numpy.ma.setdiff1d#
- ma.setdiff1d(ar1, ar2, assume_unique=False)[source]#
Set difference of 1D arrays with unique elements.
The output is always a masked array. See
numpy.setdiff1d
for more details.See also
numpy.setdiff1d
Equivalent function for ndarrays.
Examples
>>> import numpy as np >>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1]) >>> np.ma.setdiff1d(x, [1, 2]) masked_array(data=[3, --], mask=[False, True], fill_value=999999)