Skip to main content
Ctrl+K
Logo image

Site Navigation

  • User Guide
  • API reference
  • Development
  • Release notes
  • Learn

Site Navigation

  • User Guide
  • API reference
  • Development
  • Release notes
  • Learn

Section Navigation

  • Array objects
  • Array API Standard Compatibility
  • Constants
  • Universal functions (ufunc)
  • Routines
    • Array creation routines
    • Array manipulation routines
    • Binary operations
    • String operations
    • C-Types foreign function interface (numpy.ctypeslib)
    • Datetime support functions
    • Data type routines
    • Mathematical functions with automatic domain
    • Floating point error handling
    • Discrete Fourier Transform (numpy.fft)
    • Functional programming
    • NumPy-specific help functions
    • Input and output
    • Linear algebra (numpy.linalg)
    • Logic functions
    • Masked array operations
    • Mathematical functions
      • numpy.sin
      • numpy.cos
      • numpy.tan
      • numpy.arcsin
      • numpy.arccos
      • numpy.arctan
      • numpy.hypot
      • numpy.arctan2
      • numpy.degrees
      • numpy.radians
      • numpy.unwrap
      • numpy.deg2rad
      • numpy.rad2deg
      • numpy.sinh
      • numpy.cosh
      • numpy.tanh
      • numpy.arcsinh
      • numpy.arccosh
      • numpy.arctanh
      • numpy.round
      • numpy.around
      • numpy.rint
      • numpy.fix
      • numpy.floor
      • numpy.ceil
      • numpy.trunc
      • numpy.prod
      • numpy.sum
      • numpy.nanprod
      • numpy.nansum
      • numpy.cumprod
      • numpy.cumsum
      • numpy.nancumprod
      • numpy.nancumsum
      • numpy.diff
      • numpy.ediff1d
      • numpy.gradient
      • numpy.cross
      • numpy.trapz
      • numpy.exp
      • numpy.expm1
      • numpy.exp2
      • numpy.log
      • numpy.log10
      • numpy.log2
      • numpy.log1p
      • numpy.logaddexp
      • numpy.logaddexp2
      • numpy.i0
      • numpy.sinc
      • numpy.signbit
      • numpy.copysign
      • numpy.frexp
      • numpy.ldexp
      • numpy.nextafter
      • numpy.spacing
      • numpy.lcm
      • numpy.gcd
      • numpy.add
      • numpy.reciprocal
      • numpy.positive
      • numpy.negative
      • numpy.multiply
      • numpy.divide
      • numpy.power
      • numpy.subtract
      • numpy.true_divide
      • numpy.floor_divide
      • numpy.float_power
      • numpy.fmod
      • numpy.mod
      • numpy.modf
      • numpy.remainder
      • numpy.divmod
      • numpy.angle
      • numpy.real
      • numpy.imag
      • numpy.conj
      • numpy.conjugate
      • numpy.maximum
      • numpy.max
      • numpy.amax
      • numpy.fmax
      • numpy.nanmax
      • numpy.minimum
      • numpy.min
      • numpy.amin
      • numpy.fmin
      • numpy.nanmin
      • numpy.convolve
      • numpy.clip
      • numpy.sqrt
      • numpy.cbrt
      • numpy.square
      • numpy.absolute
      • numpy.fabs
      • numpy.sign
      • numpy.heaviside
      • numpy.nan_to_num
      • numpy.real_if_close
      • numpy.interp
    • Matrix library (numpy.matlib)
    • Miscellaneous routines
    • Padding Arrays
    • Polynomials
    • Random sampling (numpy.random)
    • Set routines
    • Sorting, searching, and counting
    • Statistics
    • Test Support (numpy.testing)
    • Support for testing overrides (numpy.testing.overrides)
    • Window functions
  • Typing (numpy.typing)
  • Global state
  • Packaging (numpy.distutils)
  • NumPy distutils - users guide
  • Status of numpy.distutils and migration advice
  • NumPy C-API
  • CPU/SIMD Optimizations
  • NumPy security
  • NumPy and SWIG
  • NumPy reference
  • Mathematical functions
  • numpy.around

numpy.around#

numpy.around(a, decimals=0, out=None)[source]#

Round an array to the given number of decimals.

around is an alias of round.

See also

ndarray.round

equivalent method

round

alias for this function

ceil, fix, floor, rint, trunc

previous

numpy.round

next

numpy.rint

On this page
  • around

© Copyright 2008-2022, NumPy Developers.

Created using Sphinx 6.2.1.

Built with the PyData Sphinx Theme 0.13.3.