numpy.ma.hsplit#
- ma.hsplit = <numpy.ma.extras._fromnxfunction_single object>#
hsplit
Split an array into multiple sub-arrays horizontally (column-wise).
Please refer to the
split
documentation.hsplit
is equivalent tosplit
withaxis=1
, the array is always split along the second axis except for 1-D arrays, where it is split ataxis=0
.See also
split
Split an array into multiple sub-arrays of equal size.
Notes
The function is applied to both the _data and the _mask, if any.
Examples
>>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> np.hsplit(x, 2) [array([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), array([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])] >>> np.hsplit(x, np.array([3, 6])) [array([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), array([[ 3.], [ 7.], [11.], [15.]]), array([], shape=(4, 0), dtype=float64)]
With a higher dimensional array the split is still along the second axis.
>>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> np.hsplit(x, 2) [array([[[0., 1.]], [[4., 5.]]]), array([[[2., 3.]], [[6., 7.]]])]
With a 1-D array, the split is along axis 0.
>>> x = np.array([0, 1, 2, 3, 4, 5]) >>> np.hsplit(x, 2) [array([0, 1, 2]), array([3, 4, 5])]