CPU build options#
Description#
The following options are mainly used to change the default behavior of optimizations that target certain CPU features:
cpu-baseline
: minimal set of required CPU features.Default value is
min
which provides the minimum CPU features that can safely run on a wide range of platforms within the processor family.Note
During the runtime, NumPy modules will fail to load if any of specified features are not supported by the target CPU (raises Python runtime error).
cpu-dispatch
: dispatched set of additional CPU features.Default value is
max -xop -fma4
which enables all CPU features, except for AMD legacy features (in case of X86).Note
During the runtime, NumPy modules will skip any specified features that are not available in the target CPU.
These options are accessible at build time by passing setup arguments to meson-python
via the build frontend (e.g., pip
or build
).
They accept a set of CPU features
or groups of features that gather several features or
special options that
perform a series of procedures.
To customize CPU/build options:
pip install . -Csetup-args=-Dcpu-baseline="avx2 fma3" -Csetup-args=-Dcpu-dispatch="max"
Quick start#
In general, the default settings tend to not impose certain CPU features that may not be available on some older processors. Raising the ceiling of the baseline features will often improve performance and may also reduce binary size.
The following are the most common scenarios that may require changing the default settings:
I am building NumPy for my local use#
And I do not intend to export the build to other users or target a different CPU than what the host has.
Set native
for baseline, or manually specify the CPU features in case of option
native
isn’t supported by your platform:
python -m build --wheel -Csetup-args=-Dcpu-baseline="native"
Building NumPy with extra CPU features isn’t necessary for this case, since all supported features are already defined within the baseline features:
python -m build --wheel -Csetup-args=-Dcpu-baseline="native" \
-Csetup-args=-Dcpu-dispatch="none"
Note
A fatal error will be raised if native
isn’t supported by the host platform.
I do not want to support the old processors of the x86 architecture#
Since most of the CPUs nowadays support at least AVX
, F16C
features, you can use:
python -m build --wheel -Csetup-args=-Dcpu-baseline="avx f16c"
Note
cpu-baseline
force combine all implied features, so there’s no need
to add SSE features.
I’m facing the same case above but with ppc64 architecture#
Then raise the ceiling of the baseline features to Power8:
python -m build --wheel -Csetup-args=-Dcpu-baseline="vsx2"
Having issues with AVX512 features?#
You may have some reservations about including of AVX512
or
any other CPU feature and you want to exclude from the dispatched features:
python -m build --wheel -Csetup-args=-Dcpu-dispatch="max -avx512f -avx512cd \
-avx512_knl -avx512_knm -avx512_skx -avx512_clx -avx512_cnl -avx512_icl"
Supported features#
The names of the features can express one feature or a group of features, as shown in the following tables supported depend on the lowest interest:
Note
The following features may not be supported by all compilers,
also some compilers may produce different set of implied features
when it comes to features like AVX512
, AVX2
, and FMA3
.
See Platform differences for more details.
On x86#
Name |
Implies |
Gathers |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
On IBM/POWER big-endian#
Name |
Implies |
---|---|
|
|
|
|
|
|
|
|
On IBM/POWER little-endian#
Name |
Implies |
---|---|
|
|
|
|
|
|
|
|
On ARMv7/A32#
Name |
Implies |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
On ARMv8/A64#
Name |
Implies |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
On IBM/ZSYSTEM(S390X)#
Name |
Implies |
---|---|
|
|
|
|
|
|
Special options#
NONE
: enable no features.NATIVE
: Enables all CPU features that supported by the host CPU, this operation is based on the compiler flags (-march=native
,-xHost
,/QxHost
)MIN
: Enables the minimum CPU features that can safely run on a wide range of platforms:For Arch
Implies
x86 (32-bit mode)
SSE
SSE2
x86_64
SSE
SSE2
SSE3
IBM/POWER (big-endian mode)
NONE
IBM/POWER (little-endian mode)
VSX
VSX2
ARMHF
NONE
ARM64 A.K. AARCH64
NEON
NEON_FP16
NEON_VFPV4
ASIMD
IBM/ZSYSTEM(S390X)
NONE
MAX
: Enables all supported CPU features by the compiler and platform.Operators-/+
: remove or add features, useful with optionsMAX
,MIN
andNATIVE
.
Behaviors#
CPU features and other options are case-insensitive, for example:
python -m build --wheel -Csetup-args=-Dcpu-dispatch="SSE41 avx2 FMA3"
The order of the requested optimizations doesn’t matter:
python -m build --wheel -Csetup-args=-Dcpu-dispatch="SSE41 AVX2 FMA3" # equivalent to python -m build --wheel -Csetup-args=-Dcpu-dispatch="FMA3 AVX2 SSE41"
Either commas or spaces or ‘+’ can be used as a separator, for example:
python -m build --wheel -Csetup-args=-Dcpu-dispatch="avx2 avx512f" # or python -m build --wheel -Csetup-args=-Dcpu-dispatch=avx2,avx512f # or python -m build --wheel -Csetup-args=-Dcpu-dispatch="avx2+avx512f"
all works but arguments should be enclosed in quotes or escaped by backslash if any spaces are used.
cpu-baseline
combines all implied CPU features, for example:python -m build --wheel -Csetup-args=-Dcpu-baseline=sse42 # equivalent to python -m build --wheel -Csetup-args=-Dcpu-baseline="sse sse2 sse3 ssse3 sse41 popcnt sse42"
cpu-baseline
will be treated as “native” if compiler native flag-march=native
or-xHost
or/QxHost
is enabled through environment variableCFLAGS
:export CFLAGS="-march=native" pip install . # is equivalent to pip install . -Csetup-args=-Dcpu-baseline=native
cpu-baseline
escapes any specified features that aren’t supported by the target platform or compiler rather than raising fatal errors.Note
Since
cpu-baseline
combines all implied features, the maximum supported of implied features will be enabled rather than escape all of them. For example:# Requesting `AVX2,FMA3` but the compiler only support **SSE** features python -m build --wheel -Csetup-args=-Dcpu-baseline="avx2 fma3" # is equivalent to python -m build --wheel -Csetup-args=-Dcpu-baseline="sse sse2 sse3 ssse3 sse41 popcnt sse42"
cpu-dispatch
does not combain any of implied CPU features, so you must add them unless you want to disable one or all of them:# Only dispatches AVX2 and FMA3 python -m build --wheel -Csetup-args=-Dcpu-dispatch=avx2,fma3 # Dispatches AVX and SSE features python -m build --wheel -Csetup-args=-Dcpu-dispatch=ssse3,sse41,sse42,avx,avx2,fma3
cpu-dispatch
escapes any specified baseline features and also escapes any features not supported by the target platform or compiler without raising fatal errors.
Eventually, you should always check the final report through the build log to verify the enabled features. See Build report for more details.
Platform differences#
Some exceptional conditions force us to link some features together when it come to certain compilers or architectures, resulting in the impossibility of building them separately.
These conditions can be divided into two parts, as follows:
Architectural compatibility
The need to align certain CPU features that are assured to be supported by successive generations of the same architecture, some cases:
On ppc64le
VSX(ISA 2.06)
andVSX2(ISA 2.07)
both imply one another since the first generation that supports little-endian mode is Power-8`(ISA 2.07)`On AArch64
NEON NEON_FP16 NEON_VFPV4 ASIMD
implies each other since they are part of the hardware baseline.
For example:
# On ARMv8/A64, specify NEON is going to enable Advanced SIMD
# and all predecessor extensions
python -m build --wheel -Csetup-args=-Dcpu-baseline=neon
# which is equivalent to
python -m build --wheel -Csetup-args=-Dcpu-baseline="neon neon_fp16 neon_vfpv4 asimd"
Note
Please take a deep look at Supported features, in order to determine the features that imply one another.
Compilation compatibility
Some compilers don’t provide independent support for all CPU features. For instance
Intel’s compiler doesn’t provide separated flags for AVX2
and FMA3
,
it makes sense since all Intel CPUs that comes with AVX2
also support FMA3
,
but this approach is incompatible with other x86 CPUs from AMD or VIA.
For example:
# Specify AVX2 will force enables FMA3 on Intel compilers
python -m build --wheel -Csetup-args=-Dcpu-baseline=avx2
# which is equivalent to
python -m build --wheel -Csetup-args=-Dcpu-baseline="avx2 fma3"
The following tables only show the differences imposed by some compilers from the general context that been shown in the Supported features tables:
Note
Features names with strikeout represent the unsupported CPU features.
On x86::Intel Compiler#
Name |
Implies |
Gathers |
---|---|---|
FMA3 |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C AVX2 |
|
AVX2 |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 |
|
AVX512F |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512CD |
|
XOP |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX |
|
FMA4 |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX |
|
AVX512_SPR |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD AVX512_SKX AVX512_CLX AVX512_CNL AVX512_ICL |
AVX512FP16 |
On x86::Microsoft Visual C/C++#
Name |
Implies |
Gathers |
---|---|---|
FMA3 |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C AVX2 |
|
AVX2 |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 |
|
AVX512F |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512CD AVX512_SKX |
|
AVX512CD |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512_SKX |
|
AVX512_KNL |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD |
AVX512ER AVX512PF |
AVX512_KNM |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD AVX512_KNL |
AVX5124FMAPS AVX5124VNNIW AVX512VPOPCNTDQ |
AVX512_SPR |
SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD AVX512_SKX AVX512_CLX AVX512_CNL AVX512_ICL |
AVX512FP16 |
Build report#
In most cases, the CPU build options do not produce any fatal errors that lead to hanging the build. Most of the errors that may appear in the build log serve as heavy warnings due to the lack of some expected CPU features by the compiler.
So we strongly recommend checking the final report log, to be aware of what kind of CPU features are enabled and what are not.
You can find the final report of CPU optimizations at the end of the build log, and here is how it looks on x86_64/gcc:
########### EXT COMPILER OPTIMIZATION ###########
Platform :
Architecture: x64
Compiler : gcc
CPU baseline :
Requested : 'min'
Enabled : SSE SSE2 SSE3
Flags : -msse -msse2 -msse3
Extra checks: none
CPU dispatch :
Requested : 'max -xop -fma4'
Enabled : SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD AVX512_KNL AVX512_KNM AVX512_SKX AVX512_CLX AVX512_CNL AVX512_ICL
Generated :
:
SSE41 : SSE SSE2 SSE3 SSSE3
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1
Extra checks: none
Detect : SSE SSE2 SSE3 SSSE3 SSE41
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithmetic.dispatch.c
: numpy/_core/src/umath/_umath_tests.dispatch.c
:
SSE42 : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2
Extra checks: none
Detect : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42
: build/src.linux-x86_64-3.9/numpy/_core/src/_simd/_simd.dispatch.c
:
AVX2 : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2 -mavx -mf16c -mavx2
Extra checks: none
Detect : AVX F16C AVX2
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithm_fp.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithmetic.dispatch.c
: numpy/_core/src/umath/_umath_tests.dispatch.c
:
(FMA3 AVX2) : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2 -mavx -mf16c -mfma -mavx2
Extra checks: none
Detect : AVX F16C FMA3 AVX2
: build/src.linux-x86_64-3.9/numpy/_core/src/_simd/_simd.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_exponent_log.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_trigonometric.dispatch.c
:
AVX512F : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2 -mavx -mf16c -mfma -mavx2 -mavx512f
Extra checks: AVX512F_REDUCE
Detect : AVX512F
: build/src.linux-x86_64-3.9/numpy/_core/src/_simd/_simd.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithm_fp.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithmetic.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_exponent_log.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_trigonometric.dispatch.c
:
AVX512_SKX : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2 -mavx -mf16c -mfma -mavx2 -mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq
Extra checks: AVX512BW_MASK AVX512DQ_MASK
Detect : AVX512_SKX
: build/src.linux-x86_64-3.9/numpy/_core/src/_simd/_simd.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithmetic.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_exponent_log.dispatch.c
CCompilerOpt.cache_flush[804] : write cache to path -> /home/seiko/work/repos/numpy/build/temp.linux-x86_64-3.9/ccompiler_opt_cache_ext.py
########### CLIB COMPILER OPTIMIZATION ###########
Platform :
Architecture: x64
Compiler : gcc
CPU baseline :
Requested : 'min'
Enabled : SSE SSE2 SSE3
Flags : -msse -msse2 -msse3
Extra checks: none
CPU dispatch :
Requested : 'max -xop -fma4'
Enabled : SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD AVX512_KNL AVX512_KNM AVX512_SKX AVX512_CLX AVX512_CNL AVX512_ICL
Generated : none
There is a separate report for each of build_ext
and build_clib
that includes several sections, and each section has several values, representing the following:
Platform:
Architecture: The architecture name of target CPU. It should be one of
x86
,x64
,ppc64
,ppc64le
,armhf
,aarch64
,s390x
orunknown
.Compiler: The compiler name. It should be one of gcc, clang, msvc, icc, iccw or unix-like.
CPU baseline:
Requested: The specific features and options to
cpu-baseline
as-is.Enabled: The final set of enabled CPU features.
Flags: The compiler flags that were used to all NumPy C/C++ sources during the compilation except for temporary sources that have been used for generating the binary objects of dispatched features.
Extra checks: list of internal checks that activate certain functionality or intrinsics related to the enabled features, useful for debugging when it comes to developing SIMD kernels.
CPU dispatch:
Requested: The specific features and options to
cpu-dispatch
as-is.Enabled: The final set of enabled CPU features.
Generated: At the beginning of the next row of this property, the features for which optimizations have been generated are shown in the form of several sections with similar properties explained as follows:
One or multiple dispatched feature: The implied CPU features.
Flags: The compiler flags that been used for these features.
Extra checks: Similar to the baseline but for these dispatched features.
Detect: Set of CPU features that need be detected in runtime in order to execute the generated optimizations.
The lines that come after the above property and end with a ‘:’ on a separate line, represent the paths of c/c++ sources that define the generated optimizations.
Runtime dispatch#
Importing NumPy triggers a scan of the available CPU features from the set
of dispatchable features. This can be further restricted by setting the
environment variable NPY_DISABLE_CPU_FEATURES
to a comma-, tab-, or
space-separated list of features to disable. This will raise an error if
parsing fails or if the feature was not enabled. For instance, on x86_64
this will disable AVX2
and FMA3
:
NPY_DISABLE_CPU_FEATURES="AVX2,FMA3"
If the feature is not available, a warning will be emitted.
Tracking dispatched functions#
Discovering which CPU targets are enabled for different optimized functions is achievable
through the Python function numpy.lib.introspect.opt_func_info
.
This function offers the flexibility of applying filters using two optional arguments:
one for refining function names and the other for specifying data types in the signatures.
For example:
>> func_info = numpy.lib.introspect.opt_func_info(func_name='add|abs', signature='float64|complex64')
>> print(json.dumps(func_info, indent=2))
{
"absolute": {
"dd": {
"current": "SSE41",
"available": "SSE41 baseline(SSE SSE2 SSE3)"
},
"Ff": {
"current": "FMA3__AVX2",
"available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)"
},
"Dd": {
"current": "FMA3__AVX2",
"available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)"
}
},
"add": {
"ddd": {
"current": "FMA3__AVX2",
"available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)"
},
"FFF": {
"current": "FMA3__AVX2",
"available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)"
}
}
}