numpy.asarray_chkfinite#
- numpy.asarray_chkfinite(a, dtype=None, order=None)[source]#
Convert the input to an array, checking for NaNs or Infs.
- Parameters:
- aarray_like
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs.
- dtypedata-type, optional
By default, the data-type is inferred from the input data.
- order{‘C’, ‘F’, ‘A’, ‘K’}, optional
Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to ‘C’.
- Returns:
- outndarray
Array interpretation of a. No copy is performed if the input is already an ndarray. If a is a subclass of ndarray, a base class ndarray is returned.
- Raises:
- ValueError
Raises ValueError if a contains NaN (Not a Number) or Inf (Infinity).
See also
asarray
Create and array.
asanyarray
Similar function which passes through subclasses.
ascontiguousarray
Convert input to a contiguous array.
asfortranarray
Convert input to an ndarray with column-major memory order.
fromiter
Create an array from an iterator.
fromfunction
Construct an array by executing a function on grid positions.
Examples
Convert a list into an array. If all elements are finite
asarray_chkfinite
is identical toasarray
.>>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.])
Raises ValueError if array_like contains Nans or Infs.
>>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print('ValueError') ... ValueError