be interpreted correctly.
This function creates a view into the original object. This should be safe in general, but it may make sense to copy the result when the original object is mutable or untrusted.
Examples
>>> s = b'hello world' >>> np.frombuffer(s, dtype='S1', count=5, offset=6) array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')
>>> np.frombuffer(b'\x01\x02', dtype=np.uint8) array([1, 2], dtype=uint8) >>> np.frombuffer(b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3) array([1, 2, 3], dtype=uint8)