numpy.linalg.tensorsolve#
- linalg.tensorsolve(a, b, axes=None)[source]#
Solve the tensor equation
a x = b
for x.It is assumed that all indices of x are summed over in the product, together with the rightmost indices of a, as is done in, for example,
tensordot(a, x, axes=x.ndim)
.- Parameters:
- aarray_like
Coefficient tensor, of shape
b.shape + Q
. Q, a tuple, equals the shape of that sub-tensor of a consisting of the appropriate number of its rightmost indices, and must be such thatprod(Q) == prod(b.shape)
(in which sense a is said to be ‘square’).- barray_like
Right-hand tensor, which can be of any shape.
- axestuple of ints, optional
Axes in a to reorder to the right, before inversion. If None (default), no reordering is done.
- Returns:
- xndarray, shape Q
- Raises:
- LinAlgError
If a is singular or not ‘square’ (in the above sense).
See also
Examples
>>> import numpy as np >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> rng = np.random.default_rng() >>> b = rng.normal(size=(2*3, 4)) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True