numpy.asanyarray#
- numpy.asanyarray(a, dtype=None, order=None, *, like=None)#
Convert the input to an ndarray, but pass ndarray subclasses through.
- Parameters:
- aarray_like
Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
- dtypedata-type, optional
By default, the data-type is inferred from the input data.
- order{‘C’, ‘F’, ‘A’, ‘K’}, optional
Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to ‘C’.
- likearray_like, optional
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
likesupports the__array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
- Returns:
- outndarray or an ndarray subclass
Array interpretation of a. If a is an ndarray or a subclass of ndarray, it is returned as-is and no copy is performed.
See also
asarraySimilar function which always returns ndarrays.
ascontiguousarrayConvert input to a contiguous array.
asfarrayConvert input to a floating point ndarray.
asfortranarrayConvert input to an ndarray with column-major memory order.
asarray_chkfiniteSimilar function which checks input for NaNs and Infs.
fromiterCreate an array from an iterator.
fromfunctionConstruct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asanyarray(a) array([1, 2])
Instances of
ndarraysubclasses are passed through as-is:>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asanyarray(a) is a True