NumPy Reference
Release 2.2.0

Written by the NumPy community

January 19, 2025

CONTENTS

1 Python API 3
2 CAPI 1875
3 Other topics 2003
4 Acknowledgements 2057
Bibliography 2059

Python Module Index 2073

NumPy Reference, Release 2.2.0

Release
2.2

Date
January 19, 2025

This reference manual details functions, modules, and objects included in NumPy, describing what they are and what they
do. For learning how to use NumPy, see the complete documentation.

CONTENTS 1

NumPy Reference, Release 2.2.0

2 CONTENTS

CHAPTER
ONE

1.1

NumPy’s module structure

PYTHON API

NumPy has a large number of submodules. Most regular usage of NumPy requires only the main namespace and a smaller
set of submodules. The rest either either special-purpose or niche namespaces.

1.1.1 Main namespaces

Regular/recommended user-facing namespaces for general use:

numpy
numpy.exceptions
numpy. fft
numpy.linalg
numpy.polynomial
numpy.random
numpy.strings
numpy.testing

numpy.typing

1.1.2 Special-purpose nhamespaces

numpy.ctypeslib - interacting with NumPy objects with ct ypes
numpy.dtypes - dtype classes (typically not used directly by end users)
numpy.emath - mathematical functions with automatic domain
numpy.lib - utilities & functionality which do not fit the main namespace
numpy.rec - record arrays (largely superseded by dataframe libraries)

numpy.version - small module with more detailed version info

https://docs.python.org/3/library/ctypes.html#module-ctypes

NumPy Reference, Release 2.2.0

1.1.3 Legacy namespaces
Prefer not to use these namespaces for new code. There are better alternatives and/or this code is deprecated or isn’t
reliable.

e numpy.char - legacy string functionality, only for fixed-width strings

o numpy.distutils (deprecated) - build system support

* numpy.f2py - Fortran binding generation (usually used from the command line only)

* numpy.ma - masked arrays (not very reliable, needs an overhaul)

o numpy.matlib (pending deprecation) - functions supporting mat rix instances

Exceptions and Warnings (numpy . exceptions)

General exceptions used by NumPy. Note that some exceptions may be module specific, such as linear algebra errors.
New in version NumPy: 1.25

The exceptions module is new in NumPy 1.25. Older exceptions remain available through the main NumPy namespace
for compatibility.

Warnings
ComplexWarning The warning raised when casting a complex dtype to a real
dtype.
VisibleDeprecationWarning Visible deprecation warning.
RankWarning Matrix rank warning.

exception exceptions.ComplexWarning

The warning raised when casting a complex dtype to a real dtype.

As implemented, casting a complex number to a real discards its imaginary part, but this behavior may not be what
the user actually wants.

exception exceptions.VisibleDeprecationWarning

Visible deprecation warning.

By default, python will not show deprecation warnings, so this class can be used when a very visible warning is
helpful, for example because the usage is most likely a user bug.

exception exceptions.RankWarning

Matrix rank warning.

Issued by polynomial functions when the design matrix is rank deficient.

4 1. Python API

NumPy Reference, Release 2.2.0

Exceptions
Ax1isError(axis[, ndim, msg_prefix]) Axis supplied was invalid.
DTypePromotionError Multiple DTypes could not be converted to a common
one.
TooHardError max_work was exceeded.

exception exceptions.AxisError (axis, ndim=None, msg_prefix=None)
Axis supplied was invalid.
This is raised whenever an axis parameter is specified that is larger than the number of array dimensions. For
compatibility with code written against older numpy versions, which raised a mixture of ValueError and In—

dexError for this situation, this exception subclasses both to ensure that except ValueError and except
IndexError statements continue to catch AxisError.

Parameters
axis
[int or str] The out of bounds axis or a custom exception message. If an axis is provided, then
ndim should be specified as well.
ndim
[int, optional] The number of array dimensions.

msg_prefix
[str, optional] A prefix for the exception message.

Examples

-
>>> import numpy as np

>>> array_1d = np.arange (10)
>>> np.cumsum (array_1d, axis=1)
Traceback (most recent call last):

numpy .exceptions.AxisError: axis 1 is out of bounds for array of dimension 1

Negative axes are preserved:

>>> np.cumsum (array_1d, axis=-2)
Traceback (most recent call last):

numpy .exceptions.AxisError: axis -2 is out of bounds for array of dimension 1

The class constructor generally takes the axis and arrays’ dimensionality as arguments:

>>> print (np.exceptions.AxisError (2, 1, msg_prefix='error'))

error: axis 2 1is out of bounds for array of dimension 1
|

Alternatively, a custom exception message can be passed:

>>> print (np.exceptions.AxisError ('Custom error message'))
Custom error message

Attributes

1.1. NumPy’s module structure 5

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#IndexError

NumPy Reference, Release 2.2.0

axis
[int, optional] The out of bounds axis or None if a custom exception message was provided.
This should be the axis as passed by the user, before any normalization to resolve negative
indices.

New in version 1.22.

ndim
[int, optional] The number of array dimensions or None if a custom exception message was
provided.

New in version 1.22.

exception exceptions.DTypePromotionError

Multiple DTypes could not be converted to a common one.

This exception derives from TypeError and is raised whenever dtypes cannot be converted to a single common
one. This can be because they are of a different category/class or incompatible instances of the same one (see
Examples).

Notes

Many functions will use promotion to find the correct result and implementation. For these functions the error will
typically be chained with a more specific error indicating that no implementation was found for the input dtypes.

Typically promotion should be considered “invalid” between the dtypes of two arrays when arrl == arr2 can safely
return all False because the dtypes are fundamentally different.

Examples

Datetimes and complex numbers are incompatible classes and cannot be promoted:

>>> import numpy as np
>>> np.result_type (np.dtype ("M8[s]"), np.complexl28)
Traceback (most recent call last):

DTypePromotionError: The DType <class 'numpy.dtype[datetime64]'> could not
be promoted by <class 'numpy.dtype[complex128]'>. This means that no common
DType exists for the given inputs. For example they cannot be stored in a
single array unless the dtype is “object . The full list of DTypes is:
(<class 'numpy.dtype[datetime64]'>, <class 'numpy.dtype[complex128]'>)

For example for structured dtypes, the structure can mismatch and the same DTypePromotionError is given
when two structured dtypes with a mismatch in their number of fields is given:

>>> dtypel = np.dtype([("fieldl", np.float64d), ("field2", np.int64)])
>>> dtype2 = np.dtype([("fieldl", np.float64)])

>>> np.promote_types (dtypel, dtype2)

Traceback (most recent call last):

DTypePromotionError: field names ~ ('fieldl', 'field2')® and ~ ('fieldl',)"
mismatch.

exception exceptions.TooHardError

max_work was exceeded.

6 1. Python API

NumPy Reference, Release 2.2.0

This is raised whenever the maximum number of candidate solutions to consider specified by the max_work
parameter is exceeded. Assigning a finite number to max_work may have caused the operation to fail.

Discrete Fourier Transform (numpy . ££t)

The SciPy module scipy . £ft is a more comprehensive superset of numpy . £ £t, which includes only a basic set of
routines.

Standard FFTs

fft(a[, n, axis, norm, out]) Compute the one-dimensional discrete Fourier Trans-
form.

1 fft(a[, n, axis, norm, out]) Compute the one-dimensional inverse discrete Fourier
Transform.

fft2(a[, s, axes, norm, out]) Compute the 2-dimensional discrete Fourier Transform.

1ifft2(al, s, axes, norm, out]) Compute the 2-dimensional inverse discrete Fourier
Transform.

frtn(al, s, axes, norm, out]) Compute the N-dimensional discrete Fourier Transform.

1ifrtn(al, s, axes, norm, out]) Compute the N-dimensional inverse discrete Fourier
Transform.

fft.££ft (a, n=None, axis=-1, norm=None, out=None)

Compute the one-dimensional discrete Fourier Transform.

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast
Fourier Transform (FFT) algorithm [CT].

Parameters

a
[array_like] Input array, can be complex.

n
[int, optional] Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If # is not given,
the length of the input along the axis specified by axis is used.
axis
[int, optional] Axis over which to compute the FFT. If not given, the last axis is used.
norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy . £ft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.
out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype.
New in version 2.0.0.
Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.

1.1. NumPy’s module structure 7

https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft

NumPy Reference, Release 2.2.0

Raises

IndexError
If axis is not a valid axis of a.

See also:
numpy . fft
for definition of the DFT and conventions used.

ifft
The inverse of £ft.

f£ft2
The two-dimensional FFT.

fftn
The n-dimensional FFT.

rfftn
The n-dimensional FFT of real input.

fftfreq
Frequency bins for given FFT parameters.

Notes
FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently,

by using symmetries in the calculated terms. The symmetry is highest when 7 is a power of 2, and the transform is
therefore most efficient for these sizes.

The DFT is defined, with the conventions used in this implementation, in the documentation for the numpy . £t
module.

References

[CT]

Examples

>>> import numpy as np
>>> np.fft.fft (np.exp(2j * np.pi * np.arange(8) / 8))
array ([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-157,
2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-167,
—-1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-167,
1.14423775e-17+1.14423775e-173, 0.00000000e+00+1.22464680e-167])

In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in
the imaginary part, as described in the numpy . £t documentation:

>>> import matplotlib.pyplot as plt

>>> t = np.arange (256)

>>> sp = np.fft.fft (np.sin(t))

>>> freq = np.fft.fftfreqg(t.shapel-1])

>>> plt.plot (freq, sp.real, freq, sp.imag)

[<matplotlib.lines.Line2D object at Ox...>, <matplotlib.lines.Line2D object at 0x.
(continues on next page)

1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

— . .>]
>>> plt.show ()

75

50 A

25 ' |

—-25 4
_50 -

—75 -

T T
-0.4 -0.2 0.0 0.2 0.4

fft.i££ft (a, n=None, axis=-1, norm=None, out=None)

Compute the one-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the one-dimensional n-point discrete Fourier transform computed by £rt.
In other words, 1 £ft (££ft (a)) == a to within numerical accuracy. For a general description of the algorithm
and definitions, see numpy . fft.

The input should be ordered in the same way as is returned by ¢, i.e.,
* a[0] should contain the zero frequency term,
* a[1:n//2] should contain the positive-frequency terms,

e a[n//2 + 1:] should contain the negative-frequency terms, in increasing order starting from the most
negative frequency.

For an even number of input points, A [n/ /2] represents the sum of the values at the positive and negative Nyquist
frequencies, as the two are aliased together. See numpy . £t for details.

Parameters

a
[array_like] Input array, can be complex.

[int, optional] Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If # is not given,
the length of the input along the axis specified by axis is used. See notes about padding issues.

axis
[int, optional] Axis over which to compute the inverse DFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy. fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

1.1. NumPy’s module structure 9

NumPy Reference, Release 2.2.0

New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype.

New in version 2.0.0.
Returns

out
[complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.

Raises

IndexError
If axis is not a valid axis of a.

See also:
numpy . £ft
An introduction, with definitions and general explanations.

frt
The one-dimensional (forward) FFT, of which i £t is the inverse

ifft2
The two-dimensional inverse FFT.

ifftn
The n-dimensional inverse FFT.

Notes
If the input parameter 7 is larger than the size of the input, the input is padded by appending zeros at the end. Even

though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be
performed before calling 1 £ f¢.

Examples

>>> import numpy as np

>>> np.fft.ifft ([0, 4, 0, 01])

array ([1.+0.3, 0.+1.3, -1.40.3, 0.-1.3]) # may vary
|

Create and plot a band-limited signal with random phases:

-

>>> import matplotlib.pyplot as plt

>>> t = np.arange (400)
>>> n = np.zeros((400,), dtype=complex)
>>> n[40:60] = np.exp(lj*np.random.uniform(0, 2*np.pi, (20,)))

>>> s = np.fft.ifft (n)
>>> plt.plot(t, s.real, label='real')

[<matplotlib.lines.Line2D object at ...>]
>>> plt.plot(t, s.imag, '—-', label='imaginary')
[<matplotlib.lines.Line2D object at ...>]

>>> plt.legend()

(continues on next page)

10 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

<matplotlib.legend.Legend object at ...>
>>> plt.show ()

0.02
]
001 = q l 1
[a1 ‘ ! | |': : ‘
0.00 R
|I: L 'I|” :IV | il ! ‘ \'Iu |
1 ‘ ‘|‘Iw !
-0.014 1
! 1
-0.02 1 real
== 1maginary
T T T T T T T T T
0 50 100 150 200 250 300 350 400

fft.££t2 (a, s=None, axes=(-2, -1), norm=None, out=None)

Compute the 2-dimensional discrete Fourier Transform.

This function computes the n-dimensional discrete Fourier Transform over any axes in an M-dimensional array by
means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the
input array, i.e., a 2-dimensional FFT.

Parameters

a

[array_like] Input array, can be complex

s
[sequence of ints, optional] Shape (Iength of each transformed axis) of the output (s [0] refers
toaxis 0, s [1] to axis 1, etc.). This corresponds to n for £ft (x, n). Along each axis, if
the given shape is smaller than that of the input, the input is cropped. If it is larger, the input
is padded with zeros.

Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).

If s is not given, the shape of the input along the axes specified by axes is used.

Deprecated since version 2.0: If s is not None, axes must not be None either.

Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes

[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two axes
are used. A repeated index in axes means the transform over that axis is performed multiple
times. A one-element sequence means that a one-dimensional FFT is performed. Default:
(-2, -1).

1.1. NumPy’s module structure

11

NumPy Reference, Release 2.2.0

Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
not be None.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy . £ft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence only the last axis can have s not equal
to the shape at that axis).

New in version 2.0.0.
Returns

out
[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.

Raises

ValueError
If s and axes have different length, or axes not given and len (s) != 2.

IndexError
If an element of axes is larger than than the number of axes of a.

See also:
numpy. £ft
Overall view of discrete Fourier transforms, with definitions and conventions used.

ifft2
The inverse two-dimensional FFT.

fft
The one-dimensional FFT.

fftn
The n-dimensional FFT.

fftshift
Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third
quadrants, and second and fourth quadrants.

Notes

fft2is just £tn with a different default for axes.

The output, analogously to £1t, contains the term for zero frequency in the low-order corner of the transformed
axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of
the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency.

See £ ftn for details and a plotting example, and numpy . £t for definitions and conventions used.

12

1. Python API

NumPy Reference, Release 2.2.0

Examples

array ([[

>>> import numpy as np
>>> a = np.mgrid[:5, :5][0]
>>> np.fft.fft2 (a)

50. +0.3 5 0. +0.3 p 0. +0.7 , # may vary
0. +0.3 , 0. +0.3 1,
[-12.5+17.204774017, 0. +0.j ; 0 +0.7 o
0. +0.3 , 0. +0.7 1,
[-12.5 +4.06149623 , 0. +0.3 , 0. +0.3 ,
0. +0.7 7 0. +40.7 1,
[-12.5 -4.06149625 , 0. +0.7 , 0. +0.3 ,
0. +0.3 , 0. +0.3 1,
[-12.5-17.204774017, 0. +0.3 ; 0 +0.7 P
0. +0.3 , 0. +0.7 17)

fft.i££ft2 (a, s=None, axes=(-2, -1), norm=None, out=None)

Compute the 2-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in

an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, 1 ££ft2 (££ft2 (a))

a to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input

array.

The input, analogously to i £ ft, should be ordered in the same way as is returned by £t 2, i.e. it should have
the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half
of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the
second half of both axes, in order of decreasingly negative frequency.

Parameters

a

[array_like] Input array, can be complex.

[sequence of ints, optional] Shape (length of each axis) of the output (s [0] refers to axis 0,
s[1] toaxis 1, etc.). This corresponds to n for 1 £ft (x, n). Along each axis, if the given
shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded
with zeros.

Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).

If s is not given, the shape of the input along the axes specified by axes is used. See notes for
issue on i fft zero padding.

Deprecated since version 2.0: If s is not None, axes must not be None either.

Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes

[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two axes
are used. A repeated index in axes means the transform over that axis is performed multiple
times. A one-element sequence means that a one-dimensional FFT is performed. Default:
(-2, -1).

Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
not be None.

1.1. NumPy’s module structure

13

NumPy Reference, Release 2.2.0

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy. fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence is incompatible with passing in all but
the trivial s).

New in version 2.0.0.
Returns

out
[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.

Raises

ValueError
If s and axes have different length, or axes not given and len (s) != 2.

IndexError
If an element of axes is larger than than the number of axes of a.

See also:
numpy. £ft
Overall view of discrete Fourier transforms, with definitions and conventions used.

fft2
The forward 2-dimensional FFT, of which i £ £t 2 is the inverse.

ifftn
The inverse of the n-dimensional FFT.

fft
The one-dimensional FFT.

ifft
The one-dimensional inverse FFT.

Notes

1fft2is just i £ftn with a different default for axes.
See i fftn for details and a plotting example, and numpy . £ £t for definition and conventions used.

Zero-padding, analogously with i £ ft, is performed by appending zeros to the input along the specified dimension.
Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired,
it must be performed before i £t 2 is called.

14 1. Python API

NumPy Reference, Release 2.2.0

Examples

>> a = 4
array ([[1l.

[O.
[{OF
[0

>>> import numpy as np

* np.eye (4)

>>> np.fft.ifft2(a)

+0.j, 0.+0.3, 0.40.j, 0.+0.3]1, # may vary
+0.3, 0.40.3, 0.40.3, 1.+0.31,
+0.3, 0.40.3, 1.40.3, 0.4+0.31,
.+0.3, 1.40.3, 0.40.3, 0.40.311)

fft.££ftn (a, s=None, axes=None, norm=None, out=None)

Compute the N-dimensional discrete Fourier Transform.

This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional array by means of the Fast Fourier Transform (FFT).

Parameters

a

[array_like] Input array, can be complex.

S
[sequence of ints, optional] Shape (length of each transformed axis) of the output (s [0] refers
to axis 0, s [1] to axis 1, etc.). This corresponds to n for ££t (x, n). Along any axis, if
the given shape is smaller than that of the input, the input is cropped. If it is larger, the input
is padded with zeros.

Changed in version 2.0: If it is — 1, the whole input is used (no padding/trimming).
If s is not given, the shape of the input along the axes specified by axes is used.
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last 1en (s)
axes are used, or all axes if s is also not specified. Repeated indices in axes means that the
transform over that axis is performed multiple times.
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
be explicitly specified too.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy. fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence is incompatible with passing in all but
the trivial s).
New in version 2.0.0.

Returns

1.1. NumPy’s module structure

15

NumPy Reference, Release 2.2.0

out
[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and a, as explained in the parameters section above.

Raises

ValueError
If s and axes have different length.

IndexError
If an element of axes is larger than than the number of axes of a.

See also:

numpy. £ft
Overall view of discrete Fourier transforms, with definitions and conventions used.

ifftn
The inverse of £t n, the inverse n-dimensional FFT.

fft
The one-dimensional FFT, with definitions and conventions used.

rfftn
The n-dimensional FFT of real input.

fft2
The two-dimensional FFT.

fftshift
Shifts zero-frequency terms to centre of array

Notes

The output, analogously to ££t, contains the term for zero frequency in the low-order corner of all axes, the positive
frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the
negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.

See numpy . £t for details, definitions and conventions used.

Examples
>>> import numpy as np
>>> a = np.mgrid[:3, :3, :3]1[0]
>>> np.fft.fftn(a, axes=(1, 2))
array ([[[0.+0.73, 0.+0.7, 0.+0.3], # may vary
[0.+0.7, 0.+0.73, 0.+0.31,
[0.40.7, 0.+0.7, 0.+0.311,
[[9.+0.7, 0.+0.7, 0.+0.31,
[0.+0.7, 0.+0.73, 0.+0.31,
[0.40.7, 0.+0.7, 0.+0.311,
[[18.+0.7, 0.+0.7, 0.+0.31,
[0.40.7, 0.+0.73, 0.+0.31,
[0.40.7, 0.+0.7, 0.40.3111)
>>> np.fft.fftn(a, (2, 2), axes=(0, 1))
array ([[[2.+0.3, 2.40.3, 2.+0.73]1, # may vary
[0.+40.3, 0.+0.3, 0.+0.311,

(continues on next page)

16 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

>>>
>>>
>>>
>>>

>>>

>>>

[[-2.+40.3, -2.40.3, -2.+0.31,
[0.40.5, 0.+0.3, 0.+40.3111)
import matplotlib.pyplot as plt
[X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
2 * np.pil * np.arange (200) / 34)
S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
FS = np.fft.fftn(9)

plt.imshow (np.log(np.abs (np.

<matplotlib.image.AxesImage object at Ox...

plt.show ()

fft.fftshift (FS))**2))
>

25
50
75
100
125
150
175

50

100 150

fft.ifftn (a, s=None, axes=None, norm=None, out=None)

Compute the N-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in

an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, 1 fftn (fftn(a))

a to within numerical accuracy. For a description of the definitions and conventions used, see numpy . fft.

The input, analogously to i £ £t, should be ordered in the same way as is returned by ££tn, i.e. it should have the
term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes,
the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of
all axes, in order of decreasingly negative frequency.

Parameters

a

[array_like] Input array, can be complex.

[sequence of ints, optional] Shape (Iength of each transformed axis) of the output (s [0] refers

toaxis 0, s [1] to axis 1, etc.). This corresponds to n for i fft (x,

n) . Along any axis, if

the given shape is smaller than that of the input, the input is cropped. If it is larger, the input

is padded with zeros.

Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).

1.1. NumPy’s module structure

17

NumPy Reference, Release 2.2.0

If s is not given, the shape of the input along the axes specified by axes is used. See notes for
issue on i £t zero padding.

Deprecated since version 2.0: If s is not None, axes must not be None either.

Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the IFFT. If not given, the last
len (s) axes are used, or all axes if s is also not specified. Repeated indices in axes means
that the inverse transform over that axis is performed multiple times.

Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
be explicitly specified too.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy . £ft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence is incompatible with passing in all but
the trivial s).

New in version 2.0.0.
Returns

out
[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s or a, as explained in the parameters section above.

Raises

ValueError
If s and axes have different length.

IndexError
If an element of axes is larger than than the number of axes of a.

See also:

numpy . £ft
Overall view of discrete Fourier transforms, with definitions and conventions used.

fftn

The forward n-dimensional FFT, of which i £ ftn is the inverse.
ifft

The one-dimensional inverse FFT.

ifft2
The two-dimensional inverse FFT.

ifftshift
Undoes fftshift, shifts zero-frequency terms to beginning of array.

18

1. Python API

NumPy Reference, Release 2.2.0

Notes

See numpy . £t for definitions and conventions used.

Zero-padding, analogously with i £ £t, is performed by appending zeros to the input along the specified dimension.
Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired,

it must be performed before i £ £t n is called.

Examples

>>> import numpy as np
>>> a = np.eye (4)

array ([[1.+0.7, 0.+0.3,

[0.40.5, 1.+40.5,
[0.40.5, 0.+40.9,
[0.40.9, 0.+40.7,

>>> np.fft.ifftn(np.fft.£fftn(a,

0

0
1
0

axes= (0,
.+0.3, 0.+0.
.+0.3, 0.+0.
.+0.3, 0.+0.
.+0.3, 1.40.

)), axes=(1,))
jl, # may vary
Jl,
31,
j1l)

Create and plot an image with band-limited frequency content:

>>> plt.imshow (im)

>>> plt.show ()

>>> n = np.zeros((200,200),
>>> n[60:80, 20:40] = np.exp(lj*np.random.uniform(0, 2*np.pi,
>>> im = np.fft.ifftn(n).real

>>> import matplotlib.pyplot as plt

dtype=complex)

<matplotlib.image.AxesImage object at Ox...>

(20,

20)))

25
50
75
100
125
150
175

50

100 150

1.1. NumPy’s module structure

19

NumPy Reference, Release 2.2.0

Real FFTs

rfft(al, n, axis, norm, out]) Compute the one-dimensional discrete Fourier Transform
for real input.

irfft(a[, n, axis, norm, out]) Computes the inverse of rfft.

rfft2(al, s, axes, norm, out]) Compute the 2-dimensional FFT of a real array.

irfft2(a[, s, axes, norm, out]) Computes the inverse of rfft2.

rfftn(al, s, axes, norm, out]) Compute the N-dimensional discrete Fourier Transform
for real input.

irfftn(a[, s, axes, norm, out]) Computes the inverse of rftn.

fft.rfft (a, n=None, axis=-1, norm=None, out=None)

Compute the one-dimensional discrete Fourier Transform for real input.

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by
means of an efficient algorithm called the Fast Fourier Transform (FFT).

Parameters

a
[array_like] Input array

n
[int, optional] Number of points along transformation axis in the input to use. If # is smaller
than the length of the input, the input is cropped. If it is larger, the input is padded with zeros.
If n is not given, the length of the input along the axis specified by axis is used.

axis
[int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy. fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype.
New in version 2.0.0.

Returns

out
[complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. If n is even, the length of the transformed axis
is (n/2)+1. If nis odd, the length is (n+1) /2.

Raises

IndexError

If axis is not a valid axis of a.
See also:
numpy. £ft

For definition of the DFT and conventions used.

20 1. Python API

NumPy Reference, Release 2.2.0

fft

irfft
The inverse of rrrt.

fft
The one-dimensional FFT of general (complex) input.

fftn
The n-dimensional FFT.

rfftn
The n-dimensional FFT of real input.

Notes

When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency
terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency
terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the
transformed axis of the output is therefore n//2 + 1.

When 2 = rfft (a) and fs is the sampling frequency, A[0] contains the zero-frequency term 0*fs, which is
real due to Hermitian symmetry.

If niseven, A[-1] contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2),
and must also be purely real. If » is odd, there is no term at fs/2; A[-1] contains the largest positive frequency
(fs/2*(n-1)/n), and is complex in the general case.

If the input a contains an imaginary part, it is silently discarded.

Examples

>>> import numpy as np

>>> np.fft.f£ft ([0, 1, O, 0])

array ([1.+0.3j, 0.-1.j, -1.40.j, 0.+1.j]) # may vary
>>> np.fft.rfft ([0, 1, O, 0])

array ([1.+0.3, 0.-1.3j, -1.+0.3]) # may vary

Notice how the final element of the 7t output is the complex conjugate of the second element, for real input. For
rfft, this symmetry is exploited to compute only the non-negative frequency terms.

.irfft (a, n=None, axis=-1, norm=None, out=None)

Computes the inverse of rfft.

This function computes the inverse of the one-dimensional n-point discrete Fourier Transform of real input com-
puted by rf£rt. In other words, irfft (rfft(a), len(a)) == a to within numerical accuracy. (See
Notes below for why 1en (a) is necessary here.)

The input is expected to be in the form returned by » £ £t i.e. the real zero-frequency term followed by the complex
positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is
Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding
positive frequency terms.

Parameters

a
[array_like] The input array.

[int, optional] Length of the transformed axis of the output. For n output points, n//2+1

1.1. NumPy’s module structure 21

NumPy Reference, Release 2.2.0

input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If n is not given, it is taken to be 2* (m—1) where m is the length
of the input along the axis specified by axis.
axis
[int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is used.
norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy. fft). De-

fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

out
[ndarray, optional] If provided, the result will be placed in this array. It should be of the
appropriate shape and dtype.

New in version 2.0.0.
Returns

out
[ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis, or
the last one if axis is not specified. The length of the transformed axis is #, or, if 7 is not given,
2* (m—1) where m is the length of the transformed axis of the input. To get an odd number
of output points, n must be specified.

Raises

IndexError
If axis is not a valid axis of a.

See also:

numpy. £ft
For definition of the DFT and conventions used.

rfrt
The one-dimensional FFT of real input, of which i r £t is inverse.

fft
The one-dimensional FFT.

irfft2
The inverse of the two-dimensional FFT of real input.

irfftn
The inverse of the n-dimensional FFT of real input.

Notes

Returns the real valued n-point inverse discrete Fourier transform of a, where a contains the non-negative frequency
terms of a Hermitian-symmetric sequence. » is the length of the result, not the input.

If you specify an n such that @ must be zero-padded or truncated, the extra/removed values will be added/removed
at high frequencies. One can thus resample a series to m points via Fourier interpolation by: a_resamp =
irfft(rfft(a), m).

The correct interpretation of the hermitian input depends on the length of the original data, as given by n. This is
because each input shape could correspond to either an odd or even length signal. By default, i £t assumes an

22

1. Python API

NumPy Reference, Release 2.2.0

fft

even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart. By
Hermitian symmetry, the value is thus treated as purely real. To avoid losing information, the correct length of the
real input must be given.

Examples

>>> import numpy as np

>>> np.fft.ifft([1, -13, -1, 13])

array ([0.+0.3, 1.40.3j, 0.40.3, 0.+0.3]) # may vary
>>> np.fft.irfft ([1, -13j, -11)

array ([0., 1., 0., 0.1)

Notice how the last term in the input to the ordinary i £ £t is the complex conjugate of the second term, and the
output has zero imaginary part everywhere. When calling i r £ £, the negative frequencies are not specified, and
the output array is purely real.

.r££ft2 (a, s=None, axes=(-2, -1), norm=None, out=None)

Compute the 2-dimensional FFT of a real array.
Parameters

a
[array] Input array, taken to be real.

[sequence of ints, optional] Shape of the FFT.
Changed in version 2.0: If it is —1, the whole input is used (no padding/trimming).
Deprecated since version 2.0: If s is not None, axes must not be None either.

Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the FFT. Default: (-2, -1).

Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
not be None.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy. £ ft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for the last inverse transform. incompatible with passing in
all but the trivial s).

New in version 2.0.0.
Returns

out
[ndarray] The result of the real 2-D FFT.

See also:

1.1. NumPy’s module structure 23

NumPy Reference, Release 2.2.0

rfftn
Compute the N-dimensional discrete Fourier Transform for real input.

Notes

This is really just £t n with different default behavior. For more details see £ ftn.

Examples

>>> import numpy as np
>>> a = np.mgrid[:5, :5][0]
>>> np.fft.rfft2(a)

array ([[50. +0.7 , 0. +0.3 , 0. +0.3 1,
[-12.5+17.20477401§, 0. +0.7 , 0. +0.7 1,
[-12.5 +4.06149625 , 0. +0.7 , 0. +0.3 1,
[-12.5 -4.06149625 , 0. +0.3 , 0. +0.3 1,
[-12.5-17.204774013, 0. +0.7 , 0. +0.7 11)

fft.irfft2 (a, s=None, axes=(-2, -1), norm=None, out=None)

Computes the inverse of rfft2.
Parameters

a
[array_like] The input array

S

[sequence of ints, optional] Shape of the real output to the inverse FFT.
Changed in version 2.0: If it is —1, the whole input is used (no padding/trimming).
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] The axes over which to compute the inverse fft. Default: (-2,
—1), the last two axes.
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
not be None.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy . £ft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[ndarray, optional] If provided, the result will be placed in this array. It should be of the
appropriate shape and dtype for the last transformation.
New in version 2.0.0.

Returns

24 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray] The result of the inverse real 2-D FFT.

See also:
rfft2
The forward two-dimensional FFT of real input, of which i r£ £t 2 is the inverse.

rfft
The one-dimensional FFT for real input.

irfft
The inverse of the one-dimensional FFT of real input.

irfftn
Compute the inverse of the N-dimensional FFT of real input.

Notes

This is really i rfftn with different defaults. For more details see i r£ftn.

Examples

>>> import numpy as np

>>> a = np.mgrid[:5, :5][0]

>>> A = np.fft.rfft2 (a)

>>> np.fft.irfft2 (A, s=a.shape)

array([([(0., 0., 0., 0., 0.1,
(e, Lo, 1o, oy, Lo,
[2c; 2oy 2oy 205 201,
[3., 3., 3., 3., 3.1,
[4 4 4 4 4.11)

° 7 o7 o7 ° 7

L

fft.rfftn (a, s=None, axes=None, norm=None, out=None)

Compute the N-dimensional discrete Fourier Transform for real input.

This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with
the real transform performed over the last axis, while the remaining transforms are complex.

Parameters

a
[array_like] Input array, taken to be real.

[sequence of ints, optional] Shape (length along each transformed axis) to use from the input.
(s[0] refers to axis 0, s[1] to axis 1, etc.). The final element of s corresponds to n for
rfft (x, n),while for the remaining axes, it corresponds to n for £ft (x, n). Alongany
axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros.

Changed in version 2.0: If it is —1, the whole input is used (no padding/trimming).
If s is not given, the shape of the input along the axes specified by axes is used.

Deprecated since version 2.0: If s is not None, axes must not be None either.

1.1. NumPy’s module structure 25

NumPy Reference, Release 2.2.0

Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last 1en (s)
axes are used, or all axes if s is also not specified.

Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
be explicitly specified too.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy . £ft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence is incompatible with passing in all but
the trivial s).

New in version 2.0.0.
Returns

out
[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and a, as explained in the parameters section above. The
length of the last axis transformed will be s [-1]//2+1, while the remaining transformed
axes will have lengths according to s, or unchanged from the input.

Raises

ValueError
If s and axes have different length.

IndexError
If an element of axes is larger than than the number of axes of a.

See also:
irfftn
The inverse of rfftn,i.e. the inverse of the n-dimensional FFT of real input.

fft
The one-dimensional FFT, with definitions and conventions used.

rfrft
The one-dimensional FFT of real input.

fftn
The n-dimensional FFT.

rfft2
The two-dimensional FFT of real input.

26 1. Python API

NumPy Reference, Release 2.2.0

Notes

The transform for real input is performed over the last transformation axis, as by rfrt, then the transform over
the remaining axes is performed as by £ tn. The order of the output is as for £t for the final transformation

axis, and as for 1t n for the remaining transformation axes.

See £ £t for details, definitions and conventions used.

Examples

>>> import numpy as np
>>> a = np.ones((2, 2, 2))
>>> np.fft.rfftn(a

)
array ([[[8.40.7, 0.4+0.3], # may vary
[0.+0.3, 0.+0.311,
[[0.40.3, 0.40.51,
[0.4+0.7, 0.+0.3111)

L

-

>>> np.fft.rfftn(a, axes=(2, 0))

array ([[[4.40.3, 0.40.3], # may vary
[4.+0.3, 0.+0.311,
[[0.40.3, 0.40.31,
[0.4+0.7, 0.+0.3111)

fft.irfftn (a, s=None, axes=None, norm=None, out=None)

Computes the inverse of rftn.

This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any
number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words,
irfftn(rfftn(a), a.shape) == a to within numerical accuracy. (The a.shape is necessary like

len (a) is for i rf£rt, and for the same reason.)

The input should be ordered in the same way as is returned by r £ £t n, i.e. as for i r £t for the final transformation

axis, and as for i £ £t n along all the other axes.
Parameters

a
[array_like] Input array.

[sequence of ints, optional] Shape (Iength of each transformed axis) of the output (s [0] refers
toaxis 0, s [1] toaxis 1, etc.). sis also the number of input points used along this axis, except
for the last axis, where s [-1]//2+1 points of the input are used. Along any axis, if the
shape indicated by s is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros.

Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).

If s is not given, the shape of the input along the axes specified by axes is used. Except for the
last axis which is taken to be 2* (m—1) where m is the length of the input along that axis.

Deprecated since version 2.0: If s is not None, axes must not be None either.

Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

1.1. NumPy’s module structure

27

NumPy Reference, Release 2.2.0

axes
[sequence of ints, optional] Axes over which to compute the inverse FFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means that
the inverse transform over that axis is performed multiple times.

Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
be explicitly specified too.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy. fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

out
[ndarray, optional] If provided, the result will be placed in this array. It should be of the
appropriate shape and dtype for the last transformation.

New in version 2.0.0.
Returns

out
[ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes,
or by a combination of s or a, as explained in the parameters section above. The length of each
transformed axis is as given by the corresponding element of s, or the length of the input in
every axis except for the last one if s is not given. In the final transformed axis the length of
the output when s is not given is 2* (m—1) where m is the length of the final transformed axis
of the input. To get an odd number of output points in the final axis, s must be specified.

Raises

ValueError
If s and axes have different length.

IndexError
If an element of axes is larger than than the number of axes of a.

See also:
rfftn
The forward n-dimensional FFT of real input, of which i £t n is the inverse.

fft
The one-dimensional FFT, with definitions and conventions used.

irfft
The inverse of the one-dimensional FFT of real input.

irfft2
The inverse of the two-dimensional FFT of real input.

28

1. Python API

NumPy Reference, Release 2.2.0

Notes

See £ £t for definitions and conventions used.
See rf £t for definitions and conventions used for real input.

The correct interpretation of the hermitian input depends on the shape of the original data, as given by s. This is
because each input shape could correspond to either an odd or even length signal. By default, i r £ £t n assumes
an even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart.
When performing the final complex to real transform, the last value is thus treated as purely real. To avoid losing
information, the correct shape of the real input must be given.

Examples
r>>> import numpy as np
>>> a = np.zeros((3, 2, 2))
>>> a0, 0, 0] =3 * 2 * 2
>>> np.fft.irfftn(a)
array ([[[1., 1.1,
(1., 1.11,
(., 1.1,
(1., 1.11,
(., 1.1,
(1., 1.111)

Hermitian FFTs

hfft(a[, n, axis, norm, out]) Compute the FFT of a signal that has Hermitian symme-
try, i.e., a real spectrum.

1hfft(a[, n, axis, norm, out]) Compute the inverse FFT of a signal that has Hermitian
symmetry.

fft .hE£ft (a, n=None, axis=-1, norm=None, out=None)

Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.
Parameters

a
[array_like] The input array.

n
[int, optional] Length of the transformed axis of the output. For n output points, n/ /2 + 1
input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If 7 is not given, it is taken to be 2* (m—1) where m is the length
of the input along the axis specified by axis.

axis
[int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm

[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy. fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

New in version 1.20.0: The “backward”, “forward” values were added.

1.1. NumPy’s module structure 29

NumPy Reference, Release 2.2.0

out
[ndarray, optional] If provided, the result will be placed in this array. It should be of the
appropriate shape and dtype.

New in version 2.0.0.
Returns

out
[ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis, or
the last one if axis is not specified. The length of the transformed axis is 7, or, if 7 is not given,
2*m - 2 where m is the length of the transformed axis of the input. To get an odd number
of output points, n must be specified, for instance as 2*m - 1 in the typical case,

Raises

IndexError
If axis is not a valid axis of a.

See also:
rfft
Compute the one-dimensional FFT for real input.

ihfft
The inverse of hfrt.

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So here it’s hf £t for which you must supply
the length of the result if it is to be odd.

e even: 1hfft (hfft(a, 2*len(a) - 2)) == a, within roundoff error,
e odd: ihfft (hfft(a, 2*len(a) - 1)) == a,within roundoff error.

The correct interpretation of the hermitian input depends on the length of the original data, as given by n. This
is because each input shape could correspond to either an odd or even length signal. By default, hf £t assumes
an even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart.
By Hermitian symmetry, the value is thus treated as purely real. To avoid losing information, the shape of the full
signal must be given.

Examples

>>> import numpy as np

>>> signal = np.array([1l, 2, 3, 4, 3, 21)

>>> np.fft.fft (signal)

array ([15.+40.3, -4.+0.7, 0.+0.3, -1.-0.3, 0.+0.3, -4.+0.3]) # may vary
>>> np.fft.hfft (signall:4]) # Input first half of signal

array ([15., -4., 0., =1, 0., -4.1)

>>> np.fft.hfft (signal, 6) # Input entire signal and truncate

array ([15., -4., 0., =1, 0., -4.1)

-

>>> signal = np.array([[1, 1.31, [-1.3, 211)
>>> np.conj(signal.T) - signal # check Hermitian symmetry
array([[0.-0.3, -0.40.3], # may vary
(continues on next page)

30

1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[0.+0.5, ©.=0.311)
>>> freq spectrum = np.fft.hfft (signal)
>>> freq_ spectrum
array ([[1., 1.7,
[20, =2.11)

fft.ih£f£ft (a, n=None, axis=-1, norm=None, out=None)

Compute the inverse FFT of a signal that has Hermitian symmetry.
Parameters

a
[array_like] Input array.

n
[int, optional] Length of the inverse FFT, the number of points along transformation axis in
the input to use. If n is smaller than the length of the input, the input is cropped. If it is larger,
the input is padded with zeros. If n is not given, the length of the input along the axis specified
by axis is used.

axis
[int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy . £ft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype.
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. The length of the transformed axisisn//2 +
1.

See also:

hfft, irfft

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So here it’s hf £t for which you must supply
the length of the result if it is to be odd:

e even: 1ihfft (hfft(a, 2*len(a) - 2)) == a,within roundoff error,

e odd: ihfft (hfft(a, 2*len(a) - 1)) == a, within roundoff error.

1.1. NumPy’s module structure 31

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np

>>> spectrum = np.array([15, -4, 0, -1, 0, -4])

>>> np.fft.ifft (spectrum)

array ([1.40.3, 2.40.3, 3.40.3, 4.40.3, 3.+40.3, 2.+40.3j]1) # may vary
>>> np.fft.ihfft (spectrum)

array ([1.-0.3, 2.-0.3, 3.-0.3j, 4.-0.3j]) # may vary

Helper routines

fftfreqg(n|, d, device]) Return the Discrete Fourier Transform sample frequen-
cies.

rfftfreqg(n],d, devicel) Return the Discrete Fourier Transform sample frequen-
cies (for usage with rfft, irfft).

fftshift(x[, axes]) Shift the zero-frequency component to the center of the
spectrum.

ifftshift(x[, axes]) The inverse of fftshift.

fft.£fftfreq (n, d=1.0, device=None)

Return the Discrete Fourier Transform sample frequencies.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at
the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

£f = 1[0, 1, ..., n/2-1, -n/2, ..., -11 / (d*n) if n is even
f =10, 1, ..., (n-1)/2, -(n-1)/2, ..., =11 / (d*n) if n is odd
Parameters
n

[int] Window length.

[scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

device

[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.

New in version 2.0.0.
Returns

f
[ndarray] Array of length n containing the sample frequencies.

32 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft (signal)

>>> n = signal.size

>>> timestep = 0.1

>>> freq = np.fft.fftfreq(n, d=timestep)

>>> freqg

aeeay ([0. , Lo25;, 205 5, coop =379, =2.5 , =1.25])

.

fft.rfftfreq (n, d=1.0, device=None)
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at
the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

£f = 1[0, 1, ..., n/2-1, n/2] / (d*n) if n is even
£f =10, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd

Unlike fft freqg (butlike scipy.fftpack.rfftfreq) the Nyquist frequency component is considered to
be positive.

Parameters

n
[int] Window length.

d
[scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns

f

[ndarray] Array of lengthn//2 + 1 containing the sample frequencies.
Examples

>>> import numpy as np

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
>>> fourier = np.fft.rfft (signal)

>>> n = signal.size

>>> sample_rate = 100

>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
>>> freq

array([0., 10., 20., ..., -30., -20., -10.1)
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
>>> freq

array([0., 10., 20., 30., 40., 50.])

A

1.1. NumPy’s module structure 33

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfftfreq.html#scipy.fftpack.rfftfreq

NumPy Reference, Release 2.2.0

fft.£fftshift (x, axes=None)

Shift the zero-frequency component to the center of the spectrum.

This function swaps half-spaces for all axes listed (defaults to all). Note that y [0] is the Nyquist component only
if len (x) iseven.

Parameters

X
[array_like] Input array.

axes
[int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all axes.

Returns

y
[ndarray] The shifted array.

See also:

ifftshift
The inverse of fftshift.

Examples

-
>>> import numpy as np

>>> freqs = np.fft.fftfreq(10, 0.1)

>>> freqgs

Ay ([Ocy Loy 2oy ocoop =Fop =2op =dol)

>>> np.fft.fftshift (fregs)

array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.1)

L

Shift the zero-frequency component only along the second axis:

-

>>> freqs = np.fft.fftfreq(9, d=1./9) .reshape (3, 3)
>>> fregs

array ([[0., 1., 2.1,

[3., 4., -4.1,

[=3.,; =2., =1-11)
>>> np.fft.fftshift (fregs, axes=(1,))
array ([[2., 0., 1.7,

[-4., 3., 4.1,

=l., =30, =2-11)

fft.ifftshift (x, axes=None)

The inverse of £ftshift. Although identical for even-length x, the functions differ by one sample for odd-length
X.

Parameters

X
[array_like] Input array.

axes
[int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts all
axes.

Returns

34 1. Python API

NumPy Reference, Release 2.2.0

[ndarray] The shifted array.

See also:

fftshift
Shift zero-frequency component to the center of the spectrum.

Examples

-
>>> import numpy as np

>>> freqs = np.fft.fftfreq(9, d=1./9) .reshape (3, 3)
>>> freqgs
array([[0., 1., 2.1,
[3., 4., -4.1,
[=8cp =205, =1.11)
>>> np.fft.ifftshift (np.fft.fftshift (freqgs))
array ([[0., 1., 2.1,
[3., 4., -4.7,
[=3.,; =2., =i1:11)

Background information

Fourier analysis is fundamentally a method for expressing a function as a sum of periodic components, and for recovering
the function from those components. When both the function and its Fourier transform are replaced with discretized
counterparts, it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing
in part because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known
to Gauss (1805) and was brought to light in its current form by Cooley and Tukey [CT]. Press et al. [NR] provide an
accessible introduction to Fourier analysis and its applications.

Because the discrete Fourier transform separates its input into components that contribute at discrete frequencies, it has
a great number of applications in digital signal processing, e.g., for filtering, and in this context the discretized input to
the transform is customarily referred to as a signal, which exists in the time domain. The output is called a spectrum or
transform and exists in the frequency domain.

Implementation details

There are many ways to define the DFT, varying in the sign of the exponent, normalization, etc. In this implementation,
the DFT is defined as

n—1
k
Ak:Zamexp{—QwiTZ} k=0,...,n—1.
m=0

The DFT is in general defined for complex inputs and outputs, and a single-frequency component at linear frequency f is
represented by a complex exponential a,, = exp{2mi fmAt}, where At is the sampling interval.

The values in the result follow so-called “standard” order: If A = £ft (a, n),thenA[0] contains the zero-frequency
term (the sum of the signal), which is always purely real for real inputs. Then A [1:n/2] contains the positive-frequency
terms, and A [n/2+1 :] contains the negative-frequency terms, in order of decreasingly negative frequency. For an even
number of input points, A [n/2] represents both positive and negative Nyquist frequency, and is also purely real for real
input. For an odd number of input points, A [(n—1) /2] contains the largest positive frequency, while A [(n+1) /2]
contains the largest negative frequency. The routine np. fft . fftfreq (n) returns an array giving the frequencies of
corresponding elements in the output. The routine np. £ft . fftshift (A) shifts transforms and their frequencies to
put the zero-frequency components in the middle, and np. fft.ifftshift (A) undoes that shift.

When the input a is a time-domain signal and 2 = fft (a), np.abs () is its amplitude spectrum and np.
abs (A) **2 is its power spectrum. The phase spectrum is obtained by np . angle (A).

1.1. NumPy’s module structure 35

NumPy Reference, Release 2.2.0

The inverse DFT is defined as

n—1

1 mk
m = A 2mi— =0,...,n—1.
“ ng:; kexp{mn} m 0

It differs from the forward transform by the sign of the exponential argument and the default normalization by 1/n.

Type Promotion

numpy . £t promotes float32 and complex64 arrays to float64 and complex128 arrays respectively. For
an FFT implementation that does not promote input arrays, see scipy . fftpack.

Normalization

The argument norm indicates which direction of the pair of direct/inverse transforms is scaled and with what normal-
ization factor. The default normalization ("backward") has the direct (forward) transforms unscaled and the inverse
(backward) transforms scaled by 1/n. It is possible to obtain unitary transforms by setting the keyword argument norm
to "ortho™" so that both direct and inverse transforms are scaled by 1/1/n. Finally, setting the keyword argument norm
to "forward" has the direct transforms scaled by 1/n and the inverse transforms unscaled (i.e. exactly opposite to the
default "backward"). None is an alias of the default option "backward" for backward compatibility.

Real and Hermitian transforms

When the input is purely real, its transform is Hermitian, i.e., the component at frequency f is the complex conjugate
of the component at frequency — fi, which means that for real inputs there is no information in the negative frequency
components that is not already available from the positive frequency components. The family of 7t functions is
designed to operate on real inputs, and exploits this symmetry by computing only the positive frequency components, up
to and including the Nyquist frequency. Thus, n input points produce n/2+1 complex output points. The inverses of
this family assumes the same symmetry of its input, and for an output of n points uses n/2+1 input points.

Correspondingly, when the spectrum is purely real, the signal is Hermitian. The h £t family of functions exploits this
symmetry by using n/2+1 complex points in the input (time) domain for n real points in the frequency domain.

In higher dimensions, FFTs are used, e.g., for image analysis and filtering. The computational efficiency of the FFT means
that it can also be a faster way to compute large convolutions, using the property that a convolution in the time domain is
equivalent to a point-by-point multiplication in the frequency domain.

Higher dimensions

In two dimensions, the DFT is defined as

M—-1N-1 mk nl
Ay = Z Za"mexp{—Qﬂ'i (M+N)} k=0,....M—-1;, 1=0,...,N—1,

m=0 n=0
which extends in the obvious way to higher dimensions, and the inverses in higher dimensions also extend in the same
way.
References
Examples

For examples, see the various functions.

36 1. Python API

https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack

NumPy Reference, Release 2.2.0

Linear algebra (numpy.linalg)

The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient low level implementations of stan-
dard linear algebra algorithms. Those libraries may be provided by NumPy itself using C versions of a subset of their
reference implementations but, when possible, highly optimized libraries that take advantage of specialized processor
functionality are preferred. Examples of such libraries are OpenBLAS, MKL (TM), and ATLAS. Because those libraries
are multithreaded and processor dependent, environmental variables and external packages such as threadpoolctl may be
needed to control the number of threads or specify the processor architecture.

The SciPy library also contains a 1inalg submodule, and there is overlap in the functionality provided by the SciPy
and NumPy submodules. SciPy contains functions not found in numpy. 1inalg, such as functions related to LU
decomposition and the Schur decomposition, multiple ways of calculating the pseudoinverse, and matrix transcendentals
such as the matrix logarithm. Some functions that exist in both have augmented functionality in scipy.linalg. For
example, scipy.linalg.eig can take a second matrix argument for solving generalized eigenvalue problems. Some
functions in NumPy, however, have more flexible broadcasting options. For example, numpy. linalg.solve can
handle “stacked” arrays, while scipy.linalg.solve accepts only a single square array as its first argument.

Note: The term matrix as it is used on this page indicates a 2d numpy . array object, and not a numpy . matrix
object. The latter is no longer recommended, even for linear algebra. See the matrix object documentation for more
information.

The @ operator

Introduced in NumPy 1.10.0, the @ operator is preferable to other methods when computing the matrix product between
2d arrays. The numpy . matmul function implements the @ operator.

Matrix and vector products

dot(a, b[, out])
linalg.multi_dot(arrays, *[, out])

vdot(a, b, /)

vecdot(xl, X2, /[, out, casting, order, ...])
linalg.vecdot(xl, x2,/, *[, axis])
inner(a,b,/)

outer(a, b[, out])

matmul(xl, x2, /[, out, casting, order, ...])
linalg.matmul(xl,x2,/)
matvec(xl, x2, /[, out, casting, order, ...])
vecmat(xl, x2, /[, out, casting, order, ...])
tensordot(a, b[, axes])

linalg.tensordot(xl, x2,/, *[, axes])
einsum(subscripts, *operands[, out, dtype, ...])

einsum_path(subscripts, *operands[, optimize])

linalg.matrix_power(a,n)
kron(a, b)
linalg.cross(xl, x2,/, *[, axis])

Dot product of two arrays.

Compute the dot product of two or more arrays in a sin-
gle function call, while automatically selecting the fastest
evaluation order.

Return the dot product of two vectors.

Vector dot product of two arrays.

Computes the vector dot product.

Inner product of two arrays.

Compute the outer product of two vectors.

Matrix product of two arrays.

Computes the matrix product.

Matrix-vector dot product of two arrays.

Vector-matrix dot product of two arrays.

Compute tensor dot product along specified axes.
Compute tensor dot product along specified axes.
Evaluates the Einstein summation convention on the
operands.

Evaluates the lowest cost contraction order for an einsum
expression by considering the creation of intermediate ar-
rays.

Raise a square matrix to the (integer) power 7.
Kronecker product of two arrays.

Returns the cross product of 3-element vectors.

1.1. NumPy’s module structure

37

https://www.openblas.net/
https://github.com/joblib/threadpoolctl
https://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg
https://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig.html#scipy.linalg.eig
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html#scipy.linalg.solve

NumPy Reference, Release 2.2.0

numpy .dot (a, b, out=None)
Dot product of two arrays. Specifically,

* If both @ and b are 1-D arrays, it is inner product of vectors (without complex conjugation).
e If both @ and b are 2-D arrays, it is matrix multiplication, but using matmul or a @ b is preferred.

e If either a or b is 0-D (scalar), it is equivalent to multiply and using numpy.multiply (a, b) ora
* b is preferred.

e If ais an N-D array and b is a 1-D array, it is a sum product over the last axis of a and b.

e If ais an N-D array and b is an M-D array (where M>=2), it is a sum product over the last axis of a and the
second-to-last axis of b:

{dot(a, b)[i,j,k,m] = sum(ali,j,:] * blk,:,m])

It uses an optimized BLAS library when possible (see numpy . 1inalg).
Parameters

a
[array_like] First argument.

[array_like] Second argument.

out
[ndarray, optional] Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be C-contiguous, and its
dtype must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

Returns

output
[ndarray] Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays
then a scalar is returned; otherwise an array is returned. If out is given, then it is returned.

Raises

ValueError
If the last dimension of a is not the same size as the second-to-last dimension of b.

See also:
vdot
Complex-conjugating dot product.

vecdot
Vector dot product of two arrays.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.

matmul
‘@’ operator as method with out parameter.

linalg.multi_dot
Chained dot product.

38 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.dot (3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot ([23, 331, [23, 331)
(-13+07)

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 11]
>>> b = [[4, 1], [2, 21]
>>> np.dot (a, b)

array ([[4, 11,
(2, 211)
.
-
>>> a = np.arange (3*4*5*6) .reshape((3,4,5,6))
>>> b = np.arange (3*4*5*6) [::-1] .reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(al[2,3,2,:] * b[1,2,:,2])
499128

linalg.multi_dot (arrays, *, out=None)

Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest
evaluation order.

multi_dot chains numpy.dot and uses optimal parenthesization of the matrices [1] [2]. Depending on the
shapes of the matrices, this can speed up the multiplication a lot.

If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector.
The other arguments must be 2-D.

Think of multi_ dot as:

[def multi_dot (arrays): return functools.reduce(np.dot, arrays)

Parameters

arrays
[sequence of array_like] If the first argument is 1-D it is treated as row vector. If the last
argument is 1-D it is treated as column vector. The other arguments must be 2-D.

out
[ndarray, optional] Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be C-contiguous, and its
dtype must be the dtype that would be returned for dot(a, b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

Returns

output
[ndarray] Returns the dot product of the supplied arrays.

1.1. NumPy’s module structure 39

NumPy Reference, Release 2.2.0

See also:

numpy . dot
dot multiplication with two arguments.

Notes

The cost for a matrix multiplication can be calculated with the following function:

def cost (A, B):
return A.shape[0] * A.shape[l] * B.shape[l]

Assume we have three matrices A10.100, B100z5, C5250-

The costs for the two different parenthesizations are as follows:

|

cost ((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500
cost (A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 75000

References

(11, [2]

Examples

multi_dot allows you to write:

.

>>> import numpy as np
>>> from numpy.linalg import multi_dot

-

L

>>> # Prepare some data

>>> A = np.random.random((10000, 100))
>>> B = np.random.random((100, 1000))
>>> C = np.random.random((1000, 5))
>>> D = np.random.random((5, 333))

>>> # the actual dot multiplication
>>> = multi_dot ([A, B, C, DJ])

instead of:

>>> = np.dot (np.dot (np.dot (A, B), C), D)
>>> # or

>>> _ = A.dot (B) .dot (C) .dot (D)

numpy .vdot (a, b, /)

Return the dot product of two vectors.

The vdot function handles complex numbers differently than dot: if the first argument is complex, it is replaced
by its complex conjugate in the dot product calculation. vdot also handles multidimensional arrays differently
than dot: it does not perform a matrix product, but flattens the arguments to 1-D arrays before taking a vector dot
product.

Consequently, when the arguments are 2-D arrays of the same shape, this function effectively returns their Frobenius
inner product (also known as the trace inner product or the standard inner product on a vector space of matrices).

Parameters

40

1. Python API

https://en.wikipedia.org/wiki/Frobenius_inner_product
https://en.wikipedia.org/wiki/Frobenius_inner_product

NumPy Reference, Release 2.2.0

a
[array_like] If a is complex the complex conjugate is taken before calculation of the dot prod-
uct.

b
[array_like] Second argument to the dot product.

Returns

output
[ndarray] Dot product of a and b. Can be an int, float, or complex depending on the types of
aand b.

See also:

dot
Return the dot product without using the complex conjugate of the first argument.

Examples

g
>>> import numpy as np

>>> a = np.array([1+273,3+431])
>>> b = np.array ([5+67,7+871])
>>> np.vdot (a, b)

(70-83)

>>> np.vdot (b, a)

(70+87)

L

Note that higher-dimensional arrays are flattened!

-

>>> a = np.array ([[1, 41, [5, 6]11)
>>> b = np.array([[4, 11, [2,
>>> np.vdot (a, b)

30

>>> np.vdot (b, a)

30

>>> 1*4 + 4*1 + 5%2 + 6*2
30

numpy . vecdot (x/, x2, /, out=None, *, casting="same_kind', order='K', dtype=None, subok= True[, signature, axes,
axis]) = <ufunc 'vecdot'>

Vector dot product of two arrays.

Let a be a vector in x/ and b be a corresponding vector in x2. The dot product is defined as:

n—1
a-b= Z a;b;
=0

where the sum is over the last dimension (unless axis is specified) and where a; denotes the complex conjugate if
a; is complex and the identity otherwise.

New in version 2.0.0.
Parameters

x1, x2
[array_like] Input arrays, scalars not allowed.

1.1. NumPy’s module structure 41

NumPy Reference, Release 2.2.0

out
[ndarray, optional] A location into which the result is stored. If provided, it must have the
broadcasted shape of x/ and x2 with the last axis removed. If not provided or None, a freshly-
allocated array is used.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns

y
[ndarray] The vector dot product of the inputs. This is a scalar only when both x1, x2 are 1-d

vectors.
Raises

ValueError
If the last dimension of x/ is not the same size as the last dimension of x2.

If a scalar value is passed in.
See also:
vdot
same but flattens arguments first

matmul
Matrix-matrix product.

vecmat
Vector-matrix product.

matvec
Matrix-vector product.

einsum
Einstein summation convention.

Examples

[>>> import numpy as np

Get the projected size along a given normal for an array of vectors.

>>> v = np.array([[0., 5., 0.],
>>> n = np.array([0., 0.6, 0.8])
>>> np.vecdot (v, n)

array ([3., 8., 10.1)

(O, ©op 10.1, [0., G®.p 8:1]1)

linalg.vecdot (xI, x2,/, *, axis=-1)

Computes the vector dot product.
This function is restricted to arguments compatible with the Array API, contrary to numpy . vecdot.

Let a be a vector in x1 and b be a corresponding vector in x2. The dot product is defined as:

n—1
a-b=> @b
=0

42 1. Python API

NumPy Reference, Release 2.2.0

over the dimension specified by ax i s and where a; denotes the complex conjugate if a; is complex and the identity
otherwise.

Parameters

x1
[array_like] First input array.

x2
[array_like] Second input array.

axis
[int, optional] Axis over which to compute the dot product. Default: —1.

Returns

output
[ndarray] The vector dot product of the input.

See also:

numpy . vecdot

Examples

Get the projected size along a given normal for an array of vectors.

>>> v = np.array([([0., 5., 0.], [0., O., 10.], [O., 6., 8.11)
>>> n = np.array([0., 0.6, 0.8])
>>> np.linalg.vecdot (v, n)

array ([3., 8., 10.1)

numpy . inner (a, b, /)

Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product
over the last axes.

Parameters
a,b
[array_like] If a and b are nonscalar, their last dimensions must match.
Returns
out
[ndarray] If @ and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an
array is returned. out . shape = (*a.shape[:-1], *b.shape[:-11])
Raises
ValueError

If both a and b are nonscalar and their last dimensions have different sizes.
See also:
tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

1.1. NumPy’s module structure 43

NumPy Reference, Release 2.2.0

vecdot
Vector dot product of two arrays.

einsum
Einstein summation convention.

Notes

For vectors (1-D arrays) it computes the ordinary inner-product:

[np.inner(a, b) = sum(al:]1*b[:])
More generally, if ndim(a) = r > 0Oand ndim(b) = s > O:
[np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b) [i0,...,ir-2,30,...,3s-2]
= sum(af[i0,...,ir-2,:]1*b[j0,...,Js-2,:1)

In addition a or b may be scalars, in which case:

[np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> import numpy as np
>>> a = np.array([1,2,3])
>>> b = np.array([0,1,01])
>>> np.inner (a, b)

2

Some multidimensional examples:

>>> a = np.arange (24) .reshape ((2,3,4))
>>> b = np.arange (4)

>>> ¢ = np.inner(a, b)

>>> c.shape

(2, 3)

>>> ¢

array ([[14, 38, 621,

[86, 110, 134]1])

|

>>> = np.arange (2) .reshape((1,1,2))

a
>>> b = np.arange (6) .reshape ((3,2))
@
c

>>> = np.inner(a, b)
>>> c.shape

(1, 1, 3)

>>> ¢

array ([[[1, 3, 5111)

An example where b is a scalar:

44 1. Python API

NumPy Reference, Release 2.2.0

>>> np.inner (np.eye(2), 7)
array ([[7., 0.1,
[0., 7.11)

numpy .outer (a, b, out=None)

Compute the outer product of two vectors.

Given two vectors a and b of length M and N, respectively, the outer product [1] is:

[[a_0*b_0 a_0*b_1 ... a_0*b_{N-1}]
[a_1*b_0
[... .
[a_{M-1}*b_0 a_{M-1}*b_{N-1} 1]
Parameters
a

[(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

[(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.

out
[(M, N) ndarray, optional] A location where the result is stored

Returns
out
[(M, N) ndarray] out [i, j] = al[i]l * b[7J]

See also:

inner
einsum
einsum('i, j->ij', a.ravel(), b.ravel()) isthe equivalent.

ufunc.outer
A generalization to dimensions other than 1D and other operations. np.multiply.outer (a.
ravel (), b.ravel ()) isthe equivalent.

linalg.outer
An Array API compatible variation of np . outer, which accepts 1-dimensional inputs only.

tensordot
np.tensordot (a.ravel (), b.ravel(), axes=((), ())) istheequivalent.

References

(1]

1.1. NumPy’s module structure 45

NumPy Reference, Release 2.2.0

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

(

>>> import numpy as np
>>> rl = np.outer (np.ones((5,)), np.linspace (-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.1,
=2-, =lo, 0., L., 2:1,
[=2., =lo, 0., L., 2.1,
=2., =1., 0., L., 2.1,
[=2s, =l., 0., 1., 2:1]1)
>>> im = np.outer (l1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.3, 0.+2.3, 0.+2.3, 0.+2.3, 0.+2.3],
[0.+1.3, 0.+1.3, O.+1.3, O0.+1.3, 0.+1.31,
[0.+0.3, 0.+0.3, 0.+40.3, 0.+0.3, 0.+0.31,
[0.-1.j3, 0.-1.3, 0.-1.3, 0.-1.3, 0.-1.31,
[0.-2.3, 0.-2.3, 0.-2.3, 0.-2.3, 0.-2.311)
>>> grid = rl + im
>>> grid
array([[-2.+2.3, -1.+2.3, 0.+2.3, 1.42.3, 2.+2.731,
[=2.4%1.9, =il.+1l.3, 0.+1.3, 1.+1.3, 2.+1.31,
[=2.4+0.9, =l.#0.9, 0.+0.7, Lo#0.9, 2.+0.91,
[=2.=1.9, =l.=1.9, 0.=1.3, d.=1.3, 2.=1.9],
L [=2.=2.9, =1.=2.3, 0:=2.3, L1.=2:3, 2.=2.3]1])
An example using a “vector” of letters:
(>>> X = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 31)
array([['a', 'aa', 'aaa'l,
['b', 'bb', 'bbb'],
['c', 'cc', 'ccc']l], dtype=object)

numpy .matmul (x/, x2, /, out=None, *, casting="same_kind', order="K', dtype=None, subok= Tme[, signature, axes,
axis]) = <ufunc 'matmul'>

Matrix product of two arrays.
Parameters

x1, x2
[array_like] Input arrays, scalars not allowed.

out
[ndarray, optional] A location into which the result is stored. If provided, it must have a shape
that matches the signature (n,k),(k,m)->(n,m). If not provided or None, a freshly-allocated
array is returned.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns

y
[ndarray] The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d

vectors.

Raises

46 1. Python API

NumPy Reference, Release 2.2.0

ValueError
If the last dimension of x/ is not the same size as the second-to-last dimension of x2.

If a scalar value is passed in.
See also:
vecdot
Complex-conjugating dot product for stacks of vectors.

matvec
Matrix-vector product for stacks of matrices and vectors.

vecmat
Vector-matrix product for stacks of vectors and matrices.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.

dot
alternative matrix product with different broadcasting rules.

Notes

The behavior depends on the arguments in the following way.
* If both arguments are 2-D they are multiplied like conventional matrices.

* If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and
broadcast accordingly.

e If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix
multiplication the prepended 1 is removed. (For stacks of vectors, use vecmat.)

* If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix
multiplication the appended 1 is removed. (For stacks of vectors, use matvec.)

matmul differs from dot in two important ways:
e Multiplication by scalars is not allowed, use * instead.

« Stacks of matrices are broadcast together as if the matrices were elements, respecting the signature (n, k) ,
(k,m)->(n,m):

>>> a = np.ones([9, 5, 7, 41)
>>> ¢ = np.ones([9, 5, 4, 31)
>>> np.dot (a, c).shape

(9, 5, 7, 9, 5, 3)

>>> np.matmul (a, c).shape

(9, 5, 7, 3)

>> # n is 7, k is 4, m is 3

The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP 465.

It uses an optimized BLAS library when possible (see numpy . 1inalg).

1.1. NumPy’s module structure 47

https://peps.python.org/pep-0465/

NumPy Reference, Release 2.2.0

Examples

For 2-D arrays it is the matrix product:

[>>> import numpy as np

>>> a = np.array([[1, 0],
[0, 111)
>>> b = np.array([[4, 11,
(2, 211)
>>> np.matmul (a, b)
array ([[4, 11,
(2, 211)

For 2-D mixed with 1-D, the result is the usual.

>>> a = np.array([[1, O],
[0, 111)
>>> b = np.array([1l, 2])
>>> np.matmul (a, b)

array ([1, 21)

>>> np.matmul (b, a)

array ([1, 21)

Broadcasting is conventional for stacks of arrays

-
>>> a = np.arange (2 * 2 * 4) .reshape((2, 2, 4))

>>> b np.arange(2 * 2 * 4) .reshape((2, 4, 2))
>>> np.matmul (a,b) .shape

(2, 2, 2)

>>> np.matmul (a, b) [0, 1, 1]

98

>>> sum(a[0, 1, :]1 * b[0 , :, 1])

98

.

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

>>> np.matmul ([273, 331, [23, 331)
(~13+07)

Scalar multiplication raises an error.

>>> np.matmul ([1,2], 3)
Traceback (most recent call last):

ValueError: matmul: Input operand 1 does not have enough dimensions

The @ operator can be used as a shorthand for np . matmul on ndarrays.

>>> x1 = np.array([27, 331])
>>> x2 = np.array([273, 331])
>>> x1 @ x2

(=13+07)

linalg.matmul (x/, x2,/)

Computes the matrix product.

This function is Array API compatible, contrary to numpy . matmul.

48

1. Python API

NumPy Reference, Release 2.2.0

Parameters

x1
[array_like] The first input array.

x2
[array_like] The second input array.

Returns

out

[ndarray] The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d
vectors.

Raises

ValueError
If the last dimension of x1 is not the same size as the second-to-last dimension of x2.

If a scalar value is passed in.

See also:

numpy .matmul

Examples

For 2-D arrays it is the matrix product:

-

>>> a = np.array([[1, 0],

[0, 111)

>>> b = np.array ([[4, 11,

.. (2, 211)

>>> np.linalg.matmul (a, b)
array ([[4, 11,
[2, 21])

L

For 2-D mixed with 1-D, the result is the usual.

>>> a = np.array([[1, O]

[0, 111)
>>> b = np.array([1, 2])
>>> np.linalg.matmul (a, b)
array ([1, 2])

>>> np.linalg.matmul (b, a)
array ([1, 2])

.

Broadcasting is conventional for stacks of arrays

p
>>> a = np.arange(2 * 2 * 4) .reshape((2, 2, 4))
>>> b = np.arange (2 * 2 * 4) .reshape((2, 4, 2))
>>> np.linalg.matmul (a,b) .shape

(2, 2, 2)

>>> np.linalg.matmul (a, b) [0, 1, 1]
98

>>> sum(a[0, 1, :]1 * b0 , :, 11)
98

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

1.1. NumPy’s module structure 49

NumPy Reference, Release 2.2.0

-

>>> np.linalg.matmul ([23, 331, [23, 331)
(=134+07)

Scalar multiplication raises an error.

>>> np.linalg.matmul ([1,2], 3)
Traceback (most recent call last):

ValueError: matmul: Input operand 1 does not have enough dimensions

numpy .matvec (x/, x2, /, out=None, *, casting="same_kind', order='K', dtype=None, subok= True[, signature, axes,
axis]) = <ufunc 'matvec'>

Matrix-vector dot product of two arrays.

Given a matrix (or stack of matrices) A in x1 and a vector (or stack of vectors) v in x2, the matrix-vector product
is defined as:

n—1

A'b:ZAijUj

=0

where the sum is over the last dimensions in x1 and x2 (unless axes is specified). (For a matrix-vector product
with the vector conjugated, use np.vecmat (x2, x1.mT).)

New in version 2.2.0.

Parameters

x1, x2
[array_like] Input arrays, scalars not allowed.

out

[ndarray, optional] A location into which the result is stored. If provided, it must have the
broadcasted shape of x1 and x2 with the summation axis removed. If not provided or None,
a freshly-allocated array is used.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns

y
[ndarray] The matrix-vector product of the inputs.

Raises

ValueError
If the last dimensions of x1 and x2 are not the same size.

If a scalar value is passed in.
See also:
vecdot
Vector-vector product.

vecmat
Vector-matrix product.

matmul
Matrix-matrix product.

50 1. Python API

NumPy Reference, Release 2.2.0

einsum
Einstein summation convention.

Examples

Rotate a set of vectors from Y to X along Z.

-

>>> a = np.array([[0., 1., O0.],
[=il., 0., 0.1,
[0., 0., 1.11)
>>> v = np.array([[1., 0., O.],
0., 1., ©:1,
[0., 0., 1.1,
[0., 6., 8.11)
>>> np.matvec(a, V)
array([[0., -1., 0.1,
[1., 0., 0.],
[0., 0., d.71,
[6., 0., 8.11)

numpy . vecmat (x/, x2, /, out=None, *, casting="same_kind', order="K', dtype=None, subok:True[, signature, axes,
axis]) = <ufunc 'vecmat'>

Vector-matrix dot product of two arrays.

Given a vector (or stack of vector) v in x1 and a matrix (or stack of matrices) A in x2, the vector-matrix product
is defined as:

n—1

=0

where the sum is over the last dimension of x1 and the one-but-last dimensions in x2 (unless axes is specified)
and where v; denotes the complex conjugate if v is complex and the identity otherwise. (For a non-conjugated
vector-matrix product, use np.matvec (x2.mT, x1).)

New in version 2.2.0.
Parameters

x1, x2
[array_like] Input arrays, scalars not allowed.

out
[ndarray, optional] A location into which the result is stored. If provided, it must have the
broadcasted shape of x1 and x2 with the summation axis removed. If not provided or None,
a freshly-allocated array is used.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns

y
[ndarray] The vector-matrix product of the inputs.

Raises

ValueError
If the last dimensions of x1 and the one-but-last dimension of x2 are not the same size.

If a scalar value is passed in.

1.1. NumPy’s module structure 51

NumPy Reference, Release 2.2.0

See also:
vecdot
Vector-vector product.

matvec
Matrix-vector product.

matmul
Matrix-matrix product.

einsum
Einstein summation convention.

Examples

Project a vector along X and Y.

>>> v = np.array([0., 4., 2.1)

>>> a = np.array([[1., 0., O0.],
(0., 1., 0.1,
[0., 0., 0.11)

>>> np.vecmat (v, a)
array ([0., 4., 0.1])

numpy . tensordot (a, b, axes=2)
Compute tensor dot product along specified axes.

Given two tensors, a and b, and an array_like object containing two array_like objects, (a_axes, b_axes),
sum the products of a’s and b’s elements (components) over the axes specified by a_axes and b_axes. The third
argument can be a single non-negative integer_like scalar, N; if it is such, then the last N dimensions of @ and the
first N dimensions of b are summed over.

Parameters

a,b
[array_like] Tensors to “dot”.

axes
[int or (2,) array_like]

* integer_like If an int N, sum over the last N axes of @ and the first N axes of b in order. The
sizes of the corresponding axes must match.

* (2,) array_like Or, a list of axes to be summed over, first sequence applying to a, second to
b. Both elements array_like must be of the same length.

Returns

output
[ndarray] The tensor dot product of the input.

See also:

dot, einsum

52 1. Python API

NumPy Reference, Release 2.2.0

Notes

Three common use cases are:

e axes = 0 : tensor product a ® b
e axes = 1: tensor dot producta -b
e axes = 2 : (default) tensor double contraction a : b

When axes is integer_like, the sequence of axes for evaluation will be: from the -Nth axis to the -1th axis in a, and
from the Oth axis to (N-1)th axis in b. For example, axes = 2 isthe equal to axes = [[-2, -1], [O,
111. When N-1 is smaller than 0, or when -N is larger than -1, the element of a and b are defined as the axes.

When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the argument axes
should consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the
second axis second, and so forth. The calculation can be referred to numpy . einsum.

The shape of the result consists of the non-contracted axes of the first tensor, followed by the non-contracted axes
of the second.

Examples

An example on integer_like:

>>> a_0 = np.array([[1, 21, [3, 4]11])

>>> b_0 = np.array([[5, 61, [7, 8]11)

>>> c_0 = np.tensordot(a_0, b_0, axes=0)
>>> c_0.shape

(2, 2, 2, 2)

>>> c_0

array ([[[’

~

N o o
o~
~

~
[N
o]

~
[N

~
N
fisy
o~
~

0 O U b O J WU
~ ~
N =
IS o

N NN P P

~
w
N

o~

L

An example on array_like:

-

>>> a = np.arange (60.) .reshape(3,4,5)
>>> b = np.arange (24.) .reshape (4, 3,2)
>>> ¢ = np.tensordot (a,b, axes=([1,0]1,[0,11))
>>> c.shape
(5, 2)
>>> ¢
array ([[4400., 4730.],

[4532., 4874.],

[4664., 5018.],

[4796., 5162.],

[4928., 5306.]1])

A slower but equivalent way of computing the same...

1.1. NumPy’s module structure 53

NumPy Reference, Release 2.2.0

(>>> d = np.zeros((5,2))
>>> for i in range(5):
for j in range(2):
for k in range (3):
for n in range(4):

.. d[i,]j] += alk,n,i] * bln,k, 7]

>>> ¢ ==

array ([[True, True],
[True, Truel,
[True, True],
[True, Truel,
[True, Truel])

An extended example taking advantage of the overloading of + and *:

>>> a = np.array(range (1, 9))
>>> a.shape = (2, 2, 2)
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
>>> A.shape = (2, 2)
>>> a; A
array ([[[1, 2],
(3, 411,
[[5, 6],
(7, 8111)
array([['a', 'b'],
['c' 'd']], dtype=object)

>>> np.tensordot (a, A) # third argument default is 2 for double-contraction
array (['abbcccdddd', 'aaaaabbbbbbccccccecdddddddd'], dtype=object)
“

-
>>> np.tensordot (a, A, 1)

array ([[['acc', 'bdd'],
['aaacccce', 'bbbdddd'l],
[["aaaaaccccee', 'bbbbbdddddd'],
['aaaaaaaccccccee', 'bbbbbbbdddddddd']]], dtype=object)

-
>>> np.tensordot (a, A, 0) # tensor product (result too long to incl.)

array ([[[[['a', 'b'I],
[lcl, ldl]],

.

g
>>> np.tensordot (a, A, (0, 1))

array ([[['abbbbb', 'cddddd'],
["aabbbbbb', 'ccdddddd']l]l,
[["aaabbbbbbb', 'cccddddddd'],
['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)

.

r

>>> np.tensordot (a, A, (2, 1))
array ([[['abb', 'cdd'],
['aaabbbb', 'cccdddd']l],
[["aaaaabbbbbb', 'cccccecdddddd'],
['aaaaaaabbbbbbbb', 'ccccccedddddddd']]], dtype=object)

-

>>> np.tensordot (a, A, ((0, 1), (0, 1)))
array (['abbbccccecddddddd', 'aabbbbcccccecdddddddd'], dtype=object)

54 1. Python API

NumPy Reference, Release 2.2.0

>>> np.tensordot (a, A, ((2, 1), (1, 0)))
array (['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)

linalg.tensordot (x1, x2,/, *, axes=2)
Compute tensor dot product along specified axes.

Given two tensors, a and b, and an array_like object containing two array_like objects, (a_axes, b_axes),
sum the products of a’s and b’s elements (components) over the axes specified by a_axes and b_axes. The third
argument can be a single non-negative integer_like scalar, N; if it is such, then the last N dimensions of @ and the
first N dimensions of b are summed over.

Parameters

a,b
[array_like] Tensors to “dot”.

axes
[int or (2,) array_like]

* integer_like If an int N, sum over the last N axes of a and the first N axes of b in order. The
sizes of the corresponding axes must match.

e (2,) array_like Or, a list of axes to be summed over, first sequence applying to a, second to
b. Both elements array_like must be of the same length.

Returns

output
[ndarray] The tensor dot product of the input.

See also:

dot, einsum

Notes

Three common use cases are:
e axes = O0: tensor product a ® b
e axes = 1 : tensor dot producta - b
e axes = 2 : (default) tensor double contraction a : b
When axes is integer_like, the sequence of axes for evaluation will be: from the -Nth axis to the -1th axis in a, and

from the Oth axis to (N-1)th axis in b. For example, axes = 2 isthe equal to axes = [[-2, -1], [O,
1] 1. When N-1 is smaller than 0, or when -N is larger than -1, the element of a and b are defined as the axes.

When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the argument axes
should consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the
second axis second, and so forth. The calculation can be referred to numpy . einsum.

The shape of the result consists of the non-contracted axes of the first tensor, followed by the non-contracted axes
of the second.

1.1. NumPy’s module structure 55

NumPy Reference, Release 2.2.0

Examples

An example on integer_like:

-

>>> a_0 = np.array([[1, 21, [3, 411)

>>> b_0 = np.array([[5, 61, [7, 8]1)

>>> c_0 = np.tensordot (a_0, b_0, axes=0)
>>> c_0.shape

(2, 2, 2, 2)

>>> c_0

array ([[[

~

~

N 00 o
o~
~

~
[N
o
o~
~

~
[N

~ ~
NN
IS

0 O = U b O J O
~ ~

w =

N [ee]

o~

N DNDDN -

An example on array_like:

f

>>> a = np.arange (60.) .reshape(3,4,5)
>>> b = np.arange (24.) .reshape (4, 3,2)
>>> ¢ = np.tensordot (a,b, axes=([1,0]1,[0,11))
>>> c.shape
(5, 2}
>>> ¢
array ([[4400., 4730.],

[4532., 4874.],

[4664., 5018.1],

[4796., 5162.],

[4928., 5306.]11])

A slower but equivalent way of computing the same. ..

>>> d = np.zeros ((5,2))
>>> for i1 in range (5):
for j in range(2):
for k in range (3):
for n in range(4):
dfi,jl += alk,n,il * bln,k,]Jl
>>> ¢ == d
array ([[True, True],
[True, True],
[True, Truel,
[True, True],
[True, Truell)

An extended example taking advantage of the overloading of + and *:

-
>>> = np.array(range (1, 9))
.shape = (2, 2, 2)

a
>>> a ,
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
A)
a

>>> A.shape = (2, 2
>>> a; A
array ([[[1, 2],
(3, 411,
[[5, 61,

(continues on next page)

56

1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

14
['c', 'd']], dtype=object)

>>> np.tensordot (a, A) # third argument default is 2 for double-contraction
array (['abbcccdddd', 'aaaaabbbbbbccccccecdddddddd'], dtype=object)

p
>>> np.tensordot (a, A, 1)

array ([[['acc', 'bdd'],
['aaacccce', 'bbbdddd'l],
[["aaaaacccccee', 'bbbbbdddddd'],
['aaaaaaaccccccee', 'bbbbbbbdddddddd']]], dtype=object)

p
>>> np.tensordot (a, A, 0) # tensor product (result too long to incl.)

array ([[[[['a', 'B'],
['c', 'd']l],

.

-

>>> np.tensordot (a, A, (0, 1))
array ([[['abbbbb', 'cddddd'],
["aabbbbbb', 'ccdddddd']ll]l,
[['aaabbbbbbb', 'cccddddddd'],
["aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)

p
>>> np.tensordot (a, A, (2, 1))

array ([[['abb', 'cdd'],
['aaabbbb', 'cccdddd']l],
[["aaaaabbbbbb', 'cccccdddddd'],
['aaaaaaabbbbbbbb', 'ccccccedddddddd']]], dtype=object)

-

>>> np.tensordot (a, A, ((0, 1), (0, 1)))
array (['abbbccccecddddddd', 'aabbbbccccccdddddddd'], dtype=object)

-

>>> np.tensordot(a, A, ((2, 1), (1, 0)))
array (['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)

numpy . einsum (subscripts, *operands, out=None, dtype=None, order="K', casting='safe’, optimize=False)

Evaluates the Einstein summation convention on the operands.

Using the Einstein summation convention, many common multi-dimensional, linear algebraic array operations can
be represented in a simple fashion. In implicit mode einsum computes these values.

In explicit mode, e i nsum provides further flexibility to compute other array operations that might not be considered
classical Einstein summation operations, by disabling, or forcing summation over specified subscript labels.

See the notes and examples for clarification.
Parameters

subscripts
[str] Specifies the subscripts for summation as comma separated list of subscript labels. An
implicit (classical Einstein summation) calculation is performed unless the explicit indicator
->’ is included as well as subscript labels of the precise output form.

operands
[list of array_like] These are the arrays for the operation.

1.1. NumPy’s module structure 57

NumPy Reference, Release 2.2.0

out
[ndarray, optional] If provided, the calculation is done into this array.

dtype
[{data-type, None}, optional] If provided, forces the calculation to use the data type specified.

Note that you may have to also give a more liberal casting parameter to allow the conversions.
Default is None.

order
[{‘C, ‘F, ‘A’, ‘K’}, optional] Controls the memory layout of the output. ‘C’ means it should
be C contiguous. ‘F’ means it should be Fortran contiguous, ‘A’ means it should be ‘F’ if the
inputs are all ‘F’, ‘C’ otherwise. ‘K’ means it should be as close to the layout as the inputs as is
possible, including arbitrarily permuted axes. Default is ‘K.

casting

[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Setting this to ‘unsafe’ is not recommended, as it can adversely affect accumulations.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.
* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
* ‘unsafe’ means any data conversions may be done.
Default is ‘safe’.
optimize
[{False, True, ‘greedy’, ‘optimal’}, optional] Controls if intermediate optimization should oc-
cur. No optimization will occur if False and True will default to the ‘greedy’ algorithm.

Also accepts an explicit contraction list from the np.einsum_path function. See np.
einsum_path for more details. Defaults to False.

Returns

output
[ndarray] The calculation based on the Einstein summation convention.

See also:

einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
einsum

Similar verbose interface is provided by the einops package to cover additional operations: transpose, re-

shape/flatten, repeat/tile, squeeze/unsqueeze and reductions. The opt_einsum optimizes contraction order
for einsum-like expressions in backend-agnostic manner.

Notes
The Einstein summation convention can be used to compute many multi-dimensional, linear algebraic array oper-
ations. einsum provides a succinct way of representing these.
A non-exhaustive list of these operations, which can be computed by e i nsum, is shown below along with examples:
e Trace of an array, numpy . t race.
e Return a diagonal, numpy . diag.

 Array axis summations, numpy . sum.

58 1. Python API

https://github.com/arogozhnikov/einops
https://optimized-einsum.readthedocs.io/en/stable/

NumPy Reference, Release 2.2.0

* Transpositions and permutations, numpy . t ranspose.

e Matrix multiplication and dot product, numpy . matmul
numpy . dot.

¢ Vector inner and outer products, numpy . inner
numpy.outer.

* Broadcasting, element-wise and scalar multiplication,
numpy.multiply.

¢ Tensor contractions, numpy . tensordot.

¢ Chained array operations, in efficient calculation order,
numpy.einsum_path.

The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of the
corresponding operand. Whenever a label is repeated it is summed, so np.einsum('i,i', a, b) isequiv-
alentto np. inner (a, b). If alabel appears only once, it is not summed, sonp.einsum('i', a) produces
a view of a with no changes. A further example np.einsum('ij, jk', a, b) describes traditional ma-
trix multiplication and is equivalent to np.matmul (a, b). Repeated subscript labels in one operand take the
diagonal. For example, np.einsum('ii', a) isequivalentto np.trace (a).

In implicit mode, the chosen subscripts are important since the axes of the output are reordered alphabetically.
This means that np.einsum('i3j"', a) doesn’t affect a 2D array, while np.einsum('ji', a) takes
its transpose. Additionally, np.einsum('ij, jk', a, b) returns a matrix multiplication, while, np.
einsum('ij, jh', a, b) returns the transpose of the multiplication since subscript ‘h’ precedes subscript

3]

1.

In explicit mode the output can be directly controlled by specifying output subscript labels. This requires the iden-
tifier *->" as well as the list of output subscript labels. This feature increases the flexibility of the function since
summing can be disabled or forced when required. The call np.einsum('i->"', a) islike np.sum(a)
if aisa 1-D array, and np.einsum('ii->1i', a) islike np.diag(a) if a is a square 2-D array. The
difference is that e i nsum does not allow broadcasting by default. Additionally np.einsum('ij, jh->ih"',
a, b) directly specifies the order of the output subscript labels and therefore returns matrix multiplication, unlike
the example above in implicit mode.

To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an ellipsis
to the left of each term, like np.einsum('...ii->...1i', a).np.einsum('...i->..."', a)is
like np. sum (a, axis=-1) forarray a of any shape. To take the trace along the first and last axes, you can do
np.einsum('i...i', a), or todo a matrix-matrix product with the left-most indices instead of rightmost,
one candonp.einsum('ij...,jk...->ik...', a, Db).

When there is only one operand, no axes are summed, and no output parameter is provided, a view into the operand
is returned instead of a new array. Thus, taking the diagonal as np.einsum('ii->1i', a) produces a view
(changed in version 1.10.0).

einsumalso provides an alternative way to provide the subscripts and operands as einsum (op0, sublistO,
opl, sublistl, ..., [sublistout]). If the output shape is not provided in this format e insum will
be calculated in implicit mode, otherwise it will be performed explicitly. The examples below have corresponding
einsum calls with the two parameter methods.

Views returned from einsum are now writeable whenever the input array is writeable. For example, np.
einsum('ijk...->kji..."', a) will now have the same effect as np. swapaxes (a, 0, 2) and
np.einsum('ii->i"', a) will return a writeable view of the diagonal of a 2D array.

Added the optimize argument which will optimize the contraction order of an einsum expression. For a con-
traction with three or more operands this can greatly increase the computational efficiency at the cost of a larger
memory footprint during computation.

1.1. NumPy’s module structure 59

NumPy Reference, Release 2.2.0

Typically a ‘greedy’ algorithm is applied which empirical tests have shown returns the optimal path in the majority
of cases. In some cases ‘optimal’ will return the superlative path through a more expensive, exhaustive search. For
iterative calculations it may be advisable to calculate the optimal path once and reuse that path by supplying it as
an argument. An example is given below.

See numpy . einsum_path for more details.

Examples

p
>>> a = np.arange (25) .reshape (5, 5)

>>> b = np.arange (5)

>>> c = np.arange (6) .reshape (2, 3)
.

Trace of a matrix:

g
>>> np.einsum('ii', a)

60

>>> np.einsum(a, [0,0])
60

>>> np.trace(a)

60

Extract the diagonal (requires explicit form):

>>> np.einsum('ii->i"', a)
array([0, 6, 12, 18, 24])
>>> np.einsum(a, [0,0], [01])
array ([0, 6, 12, 18, 24])
>>> np.diag(a)

array ([0, 6, 12, 18, 24])

.

Sum over an axis (requires explicit form):

-
>>> np.einsum('ij->i', a)

array ([10, 35, 60, 85, 1101)
>>> np.einsum(a, [0,1], [0])
array ([10, 35, 60, 85, 1101)
>>> np.sum(a, axis=1)

array ([10, 35, 60, 85, 110])

For higher dimensional arrays summing a single axis can be done with ellipsis:

-
>>> np.einsum('...j—>...", a)

array ([10, 35, 60, 85, 1101)
>>> np.einsum(a, [Ellipsis, 1], [Ellipsis])
array ([10, 35, 60, 85, 1101])

L

Compute a matrix transpose, or reorder any number of axes:

-
>>> np.einsum('Jji', c)

array ([[0, 31,

(1, 41,

[2, 511)
>>> np.einsum('ij->ji', c)
array ([[0, 31,

(1, 41,

(continues on next page)

60

1. Python API

NumPy Reference, Release 2.2.0

[2, 511)
>>> np.einsum(c, [1,0])
array ([[0, 31,

(1, 41,

[2, 511)
>>> np.transpose (c)
array ([[0, 31,

(1, 41,

[2, 511)

(continued from previous page)

Vector inner products:

>>> np.einsum('i,i', b, b)

30

>>> np.einsum(b, [0], b, [0])
30

>>> np.inner (b, b)

30

Matrix vector multiplication:

.
>>> np.einsum('ij,J', a, b)

array ([30,

array ([30,
>>> np.dot (a,
array ([30,

array ([30,

80, 130, 180, 230])

>>> np.einsum(a, [0,1], b, [1])

80, 130, 180, 230])
b)
80, 130, 180, 230])

>>> np.einsum('...j,3', a, b)

80, 130, 180, 230])

Broadcasting and scalar multiplication:

>>> np.einsum('..., ...', 3, c)
array ([[O, 3, 6],

[9, 12, 15]11)
>>> np.einsum(',ij', 3,)
array ([[O, 3, 6],

[9, 12, 1511)
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
array ([[O, 3, 6],

[9, 12, 1511)
>>> np.multiply (3, c)
array ([[O, 3, 61,

[9, 12, 1511)

.

Vector outer product:

-

>>> np.einsum('i, j', np.arange(2)+1, b)
array([[O0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]1])
>>> np.einsum(np.arange(2)+1, [0], b, [11)
array([[O0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]1])
>>> np.outer (np.arange(2)+1, b)
array([[O0, 1, 2, 3, 4],

[0, 2, 4, 6, 811)

1.1. NumPy’s module structure

61

NumPy Reference, Release 2.2.0

Tensor contraction:

.

>>> a = np.arange (60.) .reshape(3,4,5)
>>> b = np.arange(24.) .reshape (4, 3,2)
>>> np.einsum('ijk,jil->kl1', a, b)
array ([[4400., 4730.],
[4532., 4874.]
[4664., 5018.]
[4796., 5162.],
[4928., 5306.]1])
>>> np.einsum(a, [0,1,2], b, [1,0,31, [2,3])
1
]
1
1
]

’

’

array ([[4400., 4730.
[4532., 4874.
[4664., 5018.
[4796., 5162.],
[4928., 5306.]1])

’

’

’

>>> np.tensordot (a,b, axes=([1,0],[0,11))
array ([[4400., 4730.],
4532., 4874 ,

-1
[o]
[4664., 5018.1],
[4796., 5162.]
[o]

4928., 5306.1])

Writeable returned arrays (since version 1.10.0):

-

>>> a = np.zeros((3, 3))

>>> np.einsum('ii->i', a)[:] = 1
>>> a
array([[1., 0., 0.],

[0., 1., 0.1,

[0., 0., 1.11)

Example of ellipsis use:

r

>>> a = np.arange (6) .reshape ((3,2))
>>> b = np.arange (12) .reshape((4,3))
>>> np.einsum('ki, jk—->1j', a, b)
array ([[10, 28, 46, 64],

[13, 40, 67, 941])
>>> np.einsum('ki, ...k->i..."', a, Db)
array ([[10, 28, 46, 64],

[13, 40, 67, 941])
>>> np.einsum('k...,jk', a, b)
array ([[10, 28, 46, 64],

[13, 40, 67, 941])

Chained array operations. For more complicated contractions, speed ups might be achieved by repeatedly com-
puting a ‘greedy’ path or pre-computing the ‘optimal’ path and repeatedly applying it, using an einsum_path
insertion (since version 1.12.0). Performance improvements can be particularly significant with larger arrays:

[

>>> a = np.ones (64) .reshape (2,4, 8)

Basic einsum: ~1520ms (benchmarked on 3.1GHz Intel i5.)

>

>>> for iteration in range (500) :
= np.einsum('ijk,ilm,njm,nlk,abc->"',a,a,a,a,a)

Sub-optimal einsum (due to repeated path calculation time): ~330ms

62

1. Python API

NumPy Reference, Release 2.2.0

>>> for iteration in range (500) :
_ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a,
optimize='optimal')

Greedy e insum (faster optimal path approximation): ~160ms

>>> for iteration in range (500) :

_ = np.einsum('ijk,ilm,njm,nlk,abc->"',a,a,a,a,a, optimize='greedy')
A

Optimal e insum (best usage pattern in some use cases): ~110ms

-

>>> path np.einsum _path('ijk,ilm,njm,nlk,abc->"',a,a,a,a,a,
. optimize="optimal') [0]
>>> for iteration in range (500) :

_ = np.einsum('ijk,ilm,njm,nlk,abc->"',a,a,a,a,a, optimize=path)

L

numpy . einsum_path (subscripts, *operands, optimize='greedy’)

Evaluates the lowest cost contraction order for an einsum expression by considering the creation of intermediate

arrays.
Parameters
subscripts
[str] Specifies the subscripts for summation.
*operands

[list of array_like] These are the arrays for the operation.

optimize

[{bool, list, tuple, ‘greedy’, ‘optimal’}] Choose the type of path. If a tuple is provided, the

second argument is assumed to be the maximum intermediate size created. If only a single

argument is provided the largest input or output array size is used as a maximum intermediate
size.

« if a list is given that starts with einsum_path, uses this as the contraction path

« if False no optimization is taken

¢ if True defaults to the ‘greedy’ algorithm

* ‘optimal’ An algorithm that combinatorially explores all possible ways of contracting the
listed tensors and chooses the least costly path. Scales exponentially with the number of
terms in the contraction.

* ‘greedy’ An algorithm that chooses the best pair contraction at each step. Effectively, this
algorithm searches the largest inner, Hadamard, and then outer products at each step. Scales
cubically with the number of terms in the contraction. Equivalent to the ‘optimal’ path for
most contractions.

Default is ‘greedy’.

Returns
path

[list of tuples] A list representation of the einsum path.

string_repr

[str] A printable representation of the einsum path.

See also:

1.1. NumPy’s module structure 63

NumPy Reference, Release 2.2.0

einsum, linalg.multi_dot

Notes

The resulting path indicates which terms of the input contraction should be contracted first, the result of this con-
traction is then appended to the end of the contraction list. This list can then be iterated over until all intermediate
contractions are complete.

Examples

We can begin with a chain dot example. In this case, it is optimal to contract the b and c tensors first as represented
by the first element of the path (1, 2). The resulting tensor is added to the end of the contraction and the
remaining contraction (0, 1) is then completed.

p
>>> np.random.seed (123)

>>> a = np.random.rand (2, 2)
>>> b = np.random.rand(2, 5)
>>> ¢ = np.random.rand(5, 2)

>>> path_info = np.einsum_path('ij, jk,k1->il', a, b, c,
>>> print (path_info[0])
['einsum_path', (1, 2),
>>> print (path_info[1])

Complete contraction:

optimize="greedy')
(0, 1)1

ij, jk,kl1->il1 # may vary

Naive scaling: 4
Optimized scaling: 3
Naive FLOP count: 1.600e+02
Optimized FLOP count: 5.600e+01
Theoretical speedup: 2.857
Largest intermediate: 4.000e+00 elements
scaling current remaining
3 kl,jk->31 ij,jl->11
3 J1,1ij->11 11->i1

A more complex index transformation example.

>>> I = np.random.rand (10, 10, 10)
>>> C = np.random.rand (10, 10)

>>> path_info = np.einsum_path('ea, fb, abcd, gc, hd->efgh', C, C, I, C, C,

10,

optimize='greedy"')

>>> print (path_info[0])
['einsum_path', (0, 2),
>>> print (path_info[1])

Complete contraction:
Naive scaling:
Optimized scaling:
Naive FLOP count:
Optimized FLOP count:
Theoretical speedup:
Largest intermediate:

(0, 3), (0, 2), (0, 1)]

ea, fb, abcd, gc, hd->efgh # may vary
8

5

8.000e+08

8.000e+05

1000.000

1.000e+04 elements

(continues on next page)

64

1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

5 abcd, ea->bcde fb, gc, hd, bcde->efgh
5 bcde, fb->cdef gc,hd, cdef->efgh
5 cdef,gc—->defqg hd, defg->efgh
5 defg, hd->efgh efgh->efgh

linalg.matrix_power (a, n)
Raise a square matrix to the (integer) power n.
For positive integers n, the power is computed by repeated matrix squarings and matrix multiplications. If n ==

0, the identity matrix of the same shape as M is returned. If n < 0, the inverse is computed and then raised to
the abs (n).

Note: Stacks of object matrices are not currently supported.

Parameters

a
[(..., M, M) array_like] Matrix to be “powered”.

[int] The exponent can be any integer or long integer, positive, negative, or zero.
Returns
a**n
[(..., M, M) ndarray or matrix object] The return value is the same shape and type as M; if

the exponent is positive or zero then the type of the elements is the same as those of M. If the
exponent is negative the elements are floating-point.

Raises

LinAlgError
For matrices that are not square or that (for negative powers) cannot be inverted numerically.

Examples

>>> import numpy as np
>>> from numpy.linalg import matrix_power

>>> i1 = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
>>> matrix_power (i, 3) # should = -1
array ([[0, -17,

(1, 01l

>>> matrix_power (i, 0)

array ([[1, 0],

[0, 111)
>>> matrix_power (i, -3) # should = 1/(-i) = i, but w/ f.p. elements
array([[0., 1.7,

[-1., 0.11)

.

Somewhat more sophisticated example

>>> g = np.zeros((4, 4))
>>> q[0:2, 0:2] = -1
>>> q[2:4, 2:4] = 1

(continues on next page)

1.1. NumPy’s module structure 65

NumPy Reference, Release 2.2.0

(continued from previous page)

>>> g # one of the three quaternion units not equal to 1

array ([[0., -1., 0., 0.7,

1., 0., 0., 0.1,

[o., 0., 0., 1.1,

[0., 0., -1., 0.11)
>>> matrix_power (q, 2) # = —-np.eye (4)
array ([[-1., 0., 0., 1,

0.

[Oy =lc, 0., 01,
[oy, 0o, =1., 0.1,
[Oy 0o 0., =L:11)

numpy .kron (a, b)

Kronecker product of two arrays.
Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first.
Parameters

a,b
[array_like]

Returns

out
[ndarray]

See also:

outer
The outer product

Notes

The function assumes that the number of dimensions of a and b are the same, if necessary prepending the smallest
with ones. If a.shape = (r0,rl,..,rN) andb.shape = (s0,sl, ..., sN),the Kronecker product

has shape (r0*s0, rl*sl, ..., rN*SN).The elements are products of elements from a and b, organized
explicitly by:
[kron(a,b) [kO,k1,...,kN] = a[i0O,il,...,iN] * b[]jO,3j1,...,JN]

where:

[kt = it * st + jt, t = 0,...,N

In the common 2-D case (N=1), the block structure can be visualized:

[l a[olo]*bl a[oll]*bl e a[O,*l]*b]I
[al-1,01*b, al-1,1]*b, ... , al-1,-1]1*b]]

66 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.kron([1,10,100]1, [5,6,71)

array ([5, 6, 7, ..., 500, 600, 7007])
>>> np.kron([5,6,7], [1,10,100])
array ([5, 50, 500, ..., 7, 70, 7007)
.
>>> np.kron(np.eye(2), np.ones((2,2)))
array ([[1., 1., 0., 0.1,
(1., 1., 0., 0.1,
(0., 0., 1., 1.1,
(0., 0., 1., 1.11)
.
-
>>> a = np.arange (100) .reshape((2,5,2,5))
>>> b = np.arange (24) .reshape((2,3,4))
>>> ¢ = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J # extend to ndim=4

>>> S1 = (1,) + b.shape

>>> K = tuple(np.array(I) * np.array(Sl) + np.array(Jl))
>>> c[K] == a[I]*b[J]

True

linalg.ecross (xl,x2,/, *, axis=-1)

Returns the cross product of 3-element vectors.

If x1 and/or x2 are multi-dimensional arrays, then the cross-product of each pair of corresponding 3-element
vectors is independently computed.

This function is Array API compatible, contrary to numpy. cross.
Parameters

x1
[array_like] The first input array.

x2
[array_like] The second input array. Must be compatible with x1 for all non-compute axes.
The size of the axis over which to compute the cross-product must be the same size as the
respective axis in x1.

axis
[int, optional] The axis (dimension) of x1 and x2 containing the vectors for which to compute
the cross-product. Default: 1.

Returns

out
[ndarray] An array containing the cross products.

See also:

numpy .cross

1.1. NumPy’s module structure 67

NumPy Reference, Release 2.2.0

Examples

Vector cross-product.

>>> x = np.array([1, 2, 31)
>>> y = np.array([4, 5, 6])
>>> np.linalg.cross(x, V)
array ([-3, 6, —-31)

Multiple vector cross-products. Note that the direction of the cross product vector is defined by the right-hand rule.

>>> x = np.array([[1,2,3], [4,5,6]1])
>>> y = np.array([[4,5,6], [1,2,3]])
>>> np.linalg.cross(x, Vy)
array ([[-3, 6, =31,

[3, =6, 311)

L

-

>>> x = np.array([[1, 2], [3, 41, [5, 6]1)
>>> vy = np.array([[4, 5], [6, 1], [2, 3]])
>>> np.linalg.cross(x, y, axis=0)

array ([[-24, 61,
[18, 24],
[-6, -1811)

L

Decompositions

linalg.cholesky(a,/, *[, upper]) Cholesky decomposition.

linalg.outer(xl,x2,/) Compute the outer product of two vectors.

linalg.gr(a[, mode]) Compute the gr factorization of a matrix.

linalg. svd(al, full_matrices, compute_uv, ...]) Singular Value Decomposition.

linalg.svdvals(x,/) Returns the singular values of a matrix (or a stack of ma-
trices) x.

linalg.cholesky (a,/, * upper=False)
Cholesky decomposition.

Return the lower or upper Cholesky decomposition, L. * L.Hor U.H * U, of the square matrix a, where
L is lower-triangular, U is upper-triangular, and . H is the conjugate transpose operator (which is the ordinary
transpose if a is real-valued). a must be Hermitian (symmetric if real-valued) and positive-definite. No checking
is performed to verify whether a is Hermitian or not. In addition, only the lower or upper-triangular and diagonal
elements of a are used. Only L or U is actually returned.

Parameters

a
[(..., M, M) array_like] Hermitian (symmetric if all elements are real), positive-definite input
matrix.

upper
[bool] If True, the result must be the upper-triangular Cholesky factor. If False, the result
must be the lower-triangular Cholesky factor. Default: False.

Returns

L
[(..., M, M) array_like] Lower or upper-triangular Cholesky factor of a. Returns a matrix
object if a is a matrix object.

68 1. Python API

NumPy Reference, Release 2.2.0

Raises

LinAlgError

If the decomposition fails, for example, if a is not positive-definite.

See also:

scipy.linalg.cholesky
Similar function in SciPy.

scipy.linalg.cholesky_banded

Cholesky decompose a banded Hermitian positive-definite matrix.

scipy.linalg.cho_factor

Cholesky decomposition of a matrix, to use in scipy.linalg.cho_solve.

Notes

Broadcasting rules apply, see the numpy . 1inalg documentation for details.

The Cholesky decomposition is often used as a fast way of solving

Ax=Db

(when A is both Hermitian/symmetric and positive-definite).

First, we solve for y in

and then for x in

Examples

r

>>> import numpy as np

>>> A = np.array([[1,-23]1,[23,51])
>>> A
array ([[1.+0.3, -0.-2.3]1,

[0.+2.3, 5.40.311)
>>> L = np.linalg.cholesky (&)
>>> L,
array ([[1.+0.3, 0.+0.3],

[0.+2.7, 1.+40.311)
>>> np.dot (L, L.T.conj()
array ([[1.+0.3, 0.-2.3],

[0.+2.3, 5.+0.311)
>>> A = [[1,-23],1([23,5]]
>>> np.linalg.cholesky (A)
array ([[1.+0.3, 0.+0.31,

[0.42.3, 1.+0.311)

>>> np.linalg.cholesky (np.matrix (A))
matrix([[1.+0.73, 0.+0.31,
[0.+2.3, 1.+0.311)

) # verify that L * L.H = A

what happens if A is only array_like?
an ndarray object is returned

>>> # But a matrix object is returned if A is a matrix object

(continues on next page)

1.1. NumPy’s module structure

69

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky.html#scipy.linalg.cholesky
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky_banded.html#scipy.linalg.cholesky_banded
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_factor.html#scipy.linalg.cho_factor
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html#scipy.linalg.cho_solve

NumPy Reference, Release 2.2.0

(continued from previous page)

>>> # The upper-triangular Cholesky factor can also be obtained.
>>> np.linalg.cholesky (A, upper=True)
array ([[1.-0.3, 0.-2.3],

[Qo=0o3, L.=0,311)

linalg.outer (x1,x2,/)

Compute the outer product of two vectors.
This function is Array API compatible. Compared to np . outer it accepts 1-dimensional inputs only.
Parameters

x1
[(M,) array_like] One-dimensional input array of size N. Must have a numeric data type.

x2
[(N,) array_like] One-dimensional input array of size M. Must have a numeric data type.

Returns

out
[(M, N) ndarray] out [i, j] = ali]l * bl[j]

See also:

outer

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

(>>> rl = np.linalg.outer (np.ones((5,)), np.linspace(-2, 2, 5))

>>> rl

array([[-2., -1., 0., 1., 2.1,
[=2., =1., 0., 1., 2.1,
=25, =lo, 0., L., 2.1,
[-2., -1., 0., 1., 2.1,
[=2., =1., 0., 1., 2.11)

>>> im = np.linalg.outer(lj*np.linspace (2, -2, 5), np.ones((5,)))

>>> im

array ([[0.+2.3, 0.+2.3, 0.+2.3, 0.+2.3, 0.+2.31],
[0.+1.3, 0.+1.3, O.+1.3, 0.+1.3, 0.+1.31,
[0.+0.3, 0.40.3, 0.+0.3, 0.+0.3, 0.+0.31,
[(6.-2.3, 0.-1.3, 0.-1.3, 0.-1.3, 0.-1.31,
[0:=2:.9, 0.=2:9, 0.=2.9, 0.=2.7, 0-=2.511)

>>> grid = rl + im

>>> grid

array([[-2.+2.3, -1.+2.3, 0.+2.3, 1.+2.3, 2.+2.31,
[-2.+1.3, -1.+1.3, O.+1.3, 1.+1.3, 2.+1.31,
[-2.+0.3, -1.+0.3, O0.+0.3, 1.+0.3, 2.+40.71,
[=2.=1.9, =l.=1.9, 0.=1.9, dL.=1.9, 2.=1-91,
[=2.=2.9,; =1:.=2.9, 0.=2.3, L1.=2:3;, 2.=2.3]1])

L

An example using a “vector” of letters:

-
>>> x = np.array(['a', 'b', 'c'], dtype=object)

>>> np.linalg.outer(x, [1, 2, 31)

(continues on next page)

70 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

array([['a', 'aa', 'aaa'l,
['b', 'bb', 'bbb'],
['c', 'cc', 'ccc']], dtype=object)

linalg.qgr (a, mode='"reduced’)
Compute the gr factorization of a matrix.

Factor the matrix a as gr, where ¢ is orthonormal and r is upper-triangular.
Parameters

a
[array_like, shape (..., M, N)] An array-like object with the dimensionality of at least 2.

mode
[{‘reduced’, ‘complete’, ‘r’, ‘raw’}, optional, default: ‘reduced’] If K = min(M, N), then

¢ ‘reduced’ : returns Q, R with dimensions (..., M, K), (..., K, N)
 ‘complete’ : returns Q, R with dimensions (..., M, M), (..., M, N)
e ‘v’ : returns R only with dimensions (..., K, N)

e ‘raw’ : returns h, tau with dimensions (..., N, M), (..., K,)

The options ‘reduced’, ‘complete, and ‘raw’ are new in numpy 1.8, see the notes for more
information. The default is ‘reduced’, and to maintain backward compatibility with earlier
versions of numpy both it and the old default ‘full’ can be omitted. Note that array h returned
in ‘raw’ mode is transposed for calling Fortran. The ‘economic’ mode is deprecated. The modes
‘full’ and ‘economic’ may be passed using only the first letter for backwards compatibility, but
all others must be spelled out. See the Notes for more explanation.

Returns

When mode is ‘reduced’ or ‘complete’, the result will be a namedtuple with
the attributes Q and R.
Q

[ndarray of float or complex, optional] A matrix with orthonormal columns. When mode
= ‘complete’ the result is an orthogonal/unitary matrix depending on whether or not a is
real/complex. The determinant may be either +/- 1 in that case. In case the number of di-
mensions in the input array is greater than 2 then a stack of the matrices with above properties
is returned.

R
[ndarray of float or complex, optional] The upper-triangular matrix or a stack of upper-
triangular matrices if the number of dimensions in the input array is greater than 2.

(h, tau)
[ndarrays of np.double or np.cdouble, optional] The array h contains the Householder reflectors
that generate q along with r. The tau array contains scaling factors for the reflectors. In the
deprecated ‘economic’ mode only h is returned.

Raises

LinAlgError

If factoring fails.
See also:

scipy.linalg.qgr
Similar function in SciPy.

1.1. NumPy’s module structure

71

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr.html#scipy.linalg.qr

NumPy Reference, Release 2.2.0

scipy.linalg.rq
Compute RQ decomposition of a matrix.

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqgr, and zunggr.
For more information on the qr factorization, see for example: https://en.wikipedia.org/wiki/QR_factorization

Subclasses of ndarray are preserved except for the ‘raw’ mode. So if a is of type mat rix, all the return values
will be matrices too.

New ‘reduced’, ‘complete’, and ‘raw’ options for mode were added in NumPy 1.8.0 and the old option ‘full’ was made
an alias of ‘reduced’. In addition the options ‘full’ and ‘economic’ were deprecated. Because ‘full’ was the previous
default and ‘reduced’ is the new default, backward compatibility can be maintained by letting mode default. The
‘raw’ option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can
be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed
to be FORTRAN compatible. No routines using the ‘raw’ return are currently exposed by numpy, but some are
available in lapack_lite and just await the necessary work.

Examples

p
>>> import numpy as np

>>> rng = np.random.default_rng()

>>> a = rng.normal (size=(9, 6))

>>> Q, R = np.linalg.qgr(a)

>>> np.allclose(a, np.dot (Q, R)) # a does equal OR

True

>>> R2 = np.linalg.gr(a, mode='r")

>>> np.allclose (R, R2) # mode='r' returns the same R as mode='full'
True

>>> a = np.random.normal (size=(3, 2, 2)) # Stack of 2 x 2 matrices as input
>>> Q, R = np.linalg.qgr(a)

>>> Q.shape

(3, 2, 2)

>>> R.shape

(3, 2, 2)

>>> np.allclose(a, np.matmul (Q, R))

True

Example illustrating a common use of gr: solving of least squares problems

What are the least-squares-best m and y0iny = y0 + mx for the following data: {(0,1), (1,0), (1,2), (2,1)}.
(Graph the points and you’ll see that it should be yO = 0, m = 1.) The answer is provided by solving the over-
determined matrix equation Ax = b, where:

A = array([[0, 11, [1, 11, [1, 11, [2, 111)
array ([[y0], [m]])
array ([[1], [O01, [2], [111)

X

b

If A = QR such that Q is orthonormal (which is always possible via Gram-Schmidt), thenx = inv (R) * (Q.T)
* b. (In numpy practice, however, we simply use 1stsqg.)

>>> A = np.array([[0, 11, [1, 11, [1, 11, [2, 111)
>>> A
array ([[0, 17,
(continues on next page)

72

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.rq.html#scipy.linalg.rq
https://en.wikipedia.org/wiki/QR_factorization

NumPy Reference, Release 2.2.0

(continued from previous page)
(1, 11,
(1, 11,
(2, 111)
>>> b = np.array([1, 2, 2, 31)
>>> Q, R = np.linalg.qgr (A)
>>> p = np.dot (Q.T, Db)
>>> np.dot (np.linalg.inv(R), p)
array ([1., 1.1)

L

linalg.svd (a, full_matrices=True, compute_uv=True, hermitian=False)

Singular Value Decomposition.

When a is a 2D array, and full_matrices=False, thenitis factorizedasu @ np.diag(s) @ vh
(u * s) @ vh, where u and the Hermitian transpose of vk are 2D arrays with orthonormal columns and s is a
1D array of a’s singular values. When a is higher-dimensional, SVD is applied in stacked mode as explained below.

Parameters

a
[(..., M, N) array_like] A real or complex array with a.ndim >= 2.

full_matrices
[bool, optional] If True (default), # and vk have the shapes (..., M, M) and (..., N,
N), respectively. Otherwise, the shapesare (..., M, K)and (..., K, N),respectively,
where K = min (M, N).

compute_uv
[bool, optional] Whether or not to compute « and vk in addition to s. True by default.

hermitian
[bool, optional] If True, a is assumed to be Hermitian (symmetric if real-valued), enabling a
more efficient method for finding singular values. Defaults to False.

Returns

When compute_uv is True, the result is a namedtuple with the following
attribute names:

U
[{ (..., M, M), (..., M, K) } array] Unitary array(s). The first a.ndim — 2 dimensions have
the same size as those of the input a. The size of the last two dimensions depends on the value
of full_matrices. Only returned when compute_uv is True.

S
[(..., K) array] Vector(s) with the singular values, within each vector sorted in descending
order. The first a.ndim - 2 dimensions have the same size as those of the input a.

Vh
[{ (..., N,N), (..., K, N) } array] Unitary array(s). The first a.ndim - 2 dimensions have
the same size as those of the input a. The size of the last two dimensions depends on the value
of full_matrices. Only returned when compute_uv is True.

Raises
LinAlgError

If SVD computation does not converge.

See also:

scipy.linalg.svd
Similar function in SciPy.

1.1. NumPy’s module structure 73

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd

NumPy Reference, Release 2.2.0

scipy.linalg.svdvals
Compute singular values of a matrix.

Notes

The decomposition is performed using LAPACK routine _gesdd.

SVD is usually described for the factorization of a 2D matrix A. The higher-dimensional case will be discussed
below. In the 2D case, SVD is written as A = USV ¥, where A = a, U = u, S = np.diag(s) and VH = vh.
The 1D array s contains the singular values of a and u and vh are unitary. The rows of vk are the eigenvectors
of A A and the columns of u are the eigenvectors of AA* . In both cases the corresponding (possibly non-zero)
eigenvalues are given by s**2.

If @ has more than two dimensions, then broadcasting rules apply, as explained in Linear algebra on several matrices
at once. This means that SVD is working in “stacked” mode: it iterates over all indices of the first a . ndim - 2
dimensions and for each combination SVD is applied to the last two indices. The matrix a can be reconstructed
from the decomposition with either (u * s[..., None, :]) @ vhoru @ (s[..., None] * vh).
(The @ operator can be replaced by the function np . matmul for python versions below 3.5.)

If a is amat rix object (as opposed to an ndarray), then so are all the return values.

Examples

>>> import numpy as np

>>> rng = np.random.default_rng()
>>> a = rng.normal (size=(9, 6)) + 1j*rng.normal (size=(9, 6))
>>> b = rng.normal (size=(2, 7, 8, 3)) + lj*rng.normal (size=(2, 7, 8, 3))

Reconstruction based on full SVD, 2D case:

>>> U, S, Vh = np.linalg.svd(a, full_matrices=True)
>>> U.shape, S.shape, Vh.shape

(9, 9), (6,), (6, 6))

>>> np.allclose(a, np.dot(U[:, :6] * S, Vh))

True

>>> smat = np.zeros((9, 6), dtype=complex)

>>> smat[:6, :6] = np.diag(S)

>>> np.allclose(a, np.dot (U, np.dot (smat, Vh)))
True

Reconstruction based on reduced SVD, 2D case:

>>> U, S, Vh = np.linalg.svd(a, full_matrices=False)
>>> U.shape, S.shape, Vh.shape

((9, 6), (6,), (6, 6))

>>> np.allclose(a, np.dot (U * S, Vh))

True

>>> smat = np.diag(S)

>>> np.allclose(a, np.dot (U, np.dot (smat, Vh)))
True

Reconstruction based on full SVD, 4D case:

>>> U, S, Vh = np.linalg.svd(b, full_matrices=True)
>>> U.shape, S.shape, Vh.shape
(continues on next page)

74

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svdvals.html#scipy.linalg.svdvals

NumPy Reference, Release 2.2.0

(continued from previous page)
((z, 7, 8 8), (2, 7, 3), (2, 7, 3, 3))

>>> np.allclose (b, np.matmul(U[..., :3] * S[..., None, :], Vh))
True

>>> np.allclose (b, np.matmul (U[..., :3], S[..., None] * Vh))
True

Reconstruction based on reduced SVD, 4D case:

>>> U, S, Vh = np.linalg.svd(b, full_matrices=False)
>>> U.shape, S.shape, Vh.shape
(2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))

>>> np.allclose (b, np.matmul (U * S[..., None, :], Vh))
True

>>> np.allclose (b, np.matmul (U, S[..., None] * Vh))
True

L

linalg.svdvals (x,/)

Returns the singular values of a matrix (or a stack of matrices) x. When X is a stack of matrices, the function will
compute the singular values for each matrix in the stack.

This function is Array API compatible.

Calling np . svdvals (x) to get singular values is the same as np.svd (x, compute_uv=False, her-
mitian=False).

Parameters

X

[(..., M, N) array_like] Input array having shape (..., M, N) and whose last two dimensions
form matrices on which to perform singular value decomposition. Should have a floating-point
data type.

Returns

out

[ndarray] An array with shape (..., K) that contains the vector(s) of singular values of length
K, where K = min(M, N).

See also:

scipy.linalg.svdvals
Compute singular values of a matrix.

Examples

-

>>> np.linalg.svdvals([[1, 2, 3, 4, 5],

[1, 4, 9, 16, 25],
20 ¢ (1, 8, 27, 64, 125]1)
array ([146.68862757, 5.57510612, 0.60393245])

.

Determine the rank of a matrix using singular values:

-

>>> s = np.linalg.svdvals([[1l, 2, 3],
[2, 4, 6],
ca =i, 41, =1]J1)g &
array ([8.38434191e+00, 1.64402274e+00, 2.31534378e-16])

(continues on next page)

1.1. NumPy’s module structure 75

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svdvals.html#scipy.linalg.svdvals

NumPy Reference, Release 2.2.0

(continued from previous page)

>>> np.count_nonzero(s > 1le-10) # Matrix of rank 2
2

Matrix eigenvalues

linalg.eig(a) Compute the eigenvalues and right eigenvectors of a
square array.

linalg.eigh(a[, UPLO]) Return the eigenvalues and eigenvectors of a complex
Hermitian (conjugate symmetric) or a real symmetric ma-
trix.

linalg.eigvals(a) Compute the eigenvalues of a general matrix.

linalg.eigvalsh(a[, UPLO]) Compute the eigenvalues of a complex Hermitian or real

symmetric matrix.

linalg.eig(a)
Compute the eigenvalues and right eigenvectors of a square array.

Parameters

a
[(..., M, M) array] Matrices for which the eigenvalues and right eigenvectors will be computed

Returns

A namedtuple with the following attributes:

eigenvalues
[(..., M) array] The eigenvalues, each repeated according to its multiplicity. The eigenvalues
are not necessarily ordered. The resulting array will be of complex type, unless the imaginary
part is zero in which case it will be cast to a real type. When a is real the resulting eigenvalues
will be real (0 imaginary part) or occur in conjugate pairs

eigenvectors
[(..., M, M) array] The normalized (unit “length”) eigenvectors, such that the column
eigenvectors[:, 1] is the eigenvector corresponding to the eigenvalue eigenval-
ues[i].

Raises

LinAlgError
If the eigenvalue computation does not converge.

See also:
eigvals
eigenvalues of a non-symmetric array.
eigh
eigenvalues and eigenvectors of a real symmetric or complex Hermitian (conjugate symmetric) array.

eigvalsh
eigenvalues of a real symmetric or complex Hermitian (conjugate symmetric) array.

scipy.linalg.eig
Similar function in SciPy that also solves the generalized eigenvalue problem.

scipy.linalg. schur
Best choice for unitary and other non-Hermitian normal matrices.

76 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig.html#scipy.linalg.eig
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.schur.html#scipy.linalg.schur

NumPy Reference, Release 2.2.0

Notes

Broadcasting rules apply, see the numpy . 11inalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of
general square arrays.

The number w is an eigenvalue of a if there exists a vector vsuchthata @ v = w * wv. Thus, the arrays a,
eigenvalues, and eigenvectors satisfy the equations a @ eigenvectors[:,1] = eigenvalues[i] *
eigenvectors[:,1i] fori € {0,..., M — 1}.

The array eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent,
although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigen-
vectors are linearly independent and a can be diagonalized by a similarity transformation using eigenvectors, i.e,
inv (eigenvectors) @ a @ eigenvectors is diagonal.

For non-Hermitian normal matrices the SciPy function scipy.linalg. schur is preferred because the matrix
eigenvectors is guaranteed to be unitary, which is not the case when using eig. The Schur factorization produces
an upper triangular matrix rather than a diagonal matrix, but for normal matrices only the diagonal of the upper
triangular matrix is needed, the rest is roundoff error.

Finally, it is emphasized that eigenvectors consists of the right (as in right-hand side) eigenvectors of a. A vector y
satisfyingy . T @ a = z * y.T for some number z is called a left eigenvector of a, and, in general, the left and
right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other.

References

G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp.

Examples

-
>>> import numpy as np

>>> from numpy import linalg as LA
.

(Almost) trivial example with real eigenvalues and eigenvectors.

P
>>> eigenvalues, eigenvectors = LA.eig(np.diag((1, 2, 3)))

>>> eigenvalues
array([1., 2., 3.1)
>>> eigenvectors
array([[1., 0., 0.1,
[0., 1., 0.1,
[0., 0., 1.11)

Real matrix possessing complex eigenvalues and eigenvectors; note that the eigenvalues are complex conjugates of
each other.

>>> eigenvalues, eigenvectors = LA.eig(np.array([[1, —-11, [1, 111))
>>> eigenvalues

array ([1.+1.3, 1.-1.31)

>>> eigenvectors

array ([[0.70710678+0.7 , 0.70710678-0.7 15
[O. -0.707106787, O. +0.707106787311)
Complex-valued matrix with real eigenvalues (but complex-valued eigenvectors); note that a.conj () .T == a,

1.e., a is Hermitian.

1.1. NumPy’s module structure 77

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.schur.html#scipy.linalg.schur

NumPy Reference, Release 2.2.0

g
>>> a = np.array ([[1, 131, [-13, 111)

>>> eigenvalues, eigenvectors = LA.eig(a)

>>> eigenvalues

array([2.+0.3, 0.+0.31)

>>> eigenvectors

array ([[O. +0.707106783, 0.70710678+0.7]

, # may vary
[0.70710678+0.73 ; =0, +0.707106787311)

L

Be careful about round-off error!

-

>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. eigenvalues are 1 +/- le-9
>>> eigenvalues, eigenvectors = LA.eig(a)
>>> eigenvalues
array ([1., 1.1])
>>> eigenvectors
array([[1., O0.],
[0., 1.11)

linalg.eigh (a, UPLO='L")

Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.

Returns two objects, a 1-D array containing the eigenvalues of a, and a 2-D square array or matrix (depending on
the input type) of the corresponding eigenvectors (in columns).

Parameters

a
[(..., M, M) array] Hermitian or real symmetric matrices whose eigenvalues and eigenvectors
are to be computed.

UPLO
[{'L’, ‘U’}, optional] Specifies whether the calculation is done with the lower triangular part of
a ('L, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts
of the diagonal will be considered in the computation to preserve the notion of a Hermitian
matrix. It therefore follows that the imaginary part of the diagonal will always be treated as
Zero.

Returns

A namedtuple with the following attributes:

eigenvalues
[(..., M) ndarray] The eigenvalues in ascending order, each repeated according to its multi-
plicity.

eigenvectors
[{(..., M, M) ndarray, (..., M, M) matrix}] The column eigenvectors([:, i] isthe
normalized eigenvector corresponding to the eigenvalue eigenvalues [1]. Will return a
matrix object if a is a matrix object.

Raises

LinAlgError
If the eigenvalue computation does not converge.

See also:

eigvalsh
eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays.

78 1. Python API

NumPy Reference, Release 2.2.0

eig
eigenvalues and right eigenvectors for non-symmetric arrays.

eigvals
eigenvalues of non-symmetric arrays.

scipy.linalg.eigh
Similar function in SciPy (but also solves the generalized eigenvalue problem).

Notes

Broadcasting rules apply, see the numpy . 1inalg documentation for details.
The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd.

The eigenvalues of real symmetric or complex Hermitian matrices are always real. [l] The array eigenval-
ues of (column) eigenvectors is unitary and a, eigenvalues, and eigenvectors satisfy the equations dot (a,
eigenvectors([:, 1]) = eigenvalues|[i] * eigenvectors([:, 1i].

References

(1]

Examples

>>> import numpy as np
>>> from numpy import linalg as LA
>>> a = np.array([[1, -23], [2], 511)

>>> a
array ([[1.+0.3, -0.-2.31,

[0.%2.5;, 5o+0.711)
>>> eigenvalues, eigenvectors = LA.eigh(a)

>>> eigenvalues

array ([0.17157288, 5.82842712])

>>> eigenvectors

array ([[-0.92387953+0. 3 , —0.38268343+0.7]

, # may vary
[O. +0.382683433, O. -0.92387953711)

(>>> (np.dot (a, eigenvectors[:, 0]) -

eigenvalues[0] * eigenvectors[:, 0]) # verify 1st eigenval/vec pair
array ([5.55111512e-17+0.0000000e+0073, 0.00000000e+00+1.2490009e-16731])
>>> (np.dot (a, eigenvectors([:, 1]) -

eigenvalues[1l] * eigenvectors[:, 1]) # verify 2nd eigenval/vec pair
array ([0.+0.3, 0.+0.31)
.

>>> A = np.matrix(a) # what happens if input is a matrix object

>>> A
matrix([[1.+0.3, -0.-2.31,
[0.42.3, 5.+40.311)
>>> eigenvalues, eigenvectors = LA.eigh(A)

>>> eigenvalues

array ([0.17157288, 5.82842712])

>>> eigenvectors

matrix ([[-0.92387953+0. 7 , —0.38268343+0.7]

, # may vary
[O. +0.38268343j, O. -0.92387953311)

1.1. NumPy’s module structure 79

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html#scipy.linalg.eigh

NumPy Reference, Release 2.2.0

>>> # demonstrate the treatment of the imaginary part of the diagonal
>>> a = np.array([[5+27, 9-231, [0+27, 2-1311)
>>> 3
array ([[5.+2.3, 9.-2.3]1,
[0.+2.3, 2.-1.311)
>>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
>>> b = np.array([[5.+0.3, 0.-2.3], [0.+2.3, 2.-0.311)
>>> b
array ([[5.+0.3, 0.-2.3],
[0.42.5F, 2.40.311)
>>> wa, va = LA.eigh(a)
>>> wb, vb LA.eig (b)
>>> wa

array ([1., 6.1)
>>> wb
array ([6.+0.3, 1.+0.31)

>>> va

array ([[-0.4472136 +0.7 , —0.89442719+0.7], # may vary
[0. +0.894427197, 0. -0.447213673 11)

>>> vb

array ([[0.89442719+0.7 s =05 +0.4472136731,
[-0. +0.44721367, 0.89442719+0.73 11)

.

linalg.eigvals (a)
Compute the eigenvalues of a general matrix.

Main difference between eigvals and eig: the eigenvectors aren’t returned.
Parameters

a
[(...,M, M) array_like] A complex- or real-valued matrix whose eigenvalues will be computed.

Returns

w
[(..., M,) ndarray] The eigenvalues, each repeated according to its multiplicity. They are not
necessarily ordered, nor are they necessarily real for real matrices.

Raises

LinAlgError
If the eigenvalue computation does not converge.

See also:
eig
eigenvalues and right eigenvectors of general arrays

eigvalsh
eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays.
eigh
eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.

scipy.linalg.eigvals
Similar function in SciPy.

80 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvals.html#scipy.linalg.eigvals

NumPy Reference, Release 2.2.0

Notes

Broadcasting rules apply, see the numpy . 11inalg documentation for details.

This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of
general square arrays.

Examples

Tlustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a
matrix on the left by an orthogonal matrix, Q, and on the right by Q.T (the transpose of Q), preserves the eigenvalues
of the “middle” matrix. In other words, if Q is orthogonal, then 0 * A * Q.T has the same eigenvalues as A:

>>> import numpy as np
>>> from numpy import linalg as LA

>>> x = np.random.random ()
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]11])
>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[O0, :1,QI[1, :1)

(L.0, 1.0, 0,0)

Now multiply a diagonal matrix by Q on one side and by Q. T on the other:

>>> D = np.diag((-1,1))
>>> LA.eigvals (D)
array([-1., 1.1)

>>> A = np.dot (Q, D)

>>> A = np.dot (A, Q.T)

>>> LA.eigvals (A)

array ([1., -1.]1) # random

linalg.eigvalsh (a, UPLO='L'")

Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
Main difference from eigh: the eigenvectors are not computed.
Parameters

a
[(..., M, M) array_like] A complex- or real-valued matrix whose eigenvalues are to be com-
puted.

UPLO
[{'L’, ‘U’}, optional] Specifies whether the calculation is done with the lower triangular part of
a (‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts
of the diagonal will be considered in the computation to preserve the notion of a Hermitian
matrix. It therefore follows that the imaginary part of the diagonal will always be treated as
Zero.

Returns

w
[(..., M,) ndarray] The eigenvalues in ascending order, each repeated according to its multi-
plicity.

Raises

LinAlgError
If the eigenvalue computation does not converge.

1.1. NumPy’s module structure 81

NumPy Reference, Release 2.2.0

See also:
eigh
eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.

eigvals
eigenvalues of general real or complex arrays.

eig
eigenvalues and right eigenvectors of general real or complex arrays.

scipy.linalg.eigvalsh
Similar function in SciPy.

Notes

Broadcasting rules apply, see the numpy . 1inalg documentation for details.

The eigenvalues are computed using LAPACK routines _syevd, _heevd.

Examples

>>> import numpy as np

>>> from numpy import linalg as LA

>>> a = np.array([[1, -231, [23, 511)

>>> LA.eigvalsh (a)

array ([0.17157288, 5.82842712]) # may vary

>>> # demonstrate the treatment of the imaginary part of the diagonal
>>> a = np.array([[5+23, 9-231, [0+23, 2-1311)
>>> a
array ([[5.+2.3, 9.-2.3]1,
[0.42.7, 2.-1.311)
>>> # with UPLO='L' this is numerically equivalent to using LA.eigvals ()
>>> # with:
>>> b = np.array([[5.+0.3, 0.-2.3], [0.+2.3, 2.-0.311)

>>> Db

array ([[5.+0.3, 0.-2.3]1,
[0.42.7, 2.40.7311)

>>> wa = LA.eigvalsh(a)

>>> wb = LA.eigvals (b)
>>> wa; wb

array ([1., 6.])

array ([6.+0.3, 1.+0.3])

82 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvalsh.html#scipy.linalg.eigvalsh

NumPy Reference, Release 2.2.0

Norms and other numbers

linalg.norm(x[, ord, axis, keepdims]) Matrix or vector norm.

linalg.matrix_norm(X,/, *[, keepdims, ord]) Computes the matrix norm of a matrix (or a stack of ma-
trices) x.

linalg.vector_norm(x,/, *[, axis, ...]) Computes the vector norm of a vector (or batch of vec-
tors) x.

linalg.cond([, pl) Compute the condition number of a matrix.

linalg.det(a) Compute the determinant of an array.

linalg.matrix_rank(Al, tol, hermitian, rtol]) Return matrix rank of array using SVD method

linalg.slogdet(a) Compute the sign and (natural) logarithm of the determi-
nant of an array.

trace(al, offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.

linalg.trace(x,/, *[, offset, dtype]) Returns the sum along the specified diagonals of a matrix

(or a stack of matrices) x.

linalg.norm (x, ord=None, axis=None, keepdims=False)

Matrix or vector norm.

This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms
(described below), depending on the value of the ord parameter.

Parameters

X
[array_like] Input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both
axis and ord are None, the 2-norm of x . ravel will be returned.

ord
[{int, float, inf, -inf, ‘fro’, ‘nuc’}, optional] Order of the norm (see table under Notes for what
values are supported for matrices and vectors respectively). inf means numpy’s inf object.
The default is None.

axis
[{None, int, 2-tuple of ints}, optional.] If axis is an integer, it specifies the axis of x along
which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D
matrices, and the matrix norms of these matrices are computed. If axis is None then either
a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned. The default is
None.

keepdims
[bool, optional] If this is set to True, the axes which are normed over are left in the result
as dimensions with size one. With this option the result will broadcast correctly against the
original x.

Returns

n
[float or ndarray] Norm of the matrix or vector(s).

See also:

scipy.linalg.norm
Similar function in SciPy.

1.1. NumPy’s module structure 83

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.norm.html#scipy.linalg.norm

NumPy Reference, Release 2.2.0

Notes

For values of ord < 1, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful for

various numerical purposes.

The following norms can be calculated:

ord norm for matrices norm for vectors
None Frobenius norm 2-norm

‘fro’ Frobenius norm -

‘nuc’ nuclear norm -

inf max(sum(abs(x), axis=1)) max(abs(x))

-inf min(sum(abs(x), axis=1)) min(abs(x))

0 - sum(x !=0)

1 max(sum(abs(x), axis=0)) as below

-1 min(sum(abs(x), axis=0)) as below

2 2-norm (largest sing. value) as below

-2 smallest singular value as below

other — sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [1]:
1Allr =[5, ; abs(ai;)?)/?
The nuclear norm is the sum of the singular values.

Both the Frobenius and nuclear norm orders are only defined for matrices and raise a ValueError when x . ndim

1= 2.

References

(1]

Examples

>>> import numpy as np

>>> from numpy import linalg as LA
>>> a = np.arange(9) - 4
>>> a
array ([-4, -3, -2, , 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
arraY([[—4, _37 _2}7
[711 OI 1}!
[2, 3, 4]11)

>>> LA.norm(a)
7.745966692414834

>>> LA.norm(b)
7.745966692414834

>>> LA.norm(b, 'fro'")
7.745966692414834

>>> LA.norm(a, np.inf)

(continues on next page)

84

1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

4.0

>>> LA.norm (b, np.inf)
9.0

>>> LA.norm(a, -np.inf)
0.0

>>> LA.norm(b, -np.inf)
2.0

>>> LA.norm(a, 1)
20.0

>>> LA.norm(b, 1)
7.0

>>> LA.norm(a, -1)
-4.6566128774142013e-010
>>> LA.norm(b, -1)
6.0

>>> LA.norm(a, 2)
7.745966692414834
>>> LA.norm (b, 2)
7.3484692283495345

.

-
>>> LA.norm(a, —2)

0.0

>>> LA.norm(b, —-2)
1.8570331885190563e-016 # may vary
>>> LA.norm(a, 3)
5.8480354764257312 # may vary

>>> LA.norm(a, —3)

0.0

.

Using the axis argument to compute vector norms:

p
>>> ¢ = np.array ([[

1
L. [-1,
>>> LA.norm(c, axis=0)
array ([1.41421356, 2.23606798, 5. 1)
)
4.

4 2’ 3]/

>>> LA.norm(c, axis=1

array ([3.74165739, 24264069])
>>> LA.norm(c, ord=1, axis=1)
array ([6., 6.1)

Using the axis argument to compute matrix norms:

>>> m = np.arange (8) .reshape (2,2,2)

>>> LA.norm(m, axis=(1,2))

array ([3.74165739, 11.22497216])

>>> LA.norm(m[O, :, :]), LA.norm(m([1l, :, :1)
(3.7416573867739413, 11.224972160321824)

.

linalg.matrix_norm (x, /, * keepdims=False, ord='fro")

Computes the matrix norm of a matrix (or a stack of matrices) x.
This function is Array API compatible.
Parameters

X

1.1. NumPy’s module structure 85

NumPy Reference, Release 2.2.0

[array_like] Input array having shape (..., M, N) and whose two innermost dimensions form
MxN matrices.

keepdims
[bool, optional] If this is set to True, the axes which are normed over are left in the result as
dimensions with size one. Default: False.

ord
[{1, -1, 2, -2, inf, -inf, “fro’, ‘nuc’}, optional] The order of the norm. For details see the table
under Notes in numpy. linalg.norm.

See also:

numpy.linalg.norm
Generic norm function

Examples

>>> from numpy import linalg as LA

>>> a = np.arange(9) - 4
>>> 3
array([-4, -3, -2, ..., 2, 3, 41])
>>> b = a.reshape((3, 3))
>>> b
array ([[-4, -3, -21,
=4, 0, iy,
[2, 3, 4]1)

>>> LA.matrix_norm(b)
7.745966692414834

>>> LA.matrix_norm(b, ord='fro')
7.745966692414834

>>> LA.matrix_norm (b, ord=np.inf)
9.0

>>> LA.matrix_norm(b, ord=-np.inf)
2.0

>>> LA.matrix_norm(b, ord=1)

7.0

>>> LA.matrix_norm(b, ord=-1)

6.0

>>> LA.matrix_norm (b, ord=2)
7.3484692283495345

>>> LA.matrix_norm(b, ord=-2)
1.8570331885190563e-016 # may vary

linalg.vector_norm (x, /, * axis=None, keepdims=False, ord=2)

Computes the vector norm of a vector (or batch of vectors) x.
This function is Array API compatible.
Parameters

X
[array_like] Input array.
axis
[{None, int, 2-tuple of ints}, optional] If an integer, axis specifies the axis (dimension) along

86 1. Python API

NumPy Reference, Release 2.2.0

which to compute vector norms. If an n-tuple, axis specifies the axes (dimensions) along
which to compute batched vector norms. If None, the vector norm must be computed over
all array values (i.e., equivalent to computing the vector norm of a flattened array). Default:

None.

keepdims

[bool, optional] If this is set to True, the axes which are normed over are left in the result as

dimensions with size one. Default: False.

ord

[{int, float, inf, -inf}, optional] The order of the norm. For details see the table under Notes

in numpy.linalg.norm.

See also:

numpy.linalg.norm
Generic norm function

Examples

>>> from numpy import linalg as LA
>>> a = np.arange(9) + 1

>>> a

array ([1, 2, 3, 4, 5, 6, 7, 8, 91)
>>> b = a.reshape((3, 3))

>>> b

array ([[1, 2, 31,
[4, 5, 61,
(7, 8, 911)

>>> LA.vector_norm(b)
16.881943016134134

>>> LA.vector_norm(b, ord=np.inf)
9.0

>>> LA.vector_norm(b, ord=-np.inf)
1.0

>>> LA.vector_norm (b, ord=0)
9.0

>>> LA.vector_norm(b, ord=1)
45.0

>>> LA.vector_norm (b, ord=-1)
0.3534857623790153

>>> LA.vector_norm (b, ord=2)
16.881943016134134

>>> LA.vector_norm(b, ord=-2)
0.8058837395885292

L

linalg.cond (x, p=None)

Compute the condition number of a matrix.

This function is capable of returning the condition number using one of seven different norms, depending on the

value of p (see Parameters below).

Parameters

1.1. NumPy’s module structure

87

NumPy Reference, Release 2.2.0

X
[(..., M, N) array_like] The matrix whose condition number is sought.
p
[{None, 1, -1, 2, -2, inf, -inf, “fro’}, optional] Order of the norm used in the condition number
computation:
p norm for matrices
None 2-norm, computed directly using the SVD
‘fro’ Frobenius norm
inf max(sum(abs(x), axis=1))
-inf min(sum(abs(x), axis=1))
1 max(sum(abs(x), axis=0))
-1 min(sum(abs(x), axis=0))
2 2-norm (largest sing. value)
-2 smallest singular value
inf means the numpy . inf object, and the Frobenius norm is the root-of-sum-of-squares
norm.
Returns
c
[{float, inf }] The condition number of the matrix. May be infinite.
See also:

numpy.linalg.norm

Notes

The condition number of x is defined as the norm of x times the norm of the inverse of x [1]; the norm can be the
usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms.

References

(1]

Examples

>>> import numpy as np
>>> from numpy import linalg as LA
>>> a = np.array([[1, 0, -1], [0, 1, O], [1, O, 111)

>>> a
array ([[1, @, =i,
[o, 1, 01,
(1, 0, 111)

>>> LA.cond(a)
1.4142135623730951
>>> LA.cond(a, 'fro'")
3.1622776601683795
>>> LA.cond(a, np.inf)

(continues on next page)

88 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

2.0
>>> LA.cond(a, -np.inf)
1.0
>>> LA.cond(a, 1)
2.0
>>> LA.cond(a, —1)
1.0
>>> LA.cond(a, 2)
1.4142135623730951
>>> LA.cond(a, —2)
0.70710678118654746 # may vary
>>> (min (LA.svd(a, compute_uv=False)) *

min (LA.svd(LA.inv (a), compute_uv=False)))
0.70710678118654746 # may vary

L

linalg.det (a)

Compute the determinant of an array.
Parameters

a
[(..., M, M) array_like] Input array to compute determinants for.

Returns
det
[(...) array_like] Determinant of a.
See also:
slogdet
Another way to represent the determinant, more suitable for large matrices where underflow/overflow may
occur.

scipy.linalg.det
Similar function in SciPy.

Notes

Broadcasting rules apply, see the numpy . 11inalg documentation for details.

The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.
Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> import numpy as np

>>> a = np.array([[1, 21, [3, 411)
>>> np.linalg.det (a)

-2.0 # may vary

Computing determinants for a stack of matrices:

1.1. NumPy’s module structure 89

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.det.html#scipy.linalg.det

NumPy Reference, Release 2.2.0

>>> a = np.array ([[[1, 2], [3, 411, (I[%1, 2], (2, 111, ([, 31, [3, 111 1)
>>> a.shape

(3, 2, 2)

>>> np.linalg.det (a)

array([-2., -3., —-8.1)

linalg.matrix_rank (A, tol=None, hermitian=False, *, rtol=None)

Return matrix rank of array using SVD method
Rank of the array is the number of singular values of the array that are greater than fol.
Parameters

A
[{(M,), (..., M, N)} array_like] Input vector or stack of matrices.

tol
[(...) array_like, float, optional] Threshold below which SVD values are considered zero. If tol
is None, and S is an array with singular values for M, and eps is the epsilon value for datatype
of S,thentolissetto S.max () * max (M, N) * eps.

hermitian
[bool, optional] If True, A is assumed to be Hermitian (symmetric if real-valued), enabling a
more efficient method for finding singular values. Defaults to False.

rtol
[(...) array_like, float, optional] Parameter for the relative tolerance component. Only tol or
rtol can be set at a time. Defaults to max (M, N) * eps.

New in version 2.0.0.
Returns

rank
[(...) array_like] Rank of A.

Notes

The default threshold to detect rank deficiency is a test on the magnitude of the singular values of A. By default,
we identify singular values less than S.max () * max (M, N) * eps as indicating rank deficiency (with
the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in Numerical recipes in the
discussion of SVD solutions for linear least squares [2].

This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD compu-
tation. Imagine that there is a column in A that is an exact (in floating point) linear combination of other columns
in A. Computing the SVD on A will not produce a singular value exactly equal to O in general: any difference of
the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our thresh-
old for small SVD values takes this numerical imprecision into account, and the default threshold will detect such
numerical rank deficiency. The threshold may declare a matrix A rank deficient even if the linear combination of
some columns of A is not exactly equal to another column of A but only numerically very close to another column
of A.

We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in
the 2007 edition of Numerical recipes there is an alternative threshold of S.max () * np.finfo (A.dtype) .
eps / 2. * np.sgrt(m + n + 1.). The authors describe this threshold as being based on “expected
roundoff error” (p 71).

The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have
more information about the sources of error in A that would make you consider other tolerance values to detect

90

1. Python API

NumPy Reference, Release 2.2.0

effective rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on
your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating
point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the
uncertainties are absolute rather than relative.

References

[11, [2]

Examples

>>> import numpy as np

>>> from numpy.linalg import matrix_rank

>>> matrix_rank (np.eye(4)) # Full rank matrix

4

>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
>>> matrix_rank (I)

3

>>> matrix_rank(np.ones((4,))) # 1 dimension — rank 1 unless all 0
1

>>> matrix_rank (np.zeros((4,)))

0

linalg.slogdet (a)
Compute the sign and (natural) logarithm of the determinant of an array.
If an array has a very small or very large determinant, then a call to det may overflow or underflow. This routine is

more robust against such issues, because it computes the logarithm of the determinant rather than the determinant
itself.

Parameters

a
[(..., M, M) array_like] Input array, has to be a square 2-D array.

Returns
A namedtuple with the following attributes:
sign
[(...) array_like] A number representing the sign of the determinant. For a real matrix, this is

1,0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on
the unit circle), or else 0.

logabsdet
[(...) array_like] The natural log of the absolute value of the determinant.

If the determinant is zero, then sign will be 0 and logabsdet
will be -inf. In all cases, the determinant is equal to
sign * np.exp(logabsdet).

See also:

det

1.1. NumPy’s module structure 91

NumPy Reference, Release 2.2.0

Notes

Broadcasting rules apply, see the numpy . 11inalg documentation for details.

The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.
Examples

The determinant of a 2-D array [[a, b], [c, d]]isad - bc:

-
>>> import numpy as np

>>> a = np.array ([[1, 2], [3, 41])

>>> (sign, logabsdet) = np.linalg.slogdet (a)
>>> (sign, logabsdet)

(=1, 0.69314718055994529) # may vary

>>> sign * np.exp (logabsdet)

-2.0

L

Computing log-determinants for a stack of matrices:

>>> a = np.array ([[[1, 21, [3, 411, [([(1, 21, (2, 111, ([%1, 31, [3, 111 1)
>>> a.shape

(3, 2, 2)

>>> sign, logabsdet = np.linalg.slogdet (a)

>>> (sign, logabsdet)

(array([-1., -1., -1.]1), array([0.69314718, 1.09861229, 2.07944154]))
>>> sign * np.exp (logabsdet)

array([-2., -3., -8.1)

This routine succeeds where ordinary det does not:

>>> np.linalg.det (np.eye (500) * 0.1)

0.0

>>> np.linalg.slogdet (np.eye (500) * 0.1)
(1, -1151.2925464970228)

numpy . trace (a, offset=0, axisl =0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.

If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements a [1, i+offset]
for all i.

If @ has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-
arrays whose traces are returned. The shape of the resulting array is the same as that of a with axis/ and axis2
removed.

Parameters

a
[array_like] Input array, from which the diagonals are taken.

offset
[int, optional] Offset of the diagonal from the main diagonal. Can be both positive and negative.
Defaults to 0.

axisl, axis2
[int, optional] Axes to be used as the first and second axis of the 2-D sub-arrays from which
the diagonals should be taken. Defaults are the first two axes of a.

92 1. Python API

NumPy Reference, Release 2.2.0

dtype
[dtype, optional] Determines the data-type of the returned array and of the accumulator where
the elements are summed. If dtype has the value None and a is of integer type of precision
less than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out
[ndarray, optional] Array into which the output is placed. Its type is preserved and it must be
of the right shape to hold the output.

Returns

sum_along_diagonals
[ndarray] If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then
an array of sums along diagonals is returned.

See also:

diag, diagonal,diagflat

Examples

>>> import numpy as np

>>> np.trace (np.eye(3))

3.0

>>> a = np.arange (8) .reshape((2,2,2))
>>> np.trace(a)

array ([6, 8])

L

-

>>> a = np.arange (24) .reshape ((2,2,2,3))
>>> np.trace(a) .shape
(2, 3)

linalg.trace (x,/, * offset=0, dtype=None)
Returns the sum along the specified diagonals of a matrix (or a stack of matrices) x.
This function is Array API compatible, contrary to numpy. t race.
Parameters

X
[(....M,N) array_like] Input array having shape (..., M, N) and whose innermost two dimen-
sions form MxN matrices.

offset
[int, optional] Offset specifying the off-diagonal relative to the main diagonal, where:

* offset = 0: the main diagonal.
* offset > 0: off-diagonal above the main diagonal.
* offset < 0: off-diagonal below the main diagonal.
dtype
[dtype, optional] Data type of the returned array.
Returns
out

[ndarray] An array containing the traces and whose shape is determined by removing the last
two dimensions and storing the traces in the last array dimension. For example, if x has rank

1.1. NumPy’s module structure 93

NumPy Reference, Release 2.2.0

k and shape: (I, J, K, ..., L, M, N), then an output array has rank k-2 and shape: (I, J, K, ...,
L) where:

[out[i, i, k, ..., 1] = trace(ali, 3J, k, ..., 1, :, :1)]

The returned array must have a data type as described by the dtype parameter above.

See also:

numpy . trace

Examples

>>> np.linalg.trace (np.eye(3))

3.0

>>> a = np.arange(8) .reshape((2, 2, 2))
>>> np.linalg.trace(a)

array ([3, 11])

Trace is computed with the last two axes as the 2-d sub-arrays. This behavior differs from numpy . t race which
uses the first two axes by default.

>>> a = np.arange (24) .reshape((3, 2, 2, 2))
>>> np.linalg.trace(a) .shape
(3, 2)

Traces adjacent to the main diagonal can be obtained by using the offset argument:

>>> a = np.arange (9) .reshape ((3, 3)); a

array([[O0, 1, 21,

[3, 4, 51,

(6, 7, 811)
>>> np.linalg.trace(a, offset=1) # First superdiagonal
6
>>> np.linalg.trace(a, offset=2) # Second superdiagonal
2
>>> np.linalg.trace(a, offset=-1) # First subdiagonal
10
>>> np.linalg.trace(a, offset=-2) # Second subdiagonal
6

Solving equations and inverting matrices

linalg.solve(a,b) Solve a linear matrix equation, or system of linear scalar
equations.

linalg.tensorsolve(a, b[, axes]) Solve the tensor equation a x = b for x.

linalg.lstsqg(a, b[, rcond]) Return the least-squares solution to a linear matrix equa-
tion.

linalg.inv(a) Compute the inverse of a matrix.

linalg.pinv(a[, rcond, hermitian, rtol]) Compute the (Moore-Penrose) pseudo-inverse of a ma-
trix.

linalg.tensorinv(al, ind]) Compute the 'inverse' of an N-dimensional array.

94 1. Python API

NumPy Reference, Release 2.2.0

linalg.solve (a, b)

Solve a linear matrix equation, or system of linear scalar equations.

Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

Parameters

a

Returns

X

Raises

See also:

scipy.linalg.solve

Notes

LinAlgError

[(..., M, M) array_like] Coefficient matrix.

[{(M,), (..., M, K)}, array_like] Ordinate or “dependent variable” values.

[{(...,M,), (..., M, K)} ndarray] Solution to the system a x = b. Returned shape is (..., M) if
b is shape (M,) and (..., M, K) if biis (..., M, K), where the “...” part is broadcasted between
aand b.

If a is singular or not square.

Similar function in SciPy.

Broadcasting rules apply, see the numpy . 1inalg documentation for details.

The solutions are computed using LAPACK routine _gesv.

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either
is not true, use 1st sq for the least-squares best “solution” of the system/equation.

Changed in version 2.0: The b array is only treated as a shape (M,) column vector if it is exactly 1-dimensional.
In all other instances it is treated as a stack of (M, K) matrices. Previously b would be treated as a stack of (M,)
vectors if b.ndim was equal to a.ndim - 1.

References

(1]

Examples

Solve the system of equations: x0 + 2 * x1

land3 * x0 + 5 * x1 = 2:

>>> import
>>> a = np
>>> b = np.
>>> x = np.
>>> x
array ([-1

.array ([[1,
array ([1,
linalg.solve (a,

° 7

numpy as np

1

-1)

21,
21)

[3,

b)

511)

1.1. NumPy’s module structure

95

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html#scipy.linalg.solve

NumPy Reference, Release 2.2.0

Check that the solution is correct:

>>> np.allclose (np.dot (a, x), b)
True

linalg.tensorsolve (a, b, axes=None)

Solve the tensor equation a x = b for x.

It is assumed that all indices of x are summed over in the product, together with the rightmost indices of a, as is
done in, for example, tensordot (a, x, axes=x.ndim).

Parameters

a
[array_like] Coefficient tensor, of shape b.shape + Q. Q, a tuple, equals the shape of that
sub-tensor of a consisting of the appropriate number of its rightmost indices, and must be such
that prod (Q) == prod (b.shape) (in which sense a is said to be ‘square’).

[array_like] Right-hand tensor, which can be of any shape.

axes
[tuple of ints, optional] Axes in a to reorder to the right, before inversion. If None (default),
no reordering is done.

Returns

X
[ndarray, shape Q]

Raises

LinAlgError
If a is singular or not ‘square’ (in the above sense).

See also:

numpy . tensordot, tensorinv, numpy.einsum

Examples

>>> import numpy as np
>>> a = np.eye (2*3*4)

>>> a.shape = (2*3, 4, 2, 3, 4)

>>> rng = np.random.default_rng()

>>> b = rng.normal (size=(2*3, 4))

>>> x = np.linalg.tensorsolve(a, b)

>>> x.shape

(2, 3, 4)

>>> np.allclose (np.tensordot (a, x, axes=3), b)
True

linalg.lstsq(a, b, rcond=None)

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation a @ x = Db. The equation may be under-, well-,
or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than
its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is

96

1. Python API

NumPy Reference, Release 2.2.0

the “exact” solution of the equation. Else, x minimizes the Euclidean 2-norm ||b — az||. If there are multiple

minimizing solutions, the one with the smallest 2-norm ||| is returned.
Parameters

a
[M, N) array_like] “Coefficient” matrix.

b
[{(M,), M, K)} array_like] Ordinate or “dependent variable” values. If b is two-dimensional,
the least-squares solution is calculated for each of the K columns of b.

rcond
[float, optional] Cut-off ratio for small singular values of a. For the purposes of rank deter-
mination, singular values are treated as zero if they are smaller than rcond times the largest
singular value of a. The default uses the machine precision times max (M, N). Passing —1
will use machine precision.
Changed in version 2.0: Previously, the default was —1, but a warning was given that this would
change.

Returns

X
[{(N,), (N, K)} ndarray] Least-squares solution. If b is two-dimensional, the solutions are in
the K columns of x.

residuals
[{(1,), (K,), (0,)} ndarray] Sums of squared residuals: Squared Euclidean 2-norm for each
columninb - a @ x. If the rank of a is < N or M <= N, this is an empty array. If b is
1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,).

rank
[int] Rank of matrix a.

S
[(min(M, N),) ndarray] Singular values of a.

Raises
LinAlgError

If computation does not converge.

See also:

scipy.linalg.lstsq
Similar function in SciPy.

Notes

If b is a matrix, then all array results are returned as matrices.

1.1. NumPy’s module structure

97

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html#scipy.linalg.lstsq

NumPy Reference, Release 2.2.0

Examples

Fitaline,y = mx + c, through some noisy data-points:

>>> import numpy as np
>>> x = np.array ([0, 1, 2, 3])
>>> y = np.array([-1, 0.2, 0.9, 2.1])

By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more
or less, -1.

We can rewrite the line equationas y = Ap,where A = [[x 1]]andp = [[m], [c]].Nowuse Istsg
to solve for p:

>>> A = np.vstack([x, np.ones(len(x))]).T
>>> A
array ([[O., 1.1,

[o1,

[2., 1.1,

[3 1.11)

>>> m, ¢ = np.linalg.lstsq(a, y) [0]
>>> m, c
(1.0 -0.95) # may vary

Plot the data along with the fitted line:

>>> import matplotlib.pyplot as plt

>>> = plt.plot(x, y, 'o', label='Original data', markersize=10)
>>> = plt.plot(x, m*x + c, 'r', label='Fitted line')
>>> = plt.legend()

>>> plt.show ()

L

20- @ Original data
—— Fitted line
1.5 1
1.0 1
0.5 +
0.0 A
_05 -
_1.0 -
L T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

linalg.inv(a)

Compute the inverse of a matrix.

Given a square matrix a, return the matrix ainy satisfyinga @ ainv = ainv @ a = eye(a.shape([0]).

98 1. Python API

NumPy Reference, Release 2.2.0

Parameters

a
[(..., M, M) array_like] Matrix to be inverted.

Returns

ainv
[(..., M, M) ndarray or matrix] Inverse of the matrix a.

Raises

LinAlgError
If a is not square or inversion fails.

See also:
scipy.linalg.inv
Similar function in SciPy.

numpy.linalg.cond
Compute the condition number of a matrix.

numpy.linalg.svd
Compute the singular value decomposition of a matrix.

Notes

Broadcasting rules apply, see the numpy . 11inalg documentation for details.

If a is detected to be singular, a LinAlgError is raised. If a is ill-conditioned, a L.i nA1gError may or may
not be raised, and results may be inaccurate due to floating-point errors.

References

(1]

Examples

-

>>> import numpy as np
>>> from numpy.linalg import inv
>>> a = np.array([[1., 2.1, [3., 4.]11])

>>> ainv = inv(a)

>>> np.allclose(a @ ainv, np.eye(2))
True

>>> np.allclose(ainv @ a, np.eye(2))
True

If a is a matrix object, then the return value is a matrix as well:

>>> ainv = inv(np.matrix(a))
>>> ainv
matrix([[-2. , 1. 1,

[1.5, =-0.511)

Inverses of several matrices can be computed at once:

1.1. NumPy’s module structure 99

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.inv.html#scipy.linalg.inv

NumPy Reference, Release 2.2.0

>>> a = np.array ([[[1., 2.1, [3., 4.11, [[1, 31, [3, 5111)
>>> inv(a)

array ([[[-2. , 1. 1,
[1.5, -0.5 1],

[[-1.25, 0.75],
[0.75, -0.25111)

If a matrix is close to singular, the computed inverse may not satisfy a @ ainv = ainv @ a = eye(a.
shape[0]) evenif a LinAlgError is not raised:

>>> a = np.array([[2,4,6]1,[2,0,2],106,8,1411)
>>> inv(a) # No errors raised
array ([[-1.12589991e+15, -5.62949953e+14, 5.62949953e+14],
[-1.12589991e+15, -5.62949953e+14, 5.62949953e+14],
[1.12589991e+15, 5.62949953e+14, -5.62949953e+14]11])
>>> a @ inv(a)

array ([[O. , —0.5 0 1, # may vary
[-0.5 , 0.625, 0.25 1,
[O. , 0. ;A 11)

To detect ill-conditioned matrices, you can use numpy . 1inalg.cond to compute its condition number [1]. The
larger the condition number, the more ill-conditioned the matrix is. As a rule of thumb, if the condition number
cond (a) = 10**k, then you may lose up to k digits of accuracy on top of what would be lost to the numerical
method due to loss of precision from arithmetic methods.

>>> from numpy.linalg import cond
>>> cond (a)
np.float64(8.659885634118668e+17) # may vary

It is also possible to detect ill-conditioning by inspecting the matrix’s singular values directly. The ratio between
the largest and the smallest singular value is the condition number:

>>> from numpy.linalg import svd

>>> sigma = svd(a, compute_uv=False) # Do not compute singular vectors
>>> sigma.max () /sigma.min ()

8.659885634118668e+17 # may vary

linalg.pinv (a, rcond=None, hermitian="False, *, rtol=<no value>)

Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large
singular values.

Parameters

a
[(..., M, N) array_like] Matrix or stack of matrices to be pseudo-inverted.

rcond
[(...) array_like of float, optional] Cutoff for small singular values. Singular values less than
or equal to rcond * largest_singular_value are set to zero. Broadcasts against
the stack of matrices. Default: 1e-15.

hermitian
[bool, optional] If True, a is assumed to be Hermitian (symmetric if real-valued), enabling a
more efficient method for finding singular values. Defaults to False.

rtol
[(...) array_like of float, optional] Same as rcond, but it’s an Array API compatible parameter

100 1. Python API

NumPy Reference, Release 2.2.0

name. Only rcond or rtol can be set at a time. If none of them are provided then NumPy’s
le—-15 default is used. If rtol=None is passed then the API standard default is used.

New in version 2.0.0.

Returns
B
[(..., N, M) ndarray] The pseudo-inverse of a. If a is a mat ri x instance, then so is B.
Raises
LinAlgError

If the SVD computation does not converge.
See also:
scipy.linalg.pinv
Similar function in SciPy.

scipy.linalg.pinvh
Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.

Notes

The pseudo-inverse of a matrix A, denoted A*, is defined as: “the matrix that ‘solves’ [the least-squares problem]
Ax = b,” i.e., if 7 is said solution, then A is that matrix such that z = ATb.

It can be shown that if () EQQT = A is the singular value decomposition of A, then A*™ = Q5 E*QlT, where Q1 2
are orthogonal matrices, X is a diagonal matrix consisting of A’s so-called singular values, (followed, typically,
by zeros), and then X7 is simply the diagonal matrix consisting of the reciprocals of A’s singular values (again,
followed by zeros). [1]

References

(11

Examples

The following example checks thata * a+ * a == aanda+ * a * a+ == a+:
>>> import numpy as np

>>> rng = np.random.default_rng()

>>> a = rng.normal (size=(9, 6))

>>> B = np.linalg.pinv(a)

>>> np.allclose(a, np.dot (a, np.dot (B, a)))
True

>>> np.allclose (B, np.dot (B, np.dot(a, B)))
True

L

linalg.tensorinv (a, ind=2)

Compute the ‘inverse’ of an N-dimensional array.

The result is an inverse for a relative to the tensordot operation tensordot (a, b, ind),i. e., up to floating-
point accuracy, tensordot (tensorinv(a), a, ind) isthe “identity” tensor for the tensordot operation.

Parameters

1.1. NumPy’s module structure 101

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinv.html#scipy.linalg.pinv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinvh.html#scipy.linalg.pinvh

NumPy Reference, Release 2.2.0

a
[array_like] Tensor to ‘invert’. Its shape must be ‘square’, i. e., prod (a.shape[:ind])
== prod(a.shapel[ind:]).
ind
[int, optional] Number of first indices that are involved in the inverse sum. Must be a positive
integer, default is 2.
Returns
b
[ndarray] a’s tensordot inverse, shape a . shape [ind:] + a.shape[:ind].
Raises
LinAlgError

If a is singular or not ‘square’ (in the above sense).

See also:

numpy . tensordot, tensorsolve

Examples

>>> import numpy as np

>>> a = np.eye(4*6)

>>> a.shape = (4, 6, 8, 3)

>>> ainv = np.linalg.tensorinv(a, ind=2)

>>> ainv.shape

(8, 3, 4, 6)

>>> rng = np.random.default_rng()

>>> b = rng.normal (size=(4, 6))

>>> np.allclose (np.tensordot (ainv, b), np.linalg.tensorsolve(a, b))
True
p

>>> a = np.eye (4*6)

>>> a.shape = (24, 8, 3)

>>> ainv = np.linalg.tensorinv(a, ind=1)

>>> ainv.shape

(8, 3, 24)

>>> rng = np.random.default_rng()

>>> b = rng.normal (size=24)

>>> np.allclose (np.tensordot (ainv, b, 1), np.linalg.tensorsolve(a, b))

True
.

Other matrix operations

diagonal(al, offset, axisl, axis2])
linalg.diagonal(Xx,/, *[, offset])

linalg.matrix_transpose(x,/)

Return specified diagonals.

Returns specified diagonals of a matrix (or a stack of ma-
trices) x.

Transposes a matrix (or a stack of matrices) x.

numpy .diagonal (a, offset=0, axisl =0, axis2=1)
Return specified diagonals.

102

1. Python API

NumPy Reference, Release 2.2.0

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[1i,
i+offset]. If a has more than two dimensions, then the axes specified by axis/ and axis2 are used to determine
the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by removing
axisl and axis2 and appending an index to the right equal to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of the
values in the diagonal.

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated.
Writing to the resulting array continues to work as it used to, but a FutureWarning is issued.

Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting array
will produce an error.

In some future release, it will return a read/write view and writing to the returned array will alter your original
array. The returned array will have the same type as the input array.

If you don’t write to the array returned by this function, then you can just ignore all of the above.

If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use np.
diagonal (a) .copy () instead of just np.diagonal (a). This will work with both past and future versions
of NumPy.

Parameters

a
[array_like] Array from which the diagonals are taken.

offset
[int, optional] Offset of the diagonal from the main diagonal. Can be positive or negative.
Defaults to main diagonal (0).

axisl
[int, optional] Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to first axis (0).

axis2
[int, optional] Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to second axis (1).

Returns

array_of_diagonals
[ndarray] If a is 2-D, then a 1-D array containing the diagonal and of the same type as a is
returned unless a is a mat rix, in which case a 1-D array rather than a (2-D) matrix is
returned in order to maintain backward compatibility.

If a.ndim > 2, then the dimensions specified by axis/ and axis2 are removed, and a new
axis inserted at the end corresponding to the diagonal.

Raises

ValueError
If the dimension of a is less than 2.

See also:
diag
MATLAB work-a-like for 1-D and 2-D arrays.

diagflat
Create diagonal arrays.

1.1. NumPy’s module structure 103

NumPy Reference, Release 2.2.0

trace
Sum along diagonals.

Examples

>>> import numpy as np
>>> a = np.arange (4) .reshape (2, 2)
>>> a
array ([[0, 11,
(2, 311)
>>> a.diagonal ()
array ([0, 31)
>>> a.diagonal (1)
array ([1])
.

A 3-D example:

p
>>> a = np.arange (8) .reshape(2,2,2); a

array ([[[0, 11,
(2, 311,
[[4, 51,
(6, 7111)
>>> a.diagonal (0, # Main diagonals of two arrays created by skipping
0, # across the outer (left)-most axis last and
1) # the "middle" (row) axis first.

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most (column)
axis, and that the diagonals are “packed” in rows.

>>> af:,:,0] # main diagonal is [0 6]
array ([[0, 2],

[4, 611)
>>> af:,:,1] # main diagonal is [1 7]
array ([[1, 31,

[5, 711)

The anti-diagonal can be obtained by reversing the order of elements using either numpy . £11ipud or numpy .

fliplr.
>>> a = np.arange (9) .reshape (3, 3)
>>> a
array ([[0, 1, 21,
[3, 4, 5],
(6, 7, 811)
>>> np.fliplr(a) .diagonal () # Horizontal flip
)

array ([2, 4, 6]
>>> np.flipud(a) .diagonal () # Vertical flip
array ([6, 4, 2])

.

Note that the order in which the diagonal is retrieved varies depending on the flip function.
linalg.diagonal (x, /, *, offset=0)

Returns specified diagonals of a matrix (or a stack of matrices) x.

104 1. Python API

NumPy Reference, Release 2.2.0

This function is Array API compatible, contrary to numpy . diagonal, the matrix is assumed to be defined by
the last two dimensions.

Parameters

X
[(....M,N) array_like] Input array having shape (..., M, N) and whose innermost two dimen-
sions form MxN matrices.

offset
[int, optional] Offset specifying the off-diagonal relative to the main diagonal, where:

* offset = 0: the main diagonal.
* offset > 0: off-diagonal above the main diagonal.
* offset < 0: off-diagonal below the main diagonal.
Returns
out

[(....min(N,M)) ndarray] An array containing the diagonals and whose shape is determined by
removing the last two dimensions and appending a dimension equal to the size of the resulting
diagonals. The returned array must have the same data type as x.

See also:

numpy .diagonal

Examples

>>> a = np.arange (4) .reshape (2, 2); a
array ([[0, 1],
(2, 311
>>> np.linalg.diagonal (a)
array ([0, 3])

A 3-D example:

>>> a = np.arange (8) .reshape (2, 2, 2); a
array ([[[0, 11,
(2, 311,
[[4, 51,
(6, 7111)
>>> np.linalg.diagonal (a)
array ([[0, 3],
(4, 711)

L

Diagonals adjacent to the main diagonal can be obtained by using the offset argument:

r

>>> a = np.arange(9) .reshape (3, 3)
>>> a
array ([[0, 1, 2],

[3, 4, 51,

(6, 7, 811)

>>> np.linalg.diagonal (a, offset=1) # First superdiagonal
array ([1, 51)

>>> np.linalg.diagonal (a, offset=2) # Second superdiagonal
array ([2])

(continues on next page)

. NumPy’s module structure 105

NumPy Reference, Release 2.2.0

(continued from previous page)

>>> np.linalg.diagonal (a, offset=-1) # First subdiagonal
array ([3, 71)
>>> np.linalg.diagonal (a, offset=-2) # Second subdiagonal

array ([6])

The anti-diagonal can be obtained by reversing the order of elements using either numpy . £11ipud or numpy .
fliplr.

>>> a = np.arange (9) .reshape (3, 3)

>>> a
array ([[0, 1, 2],
[3, 4, 51,
(6, 7, 811)

>>> np.linalg.diagonal (np.fliplr(a)) # Horizontal flip
array ([2, 4, 6])

>>> np.linalg.diagonal (np.flipud(a)) # Vertical flip
array([6, 4, 2])

Note that the order in which the diagonal is retrieved varies depending on the flip function.

linalg.matrix_transpose (x,/)

Transposes a matrix (or a stack of matrices) x.
This function is Array API compatible.
Parameters

X

[array_like] Input array having shape (..., M, N) and whose two innermost dimensions form
MxN matrices.

Returns

out
[ndarray] An array containing the transpose for each matrix and having shape (..., N, M).

See also:

transpose
Generic transpose method.

Examples

-
>>> import numpy as np

>>> np.matrix_transpose ([[1, 2], [3, 411)
array ([[1, 31,
| [2, 411)
>>> np.matrix_transpose([[[1, 21, [3, 411, [[5, 61, [7, 8111)
array ([[[1, 31,
(2, 411,
(L5, 71,
[6, 8111)

’

1. Python API

NumPy Reference, Release 2.2.0

Exceptions

linalg.LinAlgError Generic Python-exception-derived object raised by linalg
functions.

exception linalg.LinAlgError

Generic Python-exception-derived object raised by linalg functions.

General purpose exception class, derived from Python’s ValueError class, programmatically raised in linalg func-
tions when a Linear Algebra-related condition would prevent further correct execution of the function.

Parameters

None

Examples

>>> from numpy import linalg as LA

>>> LA.inv(np.zeros((2,2)))

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "...linalg.py", line 350,
in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
File "...linalg.py", line 249,

in solve

raise LinAlgError ('Singular matrix')
numpy.linalg.LinAlgError: Singular matrix
.

Linear algebra on several matrices at once

Several of the linear algebra routines listed above are able to compute results for several matrices at once, if they are
stacked into the same array.

This is indicated in the documentation via input parameter specifications suchasa : (..., M, M) array_like.
This means that if for instance given an input array a.shape == (N, M, M), itis interpreted as a “stack” of N
matrices, each of size M-by-M. Similar specification applies to return values, for instance the determinant has det
(...) and will in this case return an array of shape det (a) .shape == (N,). This generalizes to linear algebra
operations on higher-dimensional arrays: the last 1 or 2 dimensions of a multidimensional array are interpreted as vectors
or matrices, as appropriate for each operation.

numpy .polynomial

A sub-package for efficiently dealing with polynomials.

Within the documentation for this sub-package, a “finite power series,” i.e., a polynomial (also referred to simply as a
“series”) is represented by a 1-D numpy array of the polynomial’s coefficients, ordered from lowest order term to highest.
For example, array([1,2,3]) represents P_0 + 2*P_1 + 3*P_2, where P_n is the n-th order basis polynomial appli-
cable to the specific module in question, e.g., polynomial (which “wraps” the “standard” basis) or chebyshev. For
optimal performance, all operations on polynomials, including evaluation at an argument, are implemented as operations
on the coeflicients. Additional (module-specific) information can be found in the docstring for the module of interest.

This package provides convenience classes for each of six different kinds of polynomials:

1.1. NumPy’s module structure 107

NumPy Reference, Release 2.2.0

Name Provides

Polynomial Power series
Chebyshev Chebyshev series

Legendre Legendre series
Laguerre Laguerre series
Hermite Hermite series
HermiteE HermiteE series

These convenience classes provide a consistent interface for creating, manipulating, and fitting data with polynomials of
different bases. The convenience classes are the preferred interface for the po 1 ynomial package, and are available from
the numpy . polynomial namespace. This eliminates the need to navigate to the corresponding submodules, e.g. np .
polynomial.Polynomial or np.polynomial.Chebyshev instead of np.polynomial.polynomial.
Polynomial ornp.polynomial.chebyshev.Chebyshewv,respectively. The classes provide a more consistent
and concise interface than the type-specific functions defined in the submodules for each type of polynomial. For example,
to fit a Chebyshev polynomial with degree 1 to data given by arrays xdata and ydata, the £1it class method:

>>> from numpy.polynomial import Chebyshev
>>> xdata = [1, 2, 3, 4]
>>> ydata = [1, 4, 9, 16]
>>> ¢ = Chebyshev.fit (xdata, ydata, deg=1)

is preferred over the chebyshev. chebfit function from the np.polynomial.chebyshev module:

>>> from numpy.polynomial.chebyshev import chebfit
>>> ¢ = chebfit (xdata, ydata, deg=1)

See Using the convenience classes for more details.

Convenience Classes

The following lists the various constants and methods common to all of the classes representing the various kinds of
polynomials. In the following, the term Poly represents any one of the convenience classes (e.g. Polynomial,
Chebyshev, Hermite, etc.) while the lowercase p represents an instance of a polynomial class.

Constants

¢ Poly.domain — Default domain

¢ Poly.window — Default window

e Poly.basis_name — String used to represent the basis

¢ Poly.maxpower — Maximum value n such that p* *n is allowed

e Poly.nickname - String used in printing

108 1. Python API

NumPy Reference, Release 2.2.0

Creation

Methods for creating polynomial instances.
* Poly.basis (degree) — Basis polynomial of given degree
e Poly.identity () —p wherep (x) = x forall x

* Poly.fit (x, y, deg) —p of degree deg with coefficients determined by the least-squares fit to the data x,
y

* Poly.fromroots (roots) — p with specified roots

* p.copy () — Create a copy of p

Conversion

Methods for converting a polynomial instance of one kind to another.
e p.cast (Poly) — Convert p to instance of kind Poly

* p.convert (Poly) — Convert p to instance of kind Poly or map between domain and window

Calculus

* p.deriv () — Take the derivative of p

* p.integ () —Integrate p

Validation

e Poly.has_samecoef (pl, p2) — Check if coefficients match
* Poly.has_samedomain (pl, p2) — Check if domains match
e Poly.has_sametype (pl, p2) — Check if types match

e Poly.has_samewindow (pl, p2) — Check if windows match

Misc

.linspace () —Return x, p (x) at equally-spaced points in domain

.mapparms () — Return the parameters for the linear mapping between domain and window.
.roots () — Return the roots of p.

.trim () —Remove trailing coeflicients.

.cutdeg (degree) — Truncate p to given degree

T O ' T T 'O

.truncate (size) — Truncate p to given size

1.1. NumPy’s module structure 109

NumPy Reference, Release 2.2.0

Configuration

numpy.polynomial. Set the default format for the string representation of poly-
set_default_printstyle(style) nomials.

polynomial .set_default_printstyle (style)

Set the default format for the string representation of polynomials.
Values for st y1le must be valid inputs to __format___, i.e. ‘ascii’ or ‘unicode’.
Parameters

style
[str] Format string for default printing style. Must be either ‘ascii’ or ‘unicode’.

Notes

The default format depends on the platform: ‘unicode’ is used on Unix-based systems and ‘ascii’ on Windows. This
determination is based on default font support for the unicode superscript and subscript ranges.

Examples

>>> p np.polynomial.Polynomial ([1, 2, 3])
np.polynomial.Chebyshev([1, 2, 3])

>>> np.polynomial.set_default_printstyle ('unicode')
>>> print (p)

1.0 + 2.0-x + 3.0-x2

>>> print (c)

1.0 + 2.0-T, (x) + 3.0-T, (x)

>>> np.polynomial.set_default_printstyle('ascii')
>>> print (p)

1.0 + 2.0 x + 3.0 x**2

>>> print (c)

1.0 + 2.0 T_1(x) + 3.0 T_2(x)

>>> # Formatting supersedes all class/package—-level defaults
>>> print (f" {p:unicode}")

1.0 + 2.0-x + 3.0-x?

>>> C

L

Random sampling (numpy . random)

Quick start

The numpy . random module implements pseudo-random number generators (PRNGs or RNGs, for short) with the
ability to draw samples from a variety of probability distributions. In general, users will create a Generator instance
with de fault_rng and call the various methods on it to obtain samples from different distributions.

>>> import numpy as np

>>> rng = np.random.default_rng()

Generate one random float uniformly distributed over the range [0, 1)

>>> rng.random()

0.06369197489564249 # may vary

Generate an array of 10 numbers according to a unit Gaussian distribution
>>> rng.standard_normal (10)

(continues on next page)

110 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

array ([-0.31018314, -1.8922078 , -0.3628523 , -0.63526532, 0.43181166, # may vary
0.51640373, 1.25693945, 0.07779185, 0.84090247, -2.13406828])

Generate an array of 5 integers uniformly over the range [0, 10)

>>> rng.integers (low=0, high=10, size=5)

array([8, 7, 6, 2, 01) # may vary

Our RNGs are deterministic sequences and can be reproduced by specifying a seed integer to derive its initial state. By
default, with no seed provided, de fault_rng will seed the RNG from nondeterministic data from the operating system
and therefore generate different numbers each time. The pseudo-random sequences will be independent for all practical
purposes, at least those purposes for which our pseudo-randomness was good for in the first place.

>>> import numpy as np

>>> rngl = np.random.default_rng()
>>> rngl.random ()
0.6596288841243357 # may vary
>>> rng2 = np.random.default_rng()
>>> rng2.random ()
0.11885628817151628 # may vary

Warning: The pseudo-random number generators implemented in this module are designed for statistical modeling
and simulation. They are not suitable for security or cryptographic purposes. See the secrets module from the
standard library for such use cases.

Seeds should be large positive integers. default_ rng can take positive integers of any size. We recommend using very
large, unique numbers to ensure that your seed is different from anyone else’s. This is good practice to ensure that your
results are statistically independent from theirs unless you are intentionally #rying to reproduce their result. A convenient
way to get such a seed number is to use secrets.randbits to get an arbitrary 128-bit integer.

>>> import numpy as np

>>> import secrets

>>> secrets.randbits (128)

122807528840384100672342137672332424406 # may vary

>>> rngl = np.random.default_rng(122807528840384100672342137672332424406)
>>> rngl.random ()

0.5363922081269535

>>> rng2 = np.random.default_rng(122807528840384100672342137672332424406)
>>> rng2.random()

0.5363922081269535

See the documentation on default_rngand SeedSequence for more advanced options for controlling the seed in
specialized scenarios.

Generator and its associated infrastructure was introduced in NumPy version 1.17.0. There is still a lot of code that
uses the older RandomState and the functions in numpy . random. While there are no plans to remove them at this
time, we do recommend transitioning to Generator as you can. The algorithms are faster, more flexible, and will receive
more improvements in the future. For the most part, Generator can be used as a replacement for RandomState.
See Legacy random generation for information on the legacy infrastructure, What's new or different for information on
transitioning, and NEP 19 for some of the reasoning for the transition.

1.1. NumPy’s module structure 111

https://docs.python.org/3/library/secrets.html#module-secrets
https://docs.python.org/3/library/secrets.html#secrets.randbits
https://numpy.org/neps/nep-0019-rng-policy.html#nep19

NumPy Reference, Release 2.2.0

Design

Users primarily interact with Generator instances. Each Generator instance owns a BitGenerator instance
that implements the core RNG algorithm. The BitGenerator has a limited set of responsibilities. It manages state
and provides functions to produce random doubles and random unsigned 32- and 64-bit values.

The Generator takes the bit generator-provided stream and transforms them into more useful distributions, e.g., sim-
ulated normal random values. This structure allows alternative bit generators to be used with little code duplication.

NumPy implements several different BitGenerator classes implementing different RNG algorithms. de-
fault_rng currently uses PCG64 as the default Bi t Generator. It has better statistical properties and performance
than the MT1 9937 algorithm used in the legacy RandomState. See Bit generators for more details on the supported
BitGenerators.

default_rng and BitGenerators delegate the conversion of seeds into RNG states to SeedSequence internally.
SeedSequence implements a sophisticated algorithm that intermediates between the user’s input and the internal
implementation details of each BitGenerator algorithm, each of which can require different amounts of bits for its
state. Importantly, it lets you use arbitrary-sized integers and arbitrary sequences of such integers to mix together into
the RNG state. This is a useful primitive for constructing a flexible pattern for parallel RNG streams.

For backward compatibility, we still maintain the legacy RandomState class. It continues to use the MT71 9937 algo-
rithm by default, and old seeds continue to reproduce the same results. The convenience Functions in numpy.random are
still aliases to the methods on a single global RandomState instance. See Legacy random generation for the complete
details. See What'’s new or different for a detailed comparison between Generator and RandomState.

Parallel Generation

The included generators can be used in parallel, distributed applications in a number of ways:
* SeedSequence spawning
* Sequence of integer seeds
* Independent streams
* Jumping the BitGenerator state

Users with a very large amount of parallelism will want to consult Upgrading PCG64 with PCG64DXSM.

Concepts

Random Generator

The Generator provides access to a wide range of distributions, and served as a replacement for RandomState. The
main difference between the two is that Generator relies on an additional BitGenerator to manage state and generate
the random bits, which are then transformed into random values from useful distributions. The default BitGenerator used
by Generatoris PCG64. The BitGenerator can be changed by passing an instantized BitGenerator to Generator.

numpy . random.default_rng (seed=None)
Construct a new Generator with the default BitGenerator (PCG64).

Parameters

seed
[{None, int, array_like[ints], SeedSequence, BitGenerator, Generator, RandomState}, op-
tional] A seed to initialize the BitGenerator. If None, then fresh, unpredictable entropy
will be pulled from the OS. If an int or array_like[ints] is passed, then all values
must be non-negative and will be passed to SeedSequence to derive the initial BitGen—
erator state. One may also pass ina SeedSequence instance. Additionally, when passed

112 1. Python API

NumPy Reference, Release 2.2.0

a BitGenerator, it will be wrapped by Generator. If passed a Generator, it will
be returned unaltered. When passed a legacy RandomSt ate instance it will be coerced to a
Generator.

Returns

Generator
The initialized generator object.

Notes

If seedisnota BitGeneratorora Generator,anew BitGenerator isinstantiated. This function does
not manage a default global instance.

See Seeding and entropy for more information about seeding.

Examples

default_rng is the recommended constructor for the random number class Generator. Here are several
ways we can construct a random number generator using default_rng and the Generator class.

Here we use default_rng to generate a random float:

>>> import numpy as np

>>> rng = np.random.default_rng(12345)
>>> print (rng)

Generator (PCG64)

>>> rfloat = rng.random/()

>>> rfloat

0.22733602246716966

>>> type (rfloat)

<class 'float'>
.

Here we use default_rng to generate 3 random integers between O (inclusive) and 10 (exclusive):

p
>>> import numpy as np

>>> rng = np.random.default_rng(12345)

>>> rints = rng.integers (low=0, high=10, size=3)
>>> rints

array ([6, 2, 71)

>>> type (rints[0])

<class 'numpy.int64'>

.

Here we specify a seed so that we have reproducible results:

-
>>> import numpy as np

>>> rng = np.random.default_rng(seed=42)

>>> print (rng)

Generator (PCG64)

>>> arrl = rng.random((3, 3))

>>> arrl

array ([[0.77395605, 0.43887844, 0.85859792],
[0.69736803, 0.09417735, 0.97562235],
[0.7611397 , 0.78606431, 0.12811363]11)

L

If we exit and restart our Python interpreter, we’ll see that we generate the same random numbers again:

1.1. NumPy’s module structure 113

NumPy Reference, Release 2.2.0

>>> import numpy as np

>>> rng = np.random.default_rng(seed=42)

>>> arr2 = rng.random((3, 3))

>>> arr2

array ([[0.77395605, 0.43887844, 0.85859792],
[0.69736803, 0.09417735, 0.97562235],
[0.7611397 , 0.78606431, 0.12811363]1])

L

class numpy.random.Generator (bit_generator)

Container for the BitGenerators.

Generator exposes a number of methods for generating random numbers drawn from a variety of probability
distributions. In addition to the distribution-specific arguments, each method takes a keyword argument size that
defaults to None. If size is None, then a single value is generated and returned. If size is an integer, then a 1-D
array filled with generated values is returned. If size is a tuple, then an array with that shape is filled and returned.

The function numpy . random. default_rng will instantiate a Generator with numpy’s default Bi t Gen—
erator.

No Compatibility Guarantee

Generator does not provide a version compatibility guarantee. In particular, as better algorithms evolve the bit
stream may change.

Parameters

bit_generator
[BitGenerator] BitGenerator to use as the core generator.

See also:

default_rng
Recommended constructor for Generator.

Notes

The Python stdlib module random contains pseudo-random number generator with a number of methods that are
similar to the ones available in Generator. It uses Mersenne Twister, and this bit generator can be accessed
using MT19937. Generator, besides being NumPy-aware, has the advantage that it provides a much larger
number of probability distributions to choose from.

Examples

>>> from numpy.random import Generator, PCG64
>>> rng = Generator (PCG64 ())

>>> rng.standard_normal ()

-0.203 # random

114 1. Python API

https://docs.python.org/3/library/random.html#module-random

NumPy Reference, Release 2.2.0

Accessing the BitGenerator and spawning

bit_generator Gets the bit generator instance used by the generator
spawn(n_children) Create new independent child generators.
attribute

random.Generator.bit_generator

Gets the bit generator instance used by the generator
Returns

bit_generator
[BitGenerator] The bit generator instance used by the generator

method

random.Generator .spawn (n_children)

Create new independent child generators.
See SeedSequence spawning for additional notes on spawning children.
New in version 1.25.0.

Parameters

n_children
[int]

Returns

child_generators
[list of Generators]

Raises

TypeError
When the underlying SeedSequence does not implement spawning.

See also:

random.BitGenerator. spawn, random. SeedSequence. spawn
Equivalent method on the bit generator and seed sequence.

bit_generator
The bit generator instance used by the generator.

Examples

Starting from a seeded default generator:

>>> # High quality entropy created with: f"Ox{secrets.randbits (128) :x}"
>>> entropy = 0x3034c6la%9ae04ff8cb62ab8ec2c4b501
>>> rng = np.random.default_rng(entropy)

Create two new generators for example for parallel execution:

[>>> child_rngl, child_rng2 = rng.spawn(2)

1.1. NumPy’s module structure 115

NumPy Reference, Release 2.2.0

Drawn numbers from each are independent but derived from the initial seeding entropy:

>>> rng.uniform(), child_rngl.uniform(), child_rng2.uniform()
(0.19029263503854454, 0.9475673279178444, 0.4702687338396767)

o

It is safe to spawn additional children from the original rng or the children:

>>> more_child_rngs = rng.spawn (20)
>>> nested_spawn = child_rngl.spawn (20)

Simple random data

integers(low[, high, size, dtype, endpoint]) Return random integers from low (inclusive) to high (ex-
clusive), or if endpoint=True, low (inclusive) to high (in-
clusive).
random([size, dtype, out]) Return random floats in the half-open interval [0.0, 1.0).
choice(al, size, replace, p, axis, shuffle]) Generates a random sample from a given array
bytes(length) Return random bytes.
method

random.Generator.integers (low, high=None, size=None, dtype=np.int64, endpoint="False)
Return random integers from low (inclusive) to high (exclusive), or if endpoint=True, low (inclusive) to high
(inclusive). Replaces RandomState.randint (with endpoint=False) and RandomState.random_integers (with end-
point=True)

Return random integers from the “discrete uniform” distribution of the specified dtype. If high is None (the default),
then results are from O to low.

Parameters

low
[int or array-like of ints] Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is 0 and this value is used for high).

high
[int or array-like of ints, optional] If provided, one above the largest (signed) integer to be

drawn from the distribution (see above for behavior if high=None). If array-like, must
contain integer values

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.
dtype
[dtype, optional] Desired dtype of the result. Byteorder must be native. The default value is
np.int64.
endpoint

[bool, optional] If true, sample from the interval [low, high] instead of the default [low, high)
Defaults to False

Returns

out
[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

116 1. Python API

NumPy Reference, Release 2.2.0

Notes

When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard
integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]).

References

(1]

Examples

>>> rng = np.random.default_rng()

>>> rng.integers (2, size=10)

array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
>>> rng.integers (1, size=10)

array ([0, O, O, 0, 0, O, O, O, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

-
>>> rng.integers (5, size=(2, 4))

array ([[4, 0, 2, 1],
[3, 2, 2, 0]]1) # random

Generate a 1 x 3 array with 3 different upper bounds

>>> rng.integers (1, [3, 5, 10])
array([2, 2, 9]) # random
.

Generate a 1 by 3 array with 3 different lower bounds

-

>>> rng.integers([1, 5, 71, 10)
arfaY([9/ 8/ 71) # random

Generate a 2 by 4 array using broadcasting with dtype of uint8

>>> rng.integers([1, 3, 5, 71, [[10], [20]], dtype=np.uint8)
array([[8, 6, 9, 7]
2]

[1, 16, 9, 1

’
], dtype=uint8) # random

L

method

random.Generator . random (size=None, dtype=np.float64, out=None)

Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample Uni f[a,b),b > a use
uniformor multiply the output of randomby (b - a) and add a:

[(b - a) * random() + a

Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

1.1. NumPy’s module structure 117

NumPy Reference, Release 2.2.0

dtype
[dtype, optional] Desired dtype of the result, only f1oat 64 and float 32 are supported.
Byteorder must be native. The default value is np.float64.

out
[ndarray, optional] Alternative output array in which to place the result. If size is not None, it
must have the same shape as the provided size and must match the type of the output values.

Returns

out
[float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

See also:

uniform
Draw samples from the parameterized uniform distribution.

Examples

>>> rng = np.random.default_rng()
>>> rng.random()
0.47108547995356098 # random

>>> type (rng.random())

<class 'float'>

>>> rng.random((5,))

L

array ([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random

Three-by-two array of random numbers from [-5, 0):

p
>>> 5 * rng.random((3, 2)) - 5

array ([[-3.99149989, -0.52338984], # random
[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]1])

L

method

random.Generator.choice (a, size=None, replace=True, p=None, axis=0, shuffle=True)

Generates a random sample from a given array
Parameters

a
[{array_like, int}] If an ndarray, a random sample is generated from its elements. If an int,
the random sample is generated from np.arange(a).

size
[{int, tuple[int]}, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn from the 1-d a. If a has more than one dimension, the size
shape will be inserted into the axis dimension, so the output ndim willbe a.ndim - 1 +
len (size). Default is None, in which case a single value is returned.

replace
[bool, optional] Whether the sample is with or without replacement. Default is True, meaning
that a value of a can be selected multiple times.

118 1. Python API

NumPy Reference, Release 2.2.0

p
[1-D array_like, optional] The probabilities associated with each entry in a. If not given, the

sample assumes a uniform distribution over all entries in a.

axis
[int, optional] The axis along which the selection is performed. The default, 0, selects by row.

shuffle
[bool, optional] Whether the sample is shuffled when sampling without replacement. Default
is True, False provides a speedup.

Returns

samples
[single item or ndarray] The generated random samples

Raises

ValueError
If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p
is not a vector of probabilities, if a and p have different lengths, or if replace=False and the
sample size is greater than the population size.

See also:

integers, shuffle, permutation

Notes

Setting user-specified probabilities through p uses a more general but less efficient sampler than the default. The
general sampler produces a different sample than the optimized sampler even if each element of p is 1 / len(a).

p must sum to 1 when cast to £ 1oat 64. To ensure this, you may wish to normalize usingp = p / np.sum(p,
dtype=float).

When passing a as an integer type and size is not specified, the return type is a native Python int.

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> rng = np.random.default_rng()

>>> rng.choice (5, 3)

array ([0, 3, 4]) # random

>>> #This is equivalent to rng.integers (0,5, 3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> rng.choice (5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array ([3, 3, 0]) # random

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> rng.choice (5, 3, replace=False)
array([3,1,0]) # random
>>> #This is equivalent to rng.permutation (np.arange(5))[:3]

Generate a uniform random sample from a 2-D array along the first axis (the default), without replacement:

1.1. NumPy’s module structure 119

NumPy Reference, Release 2.2.0

-
>>> rng.choice

([
array ([[3, 4, 5]
[0, 1, 2]

(o, 1, 21, (3, 4, 51, [6, 7, 811, 2, replace=False)
random

1)

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

-
>>> rng.choice (5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array ([2, 3, 0]) # random

.

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr ['pooh', 'rabbit', 'piglet', 'Christopher']

>>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.31)

array (['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
dtype="'<U11")

method

random.Generator .bytes (length)
Return random bytes.

Parameters

length
[int] Number of random bytes.

Returns

out
[bytes] String of length length.

Notes

This function generates random bytes from a discrete uniform distribution. The generated bytes are independent
from the CPU’s native endianness.

Examples

>>> rng = np.random.default_rng/()
>>> rng.bytes (10)
b'\xfeC\x9b\x86\x17\xf2\xal\xafcp' # random

Permutations

The methods for randomly permuting a sequence are

shuffle(x[, axis]) Modify an array or sequence in-place by shuffling its con-
tents.
permutation(x[, axis]) Randomly permute a sequence, or return a permuted
range.
permuted(x[, axis, out]) Randomly permute x along axis axis.
method

120 1. Python API

NumPy Reference, Release 2.2.0

random.Generator.shuffle (x, axis=0)

Modify an array or sequence in-place by shuffling its contents.
The order of sub-arrays is changed but their contents remains the same.
Parameters

X
[ndarray or MutableSequence] The array, list or mutable sequence to be shuffled.

axis
[int, optional] The axis which x is shuffled along. Defaultis 0. Itis only supported on ndarray
objects.

Returns
None
See also:

permuted
permutation

Notes

An important distinction between methods shuf f1le and permuted is how they both treat the ax i s parameter
which can be found at Handling the axis parameter.

Examples

>>> rng = np.random.default_rng/()
>>> arr = np.arange (10)

>>> arr

arfaY([O/ 1/ 2! 3! 4l 5/ 6! 7! 8/ 9})

>>> rng.shuffle (arr)

>>> arr

array([(2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

>>> arr = np.arange (9) .reshape ((3, 3))

>>> arr
array ([[O0, 1, 21,
[3, 4, 51,
[6, 7, 811)
>>> rng.shuffle (arr)
>>> arr
array ([[3, 4, 5], # random
[6, 7, 81,
(0o, 1, 211)

>>> arr = np.arange (9) .reshape ((3, 3))
>>> arr
array ([[0, 1, 2],
[3, 4, 51,
[6, 7, 811)
>>> rng.shuffle (arr, axis=1)
>>> arr

(continues on next page)

1.1. NumPy’s module structure 121

NumPy Reference, Release 2.2.0

(continued from previous page)

method

random.Generator.permutation (x, axis=0)

Randomly permute a sequence, or return a permuted range.
Parameters

X
[int or array_like] If x is an integer, randomly permute np .arange (x). If x is an array,
make a copy and shuffle the elements randomly.

axis
[int, optional] The axis which x is shuffled along. Default is 0.

Returns

out
[ndarray] Permuted sequence or array range.

Examples

-
>>> rng = np.random.default_rng()

>>> rng.permutation (10)
array([%, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

>>> rng.permutation([1, 4, 9, 12, 15])
array ([15, 1, 9, 4, 12]1) # random

>>> arr = np.arange (9) .reshape ((3, 3))
>>> rng.permutation (arr)
array ([[6, 7, 8], # random

[0, 1, 21,

[3, 4, 511)

>>> rng.permutation ("abc")
Traceback (most recent call last):

numpy .exceptions.AxisError: axis 0 is out of bounds for array of dimension 0

>>> arr = np.arange (9) .reshape ((3, 3))
>>> rng.permutation(arr, axis=1)

array ([[0, 2, 1], # random
[3, 5, 41,
[6, 8, 711)
method

random.Generator.permuted (x, axis=None, out=None)

Randomly permute x along axis axis.

Unlike shuff1e, each slice along the given axis is shuffled independently of the others.

122 1. Python API

NumPy Reference, Release 2.2.0

Parameters

X
[array_like, at least one-dimensional] Array to be shuffled.

axis
[int, optional] Slices of x in this axis are shuffled. Each slice is shuffled independently of the
others. If axis is None, the flattened array is shuffled.

out
[ndarray, optional] If given, this is the destination of the shuffled array. If our is None, a
shuffled copy of the array is returned.

Returns

ndarray
If out is None, a shuffled copy of x is returned. Otherwise, the shuffled array is stored in out,
and out is returned

See also:

shuffle
permutation

Notes

An important distinction between methods shuf f1le and permuted is how they both treat the ax i s parameter
which can be found at Handling the axis parameter.

Examples

Create a numpy . random. Generator instance:

[>>> rng = np.random.default_rng()

Create a test array:

>>> x = np.arange (24) .reshape (3, 8)

>>> x

array([[O, 21, 2, 3, 4, 5, 6, 171,

[8, 9, 10, 11, 12, 13, 14, 151,
6, 17, 18, 19, 20, 21, 22, 2311)

Shuffle the rows of x:

>>> y = rng.permuted(x, axis=1)
>>> y
array ([[4, 3, 6, 7, 1, 2, 5, 0], # random

(15, 10, 14, 9, 12, 11, 8, 131,
(17, 16, 20, 21, 18, 22, 23, 1911)

x has not been modified:

>>> X

array([[OI 1, 2/ 3/ 4, S, 6/ 71,

[8 9, 10, 11, 12, 13, 14, 157,
6, 17, 18, 19, 20, 21, 22, 23]])

1.1. NumPy’s module structure 123

NumPy Reference, Release 2.2.0

To shuffle the rows of x in-place, pass x as the out parameter:

>>> x
array ([[3, 0, 4, 17,
[8, 14, 13, 9,
(17, 18, 16, 22,

.

>>> y = rng.permuted(x, axis=1, out=x)

1, 6, 2, 5I,
12, 11, 15, 10],
19, 23, 20, 21]11)

random

Note that when the out parameter is given, the return value is out:

p
>>> y is x

True

The following table summarizes the behaviors of the methods.

method copy/in-place axis handling
shuffle in-place asif 1d
permutation copy asif 1d

permuted

either (use ‘out’ for in-place)

axis independent

The following subsections provide more details about the differences.

In-place vs. copy

The main difference between Generator.shuffle and Generator.permutation is that Generator.
shuff1e operates in-place, while Generator.permutation returns a copy.

By default, Generator.permuted returns a copy. To operate in-place with Generator. permuted, pass the
same array as the first argument and as the value of the out parameter. For example,

-
>>> import numpy as np

>>> rng = np.random.defa
>>> x = np.arange (0, 15)
>>> x
array ([[0, 1, 2, 3,
L 5 & 7, §,
(1o, 11, 12, 13,
>>> y = rng.permuted(x,
>>> x
array ([[

ult_rng ()
.reshape (3, 5)

4],
91,
14]11])
axis=1, out=x)

31, # random
5],
1211)

Note that when out is given, the return value is out:

>>> y is x
True

124

1. Python API

NumPy Reference, Release 2.2.0

Handling the axis parameter

An important distinction for these methods is how they handle the axis parameter. Both Generator.shuffle
and Generator.permutation treat the input as a one-dimensional sequence, and the axi s parameter determines
which dimension of the input array to use as the sequence. In the case of a two-dimensional array, axi s=0 will, in effect,
rearrange the rows of the array, and axis=1 will rearrange the columns. For example

>>> import numpy as np

>>> rng = np.random.default_rng()

>>> x = np.arange (0, 15).reshape(3, 5)
>>> x

arraY([[OI lr 2! 3/ 4

4]
L5 6, 7, 8, 91,
[10, 11, 12, 13, 1411)
>>> rng.permutation(x, axis=1)
array ([[1, 3, 2, 0, 47, # random
[6, 8, 7, 5, 9],
[11, 13, 12, 10, 1411)

Note that the columns have been rearranged “in bulk”: the values within each column have not changed.

The method Generator.permuted treats the axis parameter similar to how numpy . sort treats it. Each slice
along the given axis is shuffled independently of the others. Compare the following example of the use of Generator.
permuted to the above example of Generator. permutation:

>>> import numpy as np

>>> rng = np.random.default_rng()
>>> rng.permuted(x, axis=1)
array ([[1, 0, 2, 4, 3], # random

[5/ 7! 6! 9/ 8]/
(10, 14, 12, 13, 11]1)

In this example, the values within each row (i.e. the values along axis=1) have been shuffled independently. This is not
a “bulk” shuffle of the columns.

Shuffling non-NumPy sequences

Generator.shuffle works on non-NumPy sequences. That is, if it is given a sequence that is not a NumPy array,
it shuffles that sequence in-place.

>>> import numpy as np

>>> rng = np.random.default_rng/()

>>>a = ['A'", 'B', 'C', 'D', 'E']

>>> rng.shuffle(a) # shuffle the list in-place
>>> 3

['B', 'D', 'A', 'E', 'C'] # random

1.1. NumPy’s module structure 125

NumPy Reference, Release 2.2.0

Distributions

beta(a, b[, size])
binomial(n, p[, size])
chisquare(df], size])
dirichlet(alphal, size])
exponent ial([scale, size])
f(dfnum, dfden[, size])
gamma(shapel, scale, size])
geomet ric(pl, size])
gumbe 1([loc, scale, size])
hypergeomet ric(ngood, nbad, nsample[, size])
laplace([loc, scale, size])

logistic([loc, scale, size])

lognormal([mean, sigma, size])

logseries(pl, sizel])

multinomial(n, pvals[, size])
multivariate_hypergeometric(colors, nsam-
ple)

multivariate_normal(mean, cov|, size, ...])

negative_binomial(n, pl, size])
noncentral_chisquare(df, nonc[, size])
noncentral_ f(dfnum, dfden, nonc[, size])
normal([loc, scale, size])

pareto(al, size])

poisson([lam, size])
power(al, size])

rayleigh([scale, size])
standard_cauchy([size])
standard_exponential([size, method,
out])

standard_gamma(shape[, size, dtype, out])
standard_normal([size, dtype, out])

dtype,

standard_t(dff, size])

t riangular(left, mode, right[, size])
uniform([low, high, size])
vonmises(mu, kappa[, size])

wa 1 d(mean, scale][, size])

weibull(al, size])
zipf(al, size])

Draw samples from a Beta distribution.

Draw samples from a binomial distribution.

Draw samples from a chi-square distribution.

Draw samples from the Dirichlet distribution.

Draw samples from an exponential distribution.

Draw samples from an F distribution.

Draw samples from a Gamma distribution.

Draw samples from the geometric distribution.

Draw samples from a Gumbel distribution.

Draw samples from a Hypergeometric distribution.
Draw samples from the Laplace or double exponential
distribution with specified location (or mean) and scale
(decay).

Draw samples from a logistic distribution.

Draw samples from a log-normal distribution.

Draw samples from a logarithmic series distribution.
Draw samples from a multinomial distribution.

Generate variates from a multivariate hypergeometric dis-
tribution.

Draw random samples from a multivariate normal distri-
bution.

Draw samples from a negative binomial distribution.
Draw samples from a noncentral chi-square distribution.
Draw samples from the noncentral F distribution.

Draw random samples from a normal (Gaussian) distri-
bution.

Draw samples from a Pareto I (AKA Lomax) distribution
with specified shape.

Draw samples from a Poisson distribution.

Draws samples in [0, 1] from a power distribution with
positive exponent a - 1.

Draw samples from a Rayleigh distribution.

Draw samples from a standard Cauchy distribution with
mode = 0.

Draw samples from the standard exponential distribution.

Draw samples from a standard Gamma distribution.
Draw samples from a standard Normal distribution
(mean=0, stdev=1).

Draw samples from a standard Student's t distribution
with df degrees of freedom.

Draw samples from the triangular distribution over the in-
terval [left, right].

Draw samples from a uniform distribution.

Draw samples from a von Mises distribution.

Draw samples from a Wald, or inverse Gaussian, distri-
bution.

Draw samples from a Weibull distribution.

Draw samples from a Zipf distribution.

126

1. Python API

NumPy Reference, Release 2.2.0

method

random.Generator .beta (a, b, sizz=None)

Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has
the probability distribution function

1

J}a_l —.’Eﬁ_l
Blap)” 7

f(z;a,b) =

)

where the normalization, B, is the beta function,

1
Bla, 8) :/0 (1 —)L,

It is often seen in Bayesian inference and order statistics.
Parameters

a
[float or array_like of floats] Alpha, positive (>0).

b
[float or array_like of floats] Beta, positive (>0).
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a and b
are both scalars. Otherwise, np.broadcast (a, b) .size samples are drawn.
Returns
out
[ndarray or scalar] Drawn samples from the parameterized beta distribution.
References
(1]
Examples
The beta distribution has mean a/(a+b). If a == b and both are > 1, the distribution is symmetric with mean 0.5.

>>> rng = np.random.default_rng()

>>> a, b, size = 2.0, 2.0, 10000

>>> sample = rng.beta(a=a, b=b, size=size)
>>> np.mean (sample)

0.5047328775385895 # may vary

Otherwise the distribution is skewed left or right according to whether a or b is greater. The distribution is mirror
symmetric. See for example:

>>> a, b, size = 2, 7, 10000

>>> sample_left = rng.beta(a=a, b=b, size=size)
>>> sample_right = rng.beta(a=b, b=a, size=size)
>>> m_left, m_right = np.mean (sample_left), np.mean (sample_right)

>>> print (m_left, m_right)
(continues on next page)

1.1. NumPy’s module structure 127

NumPy Reference, Release 2.2.0

(continued from previous page)
0.2238596793678923 0.7774613834041182 # may vary
>>> print (m_left - a/(atb))
0.001637457145670096 # may vary
>>> print (m_right - b/ (a+tb))
-0.0003163943736596009 # may vary

Display the histogram of the two samples:

>>> import matplotlib.pyplot as plt

>>> plt.hist ([sample_left, sample_right],

. 50, density=True, histtype='bar')
>>> plt.show ()

3.5
3.0
2.5
2.0
1.5
1.0 +
0.5
0.0 T T T
0.0 0.2 0.4 0.6 0.8 1.0

method

random.Generator.binomial (n, p, size=None)

Draw samples from a binomial distribution.

Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success
where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in
use)

Parameters

n
[int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.

P
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast (n, p) .size samples are drawn.
Returns

128

1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized binomial distribution, where each
sample is equal to the number of successes over the n trials.

See also:

scipy.stats.binom
probability density function, distribution or cumulative density function, etc.

Notes

The probability mass function (PMF) for the binomial distribution is

P(N) = (Z)pN(l —p)" Y,

where 7 is the number of trials, p is the probability of success, and N is the number of successes.

When estimating the standard error of a proportion in a population by using a random sample, the normal distribu-
tion works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples,
in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 =27%. 0.27¥15 = 4, so the binomial distribution should be
used in this case.

References

(11, [21, [31, [4], [5]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> n, p, size = 10, .5, 10000
>>> s = rng.binomial (n, p, 10000)

Assume a company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of p=0. 1.
All nine wells fail. What is the probability of that happening?

Over size = 20, 000 trials the probability of this happening is on average:

>>> n, p, size = 9, 0.1, 20000
>>> np.sum(rng.binomial (n=n, p=p, size=size) == 0)/size
0.39015 # may vary

The following can be used to visualize a sample with n=100, p=0. 4 and the corresponding probability density
function:

-

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import binom
>>> n, p, size = 100, 0.4, 10000

>>> sample = rng.binomial (n, p, size=size)
>>> count, bins, _ = plt.hist (sample, 30, density=True)
>>> x = np.arange (n)

>>> y = binom.pmf (x, n, p)
>>> plt.plot(x, y, linewidth=2, color='zr")

1.1. NumPy’s module structure 129

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom

NumPy Reference, Release 2.2.0

0.12 +

0.10 +

0.08 +

0.06

0.04 +

0.02 A

0.00

T
80 100

method
random.Generator.chisquare (df, size=None)
Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal distributions (mean 0, variance 1), are squared
and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis
testing.

Parameters

df
[float or array_like of floats] Number of degrees of freedom, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if df isa
scalar. Otherwise, np.array (df) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized chi-square distribution.

Raises

ValueError
When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

130 1. Python API

NumPy Reference, Release 2.2.0

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random variables:
df
Q=) X7
i=1
is chi-square distributed, denoted
Q~ X3

The probability density function of the chi-squared distribution is

_ (1/2)k/2 2—-1_—x/2
P = ey

where I is the gamma function,

References

(1]

Examples

>>> rng = np.random.default_rng()

>>> rng.chisquare (2, 4)

array ([1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random
|

The distribution of a chi-square random variable with 20 degrees of freedom looks as follows:

-

>>> import matplotlib.pyplot as plt

>>> import scipy.stats as stats

>>> s = rng.chisquare (20, 10000)

>>> count, bins, _ = plt.hist(s, 30, density=True)
>>> x = np.linspace (0, 60, 1000)

>>> plt.plot(x, stats.chi2.pdf (x, df=20))

>>> plt.xlim ([0, 60])

>>> plt.show ()

method

random.Generator.dirichlet (alpha, size=None)

Draw samples from the Dirichlet distribution.

Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can
be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a
multinomial distribution in Bayesian inference.

Parameters

alpha
[sequence of floats, length k] Parameter of the distribution (length k for sample of length k).

1.1. NumPy’s module structure 131

NumPy Reference, Release 2.2.0

0.06

0.05 +

0.04 +

0.03 +

0.02 +

0.01 +

0.00 =
0 10 20 30 40 50 60

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n),thenm * n
* k samples are drawn. Default is None, in which case a vector of length k is returned.

Returns

samples
[ndarray,] The drawn samples, of shape (size, k).

Raises

ValueError
If any value in alpha is less than zero

Notes

The Dirichlet distribution is a distribution over vectors that fulfil the conditions z; > 0 and Ele z; = 1.

The probability density function p of a Dirichlet-distributed random vector X is proportional to

pla) oc [[,

where « is a vector containing the positive concentration parameters.

The method uses the following property for computation: let Y be a random vector which has components that

follow a standard gamma distribution, then X = +Y_Y is Dirichlet-distributed
i=1 "1

132 1. Python API

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial
length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but
allowing some variation in the relative sizes of the pieces.

>>> rng = np.random.default_rng()
>>> s = rng.dirichlet ((10, 5, 3), 20).transpose()

>>> import matplotlib.pyplot as plt

>>> plt.barh(range (20), s[0])

>>> plt.barh(range(20), s[1], left=s[0], color='g"')

>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

Lengths of Strings

20

15

10

0.0 0.2 0.4 0.6 0.8 1.0

method

random.Generator.exponential (scale=1.0, size=None)
Draw samples from an exponential distribution.
Its probability density function is
1 1 T
flz; 2) = 2 exp(——),
5 =505
for x > 0 and O elsewhere. 3 is the scale parameter, which is the inverse of the rate parameter A = 1/3. The

rate parameter is an alternative, widely used parameterization of the exponential distribution [3].

The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to
Wikipedia [2].

Parameters

1.1. NumPy’s module structure 133

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats] The scale parameter, 5 = 1/). Must be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array (scale) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized exponential distribution.

References

(11, [21, [3]

Examples

Assume a company has 10000 customer support agents and the time between customer calls is exponentially dis-
tributed and that the average time between customer calls is 4 minutes.

>>> scale, size = 4, 10000
>>> rng = np.random.default_rng()
>>> time_between_calls = rng.exponential (scale=scale, size=size)

L

What is the probability that a customer will call in the next 4 to 5 minutes?

p
>>> x = ((time_between_calls < 5).sum())/size

>>> y ((time_between_calls < 4).sum())/size
>>> x - y

0.08 # may vary

.

The corresponding distribution can be visualized as follows:

-

>>> import matplotlib.pyplot as plt

>>> scale, size = 4, 10000

>>> rng = np.random.default_rng()

>>> sample = rng.exponential (scale=scale, size=size)

>>> count, bins, _ = plt.hist (sample, 30, density=True)

>>> plt.plot (bins, scale** (-1)*np.exp(-scale**-1*bins), linewidth=2, color='r"')
>>> plt.show ()

L

method

random.Generator. £ (dfnum, dfden, size=None)

Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters must be greater than zero.

The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distri-
bution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Parameters

dfnum
[float or array_like of floats] Degrees of freedom in numerator, must be > 0.

134 1. Python API

NumPy Reference, Release 2.2.0

0.25 +

25 30 35

dfden
[float or array_like of float] Degrees of freedom in denominator, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum and
dfden are both scalars. Otherwise, np.broadcast (dfnum, dfden) .size samples
are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Fisher distribution.

See also:

scipy.stats.f
probability density function, distribution or cumulative density function, etc.

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable
dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the within-
groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

1.1. NumPy’s module structure 135

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data gives a
value of 36.01.

Draw samples from the distribution:

p
>>> dfnum = 1. # between group degrees of freedom

>>> dfden = 48. # within groups degrees of freedom
>>> rng = np.random.default_rng()
>>> s = rng.f (dfnum, dfden, 1000)

L

The lower bound for the top 1% of the samples is :

>>> np.sort (s) [-10]

7.61988120985 # random

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.

The corresponding probability density function forn = 20andm = 20 is:

-

>>> import matplotlib.pyplot as plt

>>> from scipy import stats

>>> dfnum, dfden, size = 20, 20, 10000

>>> s = rng.f (dfnum=dfnum, dfden=dfden, size=size)
>>> bins, density, _ = plt.hist (s, 30, density=True)
>>> x = np.linspace (0, 5, 1000)

>>> plt.plot(x, stats.f.pdf(x, dfnum, dfden))

>>> plt.x1im ([0, 517)

>>> plt.show ()

method

random.Generator .gamma (shape, scale=1.0, size=None)

Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale (sometimes designated “theta”), where both parameters are > 0.

Parameters

shape
[float or array_like of floats] The shape of the gamma distribution. Must be non-negative.

scale
[float or array_like of floats, optional] The scale of the gamma distribution. Must be non-
negative. Default is equal to 1.

136

1. Python API

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if shape and
scale are both scalars. Otherwise, np.broadcast (shape, scale) .size samples
are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized gamma distribution.

See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

—x/0
_ k-1

where £ is the shape and 6 the scale, and I" is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

1.1. NumPy’s module structure 137

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> rng = np.random.default_rng()
>>> s = rng.gamma (shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> import scipy.special as sps

>>> count, bins, _ = plt.hist(s, 50, density=True)

>>> y = bins** (shape-1)* (np.exp (-bins/scale) /

c (sps.gamma (shape) *scale**shape))
>>> plt.plot (bins, y, linewidth=2, color='r')

>>> plt.show ()

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5

method

random.Generator.geometric (p, size=None)

Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve
success. It is therefore supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is
flk)=(1—p)*'p

where p is the probability of success of an individual trial.

138

1. Python API

NumPy Reference, Release 2.2.0

Parameters

p
[float or array_like of floats] The probability of success of an individual trial.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array (p) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized geometric distribution.

References

(1]

Examples

Draw 10,000 values from the geometric distribution, with the probability of an individual success equal to p =

0.35:

>>> p, size = 0.35, 10000

>>> rng = np.random.default_rng()

>>> sample = rng.geometric (p=p, size=size)

‘What proportion of trials succeeded after a single run?

>>> (sample == 1).sum()/size
0.34889999999999999 # may vary

The geometric distribution with p=0 . 35 looks as follows:

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist (sample, bins=30, density=True)
>>> plt.plot (bins, (1-p)** (bins-1) *p)

>>> plt.xlim ([0, 25])

>>> plt.show ()

L

method
random.Generator .gumbel (loc=0.0, scale=1.0, size=None)
Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel
distribution, see Notes and References below.

Parameters

loc
[float or array_like of floats, optional] The location of the mode of the distribution. Default is
0.

scale
[float or array_like of floats, optional] The scale parameter of the distribution. Default is 1.
Must be non- negative.

1.1. NumPy’s module structure 139

NumPy Reference, Release 2.2.0

0.5 4

10 15 20 25

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samplesare
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.

See also:

scipy.stats.gumbel_1
scipy.stats.gumbel_r
scipy.stats.genextreme
weibull

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-like”
tails.

The probability density for the Gumbel distribution is

ef(mfl")/ﬁ 787($7M)/ﬂ

p(z) = Te)

where 1 is the mode, a location parameter, and f3 is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology liter-
ature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger than if one
used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a
Gaussian process, which underestimated the frequency of extreme events.

140

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also
includes the Weibull and Frechet.

The function has a mean of p + 0.577214 and a variance of %2 B2.

References

(11, [2]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> mu, beta = 0, 0.1 # location and scale
>>> s = rng.gumbel (mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

f

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist (s, 30, density=True)
>>> plt.plot (bins, (1/beta)*np.exp (- (bins - mu) /beta)
* np.exp(—np.exp(—(bins - mu) /beta)),

S linewidth=2, color='r")
>>> plt.show ()

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000)
a = rng.normal (mu, beta, 1000)
means.append (a.mean())
maxima.append(a.max())
>>> count, bins, _ = plt.hist (maxima, 30, density=True)

(continues on next page)

1.1. NumPy’s module structure 141

NumPy Reference, Release 2.2.0

(continued from previous page)

>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot (bins, (1/beta)*np.exp (- (bins - mu) /beta)
* np.exp(-np.exp (- (bins - mu) /beta)),
C.. linewidth=2, color='r")
>>> plt.plot (bins, 1/ (beta * np.sqrt(2 * np.pi))
* np.exp(—(bins - mu)**2 / (2 * beta**2)),
C. linewidth=2, color='g"')
>>> plt.show ()

0.25 0.30 0.35 0.40 0.45

method

random.Generator.hypergeometric (ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.

Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good
selection), nbad (ways to make a bad selection), and nsample (number of items sampled, which is less than or equal
to the sum ngood + nbad).

Parameters

ngood
[int or array_like of ints] Number of ways to make a good selection. Must be nonnegative and
less than 10**9.

nbad
[int or array_like of ints] Number of ways to make a bad selection. Must be nonnegative and
less than 10%*9.

nsample
[int or array_like of ints] Number of items sampled. Must be nonnegative and less than ngood
+ nbad.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast (ngood, nbad,
nsample) . size samples are drawn.

142 1. Python API

NumPy Reference, Release 2.2.0

Returns

out
[ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution. Each
sample is the number of good items within a randomly selected subset of size nsample taken
from a set of ngood good items and nbad bad items.

See also:
multivariate_hypergeometric
Draw samples from the multivariate hypergeometric distribution.

scipy.stats.hypergeom
probability density function, distribution or cumulative density function, etc.

Notes

The probability mass function (PMF) for the Hypergeometric distribution is

()62
(g+b) ’

n

P(z) =

where 0 <z <nandn—-0<z<g
for P(x) the probability of x good results in the drawn sample, g = ngood, b = nbad, and n = nsample.

Consider an urn with black and white marbles in it, ngood of them are black and nbad are white. If you draw
nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls
in the drawn sample.

Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.

The arguments ngood and nbad each must be less than /0**9. For extremely large arguments, the algorithm that
is used to compute the samples [4] breaks down because of loss of precision in floating point calculations. For
such large values, if nsample is not also large, the distribution can be approximated with the binomial distribution,
binomial(n=nsample, p=ngood/(ngood + nbad)).

References

(11, [21, [31, [4]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()

>>> ngood, nbad, nsamp = 100, 2, 10

number of good, number of bad, and number of samples
>>> s = rng.hypergeometric (ngood, nbad, nsamp, 1000)

>>> from matplotlib.pyplot import hist

>>> hist (s)

note that it is very unlikely to grab both bad items

1.1. NumPy’s module structure 143

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom

NumPy Reference, Release 2.2.0

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it
that 12 or more of them are one color?

>>> s = rng.hypergeometric (15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

method

random.Generator.laplace (loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).

The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Parameters

loc
[float or array_like of floats, optional] The position, , of the distribution peak. Default is 0.

scale
[float or array_like of floats, optional] A, the exponential decay. Default is 1. Must be non-
negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

Notes

It has the probability density function

]_ —
f(fE;M,)\):ﬁeXP (xA/”L>~

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function
of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics
and health sciences, this distribution seems to model the data better than the standard Gaussian distribution.

References

(11, (2], (3], [4]

144 1. Python API

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution

-
>>> loc, scale = 0., 1.

>>> rng = np.random.default_rng/()

>>> s = rng.laplace(loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist(s, 30, density=True)
>>> x = np.arange(-8., 8., .01)

>>> pdf = np.exp(-abs(x-loc)/scale)/ (2.*scale)

>>> plt.plot (x, pdf)

.

Plot Gaussian for comparison:

-
>>> g = (1/(scale * np.sqgrt(2 * np.pi)) *
... np.exp (- (x — loc)**2 / (2 * scale**2)))
>>> plt.plot (x,9)

.

0.5

0.4 +

0.3 +

0.2 A

0.1 +

0.0 1

method

random.Generator.logistic (loc=0.0, scale=1.0, size=None)

Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and
scale (>0).

Parameters

loc
[float or array_like of floats, optional] Parameter of the distribution. Default is 0.

scale
[float or array_like of floats, optional] Parameter of the distribution. Must be non-negative.
Default is 1.

1.1. NumPy’s module structure 145

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized logistic distribution.

See also:

scipy.stats.logistic
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Logistic distribution is

o—(o—i)/s
5(1 + e—(a:—u)/s)Q ’

P(z) =

where 1 = location and s = scale.

The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions,
in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming
the performance of each player is a logistically distributed random variable.

References

(11, (21, [3]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1

>>> rng = np.random.default_rng()

>>> s = rng.logistic(loc, scale, 10000)

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist (s, bins=50, label='Sampled data')

plot sampled data against the exact distribution

>>> def logistic(x, loc, scale):

.. return np.exp ((loc—x)/scale)/ (scale* (1+np.exp((loc—x)/scale)) **2)

>>> logistic_values = logistic(bins, loc, scale)

>>> bin_spacing = np.mean(np.diff (bins))

>>> plt.plot (bins, logistic_values * bin_spacing * s.size, label='Logistic PDF')
>>> plt.legend()

>>> plt.show ()

method

146

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic

NumPy Reference, Release 2.2.0

1000 + I Sampled data
- Logistic PDF

800
600

400

200 A

00 25 50 75 100 125 15.0 17.5 20.0

random.Generator.lognormal (mean=0.0, sigma=1.0, size=None)

Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note
that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Parameters

mean
[float or array_like of floats, optional] Mean value of the underlying normal distribution. De-
fault is 0.

sigma
[float or array_like of floats, optional] Standard deviation of the underlying normal distribution.
Must be non-negative. Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if mean and

sigma are both scalars. Otherwise, np.broadcast (mean, sigma) .size samples
are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized log-normal distribution.

See also:

scipy.stats.lognorm
probability density function, distribution, cumulative density function, etc.

1.1. NumPy’s module structure 147

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm

NumPy Reference, Release 2.2.0

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function for the
log-normal distribution is:

(@) 1 (- <ln(m>;u)2)
r) = ———e 20
P oxV 2T

where g is the mean and o is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

(11, (2]

Examples

Draw samples from the distribution:

r

>>> rng = np.random.default_rng()
>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = rng.lognormal (mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist(s, 100, density=True, align='mid')
.

>>> x = np.linspace (min(bins), max(bins), 10000)

>>> pdf = (np.exp(—(np.log(x) — mu)**2 / (2 * sigma**2))

/ (x * sigma * np.sqgrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r'")
>>> plt.axis('tight'")
>>> plt.show()

L

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal
probability density function.

-
>>> # Generate a thousand samples: each is the product of 100 random

>>> # values, drawn from a normal distribution.
>>> rng = rng

>>> b = []

>>> for i in range (1000) :

a = 10. + rng.standard_normal (100)
b.append (np.prod(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, _ = plt.hist(b, 100, density=True, align='mid'")
>>> sigma = np.std(np.log(b))

>>> mu = np.mean (np.log(b))

1. Python API

NumPy Reference, Release 2.2.0

0.030 +

0.025

I I I
0 100 200 300 400

-
>>> x = np.linspace (min (bins), max(bins), 10000)

>>> pdf = (np.exp(—(np.log(x) — mu)**2 / (2 * sigma**2))
/ (x * sigma * np.sqrt (2 * np.pi)))

>>> plt.plot (x, pdf, color='r', linewidth=2)
>>> plt.show ()

0.020 -

0.015 +

0.010

0.005 -+

0.000 - T T T T T
0 100 200 300 400 500 600 700

method

random.Generator.logseries (p, size=None)

Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified shape parameter, 0 <=p < 1.

Parameters

1.1. NumPy’s module structure

149

NumPy Reference, Release 2.2.0

p
[float or array_like of floats] Shape parameter for the distribution. Must be in the range [0, 1).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array (p) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized logarithmic series distribution.

See also:

scipy.stats.logser
probability density function, distribution or cumulative density function, etc.

Notes

The probability mass function for the Log Series distribution is
k

P(k)=m7

where p = probability.

The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher,
Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3].

References

(11, [21, [31, [4]

Examples

Draw samples from the distribution:

>>> a3 = .6

>>> rng = np.random.default_rng()

>>> s = rng.logseries(a, 10000)

>>> import matplotlib.pyplot as plt
>>> bins = np.arange(—-.5, max(s) + .5)

>>> count, bins, = plt.hist (s, bins=bins, label='Sample count')

L

plot against distribution

g
>>> def logseries(k, p):

return -p**k/ (k*np.log(l-p))
>>> centres = np.arange(l, max(s) + 1)
>>> plt.plot (centres, logseries(centres, a) * s.size, 'r', label='logseries PMF')
>>> plt.legend()
>>> plt.show ()

L

method

150 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser

NumPy Reference, Release 2.2.0

I Sample count

6000 1 —— logseries PMF

5000 A
4000 -+
3000 A
2000

1000

random.Generator.multinomial (n, pvals, size=None)

Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with
one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1
through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_1i = [X_0,
X_1, ..., X_pl,represent the number of times the outcome was i.

Parameters

n
[int or array-like of ints] Number of experiments.

pvals
[array-like of floats] Probabilities of each of the p different outcomes with shape (k0, k1,
., kn, p). Eachelement pvals[i, j, ..., :] mustsum to 1 (however, the last
element is always assumed to account for the remaining probability, as long as sum (pvals| .
.., =11, axis=-1) <= 1.0. Musthave at least 1 dimension where pvals.shape[-1]
> 0.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn each with p elements. Default is None where the output size
is determined by the broadcast shape of n and all by the final dimension of pvals, which is

denoted as b= (b0, bl, ..., bqg). If size is not None, then it must be compatible with
the broadcast shape b. Specifically, size must have g or more elements and size[-(q-j):] must
equal bj.

Returns

out
[ndarray] The drawn samples, of shape size, if provided. When size is provided, the output
shape is size + (p,) If not specified, the shape is determined by the broadcast shape of n and

pvals, (b0, bl, ..., bg) augmented with the dimension of the multinomial, p, so
that that output shape is (b0, bl, ..., bg, p).
Each entry out [1, j, ..., :] is a p-dimensional value drawn from the distribution.

1.1. NumPy’s module structure 151

NumPy Reference, Release 2.2.0

Examples

Throw a dice 20 times:

>>> rng = np.random.default_rng()
>>> rng.multinomial (20, [1/6.]1%*6, size=1)
array ([[4, 1, 7, 5, 2, 111) # random

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> rng.multinomial (20, [1/6.]1*6, size=2)
array ([[3, 4, 3, 3, 4, 31,
[2, 4, 3, 4, 0, 711) # random

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.

Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times,
and 20 times again:

>>> rng.multinomial ([[10], [20]], [1/6.1*6, size=(2, 2))
array([[[2, 4, 0, 1, 2, 11,
(1, 3, o, 3, 1, 211,
[ra, 4, 4, 4, 4, 31,
[3, 3, 2, 5, 5, 2]]]1) # random

The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing
the dice 20 times.

A loaded die is more likely to land on number 6:

-

>>> rng.multinomial (100, [1/7.]1*5 + [2/7.])
array ([11, 16, 14, 17, 16, 26]) # random

Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

.

>>> rng.multinomial ([10, 20],[[1/4]1*4 + [0]*2, [1/6]*6])
array([[2, 1, 4, 3, 0, O],
[3, 3, 3, 6, 1, 4]], dtype=int64) # random

Generate categorical random variates from two categories where the first has 3 outcomes and the second has 2.

-

>>> rng.multinomial (1, [[.1, .5, .41, [.3, .7, .011)
array ([[0, O, 11,
[0, 1, 0]], dtype=int64) # random

argmax (axis=-1) is then used to return the categories.

L

>>> pvals = [[.1, .5, .41, [.3, .7, .0]]
>>> rvs = rng.multinomial (1, pvals, size=(4,2))
>>> rvs.argmax (axis=-1)
array ([[0, 17,
(2, 01,
(2, 11,
[2, 0]], dtype=int64) # random

The same output dimension can be produced using broadcasting.

152

1. Python API

NumPy Reference, Release 2.2.0

>>> rvs = rng.multinomial ([[1]] * 4, pvals)
>>> rvs.argmax (axis=-1)
array ([[0, 17,

[2, 0],

[2, 17,

[2, 0]], dtype=int64) # random

The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and

assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice
as much weight on one side as on the other should be sampled like so:

-

L

>>> rng.multinomial (100, [1.0 / 3, 2.0 / 31) # RIGHT
array ([38, 62]) # random

not like:

>>> rng.multinomial (100, [1.0, 2.0]) # WRONG

Traceback (most recent call last):
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

metho

rand

d

om.Generator.multivariate_hypergeometric (colors, nsample, size=None, method="marginals')

Generate variates from a multivariate hypergeometric distribution.
The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution.

Choose nsample items at random without replacement from a collection with N distinct types. N is the length
of colors, and the values in colors are the number of occurrences of that type in the collection. The total
number of items in the collection is sum (colors). Each random variate generated by this function is a vector
of length N holding the counts of the different types that occurred in the nsample items.

The name colors comes from a common description of the distribution: it is the probability distribution of the
number of marbles of each color selected without replacement from an urn containing marbles of different colors;
colors[i] is the number of marbles in the urn with color 1.

Parameters

colors
[sequence of integers] The number of each type of item in the collection from which a sample
is drawn. The values in colors must be nonnegative. To avoid loss of precision in the
algorithm, sum (colors) must be less than 10* * 9 when method is “marginals”.

nsample
[int] The number of items selected. nsample must not be greater than sum (colors).

size
[int or tuple of ints, optional] The number of variates to generate, either an integer or a tuple
holding the shape of the array of variates. If the given size is, e.g., (k, m),thenk * m
variates are drawn, where one variate is a vector of length len (colors), and the return
value has shape (k, m, len(colors)). If size is an integer, the output has shape
(size, len(colors)). Defaultis None, in which case a single variate is returned as an
array with shape (len (colors),).

method
[string, optional] Specify the algorithm that is used to generate the variates. Must be ‘count’ or

‘marginals’ (the default). See the Notes for a description of the methods.

Returns

1.1. NumPy’s module structure 153

NumPy Reference, Release 2.2.0

variates
[ndarray] Array of variates drawn from the multivariate hypergeometric distribution.

See also:

hypergeometric
Draw samples from the (univariate) hypergeometric distribution.

Notes

The two methods do not return the same sequence of variates.

The “count” algorithm is roughly equivalent to the following numpy code:

choices = np.repeat (np.arange(len(colors)), colors)
selection = np.random.choice (choices, nsample, replace=False)
variate = np.bincount (selection, minlength=len(colors))

The “count” algorithm uses a temporary array of integers with length sum (colors).

The “marginals” algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It
is roughly equivalent to:

p
variate = np.zeros(len(colors), dtype=np.inté64)

‘remaining' is the cumulative sum of ‘colors’ from the last
element to the first; e.g. if ‘colors' is [3, 1, 5], then
‘remaining' is [9, 6, 5].
remaining = np.cumsum(colors[::-1])[::-1]
for i in range(len(colors)-1):
if nsample < 1:

break
variate[i] = hypergeometric (colors[i], remaining[i+1],
nsample)
nsample —= variatel[i]
variate[-1] = nsample

The default method is “marginals”. For some cases (e.g. when colors contains relatively small integers), the “count”
method can be significantly faster than the “marginals” method. If performance of the algorithm is important, test
the two methods with typical inputs to decide which works best.

Examples

>>> colors = [16, 8, 4]
>>> seed = 4861946401452
>>> gen = np.random.Generator (np.random.PCG64 (seed))
>>> gen.multivariate_hypergeometric (colors, 6)
array ([5, 0, 17)
>>> gen.multivariate_hypergeometric (colors, 6, size=3)
array ([[5, 0, 11,
(2, 2, 21,
(3, 3, 011)
>>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
array ([[[3, 2, 11,
;o A
;A
1

~
N =N

[
(4
(3,

4

154

1. Python API

NumPy Reference, Release 2.2.0

method

random.Generator.multivariate_normal (mean, cov, size=None, check_valid="warn', tol=1e-8, *,
method="svd')

Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal
distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These pa-
rameters are analogous to the mean (average or “center”) and variance (the squared standard deviation, or “width”)
of the one-dimensional normal distribution.

Parameters

mean
[1-D array_like, of length N] Mean of the N-dimensional distribution.

cov
[2-D array_like, of shape (N, N)] Covariance matrix of the distribution. It must be symmetric
and positive-semidefinite for proper sampling.

size
[int or tuple of ints, optional] Given a shape of, for example, (m, n, k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-dimensional,
the output shape is (m, n, k, N) . If no shape is specified, a single (N-D) sample is returned.

check_valid
[{ ‘warn’, ‘raise’, ‘ignore’ }, optional] Behavior when the covariance matrix is not positive
semidefinite.

tol
[float, optional] Tolerance when checking the singular values in covariance matrix. cov is cast
to double before the check.

method
[{ ‘svd’, ‘eigh’, ‘cholesky’}, optional] The cov input is used to compute a factor matrix A such
that A @ A.T = cov. This argument is used to select the method used to compute the

factor matrix A. The default method ‘svd’ is the slowest, while ‘cholesky’ is the fastest but less
robust than the slowest method. The method eigh uses eigen decomposition to compute A and
is faster than svd but slower than cholesky.

Returns

out
[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out [1, J, ..., :] is an N-dimensional value drawn from the
distribution.

Notes
The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be
generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution.

Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we
draw N-dimensional samples, X = [z1, 22, ...z y]. The covariance matrix element C;; is the covariance of z; and
x;. The element Cj; is the variance of x; (i.e. its “spread”).

Instead of specifying the full covariance matrix, popular approximations include:

 Spherical covariance (cov is a multiple of the identity matrix)

1.1. NumPy’s module structure 155

NumPy Reference, Release 2.2.0

* Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

-

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 1001]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

.

>>> import matplotlib.pyplot as plt

>>> rng = np.random.default_rng()

>>> x, y = rng.multivariate_normal (mean, cov, 5000).T
>>> plt.plot(x, y, 'x'")

>>> plt.axis('equal')

>>> plt.show ()

Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior
of this method is undefined and backwards compatibility is not guaranteed.

This function internally uses linear algebra routines, and thus results may not be identical (even up to precision)
across architectures, OSes, or even builds. For example, this is likely if cov has multiple equal singular values and
methodis 'svd' (default). In this case, nethod="cholesky' may be more robust.

References

[1], [2]

Examples

>>> mean = (1, 2)

>>> cov = [[1, 01, [0, 11]

>>> rng = np.random.default_rng()

>>> x = rng.multivariate_normal (mean, cov, (3, 3))
>>> x.shape

(3, 3, 2)

‘We can use a different method other than the default to factorize cov:

-

>>> y = rng.multivariate_normal (mean, cov, (3, 3), method='cholesky')
>>> y.shape
(3, 3, 2)

Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6,
-31, [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively,
and the expected correlation coefficient is -3/sqrt(6*3.5) = -0.65465.

-

>>> cov = np.array([[6, -3]1, [-3, 3.511)
>>> pts rng.multivariate_normal ([0, 0], cov, size=800)

Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values:

>>> pts.mean (axis=0)

array ([0.0326911 , -0.01280782]) # may vary
>>> np.cov(pts.T)

array ([[5.96202397, -2.85602287],

(continues on next page)

156

1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[-2.85602287, 3.47613949]]) # may vary
>>> np.corrcoef (pts.T) [0, 1]
-0.6273591314603949 # may vary

We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation
of the components of this sample.

>>> import matplotlib.pyplot as plt

>>> plt.plot(pts[:, 0], pts([:, 1], '.', alpha=0.5)
>>> plt.axis('equal')
>>> plt.grid()

>>> plt.show ()

6 ® ®
°

4 -

0_

—2

—4

—6

-10 -5 0 5 10

method

random.Generator.negative_binomial (n, p, size=None)

Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability
of success where n is > 0 and p is in the interval (0, 1].

Parameters

n
[float or array_like of floats] Parameter of the distribution, > 0.

p
[float or array_like of floats] Parameter of the distribution. Must satisfy 0 < p <= 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast (n, p) .size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized negative binomial distribution,

1.1. NumPy’s module structure 157

NumPy Reference, Release 2.2.0

where each sample is equal to N, the number of failures that occurred before a total of n
successes was reached.

Notes

The probability mass function of the negative binomial distribution is

P(N;n,p) = Wp”(l -p)V,

where 7 is the number of successes, p is the probability of success, N + n is the number of trials, and I" is the
gamma function. When n is an integer, F]\(,I,\;J(r:)) = (N +](; _1), which is the more common form of this term in the
pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the
last trial.

If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number of
non-“1"s that appear before the third “1” is a negative binomial distribution.

Because this method internally calls Generator.poisson with an intermediate random value, a ValueError
is raised when the choice of n and p would result in the mean + 10 sigma of the sampled intermediate distribution
exceeding the max acceptable value of the Generator.poisson method. This happens when p is too low (a
lot of failures happen for every success) and n is too big (a lot of successes are allowed). Therefore, the n and p
values must satisfy the constraint:

1— 1—
n—2 L1onyn—2 <953 1 _10y/265 _ 1,
P P

Where the left side of the equation is the derived mean + 10 sigma of a sample from the gamma distribution
internally used as the lam parameter of a poisson sample, and the right side of the equation is the constraint for
maximum value of lam in Generator.poisson.

References

(11, [2]

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success
of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?

>>> rng = np.random.default_rng()
>>> s = rng.negative_binomial (1, 0.1, 100000)
>>> for i1 in range (1, 11):
probability = sum(s<i) / 100000.
print (i, "wells drilled, probability of one success =", probability)

method

random.Generator.noncentral_chisquare (df, nonc, size=None)

Draw samples from a noncentral chi-square distribution.

The noncentral x? distribution is a generalization of the x? distribution.

158 1. Python API

NumPy Reference, Release 2.2.0

Parameters

df
[float or array_like of floats] Degrees of freedom, must be > 0.

nonc
[float or array_like of floats] Non-centrality, must be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
and nonc are both scalars. Otherwise, np.broadcast (df, nonc) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distribution.

Notes

The probability density function for the noncentral Chi-square distribution is

e="o"¢/2(none/2)t

i

P(z;df,nonc) = i

=0

PYdf+2i (.13),

where Y is the Chi-square with q degrees of freedom.

References

(1]

Examples

Draw values from the distribution and plot the histogram

>>> rng = np.random.default_rng()

>>> import matplotlib.pyplot as plt

>>> values = plt.hist (rng.noncentral_chisquare (3, 20, 100000),
c bins=200, density=True)

>>> plt.show ()

L

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

r>>> plt.figure ()

>>> values = plt.hist (rng.noncentral_chisquare (3, .0000001, 100000),
C bins=np.arange (0., 25, .1), density=True)

>>> values2 = plt.hist (rng.chisquare (3, 100000),

S bins=np.arange (0., 25, .1), density=True)

>>> plt.plot (values[1][0:-1], wvalues[0]-values2[0], 'ob'")

>>> plt.show ()

L

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

1.1. NumPy’s module structure 159

NumPy Reference, Release 2.2.0

0.04 -

0.03 +

0.02 +

0.01 +

0.00 -

60

70

80

0.25 +

0.20 +

0.15 +

0.10 +

0.05 +

0.00

160

1. Python API

NumPy Reference, Release 2.2.0

>>> plt.figure()
>>> values = plt.hist (rng.noncentral_chisquare (3, 20, 100000),
C bins=200, density=True)

>>> plt.show ()

0.04 +

0.03

0.02 +

0.01 +

0.00 -

T
80 100

method

random.Generator.noncentral_f£ (dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Parameters

dfnum
[float or array_like of floats] Numerator degrees of freedom, must be > 0.

dfden
[float or array_like of floats] Denominator degrees of freedom, must be > 0.

nonc
[float or array_like of floats] Non-centrality parameter, the sum of the squares of the numerator
means, must be >= 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * ksamples are drawn. If size is None (default), a single value is returned if dfnum, df-
den, and nonc are all scalars. Otherwise, np.broadcast (dfnum, dfden, nonc).
size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribution.

1.1. NumPy’s module structure 161

NumPy Reference, Release 2.2.0

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific
alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic
follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic.

References

(11, [2]

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null

hypothesis. We'll plot the two probability distributions for comparison.

>>> rng = np.random.default_rng /()

>>> dfnum 3 # between group deg of freedom

>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0

>>> c_vals = rng.f (dfnum, dfden, 1000000)

>>> F = np.histogram(c_vals, bins=50, density=True)
>>> import matplotlib.pyplot as plt

>>> plt.plot (F[1]1[1:], F[0])

>>> plt.plot (NF[1][1:], NF[O])

>>> plt.show ()

L

>>> nc_vals = rng.noncentral_f (dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)

0.6

0.5

0.4 +

0.3 +

0.2 +

0.1+

0.0

method

random.Generator.normal (loc=0.0, scale=1.0, size=None)

Draw random samples from a normal (Gaussian) distribution.

25

30

162

1. Python API

NumPy Reference, Release 2.2.0

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both
Gauss and Laplace independently [2], is often called the bell curve because of its characteristic shape (see the
example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of
samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2].

Parameters

loc
[float or array_like of floats] Mean (“centre”) of the distribution.

scale
[float or array_like of floats] Standard deviation (spread or “width”) of the distribution. Must
be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized normal distribution.

See also:

scipy.stats.norm
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

1 _ =2
2

Pe) = ST

where 1 is the mean and o the standard deviation. The square of the standard deviation, o

2 is called the variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches
0.607 times its maximum at x + ¢ and x — o [2]). This implies that norma 1 is more likely to return samples lying
close to the mean, rather than those far away.

References

(11, (2]

1.1. NumPy’s module structure 163

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution:

-
>>> mu, sigma = 0, 0.1 # mean and standard deviation

>>> rng = np.random.default_rng/()
>>> s = rng.normal (mu, sigma, 1000)

Verify the mean and the standard deviation:

p
>>> abs(mu - np.mean(s))

0.0 # may vary

.

>>> abs(sigma - np.std(s, ddof=1))
0.0 # may vary
.

Display the histogram of the samples, along with the probability density function:

-

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist (s, 30, density=True)
>>> plt.plot (bins, 1/(sigma * np.sqgrt(2 * np.pi)) *
np.exp(- (bins - mu)**2 / (2 * sigma**2)),

S linewidth=2, color='r")
>>> plt.show ()

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> rng = np.random.default_rng()

>>> rng.normal (3, 2.5, size=(2, 4))

array ([[-4.49401501, 4.00950034, -1.81814867, 7.297186771], # random
[0.39924804, 4.68456316, 4.99394529, 4.84057254]]1) # random

method

random.Generator .pareto (a, size=None)

Draw samples from a Pareto II (AKA Lomax) distribution with specified shape.

164 1. Python API

NumPy Reference, Release 2.2.0

Parameters

a
[float or array_like of floats] Shape of the distribution. Must be positive.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the Pareto II distribution.

See also:

scipy.stats.pareto
Pareto I distribution

scipy.stats.lomax
Lomax (Pareto II) distribution

scipy.stats.genpareto
Generalized Pareto distribution

Notes
The probability density for the Pareto II distribution is

p(r) =

a
FENTEAE

where a > 0 is the shape.

The Pareto II distribution is a shifted and scaled version of the Pareto I distribution, which can be found in scipy .
stats.pareto.

References

(11, (21, (3], [4]

Examples

Draw samples from the distribution:

>>> a = 3.
>>> rng = np.random.default_rng/()
>>> s = rng.pareto(a, 10000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace (0, 3, 50)
>>> pdf = a / (x+1)**(a+l)
>>> plt.hist (s, bins=x, density=True, label='histogram')
>>> plt.plot (x, pdf, linewidth=2, color='r', label='pdf')
(continues on next page)

1.1. NumPy’s module structure 165

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto

NumPy Reference, Release 2.2.0

(continued from previous page)

>>> plt.xlim(x.min (), x.max())
>>> plt.legend()
>>> plt.show ()

3.0 I histogram

2.5

2.0 2.5 3.0

method
random.Generator .poisson (lam=1.0, size=None)
Draw samples from a Poisson distribution.
The Poisson distribution is the limit of the binomial distribution for large N.
Parameters

lam
[float or array_like of floats] Expected number of events occurring in a fixed-time interval,
must be >= 0. A sequence must be broadcastable over the requested size.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm

* n * k samples are drawn. If size is None (default), a single value is returned if 1amis a
scalar. Otherwise, np.array (lam) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

166 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability mass function (PMF) of Poisson distribution is

Aee—2

Fk:X) = =

For events with an expected separation A the Poisson distribution f(k; \) describes the probability of k events
occurring within the observed interval .

Because the output is limited to the range of the C int64 type, a ValueError is raised when lam is within 10 sigma
of the maximum representable value.

References

(11, [2]

Examples

Draw samples from the distribution:

-

>>> rng = np.random.default_rng()
>>> lam, size = 5, 10000
>>> s = rng.poisson(lam=lam, size=size)

Verify the mean and variance, which should be approximately 1am:

>>> s.mean (), s.var ()
(4.9917 5.1088311) # may vary

L

Display the histogram and probability mass function:

-

>>> import matplotlib.pyplot as plt

>>> from scipy import stats

>>> x = np.arange (0, 21)

>>> pmf = stats.poisson.pmf (x, mu=lam)

>>> plt.hist (s, bins=x, density=True, width=0.5)
>>> plt.stem(x, pmf, 'Cl1-")

>>> plt.show ()

L

Draw each 100 values for lambda 100 and 500:

[>>> s = rng.poisson(lam=(100., 500.), size=(100, 2))]

method

random.Generator .power (a, size=None)

Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
Also known as the power function distribution.
Parameters

a
[float or array_like of floats] Parameter of the distribution. Must be non-negative.

1.1. NumPy’s module structure 167

NumPy Reference, Release 2.2.0

0.175
0.150
0.125
0.100 +
0.075
0.050

0.025

0.000 -
0.0 25 50 75 100 125 15.0 17.5 20.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.
Returns
out
[ndarray or scalar] Drawn samples from the parameterized power distribution.
Raises
ValueError

Ifa<=0.

Notes
The probability density function is
P(z;a) =az® 1,0<z <1,a>0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case
of the Beta distribution.

It is used, for example, in modeling the over-reporting of insurance claims.

References

(11, (2]

168 1. Python API

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()

>>> a = 5. # shape
>>> samples = 1000
>>> s = rng.power (a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist (s, bins=30)
>>> x = np.linspace (0, 1, 100)

>>> y = a*x** (a-1.)

>>> normed_y = samples*np.diff (bins) [0]*y

>>> plt.plot (x, normed_y)
>>> plt.show ()

120 A

100

80 -

60 -

40

20 A

0.0 0.2

Compare the power function distribution to the inverse of the Pareto.

g
>>> from scipy import stats

>>> rvs = rng.power (5, 1000000)

>>> rvsp = rng.pareto(5, 1000000)

>>> xx = np.linspace(0,1,100)

>>> powpdf = stats.powerlaw.pdf (xx,5)

>>> plt.figure()

>>> plt.hist (rvs, bins=50, density=True)
>>> plt.plot (xx,powpdf, 'r—")

>>> plt.title('power(5)")

>>> plt.figure()

>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot (xx, powpdf, "r-")

>>> plt.title('inverse of 1 + Generator.pareto(5)"')

1.1. NumPy’s module structure 169

NumPy Reference, Release 2.2.0

>>> plt.figure()

>>> plt.hist(1./(1l.+rvsp), bins=50, density=True)
>>> plt.plot (xx, powpdf, "'r—")

>>> plt.title('inverse of stats.pareto(5)"')

power(5)

0.0 0.2

inverse of 1 + Generator.pareto(5)

0.0 0.2

method

random.Generator.rayleigh (scale=1.0, size=None)

Draw samples from a Rayleigh distribution.
The x and Weibull distributions are generalizations of the Rayleigh.
Parameters

scale
[float or array_like of floats, optional] Scale, also equals the mode. Must be non-negative.
Default is 1.

170 1. Python API

NumPy Reference, Release 2.2.0

inverse of stats.pareto(5)

0.0 0.2

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array (scale) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

Notes

The probability density function for the Rayleigh distribution is

2

—x

€2-scale?

P(x; scale) =

scale?

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

References

(11, (2]

Examples

Draw values from the distribution and plot the histogram

>>> from matplotlib.pyplot import hist
>>> rng = np.random.default_rng()
>>> values = hist (rng.rayleigh(3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are
likely to be larger than 3 meters?

1.1. NumPy’s module structure 171

NumPy Reference, Release 2.2.0

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = rng.rayleigh (modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003 # random

method

random.Generator.standard_cauchy (size=None)

Draw samples from a standard Cauchy distribution with mode = 0.
Also known as the Lorentz distribution.
Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

samples
[ndarray or scalar] The drawn samples.

Notes

The probability density function for the full Cauchy distribution is

1

P(z;20,7) = m

and the Standard Cauchy distribution just sets 9 = 0 and v = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral
line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x

axis.

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distri-
bution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like

a Gaussian distribution, but with heavier tails.

References

(1], [21, [3]

172 1. Python API

NumPy Reference, Release 2.2.0

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt

>>> rng = np.random.default_rng()

>>> s = rng.standard_cauchy (1000000)

>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist (s, bins=100)

>>> plt.show ()

140000 -
120000 A
100000 -
80000 -
60000 -
40000
20000 -

0 T T
-20 -10

20

method
random.Generator.standard_exponential (size=None, dtype=np.float64, method='zig', out=None)
Draw samples from the standard exponential distribution.
standard_exponential is identical to the exponential distribution with a scale parameter of 1.
Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result, only f1oat 64 and float32 are supported.
Byteorder must be native. The default value is np.float64.

method
[str, optional] Either ‘inv’ or ‘zig’. ‘inv’ uses the default inverse CDF method. ‘zig’ uses the
much faster Ziggurat method of Marsaglia and Tsang.

out
[ndarray, optional] Alternative output array in which to place the result. If size is not None, it
must have the same shape as the provided size and must match the type of the output values.

Returns

out
[float or ndarray] Drawn samples.

1.1. NumPy’s module structure 173

NumPy Reference, Release 2.2.0

Examples

Output a 3x8000 array:

>>> rng = np.random.default_rng()
>>> n = rng.standard_exponential ((3, 8000))

method

random.Generator.standard_gamma (shape, size=None, dtype=np.float64, out=None)

Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and

scale=1.
Parameters
shape
[float or array_like of floats] Parameter, must be non-negative.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if shape
is a scalar. Otherwise, np.array (shape) . size samples are drawn.
dtype
[dtype, optional] Desired dtype of the result, only f1oat 64 and float 32 are supported.
Byteorder must be native. The default value is np.float64.
out
[ndarray, optional] Alternative output array in which to place the result. If size is not None, it
must have the same shape as the provided size and must match the type of the output values.
Returns
out
[ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.
See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

b1 efa:/G

where £k is the shape and 6 the scale, and I" is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

174 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> rng = np.random.default_rng()
>>> s = rng.standard_gamma (shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> import scipy.special as sps

>>> count, bins, _ = plt.hist(s, 50, density=True)

>>> y = bins** (shape-1) * ((np.exp(-bins/scale))/

c (sps.gamma (shape) * scale**shape))
>>> plt.plot (bins, y, linewidth=2, color='r')

>>> plt.show ()

10 12 14 16

method

random.Generator.standard_normal (size=None, dtype=np.float64, out=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).

Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result, only f1oat 64 and f1oat 32 are supported.
Byteorder must be native. The default value is np.float64.

1.1. NumPy’s module structure 175

NumPy Reference, Release 2.2.0

out
[ndarray, optional] Alternative output array in which to place the result. If size is not None, it
must have the same shape as the provided size and must match the type of the output values.

Returns

out
[float or ndarray] A floating-point array of shape size of drawn samples, or a single sample
if size was not specified.

See also:

normal
Equivalent function with additional 1oc and scale arguments for setting the mean and standard deviation.

Notes

For random samples from the normal distribution with mean mu and standard deviation s igma, use one of:

mu + sigma * rng.standard_normal (size=...)
rng.normal (mu, sigma, size=...)

Examples

>>> rng = np.random.default_rng()
>>> rng.standard_normal ()
2.1923875335537315 # random

L

>>> s = rng.standard_normal (8000)

>>> s

array ([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
-0.38672696, —-0.4685006 1) # random

>>> s.shape

(8000,)

>>> s = rng.standard_normal (size=(3, 4, 2))

>>> s.shape

(3, 4, 2)

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 3 + 2.5 * rng.standard_normal (size=(2, 4))
array ([[-4.49401501, 4.00950034, -1.81814867, 7.297186771], # random
[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

.

method

random.Generator.standard_t (df, size=None)

Draw samples from a standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

Parameters

df
[float or array_like of floats] Degrees of freedom, must be > 0.

176 1. Python API

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array (df) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribution.

Notes
The probability density function for the t distribution is

i+t B
P(az:,cif)zr(+))(1 xz) (df+1)/2

2
+ -
Tdfr (4 df

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.

The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

References

(11, [2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in kilojoules (kJ) is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
7515, 8230, 87701)

Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will
be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either
positive or negative, hence making our test 2-tailed.

Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom.
We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard
deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an
unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square
root).

>>> np.mean (intake)

6753.636363636364

>>> intake.std(ddof=1)

1142.1232221373727

>>> t = (np.mean (intake)-7725)/ (intake.std(ddof=1) /np.sqrt (len (intake)))
>>> t

-2.8207540608310198

We draw 1000000 samples from Student’s t distribution with the adequate degrees of freedom.

1.1. NumPy’s module structure 177

NumPy Reference, Release 2.2.0

(

>>> import matplotlib.pyplot as plt

>>> rng = np.random.default_rng/()

>>> s = rng.standard_t (10, size=1000000)
>>> h = plt.hist (s, bins=100, density=True)

.

Does our t statistic land in one of the two critical regions found at both tails of the distribution?

-

>>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
0.018318 #random < 0.05, statistic is in critical region

The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance
threshold.

Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being
true is too low, and we reject the null hypothesis of no deviation.

0.4 A

0.3

0.2 A

0.1+

0.0 T T T
-75 =50 -25 0.0 2.5 5.0 7.5 10.0

method

random.Generator.triangular (left, mode, right, size=None)

Draw samples from the triangular distribution over the interval [left, right].

The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Parameters

left
[float or array_like of floats] Lower limit.

mode
[float or array_like of floats] The value where the peak of the distribution occurs. The value
must fulfill the condition 1left <= mode <= right.

right
[float or array_like of floats] Upper limit, must be larger than left.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * ksamples are drawn. If size is None (default), a single value is returned if 1e ft, mode,

178

1. Python API

NumPy Reference, Release 2.2.0

and right are all scalars. Otherwise, np.broadcast (left, mode, right) .size
samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized triangular distribution.

Notes

The probability density function for the triangular distribution is

2(z—1)
(TEKT;D for [S T S m,
P(z;l,m,r) = =) form<z<r,
0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used in simulations.

References

(1]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt

>>> rng = np.random.default_rng()

>>> h = plt.hist (rng.triangular (-3, 0, 8, 100000), bins=200,
s density=True)

>>> plt.show ()

0.20 A

method

1.1. NumPy’s module structure 179

NumPy Reference, Release 2.2.0

random.Generator.uniform (low=0.0, high=1.0, size=None)

Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [1ow, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uniform.

Parameters

low
[float or array_like of floats, optional] Lower boundary of the output interval. All values gen-
erated will be greater than or equal to low. The default value is 0.

high
[float or array_like of floats] Upper boundary of the output interval. All values generated will
be less than high. The high limit may be included in the returned array of floats due to floating-
point rounding in the equation low + (high-low) * random_sample (). high-low
must be non-negative. The default value is 1.0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if 1ow
and high are both scalars. Otherwise, np.broadcast (low, high) .size samples
are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized uniform distribution.

See also:

integers
Discrete uniform distribution, yielding integers.

random
Floats uniformly distributed over [0, 1).

Notes

The probability density function of the uniform distribution is

anywhere within the interval [a, b), and zero elsewhere.

When high == 1ow, values of 1ow will be returned.

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng/()
>>> s = rng.uniform(-1,0,1000)

All values are within the given interval:

180 1. Python API

NumPy Reference, Release 2.2.0

-
>>> np.all(s >= -1)

True
>>> np.all(s < 0)

True
.

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist (s, 15, density=True)

>>> plt.plot (bins, np.ones_like (bins), linewidth=2, color='r')
>>> plt.show ()

method

random.Generator .vonmises (mu, kappa, size=None)
Draw samples from a von Mises distribution.
Samples are drawn from a von Mises distribution with specified mode (mu) and concentration (kappa), on the
interval [-pi, pi].
The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution
on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Parameters

mu
[float or array_like of floats] Mode (“center”) of the distribution.

kappa
[float or array_like of floats] Concentration of the distribution, has to be >=0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if mu and
kappa are both scalars. Otherwise, np.broadcast (mu, kappa) .size samples are
drawn.

Returns

1.1. NumPy’s module structure 181

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized von Mises distribution.

See also:

scipy.stats.vonmises
probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the von Mises distribution is

eI{COS(I—/L)

ST AN

where (1 is the mode and « the concentration, and Iy(r) is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory,
aerodynamics, fluid mechanics, and philosophy of science.

References

(11, [2]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and concentration
>>> rng = np.random.default_rng()
>>> s = rng.vonmises (mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> from scipy.special import i0

>>> plt.hist (s, 50, density=True)

>>> x = np.linspace(-np.pi, np.pi, num=51)

>>> y = np.exp (kappa*np.cos(x-mu))/ (2*np.pi*i0 (kappa))
>>> plt.plot(x, y, linewidth=2, color='r")

>>> plt.show ()

method

random.Generator.wald (mean, scale, size=None)

Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Parameters

182

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises

NumPy Reference, Release 2.2.0

0.8

0.6

0.4 +

0.2 +

0.0 -

mean
[float or array_like of floats] Distribution mean, must be > 0.

scale
[float or array_like of floats] Scale parameter, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if mean and
scale are both scalars. Otherwise, np.broadcast (mean, scale) .size samples
are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Wald distribution.

Notes

The probability density function for the Wald distribution is

scale zscate(w—mean)®
P(z;mean, scale) = || s—5e™ 2meanZs
2mx

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

1.1. NumPy’s module structure 183

NumPy Reference, Release 2.2.0

References

(11, (21, [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt

>>> rng = np.random.default_rng()

>>> h = plt.hist (rng.wald(3, 2, 100000), bins=200, density=True)
>>> plt.show ()

0.4 +

0.3 +

0.2 +

0.1 +

00 - T T T T T

method

random.Generator.weibull (a, size=None)

Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.
X = (=ln(U))/

Here, U is drawn from the uniform distribution over (0,1].
The more common 2-parameter Weibull, including a scale parameter \ is just X = \(—in(U))/.
Parameters

a
[float or array_like of floats] Shape parameter of the distribution. Must be nonnegative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm

* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

184 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:
scipy.stats.weibull_max
scipy.stats.weibull_min

scipy.stats.genextreme
gumbel

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

_ 8 Ta—1 —(x/N)"
p(.%') A(A) € ?

where a is the shape and A the scale.

The function has its peak (the mode) at A\(¢=2)1/9,

a

When a = 1, the Weibull distribution reduces to the exponential distribution.

References

(11, (21, [3]

Examples

Draw samples from the distribution:

-
>>> rng = np.random.default_rng()

>>> a = 5. # shape
>>> s = rng.weibull (a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> def weibull (x, n, a):

.. return (a / n) * (x / n)**(a — 1) * np.exp(-(x / n)**a)

>>> count, bins, _ = plt.hist (rng.weibull (5., 1000))

>>> x = np.linspace(0, 2, 1000)

>>> bin_spacing = np.mean(np.diff (bins))

>>> plt.plot(x, weibull(x, 1., 5.) * bin_spacing * s.size, label='Weibull PDF')
>>> plt.legend()

>>> plt.show ()

.

method

1.1. NumPy’s module structure 185

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

250 7 —— Weibull PDF

200 +

150

100

50 -

0 - T T T
0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00

random.Generator.zipf (a, size=None)

Draw samples from a Zipf distribution.
Samples are drawn from a Zipf distribution with specified parameter a > 1.

The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf’s
law: the frequency of an item is inversely proportional to its rank in a frequency table.

Parameters

a
[float or array_like of floats] Distribution parameter. Must be greater than 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

out

[ndarray or scalar] Drawn samples from the parameterized Zipf distribution.
See also:

scipy.stats.zipf
probability density function, distribution, or cumulative density function, etc.

186 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf

NumPy Reference, Release 2.2.0

Notes

The probability mass function (PMF) for the Zipf distribution is

for integers £ > 1, where (is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample
of a language is inversely proportional to its rank in the frequency table.

References

(1]

Examples

Draw samples from the distribution:

-
>>> a = 4.0

>>> n = 20000
>>> rng = np.random.default_rng()

>>> s = rng.zipf(a, size=n)
.

Display the histogram of the samples, along with the expected histogram based on the probability density function:

-

>>> import matplotlib.pyplot as plt
>>> from scipy.special import zeta

bincount provides a fast histogram for small integers.

>>> count = np.bincount (s)
>>> k = np.arange(l, s.max() + 1)

>>> plt.bar(k, count[l:], alpha=0.5, label='sample count')
>>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,

Ce . label="expected count')

>>> plt.semilogy ()

>>> plt.grid(alpha=0.4)

>>> plt.legend()

>>> plt.title(f'Zipf sample, a={a}, size={n}'")

>>> plt.show ()

Legacy random generation

The RandomState provides access to legacy generators. This generator is considered frozen and will have no further
improvements. It is guaranteed to produce the same values as the final point release of NumPy v1.16. These all depend
on Box-Muller normals or inverse CDF exponentials or gammas. This class should only be used if it is essential to have
randoms that are identical to what would have been produced by previous versions of NumPy.

RandomState adds additional information to the state which is required when using Box-Muller normals since these
are produced in pairs. It is important to use RandomState. get_state, and not the underlying bit generators state,
when accessing the state so that these extra values are saved.

1.1. NumPy’s module structure 187

NumPy Reference, Release 2.2.0

Zipf sample, a=4.0, size=20000

104 — —e— expected count
sample count

102 -

102 5

10! 3

100 5

Although we provide the ¥T1 9937 BitGenerator for use independent of RandomState, note that its default seeding
uses SeedSequence rather than the legacy seeding algorithm. RandomState will use the legacy seeding algorithm.
The methods to use the legacy seeding algorithm are currently private as the main reason to use them is just to implement
RandomState. However, one can reset the state of 71 9937 using the state of the RandomState:

from numpy.random import MT19937
from numpy.random import RandomState

rs = RandomState (12345)
mt19937 = MT19937 ()
mt19937.state = rs.get_state()
rs2 = RandomState (mt19937)

Same output
rs.standard_normal ()
rs2.standard_normal ()

rs.random ()
rs2.random ()

rs.standard_exponential ()
rs2.standard_exponential ()

class numpy.random.RandomState (seed=None)

Container for the slow Mersenne Twister pseudo-random number generator. Consider using a different BitGener-
ator with the Generator container instead.

RandomState and Generator expose a number of methods for generating random numbers drawn from a
variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword
argument size that defaults to None. If size is None, then a single value is generated and returned. If size is an
integer, then a 1-D array filled with generated values is returned. If size is a tuple, then an array with that shape is
filled and returned.

Compatibility Guarantee

A fixed bit generator using a fixed seed and a fixed series of calls to ‘RandomState’ methods using the same param-
eters will always produce the same results up to roundoff error except when the values were incorrect. Random—

188 1. Python API

NumPy Reference, Release 2.2.0

State is effectively frozen and will only receive updates that are required by changes in the internals of Numpy.
More substantial changes, including algorithmic improvements, are reserved for Generator.

Parameters

seed
[{None, int, array_like, BitGenerator}, optional] Random seed used to initialize the pseudo-
random number generator or an instantized BitGenerator. If an integer or array, used as a
seed for the MT19937 BitGenerator. Values can be any integer between 0 and 2%*32 - 1
inclusive, an array (or other sequence) of such integers, or None (the default). If seed is
None, then the MT1 993 7 BitGenerator is initialized by reading data from /dev/urandom
(or the Windows analogue) if available or seed from the clock otherwise.

See also:
Generator

MT19937
numpy . random. BitGenerator

Notes
The Python stdlib module “random” also contains a Mersenne Twister pseudo-random number generator with a

number of methods that are similar to the ones available in RandomState. RandomState, besides being
NumPy-aware, has the advantage that it provides a much larger number of probability distributions to choose from.

Seeding and state

get_state([legacy]) Return a tuple representing the internal state of the gen-
erator.
set_state(state) Set the internal state of the generator from a tuple.
seed([seed]) Reseed a legacy MT19937 BitGenerator
method

random.RandomState.get_state (legacy=True)
Return a tuple representing the internal state of the generator.

For more details, see set_state.
Parameters

legacy
[bool, optional] Flag indicating to return a legacy tuple state when the BitGenerator is
MT19937, instead of a dict. Raises ValueError if the underlying bit generator is not an in-
stance of MT19937.

Returns

out
[{tuple(str, ndarray of 624 uints, int, int, float), dict}] If legacy is True, the returned tuple has
the following items:

1. the string ‘MT19937".
2. a 1-D array of 624 unsigned integer keys.

1.1. NumPy’s module structure 189

NumPy Reference, Release 2.2.0

3. an integer pos.

4. aninteger has_gauss.

5. afloat cached_gaussian.

If legacy is False, or the BitGenerator is not MT19937, then state is returned as a dictionary.

See also:

set_state

Notes
set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

method

random.RandomState.set_state (state)

Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of the bit generator used by the RandomState
instance. By default, RandomState uses the “Mersenne Twister”[1] pseudo-random number generating algorithm.

Parameters

state
[{tuple(str, ndarray of 624 uints, int, int, float), dict}] The state tuple has the following items:

1. the string ‘MT19937’, specifying the Mersenne Twister algorithm.

2. a 1-D array of 624 unsigned integers keys.

3. an integer pos.

4. an integer has_gauss.

5. afloat cached_gaussian.

If state is a dictionary, it is directly set using the BitGenerators stafe property.
Returns

out
[None] Returns ‘None’ on success.

See also:

get_state

Notes
set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some
information about the cached Gaussian value: state = ('MT19937', keys, pos).

190 1. Python API

NumPy Reference, Release 2.2.0

References

[1]
method

random.RandomState.seed (seed=None)
Reseed a legacy MT19937 BitGenerator

Notes

This is a convenience, legacy function.

The best practice is to not reseed a BitGenerator, rather to recreate a new one. This method is here for legacy
reasons. This example demonstrates best practice.

>>> from numpy.random import MT19937

>>> from numpy.random import RandomState, SeedSequence
>>> rs = RandomState (MT19937 (SeedSequence (123456789)))
Later, you want to restart the stream

>>> rs = RandomState (MT19937 (SeedSequence (987654321)))

Simple random data

rand(do, dl, ..., dn) Random values in a given shape.

randn(d0, d1, ..., dn) Return a sample (or samples) from the "standard normal”
distribution.

randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (ex-
clusive).

random_integers(lowl, high, size]) Random integers of type numpy . int_ between low and
high, inclusive.

random_samp1e([size]) Return random floats in the half-open interval [0.0, 1.0).

choice(al, size, replace, p]) Generates a random sample from a given 1-D array

bytes(length) Return random bytes.

method

random.RandomState.rand (d0, dl, ..., dn)
Random values in a given shape.

Note: This is a convenience function for users porting code from Matlab, and wraps random_sample. That
function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like numpy .
zeros and numpy.ones.

Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).
Parameters

do, di1, ...,dn
[int, optional] The dimensions of the returned array, must be non-negative. If no argument is
given a single Python float is returned.

Returns

1.1. NumPy’s module structure 191

NumPy Reference, Release 2.2.0

out
[ndarray, shape (d0, di, ..., dn)]Random values.

See also:

random

Examples

>>> np.random.rand (3, 2)

array ([[0.14022471, 0.96360618], #random
[0.37601032, 0.25528411], #random
[0.49313049, 0.94909878]]) #random

method

random.RandomState.randn (d0, dI, ..., dn)

Return a sample (or samples) from the “standard normal” distribution.

Note: This is a convenience function for users porting code from Matlab, and wraps standard_normal.
That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like
numpy.zeros and numpy.ones.

Note: New code should use the st andard_normal method of a Generator instance instead; please see the
Quick start.

If positive int_like arguments are provided, randn generates an array of shape (d0, di1, ..., dn), filled
with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1. A single
float randomly sampled from the distribution is returned if no argument is provided.

Parameters

do, d1, ...,dn
[int, optional] The dimensions of the returned array, must be non-negative. If no argument is
given a single Python float is returned.

Returns

Z
[ndarray or float] A (d0, d1, ..., dn)-shaped array of floating-point samples from the
standard normal distribution, or a single such float if no parameters were supplied.

See also:
standard_normal
Similar, but takes a tuple as its argument.

normal
Also accepts mu and sigma arguments.

random.Generator.standard normal
which should be used for new code.

192

1. Python API

NumPy Reference, Release 2.2.0

Notes

For random samples from the normal distribution with mean mu and standard deviation sigma, use:

[sigma * np.random.randn(...) + mu

Examples

-

>>> np.random.randn ()
2.1923875335537315 # random

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 3 + 2.5 * np.random.randn (2, 4)
array ([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

metho

rand

d

om.RandomState.randint (low, high=None, size=None, dtype=int)

Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval
[low, high). If high is None (the default), then results are from [0, low).

Note: New code should use the integers method of a Generator instance instead; please see the Quick
start.

Parameters

low
[int or array-like of ints] Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is one above the highest such integer).

high
[int or array-like of ints, optional] If provided, one above the largest (signed) integer to be
drawn from the distribution (see above for behavior if high=None). If array-like, must
contain integer values

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result. Byteorder must be native. The default value is
long.

Warning: This function defaults to the C-long dtype, which is 32bit on windows and
otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s
default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Which corresponds
to np.intp. (dtype=int is not the same as in most NumPy functions.)

Returns

1.1.N

umPy’s module structure 193

NumPy Reference, Release 2.2.0

out
[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

random_integers
similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.

random.Generator. integers
which should be used for new code.

Examples

-

L

>>> np.random.randint (2, size=10)

array([1, 0, 0, O, 1, 1, 0, 0, 1, 0]) # random
>>> np.random.randint (1, size=10)

array ([0, O, O, 0, 0, O, O, O, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

-

>>> np.random.randint (5, size=(2, 4))
array ([[4, 0, 2, 1], # random
(3, 2, 2, 011)

Generate a 1 x 3 array with 3 different upper bounds

.

>>> np.random.randint (1, [3, 5, 10])
array ([2, 2, 9]) # random

Generate a 1 by 3 array with 3 different lower bounds

-

>>> np.random.randint ([1, 5, 7], 10)
array ([9, 8, 7]) # random

Generate a 2 by 4 array using broadcasting with dtype of uint8

.

>>> np.random.randint ([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
array ([[8, 6, 9, 71, # random
[1, 16, 9, 12]]1, dtype=uint8)

method

random.RandomState.random_integers (low, high=None, size=None)

Random integers of type numpy . int_ between low and high, inclusive.

Return random integers of type numpy . int_ from the “discrete uniform” distribution in the closed interval [low,
high). If high is None (the default), then results are from [1, low]. The numpy . int_ type translates to the C long
integer type and its precision is platform dependent.

This function has been deprecated. Use randint instead.
Deprecated since version 1.11.0.

Parameters

194

1. Python API

NumPy Reference, Release 2.2.0

low
[int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in which
case this parameter is the highest such integer).

high
[int, optional] If provided, the largest (signed) integer to be drawn from the distribution (see
above for behavior if high=None).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out
[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:
randint

Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value if high
is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

[a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers (5)
4 # random
>>> type (np.random.random_integers (5))
<class 'numpy.int64'>
>>> np.random.random_integers (5, size=(3,2))
array ([[5, 4], # random

[3, 31,

(4, 511)

L

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from
the set 0,5/8,10/8,15/8,20/8):

p
>>> 2.5 * (np.random.random_integers (5, size=(5,)) - 1) / 4.

array ([0.625, 1.25 , 0.625, 0.625, 2.5 1) # random

Roll two six sided dice 1000 times and sum the results:

>>> dl = np.random.random_integers(l, 6, 1000)
>>> d2 = np.random.random_integers(l, 6, 1000)
>>> dsums = dl + d2

L

Display results as a histogram:

1.1. NumPy’s module structure 195

NumPy Reference, Release 2.2.0

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist (dsums, 11, density=True)
>>> plt.show()

method

random.RandomState.random_sample (size=None)

Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample Unif[a,b),b > a
multiply the output of random_sample by (b-a) and add a:

[(b - a) * random_sample () + a

Note: New code should use the random method of a Generator instance instead; please see the Quick start.

Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.
Returns

out
[float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

See also:

random.Generator.random
which should be used for new code.

196 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> np.random.random_sample ()

0.47108547995356098 # random

>>> type (np.random.random_sample ())

<class 'float'>

>>> np.random.random_sample ((5,))

array ([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample ((3, 2)) — 5
array ([[-3.99149989, -0.52338984], # random
[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]11)

method

random.RandomState.choice (a, size=None, replace=True, p=None)

Generates a random sample from a given 1-D array

Note: New code should use the choice method of a Generator instance instead; please see the Quick start.

Warning: This function uses the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit
platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and
64bit on 64bit platforms.

Parameters

a
[1-D array-like or int] If an ndarray, a random sample is generated from its elements. If an
int, the random sample is generated as if it were np . arange (a)

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

replace
[boolean, optional] Whether the sample is with or without replacement. Default is True, mean-
ing that a value of a can be selected multiple times.

p
[1-D array-like, optional] The probabilities associated with each entry in a. If not given, the

sample assumes a uniform distribution over all entries in a.
Returns

samples
[single item or ndarray] The generated random samples

Raises

ValueError
If ais an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if
p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the
sample size is greater than the population size

1.1. NumPy’s module structure 197

NumPy Reference, Release 2.2.0

See also:
randint, shuffle, permutation

random.Generator.choice
which should be used in new code

Notes

Setting user-specified probabilities through p uses a more general but less efficient sampler than the default. The
general sampler produces a different sample than the optimized sampler even if each element of p is 1 / len(a).

Sampling random rows from a 2-D array is not possible with this function, but is possible with Generator.choice
through its axis keyword.

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice (5, 3)
array ([0, 3, 4]) # random
>>> #This is equivalent to np.random.randint (0,5, 3)

Generate a non-uniform random sample from np.arange(5) of size 3:

-

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array ([3, 3, 0]) # random
.-

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

p
>>> np.random.choice (5, 3, replace=False)

array ([3,1,0]) # random
>>> #This is equivalent to np.random.permutation (np.arange (5)) [:3]

L

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

-

>>> np.random.choice (5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array ([2, 3, 0]) # random

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

(>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']

>>> np.random.choice (aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])

array (['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
dtype="'<U11")

method

random.RandomState .bytes (length)

Return random bytes.

Note: New code should use the byt es method of a Generator instance instead; please see the Quick start.

Parameters

198 1. Python API

NumPy Reference, Release 2.2.0

length
[int] Number of random bytes.

Returns

out
[bytes] String of length length.

See also:

random.Generator.bytes
which should be used for new code.

Examples

>>> np.random.bytes (10)
b' eh\x85\x022Sz\xbf\xa4' #random

Permutations

shuffle(x) Modify a sequence in-place by shuffling its contents.
permutation(x) Randomly permute a sequence, or return a permuted
range.
method

random.RandomState.shuffle (x)

Modify a sequence in-place by shuffling its contents.

This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is
changed but their contents remains the same.

Note: New code should use the shuff1e method of a Generator instance instead; please see the Quick start.

Parameters

X
[ndarray or MutableSequence] The array, list or mutable sequence to be shuffled.

Returns

None
See also:

random.Generator.shuffle
which should be used for new code.

1.1. NumPy’s module structure 199

NumPy Reference, Release 2.2.0

Examples

>>> arr = np.arange (10)
>>> np.random.shuffle (arr)
>>> arr

[1 7529 43 6 0 8] # random

Multi-dimensional arrays are only shuffled along the first axis:

>>> arr = np.arange (9) .reshape((3, 3))
>>> np.random.shuffle (arr)
>>> arr
array ([[3, 4, 5], # random
[, 7, 81,
(0, 1, 211)

method

random.RandomState.permutation (x)

Randomly permute a sequence, or return a permuted range.

If x is a multi-dimensional array, it is only shuffled along its first index.

Note: New code should use the permutat ionmethod of a Generator instance instead; please see the Quick
start.

Parameters

X
[int or array_like] If x is an integer, randomly permute np .arange (x). If x is an array,
make a copy and shuffle the elements randomly.

Returns

out
[ndarray] Permuted sequence or array range.

See also:

random.Generator.permutation
which should be used for new code.

Examples

-
>>> np.random.permutation (10)

array([21, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

.

-
>>> np.random.permutation([1, 4, 9, 12, 15])

array ([15, 1, 9, 4, 12]) # random

-
>>> arr = np.arange (9) .reshape((3, 3))

>>> np.random.permutation (arr)
array ([[6, 7, 8], # random

(continues on next page)

200 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

Distributions

beta(a, b[, size])
binomial(n, p[, size])
chisquare(df], size])
dirichlet(alphal, size])
exponent ial([scale, size])
f(dfnum, dfden[, size])
gamma(shape[, scale, size])
geomet ric(pl, size])
gumbe 1([loc, scale, size])
hypergeomet ric(ngood, nbad, nsample[, size])
laplace([loc, scale, size])

logistic([loc, scale, size])
lognormal([mean, sigma, size])
logseries(pl, size])

multinomial(n, pvals[, size])
multivariate_normal(mean, cov|, size, ...])

negative_binomial(n, pl, size])
noncentral_chisquare(df, nonc[, size])
noncentral_ f(dfnum, dfden, nonc[, size])
normal([loc, scale, size])

pareto(al, size])

poisson([lam, size])
power(a[, size])

rayleigh([scale, size])
standard_cauchy([size])

standard_exponential([size])
standard_gamma(shape[, size])
standard_normal([size])
standard_t(df[, size])

t riangular(left, mode, right[, size])
uniform([low, high, size])

vonmi ses(mu, kappa[, size])
wa 1 d(mean, scale][, size])

Draw samples from a Beta distribution.

Draw samples from a binomial distribution.

Draw samples from a chi-square distribution.

Draw samples from the Dirichlet distribution.

Draw samples from an exponential distribution.

Draw samples from an F distribution.

Draw samples from a Gamma distribution.

Draw samples from the geometric distribution.

Draw samples from a Gumbel distribution.

Draw samples from a Hypergeometric distribution.
Draw samples from the Laplace or double exponential
distribution with specified location (or mean) and scale
(decay).

Draw samples from a logistic distribution.

Draw samples from a log-normal distribution.

Draw samples from a logarithmic series distribution.
Draw samples from a multinomial distribution.

Draw random samples from a multivariate normal distri-
bution.

Draw samples from a negative binomial distribution.
Draw samples from a noncentral chi-square distribution.
Draw samples from the noncentral F distribution.

Draw random samples from a normal (Gaussian) distri-
bution.

Draw samples from a Pareto II or Lomax distribution with
specified shape.

Draw samples from a Poisson distribution.

Draws samples in [0, 1] from a power distribution with
positive exponent a - 1.

Draw samples from a Rayleigh distribution.

Draw samples from a standard Cauchy distribution with
mode = 0.

Draw samples from the standard exponential distribution.
Draw samples from a standard Gamma distribution.
Draw samples from a standard Normal distribution
(mean=0, stdev=1).

Draw samples from a standard Student's t distribution
with df degrees of freedom.

Draw samples from the triangular distribution over the in-
terval [1left, right].

Draw samples from a uniform distribution.

Draw samples from a von Mises distribution.

Draw samples from a Wald, or inverse Gaussian, distri-
bution.

continues on next page

1.1. NumPy’s module structure

201

NumPy Reference, Release 2.2.0

Table 2 - continued from previous page

weibull(a[, size]) Draw samples from a Weibull distribution.
zipf(al, size]) Draw samples from a Zipf distribution.
method

random.RandomState .beta (a, b, size=None)

Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has
the probability distribution function

o,
B(a, B)

)

f(z;a,b) = a_l(l—x)ﬁ_l

where the normalization, B, is the beta function,

B(a,B) = /01 t* (1 —¢)P~Ldt.

It is often seen in Bayesian inference and order statistics.

Note: New code should use the beta method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Alpha, positive (>0).

b
[float or array_like of floats] Beta, positive (>0).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a and b
are both scalars. Otherwise, np.broadcast (a, b) .size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized beta distribution.
See also:

random.Generator.beta
which should be used for new code.

method

random.RandomState.binomial (n, p, size=None)
Draw samples from a binomial distribution.
Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success

where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in
use)

202 1. Python API

NumPy Reference, Release 2.2.0

Note: New code should use the binomial method of a Generator instance instead; please see the Quick

start.
Parameters
n
[int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.
p
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast (n, p) .size samples are drawn.
Returns
out
[ndarray or scalar] Drawn samples from the parameterized binomial distribution, where each
sample is equal to the number of successes over the n trials.
See also:

scipy.stats.binom
probability density function, distribution or cumulative density function, etc.

random.Generator.binomial
which should be used for new code.

Notes

The probability mass function (PMF) for the binomial distribution is

P(N) = (Z,)pN(l -p)" Y,

where n is the number of trials, p is the probability of success, and N is the number of successes.

When estimating the standard error of a proportion in a population by using a random sample, the normal distribu-
tion works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples,
in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be
used in this case.

1.1. NumPy’s module structure 203

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom

NumPy Reference, Release 2.2.0

References

(11, (21, [3], [4], [5]

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial (n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of
success of 0.1. All nine wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial (9, 0.1, 20000) == 0)/20000.
answer = 0.38885, or 38%.

method

random.RandomState.chisquare (df, size=None)
Draw samples from a chi-square distribution.
When df independent random variables, each with standard normal distributions (mean O, variance 1), are squared

and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis
testing.

Note: New code should use the chisquare method of a Generator instance instead; please see the Quick
start.

Parameters

df
[float or array_like of floats] Number of degrees of freedom, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array (df) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized chi-square distribution.

Raises
ValueError
When df <= 0 or when an inappropriate size (e.g. size=-1)is given.

See also:

random.Generator.chisquare
which should be used for new code.

204 1. Python API

NumPy Reference, Release 2.2.0

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random variables:

df
Q=2 X
i=1
is chi-square distributed, denoted
Q ~ Xi-
The probability density function of the chi-squared distribution is

k/2
(QC) _ (1/2) / xk/Qflefw/Z’

~ T(k/2)

where I is the gamma function,

I(x) = / t* e tdt.
0

References

(1]

Examples

>>> np.random.chisquare (2, 4)
array ([1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random

method

random.RandomState.dirichlet (alpha, size=None)
Draw samples from the Dirichlet distribution.
Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can

be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a
multinomial distribution in Bayesian inference.

Note: New code should use the dirichlet method of a Generator instance instead; please see the Quick

start.
Parameters
alpha
[sequence of floats, length k] Parameter of the distribution (length k for sample of length k).
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n),thenm * n
* %k samples are drawn. Default is None, in which case a vector of length k is returned.
Returns
samples

[ndarray,] The drawn samples, of shape (size, k).

1.1. NumPy’s module structure 205

NumPy Reference, Release 2.2.0

Raises

ValueError
If any value in alpha is less than or equal to zero

See also:

random.Generator.dirichlet
which should be used for new code.

Notes

The Dirichlet distribution is a distribution over vectors z that fulfil the conditions z; > 0 and Zle z; = L.

The probability density function p of a Dirichlet-distributed random vector X is proportional to

pla) o [T,

where « is a vector containing the positive concentration parameters.

The method uses the following property for computation: let Y be a random vector which has components that
follow a standard gamma distribution, then X = %YY is Dirichlet-distributed

=111

References

(11, [2]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial
length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but
allowing some variation in the relative sizes of the pieces.

[>>> s = np.random.dirichlet ((10, 5, 3), 20).transpose()

>>> import matplotlib.pyplot as plt

>>> plt.barh(range (20), s[0])

>>> plt.barh(range (20), s[l1], left=s[0], color='g')

>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

method

random.RandomState.exponential (scale=1.0, size=None)

Draw samples from an exponential distribution.

Its probability density function is

fa: %) - %exp(—%»

for x > 0 and O elsewhere. 3 is the scale parameter, which is the inverse of the rate parameter A = 1/3. The
rate parameter is an alternative, widely used parameterization of the exponential distribution [3].

206 1. Python API

NumPy Reference, Release 2.2.0

Lengths of Strings

20

15

10

0.0 0.2 0.4 0.6 0.8 1.0

The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to
Wikipedia [2].

Note: New code should use the exponent ial method of a Generator instance instead; please see the Quick
start.

Parameters

scale
[float or array_like of floats] The scale parameter, 8 = 1/). Must be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array (scale) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized exponential distribution.

See also:

random.Generator.exponential
which should be used for new code.

1.1. NumPy’s module structure 207

NumPy Reference, Release 2.2.0

References

(11, (21, [3]

Examples

A real world example: Assume a company has 10000 customer support agents and the average time between
customer calls is 4 minutes.

>>> n = 10000
>>> time_between_calls = np.random.default_rng() .exponential (scale=4, size=n)

What is the probability that a customer will call in the next 4 to 5 minutes?

>>> x = ((time_between_calls < 5).sum())/n
>>> y = ((time_between_calls < 4).sum())/n
>>> x-y

0.08 # may vary

method

random.RandomState. £ (dfnum, dfden, size=None)

Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters must be greater than zero.

The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distri-
bution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Note: New code should use the 7 method of a Generat or instance instead; please see the Quick start.

Parameters

dfnum
[float or array_like of floats] Degrees of freedom in numerator, must be > 0.

dfden
[float or array_like of float] Degrees of freedom in denominator, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum and
dfden are both scalars. Otherwise, np.broadcast (dfnum, dfden) .size samples
are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized Fisher distribution.

See also:

scipy.stats.f
probability density function, distribution or cumulative density function, etc.

208 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f

NumPy Reference, Release 2.2.0

random.Generator. f
which should be used for new code.

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable
dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the within-
groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

References

(11, (2]

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data gives a
value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random. f (dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> np.sort(s) [-10]
7.61988120985 # random

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.

method

random.RandomState .gamma (shape, scale=1.0, size=None)

Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale (sometimes designated “theta”), where both parameters are > 0.

Note: New code should use the gamma method of a Generator instance instead; please see the Quick start.

Parameters

shape
[float or array_like of floats] The shape of the gamma distribution. Must be non-negative.

1.1. NumPy’s module structure 209

NumPy Reference, Release 2.2.0

scale

[float or array_like of floats, optional] The scale of the gamma distribution. Must be non-

negative. Default is equal to 1.

size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if shape and

scale are both scalars. Otherwise, np.broadcast (shape,
are drawn.

Returns

out

[ndarray or scalar] Drawn samples from the parameterized gamma distribution.

See also:
scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

random.Generator.gamma
which should be used for new code.

Notes

The probability density for the Gamma distribution is

b1 efa:/G

OFT (k)

p(z) ==

where £k is the shape and 6 the scale, and I" is the Gamma function.

scale) .size samples

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally

in processes for which the waiting times between Poisson distributed events are relevant.

References

(11, [2]

Examples

Draw samples from the distribution:

-

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt (2)
>>> s = np.random.gamma (shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> import scipy.special as sps

>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins** (shape-1)* (np.exp (-bins/scale) /

C . (sps.gamma (shape) *scale**shape))
>>> plt.plot (bins, y, linewidth=2, color='r')

>>> plt.show ()

210

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

16

method

random.RandomState.geometric (p, size=None)
Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve
success. It is therefore supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is

flk)=(1—p)"'p

where p is the probability of success of an individual trial.

Note: New code should use the geomet ric method of a Generator instance instead; please see the Quick
start.

Parameters

p
[float or array_like of floats] The probability of success of an individual trial.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array (p) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized geometric distribution.

See also:

random.Generator.geometric
which should be used for new code.

1.1. NumPy’s module structure 211

NumPy Reference, Release 2.2.0

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to
0.35:

[>>> z = np.random.geometric (p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random
method

random.RandomState .gumbel (loc=0.0, scale=1.0, size=None)

Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel
distribution, see Notes and References below.

Note: New code should use the gumbe 1 method of a Generator instance instead; please see the Quick start.

Parameters

loc

[float or array_like of floats, optional] The location of the mode of the distribution. Default is
0.

scale

[float or array_like of floats, optional] The scale parameter of the distribution. Default is 1.
Must be non- negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.

See also:

scipy.stats.gumbel_1
scipy.stats.gumbel_r
scipy.stats.genextreme
weibull
random.Generator.gumbel
which should be used for new code.

212 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-like”
tails.

The probability density for the Gumbel distribution is
—(z—p)/B
e e (x—n)/B
plr) = ————e"° :
s
where p is the mode, a location parameter, and 3 is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology liter-
ature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger than if one
used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a
Gaussian process, which underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also
includes the Weibull and Frechet.

The function has a mean of p + 0.577214 and a variance of %2 B2.

References

(11, [2]

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel (mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

-

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot (bins, (1/beta)*np.exp(-(bins - mu) /beta)

* np.exp(—np.exp(—(bins - mu) /beta)),
S linewidth=2, color='r")
>>> plt.show ()

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000)
a np.random.normal (mu, beta, 1000)
means.append (a.mean())
. maxima.append(a.max())
>>> count, bins, ignored = plt.hist (maxima, 30, density=True)
>>> beta np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean (maxima) — 0.57721*beta

(continues on next page)

1.1. NumPy’s module structure 213

NumPy Reference, Release 2.2.0

(continued from previous page)

>>> plt.plot (bins, (1/beta)*np.exp(-(bins - mu) /beta)
* np.exp(—np.exp (- (bins - mu) /beta)),
. linewidth=2, color='r")
>>> plt.plot (bins, 1/(beta * np.sqgrt(2 * np.pi))
* np.exp (- (bins — mu) **2 / (2 * beta**2)),
C linewidth=2, color='g")
>>> plt.show ()

method

random.RandomState . hypergeometric (ngood, nbad, nsample, size=None)

Draw samples from a Hypergeometric distribution.

Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good
selection), nbad (ways to make a bad selection), and nsample (number of items sampled, which is less than or equal

214 1. Python API

NumPy Reference, Release 2.2.0

to the sum ngood + nbad).

Note: New code should use the hypergeomet ric method of a Generator instance instead; please see the

Quick start.
Parameters

ngood
[int or array_like of ints] Number of ways to make a good selection. Must be nonnegative.

nbad
[int or array_like of ints] Number of ways to make a bad selection. Must be nonnegative.

nsample
[int or array_like of ints] Number of items sampled. Must be at least 1 and at most ngood +
nbad.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast (ngood, nbad,
nsample) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution. Each
sample is the number of good items within a randomly selected subset of size nsample taken
from a set of ngood good items and nbad bad items.

See also:

scipy.stats.hypergeom
probability density function, distribution or cumulative density function, etc.

random.Generator. hypergeometric
which should be used for new code.

Notes

The probability mass function (PMF) for the Hypergeometric distribution is

() ()
(g+b) ’

n

P(x) =

where 0 <x <nandn—-b<z<g

for P(x) the probability of x good results in the drawn sample, g = ngood, b = nbad, and n = nsample.

Consider an urn with black and white marbles in it, ngood of them are black and nbad are white. If you draw
nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls
in the drawn sample.

Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.

1.1. NumPy’s module structure

215

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom

NumPy Reference, Release 2.2.0

References

(11, (21, [3]

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10

number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric (ngood, nbad, nsamp, 1000)
>>> from matplotlib.pyplot import hist

>>> hist (s)

note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it
that 12 or more of them are one color?

>>> s = np.random.hypergeometric (15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

method

random.RandomState.laplace (loc=0.0, scale=1.0, size=None)

Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).

The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Note: New code should use the 1aplace method of a Generator instance instead; please see the Quick start.

Parameters

loc
[float or array_like of floats, optional] The position, x, of the distribution peak. Default is O.

scale
[float or array_like of floats, optional] A, the exponential decay. Default is 1. Must be non-
negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and

scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samplesare
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

See also:

216

1. Python API

NumPy Reference, Release 2.2.0

random.Generator. laplace
which should be used for new code.

Notes

It has the probability density function

]_ _
fla;mA) = 5y exp (x/\/J).

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function
of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics
and health sciences, this distribution seems to model the data better than the standard Gaussian distribution.

References

(11, [21, [31, [4]

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.

>>> s = np.random.laplace (loc, scale, 1000)
.

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist (s, 30, density=True)
>>> x = np.arange(-8., 8., .01)

>>> pdf = np.exp(—-abs(x-loc)/scale)/ (2.*scale)

>>> plt.plot (x, pdf)

L

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqgrt(2 * np.pi)) *
... np.exp (- (x — loc)**2 / (2 * scale**2)))
>>> plt.plot (x,9)

method

random.RandomState.logistic (loc=0.0, scale=1.0, size=None)

Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and
scale (>0).

Note: New code should use the 1ogistic method of a Generator instance instead; please see the Quick
start.

Parameters

loc
[float or array_like of floats, optional] Parameter of the distribution. Default is O.

1.1. NumPy’s module structure 217

NumPy Reference, Release 2.2.0

0.5 4

0.4 +

0.3 4

0.2 +

0.1 +

0.0 T T

scale
[float or array_like of floats, optional] Parameter of the distribution. Must be non-negative.
Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized logistic distribution.
See also:
scipy.stats.logistic
probability density function, distribution or cumulative density function, etc.

random.Generator.logistic
which should be used for new code.

Notes

The probability density for the Logistic distribution is

e—(e—m)/s
—s(1 e (@=m/s)2?

P(z) = P(x)

where . = location and s = scale.

The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions,
in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming
the performance of each player is a logistically distributed random variable.

218 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic

NumPy Reference, Release 2.2.0

References

(11, (21, [3]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist (s, bins=50)
.

plot against distribution

r>>> def logist(x, loc, scale):

.. return np.exp ((loc—x)/scale)/ (scale* (1+np.exp((loc—x)/scale)) **2)
>>> 1lgst_val = logist (bins, loc, scale)

>>> plt.plot (bins, lgst_val * count.max() / lgst_val.max())

>>> plt.show ()

“

1000

800

600

400

200 A

00 25 50 75 100 125 15.0 17.5 20.0

method

random.RandomState.lognormal (mean=0.0, sigma=1.0, size=None)

Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note
that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Note: New code should use the 1 ognormal method of a Generator instance instead; please see the Quick
start.

Parameters

1.1. NumPy’s module structure 219

NumPy Reference, Release 2.2.0

mean
[float or array_like of floats, optional] Mean value of the underlying normal distribution. De-
fault is 0.

sigma
[float or array_like of floats, optional] Standard deviation of the underlying normal distribution.
Must be non-negative. Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * ksamples are drawn. If size is None (default), a single value is returned if mean and
sigma are both scalars. Otherwise, np.broadcast (mean, sigma) .size samples
are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized log-normal distribution.
See also:
scipy.stats.lognorm
probability density function, distribution, cumulative density function, etc.

random.Generator.lognormal
which should be used for new code.

Notes

A variable x has a log-normal distribution if Jog(x) is normally distributed. The probability density function for the
log-normal distribution is:

(@) 1 (— <zn<w>—u>2)
p Tr) = ————€ 2052
oxy/ 21T

where p is the mean and o is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

(11, (2]

Examples

Draw samples from the distribution:

L

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal (mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

-

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid'")

220

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm

NumPy Reference, Release 2.2.0

>>> x = np.linspace (min (bins), max(bins), 10000)
>>> pdf = (np.exp(—(np.log(x) — mu)**2 / (2 * sigma**2))
/ (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot (x, pdf, linewidth=2, color='r")
>>> plt.axis('tight'")
>>> plt.show()

0.035

0.030

I I I I
0 50 100 150 200 250 300

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal

probability density function.

-
>>> # Generate a thousand samples: each is the product of 100 random

>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range (1000) :
a = 10. + np.random.standard_normal (100)
b.append (np.prod(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive

>>> count, bins, ignored = plt.hist (b, 100, density=True, align='mid'")
>>> sigma = np.std(np.log (b))

>>> mu = np.mean(np.log(b))

>>> x = np.linspace (min (bins), max(bins), 10000)
>>> pdf = (np.exp(—(np.log(x) — mu)**2 / (2 * sigma**2))
/ (x * sigma * np.sqgrt(2 * np.pi)))

>>> plt.plot (x, pdf, color='r', linewidth=2)
>>> plt.show ()

.

method

random.RandomState.logseries (p, size=None)

Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified shape parameter, 0 <=p < 1.

1.1. NumPy’s module structure

NumPy Reference, Release 2.2.0

0.0175

0.0150 +

I I I
0 200 400 600 800

Note: New code should use the 1ogseries method of a Generator instance instead; please see the Quick
start.

Parameters

Y
[float or array_like of floats] Shape parameter for the distribution. Must be in the range [0, 1).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array (p) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized logarithmic series distribution.
See also:
scipy.stats.logser
probability density function, distribution or cumulative density function, etc.

random.Generator.logseries
which should be used for new code.

222 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser

NumPy Reference, Release 2.2.0

Notes
The probability density for the Log Series distribution is

—pk

P(k) = kEIn(1 —p)’

where p = probability.

The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher,
Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3].

References

(11, [21, [31, [4]

Examples

Draw samples from the distribution:

p
>>> a = .6

>>> s = np.random.logseries(a, 10000)
>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist (s)
“

plot against distribution

.
>>> def logseries(k, p):

A return -p**k/(k*np.log(l-p))

>>> plt.plot (bins, logseries(bins, a)*count.max()/
C logseries (bins, a).max(), r'")

>>> plt.show ()

8000 -

6000 -

4000

2000

method

1.1. NumPy’s module structure 223

NumPy Reference, Release 2.2.0

random.RandomState.multinomial (n, pvals, size=None)

Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with
one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1
through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_1i = [X_0,
X_1, ..., X_pl,represent the number of times the outcome was i.

Note: New code should use the multinomial method of a Generator instance instead; please see the Quick
start.

Warning: This function defaults to the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit
platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and
64bit on 64bit platforms.

Parameters

n
[int] Number of experiments.

pvals
[sequence of floats, length p] Probabilities of each of the p different outcomes. These must
sum to 1 (however, the last element is always assumed to account for the remaining probability,
aslong as sum (pvals[:-1]) <= 1).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out
[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out [1, J, ..., :] is an N-dimensional value drawn from the
distribution.

See also:

random.Generator .multinomial
which should be used for new code.

Examples

Throw a dice 20 times:

>>> np.random.multinomial (20, [1/6.]1*6, size=1)
array ([[4, 1, 7, 5, 2, 11]1) # random

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

224 1. Python API

NumPy Reference, Release 2.2.0

>>> np.random.multinomial (20, [1/6.]1*6, size=2)
array ([[3, 4, 3, 3, 4, 3], # random
[2, 4, 3, 4, 0, 711)

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.

A loaded die is more likely to land on number 6:

>>> np.random.multinomial (100, [1/7.1*5 + [2/7.1)
array([11, 16, 14, 17, 16, 26]) # random

The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and
assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice
as much weight on one side as on the other should be sampled like so:

>>> np.random.multinomial (100, [1.0 / 3, 2.0 / 31]) # RIGHT
array ([38, 62]) # random

.

not like:

-

>>> np.random.multinomial (100, [1.0, 2.0]) # WRONG
Traceback (most recent call last):
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

method

random.RandomState.multivariate_normal (mean, cov, size=None, check_valid='warn', tol=1e-8)

Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal
distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These pa-
rameters are analogous to the mean (average or “center”) and variance (standard deviation, or “width,” squared) of
the one-dimensional normal distribution.

Note: New code should use the multivariate normal method of a Generator instance instead; please
see the Quick start.

Parameters

mean
[1-D array_like, of length N] Mean of the N-dimensional distribution.

cov
[2-D array_like, of shape (N, N)] Covariance matrix of the distribution. It must be symmetric
and positive-semidefinite for proper sampling.

size
[int or tuple of ints, optional] Given a shape of, for example, (m, n, k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-dimensional,
the output shape is (m, n, k, N) . If no shape is specified, a single (N-D) sample is returned.

check_valid
[{ ‘warn’, ‘raise’, ‘ignore’ }, optional] Behavior when the covariance matrix is not positive
semidefinite.

1.1. NumPy’s module structure 225

NumPy Reference, Release 2.2.0

tol
[float, optional] Tolerance when checking the singular values in covariance matrix. cov is cast
to double before the check.

Returns

out
[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out [1, j, ..., :] is an N-dimensional value drawn from the
distribution.

See also:

random.Generator.multivariate normal
which should be used for new code.

Notes
The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be
generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution.

Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we
draw N-dimensional samples, X = [21, Za, ...z y]. The covariance matrix element Cj; is the covariance of x; and
x;. The element Cj; is the variance of x; (i.e. its “spread”).

Instead of specifying the full covariance matrix, popular approximations include:
* Spherical covariance (cov is a multiple of the identity matrix)
* Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

p
>>> mean = [0, 0]

>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt

>>> x, y = np.random.multivariate_normal (mean, cov, 5000).T
>>> plt.plot(x, y, 'x'")

>>> plt.axis('equal')

>>> plt.show ()

Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior
of this method is undefined and backwards compatibility is not guaranteed.

226 1. Python API

NumPy Reference, Release 2.2.0

References

[11, [2]

Examples

>>> mean = (1, 2)

>>> cov = [[1, 0], [0, 11]

>>> x = np.random.multivariate_normal (mean, cov, (3, 3))

>>> x.shape
(3, 3, 2)

Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6,
-31, [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively,
and the expected correlation coefficient is -3/sqrt(6*3.5) = -0.65465.

-

>>> cov
>>> pts

np.array([[6, -3]1, [-3, 3.5]1)
np.random.multivariate_normal ([0,

= 0], cov, size=800)

Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values:

>>> pts.mean (axis=0)

array ([0.0326911 ,
>>> np.cov (pts.T)
array ([[5.96202397,
[-2.85602287,
>>> np.corrcoef (pts.

-0.6273591314603949

-0.012807821) # may vary
-2.85602287],

3.47613949]1]) # may vary
T) [0, 1]

may vary

We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation
of the components of this sample.

>>> import matplotlib.pyplot as plt

>>> plt.plot (pts[:, 0], ptsl[:, 11, '.', alpha=0.5)
>>> plt.axis('equal')

>>> plt.grid()

>>> plt.show ()

method

random.RandomState.negative_binomial (n, p, size=None)

Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability
of success where n is > 0 and p is in the interval [0, 1].

Note: New code should use the negative_binomial method of a Generator instance instead; please see
the Quick start.

Parameters

n
[float or array_like of floats] Parameter of the distribution, > 0.

1.1. NumPy’s module structure

227

NumPy Reference, Release 2.2.0

T
-10.0 =75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

p
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast (n, p) .size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of failures that occurred before a total of n
successes was reached.

Warning: This function returns the C-long dtype, which is 32bit on windows and otherwise
64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer
is 32bit on 32bit platforms and 64bit on 64bit platforms.

See also:

random.Generator.negative_binomial
which should be used for new code.

228 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability mass function of the negative binomial distribution is

I'(N +n)

P(N;n,p) = NIT(n)

N
where n is the number of successes, p is the probability of success, N + n is the number of trials, and I" is the
gamma function. When n is an integer, FJ\(,I,\;J(ZL)) = (M*¢~1), which is the more common form of this term in the
pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the
last trial.

If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number of
non-“1"s that appear before the third “1” is a negative binomial distribution.

References

(11, [2]

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success
of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial (1, 0.1, 100000)
>>> for i in range (1, 11):
probability = sum(s<i) / 100000.
print (1, "wells drilled, probability of one success =", probability)

method

random.RandomState.noncentral_chisquare (df, nonc, size=None)

Draw samples from a noncentral chi-square distribution.

The noncentral 2 distribution is a generalization of the x? distribution.

Note: New code should use the noncentral_ chisquare method of a Generator instance instead; please
see the Quick start.

Parameters

df
[float or array_like of floats] Degrees of freedom, must be > 0.

nonc
[float or array_like of floats] Non-centrality, must be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
and nonc are both scalars. Otherwise, np.broadcast (df, nonc) .size samples are
drawn.

1.1. NumPy’s module structure 229

NumPy Reference, Release 2.2.0

Returns

out
[ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distribution.

See also:

random.Generator.noncentral_chisquare
which should be used for new code.

Notes

The probability density function for the noncentral Chi-square distribution is

e—nonc/2 (nonc/2)i

il

P(z;df,nonc) = i

=0

Yaft2i (1‘),

where Yy is the Chi-square with q degrees of freedom.

References

(1]

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt

>>> values = plt.hist (np.random.noncentral_chisquare (3, 20, 100000),
C bins=200, density=True)

>>> plt.show ()

0.04

0.03 +

0.02 +

0.01 +

0.00 -

60 70 80

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

230 1. Python API

NumPy Reference, Release 2.2.0

>>>
>>>

>>>
>>>

plt.figure ()

values = plt.hist (np.random.noncentral_chisquare (3, .0000001,
bins=np.arange (0., 25, .1), density=True)

values2 = plt.hist (np.random.chisquare (3, 100000),
bins=np.arange (0., 25, .1), density=True)

plt.plot (values[1][0:-1], values[0]-values2[0], 'ob'")

plt.show ()

100000),

0.25 4

0.20 +

0.15 +

0.10 +

0.05

0.00 +

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

>>>
>>>

>>>

plt.figure ()

values = plt.hist (np.random.noncentral_chisquare (3, 20, 100000),

bins=200, density=True)

plt.show ()

0.04 A

0.03 A

0.02 A

0.01 A

0.00 - T
80

method

1.1. NumPy’s module structure

231

NumPy Reference, Release 2.2.0

random.RandomState.noncentral_f£ (dfnum, dfden, nonc, size=None)

Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and

dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Note: New code should use the noncentral_f method of a Generator instance instead; please see the

Quick start.

Parameters

dfnum
[float or array_like of floats] Numerator degrees of freedom, must be > 0.

dfden
[float or array_like of floats] Denominator degrees of freedom, must be > 0.

nonc
[float or array_like of floats] Non-centrality parameter, the sum of the squares of the numerator
means, must be >= 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * ksamples are drawn. If size is None (default), a single value is returned if dfnum, df—
den, and nonc are all scalars. Otherwise, np.broadcast (dfnum, dfden, nonc).
size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribution.

See also:

random.Generator.noncentral_f
which should be used for new code.

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific
alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic

follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic.

References

(11, [2]

232 1. Python API

NumPy Reference, Release 2.2.0

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null
hypothesis. We'll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom

>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0

>>> nc_vals = np.random.noncentral_f (dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f (dfnum, dfden, 1000000)

>>> F = np.histogram(c_vals, bins=50, density=True)
>>> import matplotlib.pyplot as plt

>>> plt.plot (F[1][1:], F[0])

>>> plt.plot (NF[1][1:], NF[O0])

>>> plt.show ()

0.6

0.5 4

0.4 +

0.3 +

0.2 +

0.1 A

0.0 +

method
random.RandomState.normal (loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both
Gauss and Laplace independently [2], is often called the bell curve because of its characteristic shape (see the
example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of
samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2].

Note: New code should use the normal method of a Generator instance instead; please see the Quick start.

Parameters

loc
[float or array_like of floats] Mean (“centre”) of the distribution.

1.1. NumPy’s module structure 233

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats] Standard deviation (spread or “width”) of the distribution. Must
be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized normal distribution.

See also:

scipy.stats.norm
probability density function, distribution or cumulative density function, etc.

random.Generator.normal
which should be used for new code.

Notes

The probability density for the Gaussian distribution is

1 (z—p)?

pz) = ooz’ 207,

where 1 is the mean and ¢ the standard deviation. The square of the standard deviation, o

2. is called the variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches
0.607 times its maximum at + o and x — o [2]). This implies that normal is more likely to return samples lying
close to the mean, rather than those far away.

References

(11, [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation

>>> s = np.random.normal (mu, sigma, 1000)
.

Verify the mean and the standard deviation:

-
>>> abs(mu - np.mean(s))

0.0 # may vary
.-

-

>>> abs(sigma - np.std(s, ddof=1))
0.1 # may vary

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm

NumPy Reference, Release 2.2.0

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist (s, 30, density=True)
>>> plt.plot (bins, 1/(sigma * np.sqrt(2 * np.pi)) *
np.exp(- (bins - mu)**2 / (2 * sigma**2)),
C.. linewidth=2, color='r")
>>> plt.show ()

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> np.random.normal (3, 2.5, size=(2, 4))
array ([[-4.49401501, 4.00950034, -1.81814867, 7.297186771, # random
[0.39924804, 4.68456316, 4.99394529, 4.84057254]]1) # random

method

random.RandomState.pareto (a, size=None)

Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained
from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes). The smallest value
of the Lomax distribution is zero while for the classical Pareto distribution it is mu, where the standard Pareto
distribution has locationmu = 1. Lomax can also be considered as a simplified version of the Generalized Pareto
distribution (available in SciPy), with the scale set to one and the location set to zero.

The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20 rule”.
In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent
fill the remaining 80 percent of the range.

Note: New code should use the pareto method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Shape of the distribution. Must be positive.

1.1. NumPy’s module structure 235

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized Pareto distribution.
See also:
scipy.stats.lomax
probability density function, distribution or cumulative density function, etc.

scipy.stats.genpareto
probability density function, distribution or cumulative density function, etc.

random.Generator.pareto
which should be used for new code.

Notes

The probability density for the Pareto distribution is

am®

p(z) = Zatl

where a is the shape and m the scale.

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also
found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download

frequency for projects in Sourceforge [1]. It is one of the so-called “fat-tailed” distributions.

References

(11, (21, (3], [4]

Examples

Draw samples from the distribution:

.

>>> a, m= 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m

Display the histogram of the samples, along with the probability density function:

-

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist (s, 100, density=True)

>>> fit = a*m**a / bins** (a+l)

>>> plt.plot (bins, max(count)*fit/max (fit), linewidth=2, color='r"')
>>> plt.show ()

method

236

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto

NumPy Reference, Release 2.2.0

1.2

1.0

0.8

0.6

0.4 +

0.2 +

0.0 - T T T T T T

random.RandomState .poisson (lam=1.0, size=None)

Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution for large N.

Note: New code should use the poisson method of a Generator instance instead; please see the Quick start.

Parameters

lam
[float or array_like of floats] Expected number of events occurring in a fixed-time interval,
must be >= 0. A sequence must be broadcastable over the requested size.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1am is a
scalar. Otherwise, np.array (lam) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

See also:

random.Generator.poisson
which should be used for new code.

1.1. NumPy’s module structure 237

NumPy Reference, Release 2.2.0

Notes

The probability mass function (PMF) of Poisson distribution is

f(k;A) =

Aree—>

k!

For events with an expected separation A the Poisson distribution f(k; \) describes the probability of k events

occurring within the observed interval A.

Because the output is limited to the range of the C int64 type, a ValueError is raised when lam is within 10 sigma

of the maximum representable value.

References

(11, (2]

Examples

Draw samples from the distribution:

-
>>> import numpy as np

>>> s = np.random.poisson (5, 10000)

Display histogram of the sample:

-

>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist(s, 14,

>>> plt.show ()

density=True)

0.25

0.20 +

0.15 +

0.10 +

0.05 +

0.00 -
0.0 2.5 5.0

Draw each 100 values for lambda 100 and 500:

7.5

T
10.0 125

T
15.0

T
17.5

[>>> s = np.random.poisson (lam=(100.,

500.),

size=(100,

2))

method

238

1. Python API

NumPy Reference, Release 2.2.0

random.RandomState .power (a, size=None)

Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

Also known as the power function distribution.

Note: New code should use the power method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Parameter of the distribution. Must be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized power distribution.

Raises

ValueError
Ifa<=0.

See also:

random.Generator .power
which should be used for new code.

Notes
The probability density function is
P(z;a) =az®',0<2<1,a>0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case
of the Beta distribution.

It is used, for example, in modeling the over-reporting of insurance claims.

References

(11, [2]

1.1. NumPy’s module structure 239

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution:

r

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power (a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist (s, bins=30)
>>> x = np.linspace (0, 1, 100)

>>> y = a*x**(a-1.)

>>> normed_y = samples*np.diff (bins) [0]*y

>>> plt.plot (x, normed_y)

>>> plt.show ()

140 A

120 A

100

80 -

60 -

40

20 A

0.0 0.2

Compare the power function distribution to the inverse of the Pareto.

-
>>> from scipy import stats

>>> rvs = np.random.power (5, 1000000)
>>> rvsp = np.random.pareto (5, 1000000)
>>> xx = np.linspace(0,1,100)

>>> powpdf = stats.powerlaw.pdf (xx,5)

>>> plt.figure()

>>> plt.hist (rvs, bins=50, density=True)
>>> plt.plot (xx, powpdf, "'r—")

>>> plt.title('np.random.power (5) ")

>>> plt.figure ()

>>> plt.hist(1./(1l.+rvsp), bins=50, density=True)
>>> plt.plot (xx, powpdf, "'r-")

>>> plt.title('inverse of 1 + np.random.pareto(5)"')

240

1. Python API

NumPy Reference, Release 2.2.0

>>> plt.figure()

>>> plt.hist(1./(1l.+rvsp), bins=50, density=True)
>>> plt.plot (xx, powpdf, "'r—")

>>> plt.title('inverse of stats.pareto(5)"')

np.random.power(5)

0.0 0.2

inverse of 1 + np.random.pareto(5)

0.0 0.2

method

random.RandomState.rayleigh (scale=1.0, size=None)

Draw samples from a Rayleigh distribution.

The x and Weibull distributions are generalizations of the Rayleigh.

Note: New code should use the rayleigh method of a Generator instance instead; please see the Quick
start.

1.1. NumPy’s module structure 241

NumPy Reference, Release 2.2.0

inverse of stats.pareto(5)

0.0 0.2

Parameters

scale
[float or array_like of floats, optional] Scale, also equals the mode. Must be non-negative.
Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array (scale) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

See also:

random.Generator.rayleigh
which should be used for new code.

Notes

The probability density function for the Rayleigh distribution is

2

—x

€2-scale?

P(x; scale) = sealc?

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

242 1. Python API

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

Draw values from the distribution and plot the histogram

>>> from matplotlib.pyplot import hist
>>> values = hist (np.random.rayleigh (3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are
likely to be larger than 3 meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt (2 / np.pi) * meanvalue

>>> s = np.random.rayleigh (modevalue, 1000000)
.

The percentage of waves larger than 3 meters is:

-

>>> 100.*sum(s>3)/1000000.
0.087300000000000003 # random

method

random.RandomState.standard_cauchy (size=None)

Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Note: New code should use the standard _cauchy method of a Generator instance instead; please see
the Quick start.

Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
samples
[ndarray or scalar] The drawn samples.

See also:

random.Generator.standard_cauchy
which should be used for new code.

1.1. NumPy’s module structure 243

NumPy Reference, Release 2.2.0

Notes

The probability density function for the full Cauchy distribution is

1

P(z;20,7) = — =203
my[1+ (5552)?]
and the Standard Cauchy distribution just sets zp = O and v =1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral
line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x
axis.

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distri-
bution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like
a Gaussian distribution, but with heavier tails.

References

(11, 121, [3]

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt

>>> s = np.random.standard_cauchy (1000000)

>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist (s, bins=100)

>>> plt.show ()

140000
120000 -
100000 A
80000 -
60000 -
40000 -

20000 -+

0

T
-20 -10 0 10 20

method

244

1. Python API

NumPy Reference, Release 2.2.0

random.RandomState.standard_exponential (size=None)

Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Note: New code should use the st andard_exponential method of a Generator instance instead; please
see the Quick start.

Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out
[float or ndarray] Drawn samples.

See also:

random.Generator.standard_exponential
which should be used for new code.

Examples

Output a 3x8000 array:

[>>> n = np.random.standard_exponential ((3, 8000))]

method

random.RandomState.standard_gamma (shape, size=None)

Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale=1.

Note: New code should use the st andard gamma method of a Generator instance instead; please see the
Quick start.

Parameters

shape
[float or array_like of floats] Parameter, must be non-negative.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm

* n * k samples are drawn. If size is None (default), a single value is returned if shape
is a scalar. Otherwise, np.array (shape) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.

1.1. NumPy’s module structure 245

NumPy Reference, Release 2.2.0

See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

random.Generator. standard_gamma
which should be used for new code.

Notes

The probability density for the Gamma distribution is

where k is the shape and 6 the scale, and I" is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

(11, [2]

Examples

Draw samples from the distribution:

p
>>> shape, scale = 2., 1. # mean and width

>>> s = np.random.standard_gamma (shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> import scipy.special as sps

>>> count, bins, ignored = plt.hist (s, 50, density=True)

>>> y = bins** (shape-1) * ((np.exp(-bins/scale))/

ce (sps.gamma (shape) * scale**shape))
>>> plt.plot (bins, y, linewidth=2, color='r')

>>> plt.show ()

method

random.RandomState.standard_normal (size=None)

Draw samples from a standard Normal distribution (mean=0, stdev=1).

Note: New code should use the st andard_normal method of a Generator instance instead; please see the
Quick start.

Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

246

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

I I I I
0.0 2.5 5.0 7.5 100 12,5 15.0 175

Returns

out
[float or ndarray] A floating-point array of shape size of drawn samples, or a single sample
if size was not specified.

See also:

normal
Equivalent function with additional 1oc and scale arguments for setting the mean and standard deviation.

random.Generator.standard normal
which should be used for new code.

Notes

For random samples from the normal distribution with mean mu and standard deviation s igma, use one of:

mu + sigma * np.random.standard_normal (size=...)
np.random.normal (mu, sigma, size=...)

Examples

>>> np.random.standard_normal ()

2.1923875335537315 #random

.

>>> s = np.random.standard_normal (8000)

>>> s

array ([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
-0.38672696, -0.4685006]) # random

>>> s.shape

(8000,)

>>> s = np.random.standard_normal (size=(3, 4, 2))

(continues on next page)

1.1. NumPy’s module structure 247

NumPy Reference, Release 2.2.0

L

(continued from previous page)

>>> s.shape
(3, 4, 2)

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

-

>>> 3 + 2.5 * np.random.standard_normal (size=(2, 4))
array ([[-4.49401501, 4.00950034, -1.81814867, 7.297186771], # random
[0.39924804, 4.68456316, 4.99394529, 4.84057254]1]) # random

metho

rand

d

om.RandomState.standard_t (df, size=None)

Draw samples from a standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (st andard_normal).

Note: New code should use the standard_t method of a Generator instance instead; please see the Quick
start.

Parameters
df
[float or array_like of floats] Degrees of freedom, must be > 0.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array (df) . size samples are drawn.
Returns
out
[ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribution.
See also:

random.Generator.standard_t
which should be used for new code.

Notes

The probability density function for the t distribution is

(4t 22\ —(df+1)/2
Ped = (1)

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.

The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

248

1. Python API

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in kilojoules (kJ) is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will
be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either
positive or negative, hence making our test 2-tailed.

Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom.
We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard
deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an
unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square
root).

>>> np.mean (intake)

6753.636363636364

>>> intake.std(ddof=1)

1142.1232221373727

>>> t = (np.mean (intake)-7725)/ (intake.std(ddof=1)/np.sqrt (len (intake)))
>>> t

-2.8207540608310198

We draw 1000000 samples from Student’s t distribution with the adequate degrees of freedom.

>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_t (10, size=1000000)
>>> h = plt.hist (s, bins=100, density=True)

Does our t statistic land in one of the two critical regions found at both tails of the distribution?

>>> np.sum(np.abs(t) < np.abs(s)) / float (len(s))
0.018318 #random < 0.05, statistic is in critical region

The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance
threshold.

Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being
true is too low, and we reject the null hypothesis of no deviation.

method

random.RandomState.triangular (left, mode, right, size=None)

Draw samples from the triangular distribution over the interval [left, right].

The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Note: New code should use the t riangular method of a Generator instance instead; please see the Quick
start.

1.1. NumPy’s module structure 249

NumPy Reference, Release 2.2.0

0.4

0.3

0.2 +

0.1 +

0.0 T T
-15 -10 -5

Parameters

left
[float or array_like of floats] Lower limit.

mode
[float or array_like of floats] The value where the peak of the distribution occurs. The value
must fulfill the condition 1eft <= mode <= right.

right
[float or array_like of floats] Upper limit, must be larger than left.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if 1e ft, mode,
and right are all scalars. Otherwise, np.broadcast (left, mode, right) .size
samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized triangular distribution.

See also:

random.Generator.triangular
which should be used for new code.

250 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability density function for the triangular distribution is

2(x—1)
(TEE?T;D for [S T S m,
P(xz;l,m,r) = D= form<z<r,
0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used in simulations.

References

(1]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt

>>> h = plt.hist (np.random.triangular (-3, 0, 8, 100000), bins=200,
C.. density=True)

>>> plt.show ()

0.175
0.150
0.125
0.100 +
0.075
0.050

0.025

0.000 -

method

random.RandomState.uniform (low=0.0, high=1.0, size=None)

Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [1ow, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uni form.

Note: New code should use the uni formmethod of a Generator instance instead; please see the Quick start.

1.1. NumPy’s module structure 251

NumPy Reference, Release 2.2.0

Parameters

low
[float or array_like of floats, optional] Lower boundary of the output interval. All values gen-
erated will be greater than or equal to low. The default value is 0.

high
[float or array_like of floats] Upper boundary of the output interval. All values generated will
be less than or equal to high. The high limit may be included in the returned array of floats due
to floating-point rounding in the equation low + (high-low) * random_sample ().
The default value is 1.0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if 1ow
and high are both scalars. Otherwise, np.broadcast (low, high) .size samples
are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized uniform distribution.
See also:
randint
Discrete uniform distribution, yielding integers.

random_integers
Discrete uniform distribution over the closed interval [1low, high].

random_sample
Floats uniformly distributed over [0, 1).

random
Alias for random_sample.

rand
Convenience function that accepts dimensions as input, e.g., rand (2, 2) would generate a 2-by-2 array of
floats, uniformly distributed over [0, 1).

random.Generator.uniform
which should be used for new code.

Notes

The probability density function of the uniform distribution is

anywhere within the interval [a, b), and zero elsewhere.

When high == low, values of 1ow will be returned. If high < 1ow, the results are officially undefined and may
eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality
condition. The high limit may be included in the returned array of floats due to floating-point rounding in the
equation low + (high—-low) * random_sample (). For example:

252

1. Python API

NumPy Reference, Release 2.2.0

>>> x = np.float32(5%0.99999999)
>>> x

np.float32(5.0)

Examples

Draw samples from the distribution:

[>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

-
>>> np.all(s >= -1)

True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist(s, 15, density=True)

>>> plt.plot (bins, np.ones_like (bins), linewidth=2, color='r')
>>> plt.show ()

method

random.RandomState.vonmises (mu, kappa, size=None)

Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode (mu) and concentration (kappa), on the
interval [-pi, pi].

The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution
on the unit circle. It may be thought of as the circular analogue of the normal distribution.

1.1. NumPy’s module structure 253

NumPy Reference, Release 2.2.0

Note: New code should use the vonmises method of a Generator instance instead; please see the Quick
start.

Parameters

mu
[float or array_like of floats] Mode (“center”) of the distribution.

kappa
[float or array_like of floats] Concentration of the distribution, has to be >=0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if mu and
kappa are both scalars. Otherwise, np.broadcast (mu, kappa) .size samples are
drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized von Mises distribution.
See also:
scipy.stats.vonmises
probability density function, distribution, or cumulative density function, etc.

random.Generator.vonmises
which should be used for new code.

Notes

The probability density for the von Mises distribution is

e/{cos(z—u)

PE) = 5

where (1 is the mode and « the concentration, and Iy(x) is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory,
aerodynamics, fluid mechanics, and philosophy of science.

References

(11, [2]

254 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and concentration
>>> s = np.random.vonmises (mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> from scipy.special import iO

>>> plt.hist (s, 50, density=True)

>>> x = np.linspace(-np.pi, np.pi, num=51)

>>> y = np.exp (kappa*np.cos(x-mu))/ (2*np.pi*1i0 (kappa))
>>> plt.plot(x, y, linewidth=2, color='r")

>>> plt.show ()

1.0

0.8

0.6

0.4

0.2 A

0.0 -

method

random.RandomState .wald (mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Note: New code should use the wald method of a Generator instance instead; please see the Quick start.

Parameters

mean
[float or array_like of floats] Distribution mean, must be > 0.

1.1. NumPy’s module structure 255

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats] Scale parameter, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * ksamples are drawn. If size is None (default), a single value is returned if mean and
scale are both scalars. Otherwise, np.broadcast (mean, scale) .size samples
are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Wald distribution.

See also:

random.Generator.wald
which should be used for new code.

Notes
The probability density function for the Wald distribution is

scale —scale(z—mean)?
P(x;mean, scale) = e 2meanTs
2mx

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

References

(11, (21, [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist (np.random.wald(3, 2, 100000), bins=200, density=True)
>>> plt.show ()

method

random.RandomState .weibull (a, size=None)

Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.
X = (=ln(U)"
Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter \ is just X = \(—in(U))/°.

Note: New code should use the weibull method of a Generator instance instead; please see the Quick start.

256

1. Python API

NumPy Reference, Release 2.2.0

0.4

0.3

0.2 +

0.1 +

0.0 - T T T T T T T

Parameters

a
[float or array_like of floats] Shape parameter of the distribution. Must be nonnegative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm

* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:

scipy.stats.weibull_max
scipy.stats.weibull_min
scipy.stats.genextreme
gumbel
random.Generator.weibull
which should be used for new code.

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is
= Y(Tya1—(z/2)"
pla) = $(5) e @,
where a is the shape and) the scale.

The function has its peak (the mode) at A(2=1)'/¢,

a

1.1. NumPy’s module structure 257

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

When a = 1, the Weibull distribution reduces to the exponential distribution.

References

(11, [21, [3]

Examples

Draw samples from the distribution:

>>> a 5. # shape

>>> s = np.random.weibull (a, 1000)

.

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> x = np.arange(1,100.)/50.

>>> def weib(x,n,a):

return (a / n) * (x / n)**(a — 1) * np.exp(—(x / n)**a)

>>> count, bins, ignored = plt.hist (np.random.weibull (5.,1000))
>>> x = np.arange(1,100.)/50.

>>> scale = count.max () /weib(x, 1., 5.).max()

>>> plt.plot(x, weib(x, 1., 5.)*scale)

>>> plt.show ()

200 A

150 A

100 A

50 A

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

method

random.RandomState.zipf (a, size=None)

Draw samples from a Zipf distribution.
Samples are drawn from a Zipf distribution with specified parameter a > 1.

The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf’s
law: the frequency of an item is inversely proportional to its rank in a frequency table.

258 1. Python API

NumPy Reference, Release 2.2.0

Note: New code should use the zipf method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Distribution parameter. Must be greater than 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Zipf distribution.

See also:

scipy.stats.zipf
probability density function, distribution, or cumulative density function, etc.

random.Generator.zipf
which should be used for new code.

Notes

The probability mass function (PMF) for the Zipf distribution is

p(k) = f(_ac;

for integers k > 1, where (is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample
of a language is inversely proportional to its rank in the frequency table.

References

(1]

Examples

Draw samples from the distribution:

>>> a = 4.0
>>> n = 20000
>>> s = np.random.zipf (a, n)

Display the histogram of the samples, along with the expected histogram based on the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import zeta

1.1. NumPy’s module structure 259

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf

NumPy Reference, Release 2.2.0

bincount provides a fast histogram for small integers.

>>> count = np.bincount (s)

>>> k = np.arange(l, s.max() + 1)
.

>>> plt.bar(k, count[l:], alpha=0.5, label='sample count')
>>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,

c label="expected count')

>>> plt.semilogy ()

>>> plt.grid(alpha=0.4)

>>> plt.legend()

>>> plt.title(f'Zipf sample, a={a}, size={n}'")

>>> plt.show ()

Zipf sample, a=4.0, size=20000

—e— expected count
sample count

104
103
102
10!
100

1071

Functions in numpy . random

Many of the RandomState methods above are exported as functions in numpy . random This usage is discouraged, as it
is implemented via a global RandomStat e instance which is not advised on two counts:

* It uses global state, which means results will change as the code changes
e It uses a RandomSt at e rather than the more modern Generator.

For backward compatible legacy reasons, we will not change this.

beta(a, b[, size]) Draw samples from a Beta distribution.
binomial(n, pl, size]) Draw samples from a binomial distribution.
bytes(length) Return random bytes.

chisquare(df], size]) Draw samples from a chi-square distribution.
choice(al, size, replace, p]) Generates a random sample from a given 1-D array
dirichlet(alphal, size]) Draw samples from the Dirichlet distribution.
exponential([scale, size]) Draw samples from an exponential distribution.
f(dfnum, dfden[, size]) Draw samples from an F distribution.
gamma(shapel, scale, size]) Draw samples from a Gamma distribution.

continues on next page

260 1. Python API

NumPy Reference, Release 2.2.0

Table 3 - continued from previous page

geomet ric(pl, sizel])
get_state([legacy])

gumbe 1([loc, scale, size])

hypergeomet ric(ngood, nbad, nsample[, size])

laplace([loc, scale, size])

logistic([loc, scale, size])
lognormal([mean, sigma, size])
logseries(pl, size])
multinomial(n, pvals[, size])

multivariate_normal(mean, cov|, size, ...])

negative_binomial(n, pl, size])
noncentral_chisquare(df, nonc[, size])
noncentral_ f(dfnum, dfden, nonc[, size])
normal([loc, scale, size])

pareto(al, size])
permutation(x)

poisson([lam, size])
power(a[, size])

rand(do, d1, ..., dn)
randint(low[, high, size, dtype])

randn(d0, d1, ..., dn)

random([size])
random_integers(low[, high, size])

random_sample([size])
ranf(*args, **kwargs)
rayleigh([scale, size])
sample(*args, **kwargs)
seed([seed])
set_state(state)
shuffle(x)
standard_cauchy([size])

standard_exponent ial([size])
standard_gamma(shape[, size])
standard_normal([size])
standard_t(df[, size])

t riangular(left, mode, right[, size])

uniform([low, high, size])

Draw samples from the geometric distribution.

Return a tuple representing the internal state of the gen-
erator.

Draw samples from a Gumbel distribution.

Draw samples from a Hypergeometric distribution.
Draw samples from the Laplace or double exponential
distribution with specified location (or mean) and scale
(decay).

Draw samples from a logistic distribution.

Draw samples from a log-normal distribution.

Draw samples from a logarithmic series distribution.
Draw samples from a multinomial distribution.

Draw random samples from a multivariate normal distri-
bution.

Draw samples from a negative binomial distribution.
Draw samples from a noncentral chi-square distribution.
Draw samples from the noncentral F distribution.

Draw random samples from a normal (Gaussian) distri-
bution.

Draw samples from a Pareto II or Lomax distribution with
specified shape.

Randomly permute a sequence, or return a permuted
range.

Draw samples from a Poisson distribution.

Draws samples in [0, 1] from a power distribution with
positive exponent a - 1.

Random values in a given shape.

Return random integers from low (inclusive) to high (ex-
clusive).

Return a sample (or samples) from the "standard normal”
distribution.

Return random floats in the half-open interval [0.0, 1.0).
Random integers of type numpy . int_ between low and
high, inclusive.

Return random floats in the half-open interval [0.0, 1.0).
This is an alias of random_sample.

Draw samples from a Rayleigh distribution.

This is an alias of random_sample.

Reseed the singleton RandomState instance.

Set the internal state of the generator from a tuple.
Modify a sequence in-place by shuffling its contents.
Draw samples from a standard Cauchy distribution with
mode = 0.

Draw samples from the standard exponential distribution.
Draw samples from a standard Gamma distribution.
Draw samples from a standard Normal distribution
(mean=0, stdev=1).

Draw samples from a standard Student's t distribution
with df degrees of freedom.

Draw samples from the triangular distribution over the in-
terval [left, right].

Draw samples from a uniform distribution.

continues on next page

1.1. NumPy’s module structure

261

NumPy Reference, Release 2.2.0

Table 3 - continued from previous page

vonmi ses(mu, kappa[, size]) Draw samples from a von Mises distribution.

wa 1d(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distri-
bution.

weibull(a[, size]) Draw samples from a Weibull distribution.

zipf(al, size]) Draw samples from a Zipf distribution.

random.beta (a, b, sizez=None)

Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has
the probability distribution function

1

Bap® 0

f(z;0,b) =

where the normalization, B, is the beta function,

1
B(a, 8) :/O 1 (1 —)L,

It is often seen in Bayesian inference and order statistics.

Note: New code should use the bet a method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Alpha, positive (>0).

b
[float or array_like of floats] Beta, positive (>0).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a and b
are both scalars. Otherwise, np.broadcast (a, b) .size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized beta distribution.
See also:

random.Generator.beta
which should be used for new code.

random.binomial (n, p, size=None)
Draw samples from a binomial distribution.
Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success

where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in
use)

262 1. Python API

NumPy Reference, Release 2.2.0

Note: New code should use the binomial method of a Generator instance instead; please see the Quick

start.
Parameters
n
[int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.
p
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast (n, p) .size samples are drawn.
Returns
out
[ndarray or scalar] Drawn samples from the parameterized binomial distribution, where each
sample is equal to the number of successes over the n trials.
See also:

scipy.stats.binom
probability density function, distribution or cumulative density function, etc.

random.Generator.binomial
which should be used for new code.

Notes

The probability mass function (PMF) for the binomial distribution is

P(N) = (Z,)pN(l -p)" Y,

where n is the number of trials, p is the probability of success, and N is the number of successes.

When estimating the standard error of a proportion in a population by using a random sample, the normal distribu-
tion works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples,
in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be
used in this case.

1.1. NumPy’s module structure 263

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom

NumPy Reference, Release 2.2.0

References

(11, (21, [3], [4], [5]

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial (n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of
success of 0.1. All nine wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial (9, 0.1, 20000) == 0)/20000.
answer = 0.38885, or 38%.

random.bytes (length)
Return random bytes.

Note: New code should use the byt es method of a Generator instance instead; please see the Quick start.

Parameters

length
[int] Number of random bytes.

Returns

out
[bytes] String of length length.

See also:

random.Generator.bytes
which should be used for new code.

Examples

>>> np.random.bytes (10)
b' eh\x85\x022S5Z\xbf\xad4' #random

random.chisquare (df, size=None)
Draw samples from a chi-square distribution.
When df independent random variables, each with standard normal distributions (mean 0, variance 1), are squared

and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis
testing.

264 1. Python API

NumPy Reference, Release 2.2.0

Note: New code should use the chisquare method of a Generator instance instead; please see the Quick
start.

Parameters

df
[float or array_like of floats] Number of degrees of freedom, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array (df) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized chi-square distribution.

Raises

ValueError
When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

See also:

random.Generator.chisquare
which should be used for new code.

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random variables:

df
Q=) X}
i=1
is chi-square distributed, denoted
Q ~ X
The probability density function of the chi-squared distribution is

M e g
P = ey

where I is the gamma function,

1.1. NumPy’s module structure 265

NumPy Reference, Release 2.2.0

References

(1]

Examples

>>> np.random.chisquare (2, 4)
array ([1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random

random.choice (a, size=None, replace=True, p=None)

Generates a random sample from a given 1-D array

Note: New code should use the choice method of a Generator instance instead; please see the Quick start.

Warning: This function uses the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit
platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and
64bit on 64bit platforms.

Parameters

a
[1-D array-like or int] If an ndarray, a random sample is generated from its elements. If an
int, the random sample is generated as if it were np . arange (a)

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

replace
[boolean, optional] Whether the sample is with or without replacement. Default is True, mean-
ing that a value of a can be selected multiple times.

p
[1-D array-like, optional] The probabilities associated with each entry in a. If not given, the

sample assumes a uniform distribution over all entries in a.
Returns

samples
[single item or ndarray] The generated random samples

Raises

ValueError
If ais an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if
p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the
sample size is greater than the population size

See also:
randint, shuffle, permutation

random.Generator.choice
which should be used in new code

266

1. Python API

NumPy Reference, Release 2.2.0

Notes

Setting user-specified probabilities through p uses a more general but less efficient sampler than the default. The
general sampler produces a different sample than the optimized sampler even if each element of p is 1/ len(a).

Sampling random rows from a 2-D array is not possible with this function, but is possible with Generator.
choice through its axis keyword.

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice (5, 3)
array ([0, 3, 4]) # random

>>> #This is equivalent to np.random.randint (0,5, 3)
.

Generate a non-uniform random sample from np.arange(5) of size 3:

-

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array ([3, 3, 0]) # random

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice (5, 3, replace=False)
array ([3,1,0]) # random

>>> #This is equivalent to np.random.permutation (np.arange (5)) [:3]
.

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

-

>>> np.random.choice (5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 01])
array([2, 3, 0]) # random

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']

>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])

array (['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
dtype="'<U11")

random.dirichlet (alpha, size=None)
Draw samples from the Dirichlet distribution.
Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can

be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a
multinomial distribution in Bayesian inference.

Note: New code should use the dirichlet method of a Generator instance instead; please see the Quick
start.

Parameters

alpha
[sequence of floats, length k] Parameter of the distribution (length k for sample of length k).

1.1. NumPy’s module structure 267

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n),thenm * n
* k samples are drawn. Default is None, in which case a vector of length k is returned.

Returns

samples
[ndarray,] The drawn samples, of shape (size, k).

Raises

ValueError
If any value in alpha is less than or equal to zero

See also:

random.Generator.dirichlet
which should be used for new code.

Notes

The Dirichlet distribution is a distribution over vectors that fulfil the conditions z; > 0 and Zle z; = 1.

The probability density function p of a Dirichlet-distributed random vector X is proportional to

p(a) oc [[,

where « is a vector containing the positive concentration parameters.

The method uses the following property for computation: let Y be a random vector which has components that
follow a standard gamma distribution, then X = %Y_Y is Dirichlet-distributed

=1 "7

References

(11, (2]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial
length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but
allowing some variation in the relative sizes of the pieces.

[>>> s = np.random.dirichlet ((10, 5, 3), 20).transpose()

>>> import matplotlib.pyplot as plt

>>> plt.barh(range (20), s[0])

>>> plt.barh(range (20), s[l1], left=s[0], color='g')

>>> plt.barh(range (20), s[2], left=s[0]+s[1], color='r")
>>> plt.title ("Lengths of Strings")

268 1. Python API

NumPy Reference, Release 2.2.0

Lengths of Strings

20

15

10

0.0 0.2 0.4 0.6 0.8 1.0

random.exponential (scale=1.0, size=None)

Draw samples from an exponential distribution.

Its probability density function is
1 1 x
flz;=) = =exp(—=),
for x > 0 and O elsewhere. 3 is the scale parameter, which is the inverse of the rate parameter A = 1/3. The

rate parameter is an alternative, widely used parameterization of the exponential distribution [3].

The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to
Wikipedia [2].

Note: New code should use the exponent ial method of a Generator instance instead; please see the Quick
start.

Parameters

scale
[float or array_like of floats] The scale parameter, 8 = 1/). Must be non-negative.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm

* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array (scale) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized exponential distribution.

See also:

random.Generator.exponential
which should be used for new code.

1.1. NumPy’s module structure 269

NumPy Reference, Release 2.2.0

References

(11, (21, [3]

Examples

A real world example: Assume a company has 10000 customer support agents and the average time between
customer calls is 4 minutes.

>>> n = 10000
>>> time_between_calls = np.random.default_rng() .exponential (scale=4, size=n)

What is the probability that a customer will call in the next 4 to 5 minutes?

>>> x = ((time_between_calls < 5).sum())/n
>>> y = ((time_between_calls < 4).sum())/n
>>> x-y

0.08 # may vary

random. £ (dfnum, dfden, size=None)
Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters must be greater than zero.

The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distri-
bution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Note: New code should use the £ method of a Generator instance instead; please see the Quick start.

Parameters

dfnum
[float or array_like of floats] Degrees of freedom in numerator, must be > 0.

dfden
[float or array_like of float] Degrees of freedom in denominator, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum and
dfden are both scalars. Otherwise, np.broadcast (dfnum, dfden) .size samples
are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized Fisher distribution.
See also:
scipy.stats.f
probability density function, distribution or cumulative density function, etc.

random.Generator. f
which should be used for new code.

270 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f

NumPy Reference, Release 2.2.0

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable
dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the within-
groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

References

(11, [2]

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data gives a
value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f (dfnum, dfden, 1000)

L

The lower bound for the top 1% of the samples is :

g
>>> np.sort(s) [-10]

7.61988120985 # random

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.

random.gamma (shape, scale=1.0, size=None)

Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale (sometimes designated “theta”), where both parameters are > 0.

Note: New code should use the gamma method of a Generator instance instead; please see the Quick start.

Parameters

shape
[float or array_like of floats] The shape of the gamma distribution. Must be non-negative.

scale
[float or array_like of floats, optional] The scale of the gamma distribution. Must be non-
negative. Default is equal to 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if shape and

1.1. NumPy’s module structure 271

NumPy Reference, Release 2.2.0

scale are both scalars. Otherwise, np.broadcast (shape, scale) .size samples
are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized gamma distribution.
See also:
scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

random.Generator.gamma
which should be used for new code.

Notes

The probability density for the Gamma distribution is

b1 efx/G

where £ is the shape and 6 the scale, and I is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally

in processes for which the waiting times between Poisson distributed events are relevant.

References

(11, [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt (2)
>>> s = np.random.gamma (shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> import scipy.special as sps

>>> count, bins, ignored = plt.hist (s, 50, density=True)
>>> y = bins** (shape-1) * (np.exp (-bins/scale) /

ce (sps.gamma (shape) *scale**shape))
>>> plt.plot (bins, y, linewidth=2, color='r')

>>> plt.show ()

random.geometric (p, size=None)

Draw samples from the geometric distribution.

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve

success. It is therefore supported on the positive integers, k = 1, 2,

272

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

16

The probability mass function of the geometric distribution is

flk)=(1—p)*'p

where p is the probability of success of an individual trial.

Note: New code should use the geomet ric method of a Generator instance instead; please see the Quick
start.

Parameters

p
[float or array_like of floats] The probability of success of an individual trial.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array (p) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized geometric distribution.

See also:

random.Generator.geometric
which should be used for new code.

1.1. NumPy’s module structure 273

NumPy Reference, Release 2.2.0

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to
0.35:

[>>> z = np.random.geometric (p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

random.get_state (legacy=True)
Return a tuple representing the internal state of the generator.
For more details, see set_state.

Parameters

legacy
[bool, optional] Flag indicating to return a legacy tuple state when the BitGenerator is
MT19937, instead of a dict. Raises ValueError if the underlying bit generator is not an in-
stance of MT19937.

Returns

out
[{tuple(str, ndarray of 624 uints, int, int, float), dict}] If legacy is True, the returned tuple has
the following items:

the string ‘MT19937".

p—

a 1-D array of 624 unsigned integer keys.
an integer pos.

an integer has_gauss.

A

afloat cached_gaussian.
If legacy is False, or the BitGenerator is not MT19937, then state is returned as a dictionary.

See also:

set_state

Notes
set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

random.gumbel (loc=0.0, scale=1.0, size=None)
Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel
distribution, see Notes and References below.

Note: New code should use the gumbe 1 method of a Generator instance instead; please see the Quick start.

274 1. Python API

NumPy Reference, Release 2.2.0

Parameters

loc
[float or array_like of floats, optional] The location of the mode of the distribution. Default is
0.

scale
[float or array_like of floats, optional] The scale parameter of the distribution. Default is 1.
Must be non- negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.

See also:

scipy.stats.gumbel_1
scipy.stats.gumbel_r
scipy.stats.genextreme
weibull
random.Generator.gumbel
which should be used for new code.

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-like”
tails.

The probability density for the Gumbel distribution is

e @ W/B _aiys

p(m) = Te)

where p is the mode, a location parameter, and (3 is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology liter-
ature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger than if one
used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a
Gaussian process, which underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also
includes the Weibull and Frechet.

The function has a mean of ;¢ + 0.577214 and a variance of %2 B2

1.1. NumPy’s module structure 275

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel (mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

-

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist (s, 30, density=True)
>>> plt.plot (bins, (1/beta)*np.exp(-(bins - mu) /beta)

* np.exp(—np.exp(—(bins - mu) /beta)),
S linewidth=2, color='r")
>>> plt.show ()

.

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

-
>>> means = []

>>> maxima = []
>>> for i in range(0,1000)
a = np.random.normal (mu, beta, 1000)
means.append (a.mean ())
C maxima.append (a.max())
>>> count, bins, ignored = plt.hist (maxima, 30, density=True)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean (maxima) - 0.57721*beta
>>> plt.plot (bins, (1/beta)*np.exp(-(bins - mu) /beta)
* np.exp(-np.exp (- (bins - mu) /beta)),
C linewidth=2, color='r")
>>> plt.plot (bins, 1/ (beta * np.sqrt(2 * np.pi))

(continues on next page)

276

1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
* np.exp (- (bins - mu)**2 / (2 * beta**2)),
C linewidth=2, color='g"')
>>> plt.show ()

0.25 0.30 0.35 0.40 0.45

random. hypergeometric (ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.
Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good

selection), nbad (ways to make a bad selection), and nsample (number of items sampled, which is less than or equal
to the sum ngood + nbad).

Note: New code should use the hypergeomet ric method of a Generator instance instead; please see the

Quick start.
Parameters
ngood
[int or array_like of ints] Number of ways to make a good selection. Must be nonnegative.
nbad
[int or array_like of ints] Number of ways to make a bad selection. Must be nonnegative.
nsample
[int or array_like of ints] Number of items sampled. Must be at least 1 and at most ngood +
nbad.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast (ngood, nbad,
nsample) . size samples are drawn.
Returns

1.1. NumPy’s module structure 277

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution. Each
sample is the number of good items within a randomly selected subset of size nsample taken
from a set of ngood good items and nbad bad items.

See also:
scipy.stats.hypergeom

probability density function, distribution or cumulative density function, etc.

random.Generator. hypergeometric
which should be used for new code.

Notes

The probability mass function (PMF) for the Hypergeometric distribution is

(2 (a2s)
P (l’) = %7
(")
where 0 <z <nandn—-0<z<gyg
for P(x) the probability of x good results in the drawn sample, g = ngood, b = nbad, and n = nsample.

Consider an urn with black and white marbles in it, ngood of them are black and nbad are white. If you draw
nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls
in the drawn sample.

Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.

References

(1], [21, [3]

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10

number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric (ngood, nbad, nsamp, 1000)
>>> from matplotlib.pyplot import hist

>>> hist (s)

note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it
that 12 or more of them are one color?

>>> s = np.random.hypergeometric (15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

278

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom

NumPy Reference, Release 2.2.0

random. laplace (loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).

The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Note: New code should use the 1aplace method of a Generator instance instead; please see the Quick start.

Parameters

loc
[float or array_like of floats, optional] The position, x, of the distribution peak. Default is O.

scale
[float or array_like of floats, optional] A, the exponential decay. Default is 1. Must be non-
negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

See also:

random.Generator. laplace
which should be used for new code.

Notes

It has the probability density function

Fl@; p, A) = % exp (—H> :

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function

of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics
and health sciences, this distribution seems to model the data better than the standard Gaussian distribution.

References

(11, [21, [31, [4]

1.1. NumPy’s module structure 279

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace (loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

r

>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist (s, 30, density=True)
>>> x = np.arange(-8., 8., .01)

>>> pdf = np.exp(-abs(x-loc)/scale)/ (2.*scale)

>>> plt.plot (x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqgrt(2 * np.pi)) *
C.. np.exp(—(x — loc)**2 / (2 * scale**2)))
>>> plt.plot (x,9)

0.5 4

0.4

0.3

0.2 +

0.1 +

0.0 T T

random.logistic (loc=0.0, scale=1.0, size=None)

Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and

scale (>0).

Note: New code should use the 1ogistic method of a Generator instance instead; please see the Quick

start.

Parameters

loc

[float or array_like of floats, optional] Parameter of the distribution. Default is O.

280

1. Python API

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats, optional] Parameter of the distribution. Must be non-negative.
Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized logistic distribution.
See also:
scipy.stats.logistic
probability density function, distribution or cumulative density function, etc.

random.Generator.logistic
which should be used for new code.

Notes

The probability density for the Logistic distribution is
e—(@—p)/s
5(1 + e_(x_ﬂ)/S)Q ’

P(z) = P(x) =

where . = location and s = scale.

The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions,
in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming
the performance of each player is a logistically distributed random variable.

References

(11, (21, [3]

Examples

Draw samples from the distribution:

-
>>> loc, scale = 10, 1

>>> s = np.random.logistic(loc, scale, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist (s, bins=50)

plot against distribution

p
>>> def logist (x, loc, scale):

return np.exp((loc—x)/scale)/ (scale* (l+np.exp((loc—x)/scale)) **2)
>>> lgst_val = logist (bins, loc, scale)
>>> plt.plot (bins, lgst_val * count.max() / lgst_val.max())
>>> plt.show ()

1.1.

NumPy’s module structure 281

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic

NumPy Reference, Release 2.2.0

1000

800

600 -

400

200 A

00 25 50 75 100 125 15.0 17.5 20.0

random.lognormal (mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.
Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note

that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Note: New code should use the 1 ognormal method of a Generator instance instead; please see the Quick

start.
Parameters
mean
[float or array_like of floats, optional] Mean value of the underlying normal distribution. De-
fault is 0.
sigma
[float or array_like of floats, optional] Standard deviation of the underlying normal distribution.
Must be non-negative. Default is 1.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * ksamples are drawn. If size is None (default), a single value is returned if mean and
sigma are both scalars. Otherwise, np.broadcast (mean, sigma) .size samples
are drawn.
Returns
out
[ndarray or scalar] Drawn samples from the parameterized log-normal distribution.
See also:

scipy.stats.lognorm
probability density function, distribution, cumulative density function, etc.

282 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm

NumPy Reference, Release 2.2.0

random.Generator.lognormal
which should be used for new code.

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function for the
log-normal distribution is:

() 1 (- <zn(m>5u)2)
r) = ——€ 20
P oxV 2T

where p is the mean and o is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

(11, (2]

Examples

Draw samples from the distribution:

g
>>> mu, sigma = 3., 1. # mean and standard deviation

>>> s = np.random.lognormal (mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid'")
.

>>> x = np.linspace (min(bins), max(bins), 10000)
>>> pdf = (np.exp(—(np.log(x) - mu)**2 / (2 * sigma**2))
/ (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot (x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show ()

.

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal
probability density function.

p
>>> # Generate a thousand samples: each is the product of 100 random

>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range (1000) :
a = 10. + np.random.standard_normal (100)
b.append (np.prod(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive

>>> count, bins, ignored = plt.hist (b, 100, density=True, align='mid')
>>> sigma = np.std(np.log (b))

>>> mu = np.mean (np.log (b))

1.1. NumPy’s module structure 283

NumPy Reference, Release 2.2.0

0.035
0.030
0.025
0.020
0.015
0.010 +

0.005 -

0.000 - T T T T
0 50 100 150 200 250 300

-
>>> x = np.linspace (min (bins), max(bins), 10000)

>>> pdf = (np.exp(—(np.log(x) — mu)**2 / (2 * sigma**2))
/ (x * sigma * np.sqrt (2 * np.pi)))

>>> plt.plot (x, pdf, color='r', linewidth=2)
>>> plt.show ()

0.0175 4
0.0150 -
0.0125
0.0100 +
0.0075
0.0050 +

0.0025 +

0.0000 - T T T
0 200 400 600 800

random.logseries (p, size=None)

Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified shape parameter, 0 <=p < 1.

Note: New code should use the 1 ogseries method of a Generator instance instead; please see the Quick

284 1. Python API

NumPy Reference, Release 2.2.0

start.

Parameters

p
[float or array_like of floats] Shape parameter for the distribution. Must be in the range [0, 1).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array (p) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized logarithmic series distribution.
See also:
scipy.stats.logser
probability density function, distribution or cumulative density function, etc.

random.Generator.logseries
which should be used for new code.

Notes

The probability density for the Log Series distribution is

_
Pik) = kIn(1 —p)’

where p = probability.

The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher,
Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3].

References

(11, (21, (3], [4]

Examples

Draw samples from the distribution:

>>> a = .6

>>> s = np.random.logseries(a, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist (s)

plot against distribution

1.1. NumPy’s module structure 285

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser

NumPy Reference, Release 2.2.0

>>> def logseries(k, p):

.. return -p**k/ (k*np.log(l-p))

>>> plt.plot (bins, logseries(bins, a)*count.max()/
logseries (bins, a).max (), 'r')

>>> plt.show ()

8000

random.multinomial (n, pvals, size=None)

Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with
one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1
through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_1i = [X_0,
X_1, ..., X_pl,represent the number of times the outcome was i.

Note: New code should use the multinomial method of a Generator instance instead; please see the Quick
start.

Warning: This function defaults to the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit
platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and
64bit on 64bit platforms.

Parameters

n
[int] Number of experiments.

pvals
[sequence of floats, length p] Probabilities of each of the p different outcomes. These must

sum to 1 (however, the last element is always assumed to account for the remaining probability,
aslong as sum (pvals[:-1]) <= 1).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm

286 1. Python API

NumPy Reference, Release 2.2.0

* n * k samples are drawn. Default is None, in which case a single value is returned.
Returns

out
[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out [1, J, ..., :] is an N-dimensional value drawn from the
distribution.

See also:

random.Generator .multinomial
which should be used for new code.

Examples

Throw a dice 20 times:

>>> np.random.multinomial (20, [1/6.]1*6, size=1)
array ([[4, 1, 7, 5, 2, 1]1]1) # random

It landed 4 times on 1, once on 2, etc.

Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial (20, [1/6.]%*6, size=2)
array ([[3, 4, 3, 3, 4, 3], # random
(2, 4, 3, 4, 0, 711)

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.

A loaded die is more likely to land on number 6:

>>> np.random.multinomial (100, [1/7.1*5 + [2/7.1])
array([11, 16, 14, 17, 16, 26]) # random

The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and
assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice
as much weight on one side as on the other should be sampled like so:

>>> np.random.multinomial (100, [1.0 / 3, 2.0 / 31) # RIGHT
array ([38, 62]) # random

not like:

>>> np.random.multinomial (100, [1.0, 2.0]) # WRONG
Traceback (most recent call last):
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

random.multivariate_normal (mean, cov, size=None, check_valid="warn', tol=1e-8)

Draw random samples from a multivariate normal distribution.

The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal
distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These pa-
rameters are analogous to the mean (average or “center”) and variance (standard deviation, or “width,” squared) of
the one-dimensional normal distribution.

1.1. NumPy’s module structure 287

NumPy Reference, Release 2.2.0

Note: New code should use the multivariate_normal method of a Generator instance instead; please
see the Quick start.

Parameters

mean
[1-D array_like, of length N] Mean of the N-dimensional distribution.

cov
[2-D array_like, of shape (N, N)] Covariance matrix of the distribution. It must be symmetric
and positive-semidefinite for proper sampling.

size
[int or tuple of ints, optional] Given a shape of, for example, (m, n, k), m*n*k samples are
generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-dimensional,
the output shape is (m, n, k, N) . If no shape is specified, a single (N-D) sample is returned.

check_valid
[{ ‘warn’, ‘raise’, ‘ignore’ }, optional] Behavior when the covariance matrix is not positive
semidefinite.

tol
[float, optional] Tolerance when checking the singular values in covariance matrix. cov is cast
to double before the check.

Returns

out
[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out [1, j, ..., :] is an N-dimensional value drawn from the
distribution.

See also:

random.Generator.multivariate_normal
which should be used for new code.

Notes
The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be
generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution.

Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we
draw N-dimensional samples, X = [21, xa, ...z y|. The covariance matrix element Cj; is the covariance of z; and
x;. The element Cj; is the variance of x; (i.e. its “spread”).

Instead of specifying the full covariance matrix, popular approximations include:
* Spherical covariance (cov is a multiple of the identity matrix)
 Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

1. Python API

NumPy Reference, Release 2.2.0

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt

>>> x, y = np.random.multivariate_normal (mean, cov, 5000).T
>>> plt.plot(x, y, 'x")

>>> plt.axis('equal')

>>> plt.show ()

Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior
of this method is undefined and backwards compatibility is not guaranteed.

References

(11, (2]

Examples

>>> mean = (1, 2)

>>> cov = [[1, 0], [0, 11]

>>> x = np.random.multivariate_normal (mean, cov, (3, 3))
>>> x.shape

(3, 3, 2)

Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6,
-3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively,
and the expected correlation coefficient is -3/sqrt(6¥3.5) ~ -0.65465.

>>> cov = np.array([[6, -3]1, [-3, 3.511)
>>> pts = np.random.multivariate_normal ([0, 0], cov, size=800)

Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values:

>>> pts.mean (axis=0)

array ([0.0326911 , -0.01280782]) # may vary
>>> np.cov (pts.T)
array ([[5.96202397, -2.85602287]

[-2.85602287, 3.47613949]]) # may vary
>>> np.corrcoef (pts.T) [0, 1]
-0.6273591314603949 # may vary

L

We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation
of the components of this sample.

>>> import matplotlib.pyplot as plt

>>> plt.plot (pts([:, 0], pts(:, 1], '.', alpha=0.5)
>>> plt.axis('equal')
>>> plt.grid()

>>> plt.show ()

random.negative_binomial (n, p, size=None)

Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability
of success where n is > 0 and p is in the interval [0, 1].

1.1. NumPy’s module structure 289

NumPy Reference, Release 2.2.0

T
-10.0 =75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Note: New code should use the negative_binomial method of a Generator instance instead; please see
the Quick start.

Parameters

n
[float or array_like of floats] Parameter of the distribution, > 0.

p
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast (n, p) .size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of failures that occurred before a total of n
successes was reached.

Warning: This function returns the C-long dtype, which is 32bit on windows and otherwise
64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer
is 32bit on 32bit platforms and 64bit on 64bit platforms.

See also:

random.Generator.negative_binomial
which should be used for new code.

290 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability mass function of the negative binomial distribution is

I'(N +n)

P(N;n,p) = NIT(n)

N
where n is the number of successes, p is the probability of success, N + n is the number of trials, and I" is the
gamma function. When n is an integer, FJ\(,I,\;J(ZL)) = (M*¢~1), which is the more common form of this term in the
pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the
last trial.

If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number of
non-“1"s that appear before the third “1” is a negative binomial distribution.

References

(11, [2]

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success
of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial (1, 0.1, 100000)
>>> for i in range (1, 11):
probability = sum(s<i) / 100000.
print (1, "wells drilled, probability of one success =", probability)

random.noncentral_chisquare (df, nonc, size=None)

Draw samples from a noncentral chi-square distribution.

The noncentral x? distribution is a generalization of the x? distribution.

Note: New code should use the noncentral_chisquare method of a Generator instance instead; please
see the Quick start.

Parameters

df
[float or array_like of floats] Degrees of freedom, must be > 0.

nonc
[float or array_like of floats] Non-centrality, must be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
and nonc are both scalars. Otherwise, np.broadcast (df, nonc) .size samples are
drawn.

Returns

1.1. NumPy’s module structure 291

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distribution.

See also:

random.Generator.noncentral_chisquare
which should be used for new code.

Notes

The probability density function for the noncentral Chi-square distribution is

> —nonc/2 2)¢
e nonc
P(z;df,nonc) = E ; /2) Py 0i(2),
i=0 '

where Yy, is the Chi-square with q degrees of freedom.

References

(1]

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt

>>> values = plt.hist (np.random.noncentral_chisquare (3, 20, 100000),
. bins=200, density=True)

>>> plt.show()

0.04 +

0.03 +

0.02 +

0.01 +

0.00 -

70 80

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

292 1. Python API

NumPy Reference, Release 2.2.0

>>>
>>>

>>>
>>>

plt.figure ()

values = plt.hist (np.random.noncentral_chisquare (3, .0000001,
bins=np.arange (0., 25, .1), density=True)

values2 = plt.hist (np.random.chisquare (3, 100000),
bins=np.arange (0., 25, .1), density=True)

plt.plot (values[1][0:-1], values[0]-values2[0], 'ob'")

plt.show ()

100000),

0.25

0.20 +

0.15 +

0.10 +

0.05 +

0.00 +

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

>>>
>>>

>>>

plt.figure ()

values = plt.hist (np.random.noncentral_chisquare (3, 20, 100000),

bins=200, density=True)
plt.show ()

0.04 +

0.03 +

0.02 +

0.01 +

0.00 -

80

random.noncentral_f£ (dfnum, dfden, nonc, size=None)

1.1. NumPy’s module structure

293

NumPy Reference, Release 2.2.0

Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Note: New code should use the noncentral_f method of a Generator instance instead; please see the
Quick start.

Parameters

dfnum
[float or array_like of floats] Numerator degrees of freedom, must be > 0.

dfden
[float or array_like of floats] Denominator degrees of freedom, must be > 0.

nonc
[float or array_like of floats] Non-centrality parameter, the sum of the squares of the numerator
means, must be >= 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum, df—
den, and nonc are all scalars. Otherwise, np.broadcast (dfnum, dfden, nonc).
size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribution.

See also:

random.Generator.noncentral_f
which should be used for new code.

Notes
When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific

alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic
follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic.

References

(11, (2]

294 1. Python API

NumPy Reference, Release 2.2.0

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null
hypothesis. We'll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom

>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0

>>> nc_vals = np.random.noncentral_f (dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f (dfnum, dfden, 1000000)

>>> F = np.histogram(c_vals, bins=50, density=True)
>>> import matplotlib.pyplot as plt

>>> plt.plot (F[1][1:], F[0])

>>> plt.plot (NF[1][1:], NF[O0])

>>> plt.show ()

0.6

0.5 4

0.4 +

0.3 +

0.2 +

0.1 A

0.0 +

random.normal (loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.
The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both

Gauss and Laplace independently [2], is often called the bell curve because of its characteristic shape (see the
example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of
samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2].

Note: New code should use the normal method of a Generator instance instead; please see the Quick start.

Parameters

loc
[float or array_like of floats] Mean (“centre”) of the distribution.

1.1. NumPy’s module structure 295

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats] Standard deviation (spread or “width”) of the distribution. Must
be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1oc and
scale are both scalars. Otherwise, np.broadcast (loc, scale) .size samples are
drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized normal distribution.

See also:

scipy.stats.norm
probability density function, distribution or cumulative density function, etc.

random.Generator.normal
which should be used for new code.

Notes

The probability density for the Gaussian distribution is

1 (z—p)?

pz) = ooz’ 207,

where 1 is the mean and ¢ the standard deviation. The square of the standard deviation, o

2. is called the variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches
0.607 times its maximum at + o and x — o [2]). This implies that normal is more likely to return samples lying
close to the mean, rather than those far away.

References

(11, [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation

>>> s = np.random.normal (mu, sigma, 1000)
.

Verify the mean and the standard deviation:

-
>>> abs(mu - np.mean(s))

0.0 # may vary
.-

-

>>> abs(sigma - np.std(s, ddof=1))
0.1 # may vary

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm

NumPy Reference, Release 2.2.0

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist (s, 30, density=True)
>>> plt.plot (bins, 1/(sigma * np.sqrt(2 * np.pi)) *
np.exp(- (bins - mu)**2 / (2 * sigma**2)),
C.. linewidth=2, color='r")
>>> plt.show ()

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> np.random.normal (3, 2.5, size=(2, 4))
array ([[-4.49401501, 4.00950034, -1.81814867, 7.297186771, # random
[0.39924804, 4.68456316, 4.99394529, 4.84057254]]1) # random

random.pareto (a, size=None)

Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained
from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes). The smallest value
of the Lomax distribution is zero while for the classical Pareto distribution it is mu, where the standard Pareto
distribution has location mu = 1. Lomax can also be considered as a simplified version of the Generalized Pareto
distribution (available in SciPy), with the scale set to one and the location set to zero.

The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20 rule”.
In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent
fill the remaining 80 percent of the range.

Note: New code should use the pareto method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Shape of the distribution. Must be positive.

1.1. NumPy’s module structure 297

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized Pareto distribution.
See also:
scipy.stats.lomax
probability density function, distribution or cumulative density function, etc.

scipy.stats.genpareto
probability density function, distribution or cumulative density function, etc.

random.Generator.pareto
which should be used for new code.

Notes

The probability density for the Pareto distribution is

am®

p(z) = Zatl

where a is the shape and m the scale.

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also
found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download

frequency for projects in Sourceforge [1]. It is one of the so-called “fat-tailed” distributions.

References

(11, [21, [31, [4]

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode

>>> s = (np.random.pareto(a, 1000) + 1) * m
(.

Display the histogram of the samples, along with the probability density function:

r

>>> import matplotlib.pyplot as plt

>>> count, bins, _ = plt.hist (s, 100, density=True)

>>> fit = a*m**a / bins** (a+1)

>>> plt.plot (bins, max(count)*fit/max (fit), linewidth=2, color='r"')
>>> plt.show ()

298 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto

NumPy Reference, Release 2.2.0

1.2

1.0

0.8

0.6

0.4 +

0.2 +

0.0 - T T T T T T

random.permutation (x)

Randomly permute a sequence, or return a permuted range.

If x is a multi-dimensional array, it is only shuffled along its first index.

Note: New code should use the permutat ion method of a Generator instance instead; please see the Quick
start.

Parameters

X
[int or array_like] If x is an integer, randomly permute np.arange (x). If x is an array,
make a copy and shuffle the elements randomly.

Returns
out
[ndarray] Permuted sequence or array range.

See also:

random.Generator.permutation
which should be used for new code.

1.1. NumPy’s module structure 299

NumPy Reference, Release 2.2.0

Examples

L

>>> np.random.permutation (10)
array ([, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

.

>>> np.random.permutation([1, 4, 9, 12, 15])
array ([15, 1, 9, 4, 12]) # random

-

.

>>> arr = np.arange (9) .reshape((3, 3))
>>> np.random.permutation (arr)
array ([[6, 7, 8], # random

[0, 1, 21,

[3, 4, 511)

random.poisson (lam=1.0, size=None)

Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution for large N.

Note: New code should use the poisson method of a Generator instance instead; please see the Quick start.

Parameters

lam
[float or array_like of floats] Expected number of events occurring in a fixed-time interval,
must be >= 0. A sequence must be broadcastable over the requested size.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm
* n * k samples are drawn. If size is None (default), a single value is returned if 1am is a
scalar. Otherwise, np.array (lam) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

See also:

random.Generator.poisson
which should be used for new code.

Notes

The probability mass function (PMF) of Poisson distribution is

Aee—A

f(E;A) = i

For events with an expected separation A the Poisson distribution f(k; \) describes the probability of k events
occurring within the observed interval A.

Because the output is limited to the range of the C int64 type, a ValueError is raised when lam is within 10 sigma
of the maximum representable value.

300

1. Python API

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson (5, 10000)

Display histogram of the sample:

-

>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist(s, 14, density=True)
>>> plt.show ()

.

0.25

0.20 +

0.15 +

0.10 +

0.05 +

0.00 - T T T
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5

Draw each 100 values for lambda 100 and 500:

[>>> s = np.random.poisson (lam=(100., 500.), size=(100, 2))

random.power (a, size=None)

Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

Also known as the power function distribution.

Note: New code should use the power method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Parameter of the distribution. Must be non-negative.

1.1. NumPy’s module structure 301

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized power distribution.

Raises

ValueError
Ifa<=0.

See also:

random.Generator.power
which should be used for new code.

Notes

The probability density function is
P(z;a) =az® ',0<z<1,a>0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case
of the Beta distribution.

It is used, for example, in modeling the over-reporting of insurance claims.

References

(11, [2]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power (a, samples)

.

Display the histogram of the samples, along with the probability density function:

-

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist (s, bins=30)

>>> x = np.linspace (0, 1, 100)
>>> y = a*x** (a-1.)
>>> normed_y = samples*np.diff (bins) [0]*y

>>> plt.plot (x, normed_y)
>>> plt.show ()

Compare the power function distribution to the inverse of the Pareto.

302 1. Python API

NumPy Reference, Release 2.2.0

140

120

100 A

80 A

60 -

40

20

0.0 0.2

>>> from scipy import stats

>>> rvs = np.random.power (5, 1000000)
>>> rvsp = np.random.pareto (5, 1000000)
>>> xx = np.linspace(0,1,100)

>>> powpdf = stats.powerlaw.pdf (xx,5)

>>> plt.figure()

>>> plt.hist (rvs, bins=50, density=True)
>>> plt.plot (xx, powpdf, "'r—")

>>> plt.title('np.random.power (5) ")

>>> plt.figure ()

>>> plt.hist(1./(1l.+rvsp), bins=50, density=True)
>>> plt.plot (xx, powpdf, "'r-")

>>> plt.title('inverse of 1 + np.random.pareto(5)"')

>>> plt.figure()

>>> plt.hist(1./(1l.+rvsp), bins=50, density=True)
>>> plt.plot (xx, powpdf, 'r—")

>>> plt.title('inverse of stats.pareto(5)"')

random.rand (d0, dI, ..., dn)

Random values in a given shape.

Note: This is a convenience function for users porting code from Matlab, and wraps random_sample. That
function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like numpy .
zeros and numpy.ones.

Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).
Parameters

do, d1, ...,dn
[int, optional] The dimensions of the returned array, must be non-negative. If no argument is

1.1. NumPy’s module structure 303

NumPy Reference, Release 2.2.0

np.random.power(5)

0.0

0.2

inverse of 1 + np.random.pareto(5)

0.0

0.2

304

1. Python API

NumPy Reference, Release 2.2.0

inverse of stats.pareto(5)

0.0 0.2

given a single Python float is returned.
Returns

out
[ndarray, shape (d0, di, ..., dn)]Random values.

See also:

random

Examples

>>> np.random.rand (3, 2)

array ([[0.14022471, 0.963606187, #random
[0.37601032, 0.25528411], #random
[0.49313049, 0.94909878]]) #random

random. randint (low, high=None, size=None, dtype=int)

Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval
[low, high). If high is None (the default), then results are from [0, low).

Note: New code should use the integers method of a Generator instance instead; please see the Quick
start.

Parameters

low
[int or array-like of ints] Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is one above the highest such integer).

high
[int or array-like of ints, optional] If provided, one above the largest (signed) integer to be

1.1. NumPy’s module structure 305

NumPy Reference, Release 2.2.0

drawn from the distribution (see above for behavior if high=None). If array-like, must
contain integer values

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result. Byteorder must be native. The default value is
long.

Warning: This function defaults to the C-long dtype, which is 32bit on windows and
otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s
default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Which corresponds
to np.intp. (dtype=int is not the same as in most NumPy functions.)

Returns

out
[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

random_integers
similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.

random.Generator. integers
which should be used for new code.

Examples

>>> np.random.randint (2, size=10)

array ([, 0, 0, 0, 2, 1, 0, 0, 1, 0]) # random
>>> np.random.randint (1, size=10)

array([O, 0, 0, O, O, O, O, O, 0, 01)

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint (5, size=(2, 4))
array([[4, 0, 2, 1], # random
13, 2, 2, Q]1)

.

Generate a 1 x 3 array with 3 different upper bounds

p
>>> np.random.randint (1, [3, 5, 10])

array([2, 2, 9]) # random

Generate a 1 by 3 array with 3 different lower bounds

>>> np.random.randint ([1, 5, 7], 10)
array ([9, 8, 7]) # random
.

Generate a 2 by 4 array using broadcasting with dtype of uint8

306 1. Python API

NumPy Reference, Release 2.2.0

>>> np.random.randint ([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
array ([[8, 6, 9, 7], # random
[1, 16, 9, 12]], dtype=uint8)

random.randn (d0, dlI, ..., dn)

Return a sample (or samples) from the “standard normal” distribution.

Note: This is a convenience function for users porting code from Matlab, and wraps standard_normal.
That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like
numpy.zeros and numpy.ones.

Note: New code should use the st andard_normal method of a Generator instance instead; please see the
Quick start.

If positive int_like arguments are provided, randn generates an array of shape (d0, d1, ..., dn), filled
with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1. A single
float randomly sampled from the distribution is returned if no argument is provided.

Parameters

do, d1, ...,dn
[int, optional] The dimensions of the returned array, must be non-negative. If no argument is
given a single Python float is returned.

Returns

Z
[ndarray or float] A (d0, d1, ..., dn)-shaped array of floating-point samples from the
standard normal distribution, or a single such float if no parameters were supplied.

See also:
standard_normal
Similar, but takes a tuple as its argument.

normal
Also accepts mu and sigma arguments.

random.Generator.standard _normal
which should be used for new code.

Notes

For random samples from the normal distribution with mean mu and standard deviation s igma, use:

[sigma * np.random.randn(...) + mu

1.1. NumPy’s module structure 307

NumPy Reference, Release 2.2.0

Examples

>>> np.random.randn ()
2.1923875335537315 # random

L

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

-
>>> 3 + 2.5 * np.random.randn (2, 4)

array ([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
[0.39924804, 4.68456316, 4.99394529, 4.84057254]1]1) # random

random. random (size=None)
Return random floats in the half-open interval [0.0, 1.0). Alias for random_samp1e to ease forward-porting to
the new random API.
random.random_integers (low, high=None, size=None)
Random integers of type numpy . int_ between low and high, inclusive.
Return random integers of type numpy . int_ from the “discrete uniform” distribution in the closed interval [low,

high]. If high is None (the default), then results are from [1, low]. The numpy . int_ type translates to the C long
integer type and its precision is platform dependent.

This function has been deprecated. Use randint instead.
Deprecated since version 1.11.0.
Parameters

low
[int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in which
case this parameter is the highest such integer).

high
[int, optional] If provided, the largest (signed) integer to be drawn from the distribution (see
above for behavior if high=None).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out
[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:
randint

Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value if high
is omitted.

308 1. Python API

NumPy Reference, Release 2.2.0

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

[a + (b - a) * (np.random.random_integers(N) - 1) / (N — 1.)

Examples

>>> np.random.random_integers (5)
4 # random
>>> type (np.random.random_integers (5))
<class 'numpy.int64'>
>>> np.random.random_integers (5, size=(3,2))
array ([[5, 4], # random

[3, 31,

(4, 511)

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from
the set 0,5/8,10/8,15/8,20/8):

>>> 2.5 * (np.random.random_integers (5, size=(5,)) - 1) / 4.
array ([0.625, 1.25 , 0.625, 0.625, 2.5 1) # random

Roll two six sided dice 1000 times and sum the results:

-
>>> dl = np.random.random_integers(l, 6, 1000)
>>> d2 = np.random.random_integers(l, 6, 1000)
>>> dsums = dl + d2

.

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist (dsums, 11, density=True)
>>> plt.show()

1.1. NumPy’s module structure 309

NumPy Reference, Release 2.2.0

random.random_sample (size=None)

Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample Unifla,b),b > a
multiply the output of random_sample by (b-a) and add a:

[(b - a) * random_sample () + a]

Note: New code should use the random method of a Generat or instance instead; please see the Quick start.

Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out
[float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

See also:

random.Generator.random
which should be used for new code.

Examples

>>> np.random.random_sample ()

0.47108547995356098 # random

>>> type (np.random.random_sample ())

<class 'float'>

>>> np.random.random_sample ((5,))

array ([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample ((3, 2)) — 5

array ([[-3.99149989, -0.52338984], # random
[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]11)

random. ranf (*args, **kwargs)

This is an alias of random_sample. See random_sample for the complete documentation.

random. rayleigh (scale=1.0, size=None)

Draw samples from a Rayleigh distribution.

The x and Weibull distributions are generalizations of the Rayleigh.

Note: New code should use the rayleigh method of a Generator instance instead; please see the Quick
start.

310 1. Python API

NumPy Reference, Release 2.2.0

Parameters

scale
[float or array_like of floats, optional] Scale, also equals the mode. Must be non-negative.
Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array (scale) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

See also:

random.Generator.rayleigh
which should be used for new code.

Notes

The probability density function for the Rayleigh distribution is

2

X —x
P(x;scale) = ———e2scarc®
scale

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

References

(11, (2]

Examples

Draw values from the distribution and plot the histogram

>>> from matplotlib.pyplot import hist
>>> values = hist (np.random.rayleigh (3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are
likely to be larger than 3 meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt (2 / np.pi) * meanvalue
>>> s = np.random.rayleigh (modevalue, 1000000)

.

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003 # random

1.1. NumPy’s module structure 311

NumPy Reference, Release 2.2.0

random. sample (*args, **kwargs)

This is an alias of random_sample. See random_sample for the complete documentation.

random. seed (seed=None)

Reseed the singleton RandomState instance.

See also:

numpy . random. Generator

Notes

This is a convenience, legacy function that exists to support older code that uses the singleton RandomState. Best
practice is to use a dedicated Generator instance rather than the random variate generation methods exposed
directly in the random module.

random. set_state (state)

Set the internal state of the generator from a tuple.

For use if one has reason to manually (re-)set the internal state of the bit generator used by the RandomState
instance. By default, RandomState uses the “Mersenne Twister”[1] pseudo-random number generating algorithm.

Parameters

state
[{tuple(str, ndarray of 624 uints, int, int, float), dict}] The state tuple has the following items:

1. the string ‘MT19937’, specifying the Mersenne Twister algorithm.

2. a 1-D array of 624 unsigned integers keys.

3. an integer pos.

4. aninteger has_gauss.

5. afloat cached_gaussian.

If state is a dictionary, it is directly set using the BitGenerators state property.
Returns

out
[None] Returns ‘None’ on success.

See also:

get_state

Notes
set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some
information about the cached Gaussian value: state = ('MT19937', keys, pos).

312

1. Python API

NumPy Reference, Release 2.2.0

rand

References

(1]
om.shuffle (x)
Modify a sequence in-place by shuffling its contents.

This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is
changed but their contents remains the same.

Note: New code should use the shuff1e method of a Generator instance instead; please see the Quick start.

Parameters

X
[ndarray or MutableSequence] The array, list or mutable sequence to be shuffled.

Returns

None
See also:

random.Generator.shuffle
which should be used for new code.

-

L

Examples

>>> arr = np.arange (10)
>>> np.random.shuffle (arr)
>>> arr

[1 752 943 6 0 8] # random

Multi-dimensional arrays are only shuffled along the first axis:

-

>>> arr = np.arange (9) .reshape ((3, 3))
>>> np.random.shuffle (arr)

>>> arr

array ([[3, 4, 5], # random
6, 7, 81,
[0, 1, 211)

rand

om.standard_cauchy (size=None)

Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Note: New code should use the standard cauchy method of a Generator instance instead; please see
the Quick start.

Parameters

1.1. NumPy’s module structure 313

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
samples
[ndarray or scalar] The drawn samples.

See also:

random.Generator. standard_cauchy
which should be used for new code.

Notes

The probability density function for the full Cauchy distribution is

1

P(x;30,7) =

and the Standard Cauchy distribution just sets 9 = 0 and v = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral
line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x
axis.

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distri-
bution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like
a Gaussian distribution, but with heavier tails.

References

(11, [21, [3]

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt

>>> s = np.random.standard_cauchy (1000000)

>>> 5 = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist (s, bins=100)

>>> plt.show ()

random.standard_exponential (size=None)

Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Note: New code should use the standard_exponential method of a Generat or instance instead; please
see the Quick start.

Parameters

314 1. Python API

NumPy Reference, Release 2.2.0

140000 A
120000 -
100000 -
80000 -+
60000 -
40000 A

20000 -+

0 T
-20 -10 0 10 20

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.
Returns
out

[float or ndarray] Drawn samples.
See also:

random.Generator.standard_exponential
which should be used for new code.

Examples

Output a 3x8000 array:

[>>> n = np.random.standard_exponential ((3, 8000))

random. standard_gamma (shape, size=None)

Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale=1.

Note: New code should use the standard_gamma method of a Generator instance instead; please see the
Quick start.

Parameters

shape
[float or array_like of floats] Parameter, must be non-negative.

1.1. NumPy’s module structure 315

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if shape
is a scalar. Otherwise, np.array (shape) . size samples are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.
See also:
scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

random.Generator. standard_gamma
which should be used for new code.

Notes

The probability density for the Gamma distribution is

—x/0
_ o k-16

where £k is the shape and 6 the scale, and I" is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

(11, [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma (shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> import scipy.special as sps

>>> count, bins, ignored = plt.hist(s, 50, density=True)

>>> y = bins** (shape-1) * ((np.exp(-bins/scale))/

. (sps.gamma (shape) * scale**shape))
>>> plt.plot (bins, y, linewidth=2, color='r')

>>> plt.show ()

316

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

I I I I
0.0 2.5 5.0 7.5 100 12,5 15.0 175

random.standard_normal (size=None)

Draw samples from a standard Normal distribution (mean=0, stdev=1).

Note: New code should use the st andard_normal method of a Generator instance instead; please see the
Quick start.

Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.
Returns

out
[float or ndarray] A floating-point array of shape size of drawn samples, or a single sample
if size was not specified.

See also:

normal
Equivalent function with additional Loc and scale arguments for setting the mean and standard deviation.

random.Generator.standard _normal
which should be used for new code.

1.1. NumPy’s module structure 317

NumPy Reference, Release 2.2.0

Notes

For random samples from the normal distribution with mean mu and standard deviation sigma, use one of:

mu + sigma * np.random.standard_normal (size=...)
np.random.normal (mu, sigma, size=...)

Examples

L

>>> np.random.standard_normal ()
2.1923875335537315 #random

>>> s = np.random.standard_normal (8000)

>>> s

array ([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
-0.38672696, -0.4685006]) # random

>>> s.shape

(8000,)

>>> s = np.random.standard_normal (size=(3, 4, 2))

>>> s.shape

(3, 4, 2)

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 3 + 2.5 * np.random.standard_normal (size=(2, 4))
array ([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
[0.39924804, 4.68456316, 4.99394529, 4.84057254]11]) # random

rand

om.standard_t (df, size=None)
Draw samples from a standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

Note: New code should use the st andard_t method of a Generat or instance instead; please see the Quick

start.
Parameters
df
[float or array_like of floats] Degrees of freedom, must be > 0.
size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array (df) . size samples are drawn.
Returns
out
[ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribution.
See also:

318

1. Python API

NumPy Reference, Release 2.2.0

random.Generator.standard_t
which should be used for new code.

Notes

The probability density function for the t distribution is

P(z,df) =

wdfr (4 T

&

r(4H) (1 x2)7<df+1>/2
)

N

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.

The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

References

(11, [2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in kilojoules (kJ) is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will
be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either
positive or negative, hence making our test 2-tailed.

Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom.
We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard
deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an
unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square
root).

>>> np.mean (intake)

6753.636363636364

>>> intake.std(ddof=1)

1142.1232221373727

>>> t = (np.mean (intake)-7725)/ (intake.std(ddof=1)/np.sqrt (len (intake)))
>>> t

-2.8207540608310198

We draw 1000000 samples from Student’s t distribution with the adequate degrees of freedom.

>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_t (10, size=1000000)
>>> h = plt.hist (s, bins=100, density=True)

Does our t statistic land in one of the two critical regions found at both tails of the distribution?

1.1. NumPy’s module structure 319

NumPy Reference, Release 2.2.0

>>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
0.018318 4#random < 0.05, statistic is in critical region

The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance
threshold.

Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being
true is too low, and we reject the null hypothesis of no deviation.

0.4

0.3

0.2 +

0.1 +

00 T T T T T T
-15 -10 -5 0 5 10 15

random.triangular (left, mode, right, size=None)

Draw samples from the triangular distribution over the interval [1left, right].

The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Note: New code should use the t riangular method of a Generator instance instead; please see the Quick
start.

Parameters

left
[float or array_like of floats] Lower limit.

mode
[float or array_like of floats] The value where the peak of the distribution occurs. The value
must fulfill the condition 1eft <= mode <= right.

right
[float or array_like of floats] Upper limit, must be larger than left.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm *
n * k samples are drawn. If size is None (default), a single value is returned if 1e ft, mode,
and right are all scalars. Otherwise, np.broadcast (left, mode, right) .size
samples are drawn.

320 1. Python API

NumPy Reference, Release 2.2.0

Returns

out
[ndarray or scalar] Drawn samples from the parameterized triangular distribution.

See also:

random.Generator.triangular
which should be used for new code.

Notes

The probability density function for the triangular distribution is

2(x—1
o forl <a <m,
P(z;l,m,r) = (TEE)T(—_T‘:”) form<z<r,
0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used in simulations.

References

(1]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt

>>> h = plt.hist (np.random.triangular (-3, 0, 8, 100000), bins=200,
L. density=True)

>>> plt.show ()

0.175 +
0.150
0.125
0.100
0.075
0.050 -

0.025

0.000 -

1.1. NumPy’s module structure 321

NumPy Reference, Release 2.2.0

random.uniform (low=0.0, high=1.0, size=None)

Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [1ow, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uniform.

Note: New code should use the uni formmethod of a Generator instance instead; please see the Quick start.

Parameters

low
[float or array_like of floats, optional] Lower boundary of the output interval. All values gen-
erated will be greater than or equal to low. The default value is 0.

high
[float or array_like of floats] Upper boundary of the output interval. All values generated will
be less than or equal to high. The high limit may be included in the returned array of floats due
to floating-point rounding in the equation Low + (high-low) * random_sample ().
The default value is 1.0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if 1ow
and high are both scalars. Otherwise, np.broadcast (low, high) .size samples
are drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized uniform distribution.
See also:
randint
Discrete uniform distribution, yielding integers.

random_integers
Discrete uniform distribution over the closed interval [1ow, high].

random_sample
Floats uniformly distributed over [0, 1).

random
Alias for random_sample.

rand
Convenience function that accepts dimensions as input, e.g., rand (2, 2) would generate a 2-by-2 array of
floats, uniformly distributed over [0, 1).

random.Generator.uniform
which should be used for new code.

322 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability density function of the uniform distribution is

anywhere within the interval [a, b), and zero elsewhere.

When high == 1low, values of 1ow will be returned. If high < 1ow, the results are officially undefined and may
eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality
condition. The high limit may be included in the returned array of floats due to floating-point rounding in the
equation low + (high-low) * random_sample (). For example:

>>> x = np.float32(5*%0.99999999)
>>> x
np.float32(5.0)

Examples

Draw samples from the distribution:

[>>> s = np.random.uniform(-1,0,21000)

All values are within the given interval:

>>> np.all(s >= -1)
True

>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt

>>> count, bins, ignored = plt.hist (s, 15, density=True)

>>> plt.plot (bins, np.ones_like(bins), linewidth=2, color='r")
>>> plt.show ()

random.vonmises (mu, kappa, size=None)

Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode (mu) and concentration (kappa), on the
interval [-pi, pi].

The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution
on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Note: New code should use the vonmises method of a Generator instance instead; please see the Quick
start.

Parameters

mu
[float or array_like of floats] Mode (“center”) of the distribution.

1.1. NumPy’s module structure 323

NumPy Reference, Release 2.2.0

kappa
[float or array_like of floats] Concentration of the distribution, has to be >=0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if mu and
kappa are both scalars. Otherwise, np.broadcast (mu, kappa) .size samples are
drawn.

Returns
out
[ndarray or scalar] Drawn samples from the parameterized von Mises distribution.
See also:
scipy.stats.vonmises
probability density function, distribution, or cumulative density function, etc.

random.Generator.vonmises
which should be used for new code.

Notes

The probability density for the von Mises distribution is

encos(zfpl)

p(z) = AT

where 1 is the mode and « the concentration, and Iy(x) is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory,
aerodynamics, fluid mechanics, and philosophy of science.

324

1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises

NumPy Reference, Release 2.2.0

References

(11, (2]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and concentration

>>> s = np.random.vonmises (mu, kappa, 1000)
.

Display the histogram of the samples, along with the probability density function:

-

>>> import matplotlib.pyplot as plt

>>> from scipy.special import iO

>>> plt.hist (s, 50, density=True)

>>> x = np.linspace(-np.pi, np.pi, num=51)

>>> y = np.exp (kappa*np.cos (x-mu))/ (2*np.pi*i0 (kappa))
>>> plt.plot(x, y, linewidth=2, color='r")

>>> plt.show ()

1.0 A

0.8

0.6

0.4 A

0.2 +

0.0 -

random.wald (mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Note: New code should use the wa I d method of a Generator instance instead; please see the Quick start.

Parameters

1.1. NumPy’s module structure 325

NumPy Reference, Release 2.2.0

mean
[float or array_like of floats] Distribution mean, must be > 0.

scale
[float or array_like of floats] Scale parameter, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if mean and
scale are both scalars. Otherwise, np.broadcast (mean, scale) .size samples
are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Wald distribution.

See also:

random.Generator.wald
which should be used for new code.

Notes
The probability density function for the Wald distribution is

scale —scale(w—mean)?
P(z;mean, scale) = || s—5e™ 2meanZs
2mx

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

References

(11, 121, [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist (np.random.wald (3, 2, 100000), bins=200, density=True)
>>> plt.show ()

random.weibull (a, size=None)

Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.
X = (=ln(U))/

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter \ is just X = \(—in(U))/.

326 1. Python API

NumPy Reference, Release 2.2.0

0.4

0.3

0.2 +

0.1 +

0.0 - T T T T T T T

Note: New code should use the weibul 1l method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Shape parameter of the distribution. Must be nonnegative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

out
[ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:

scipy.stats.weibull_max
scipy.stats.weibull_min
scipy.stats.genextreme
gumbel
random.Generator.weibull
which should be used for new code.

1.1. NumPy’s module structure 327

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is
— & Pya-1 = (z/N)"
pla) = S5 te e,

where a is the shape and X the scale.
The function has its peak (the mode) at /\(%1)1/ °,
When a = 1, the Weibull distribution reduces to the exponential distribution.

References

(11, (21, [3]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull (a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
return (a / n) * (x / n)**(a — 1) * np.exp(—(x / n)**a)

>>> count, bins, ignored = plt.hist (np.random.weibull (5.,1000))
>>> x = np.arange(1,100.)/50.

>>> scale = count.max()/weib(x, 1., 5.).max/()

>>> plt.plot(x, weib(x, 1., 5.)*scale)

>>> plt.show ()

random. zipf (a, size=None)

Draw samples from a Zipf distribution.
Samples are drawn from a Zipf distribution with specified parameter a > 1.

The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf’s
law: the frequency of an item is inversely proportional to its rank in a frequency table.

Note: New code should use the zipf method of a Generator instance instead; please see the Quick start.

Parameters

a
[float or array_like of floats] Distribution parameter. Must be greater than 1.

328 1. Python API

NumPy Reference, Release 2.2.0

200 +

150 +

100

50 -

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), thenm
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array (a) . size samples are drawn.

Returns

out

[ndarray or scalar] Drawn samples from the parameterized Zipf distribution.
See also:

scipy.stats.zipf
probability density function, distribution, or cumulative density function, etc.

random.Generator. zipf
which should be used for new code.

Notes

The probability mass function (PMF) for the Zipf distribution is

for integers k£ > 1, where (is the Riemann Zeta function.

It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample
of a language is inversely proportional to its rank in the frequency table.

1.1. NumPy’s module structure 329

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf

NumPy Reference, Release 2.2.0

References

(1]

Examples

Draw samples from the distribution:

>>> a = 4.0
>>> n = 20000
>>> s = np.random.zipf (a, n)

Display the histogram of the samples, along with the expected histogram based on the probability density function:

>>> import matplotlib.pyplot as plt

>>> from scipy.special import zeta
.

bincount provides a fast histogram for small integers.

-
>>> count = np.bincount (s)

>>> k = np.arange(l, s.max () + 1)
.

(

>>> plt.bar(k, count[l:], alpha=0.5, label='sample count')
>>> plt.plot (k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,

50 c label="'expected count')

>>> plt.semilogy ()

>>> plt.grid(alpha=0.4)

>>> plt.legend()

>>> plt.title(f'Zipf sample, a={a}, size={n}'")

>>> plt.show ()

Zipf sample, a=4.0, size=20000

—e— expected count
sample count

104
103
102
10!
10°

1071

330 1. Python API

NumPy Reference, Release 2.2.0

Bit generators

The random values produced by Generator originate in a BitGenerator. The BitGenerators do not directly provide
random numbers and only contains methods used for seeding, getting or setting the state, jumping or advancing the state,
and for accessing low-level wrappers for consumption by code that can efficiently access the functions provided, e.g.,
numba.

Supported BitGenerators

The included BitGenerators are:

PCG-64 - The default. A fast generator that can be advanced by an arbitrary amount. See the documentation for
advance. PCG-64 has a period of 2128, See the PCG author’s page for more details about this class of PRNG.

PCG-64 DXSM - An upgraded version of PCG-64 with better statistical properties in parallel contexts. See Up-
grading PCG64 with PCG64DXSM for more information on these improvements.

MT19937 - The standard Python BitGenerator. Adds a MT19937. jumped function that returns a new generator
with state as-if 2128 draws have been made.

Philox - A counter-based generator capable of being advanced an arbitrary number of steps or generating inde-
pendent streams. See the Random123 page for more details about this class of bit generators.

SFC64 - A fast generator based on random invertible mappings. Usually the fastest generator of the four. See the
SFC author’s page for (a little) more detail.

BitGenerator([seed]) Base Class for generic BitGenerators, which provide a

stream of random bits based on different algorithms.

class numpy.random.BitGenerator (seed=None)

Base Class for generic BitGenerators, which provide a stream of random bits based on different algorithms. Must
be overridden.

Parameters

seed
[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener—
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int
orarray_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial Bi t Generator state. One may also pass in a SeedSequence instance. All integer
values must be non-negative.

See also:
SeedSequence

Attributes

lock
[threading.Lock] Lock instance that is shared so that the same BitGenerator can be used in
multiple Generators without corrupting the state. Code that generates values from a bit gener-
ator should hold the bit generator’s lock.

1.1. NumPy’s module structure 331

https://numba.pydata.org
https://www.pcg-random.org/
https://www.deshawresearch.com/resources_random123.html
https://pracrand.sourceforge.net/RNG_engines.txt

NumPy Reference, Release 2.2.0

Methods
random_raw(self[, size]) Return randoms as generated by the underlying Bit-
Generator
spawn(n_children) Create new independent child bit generators.
method

random.BitGenerator.random_raw (self, size=None)

Return randoms as generated by the underlying BitGenerator
Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),thenm
* n * k samples are drawn. Default is None, in which case a single value is returned.

output
[bool, optional] Output values. Used for performance testing since the generated values are

not returned.
Returns

out
[uint or ndarray] Drawn samples.

Notes
This method directly exposes the raw underlying pseudo-random number generator. All values are returned
as unsigned 64-bit values irrespective of the number of bits produced by the PRNG.
See the class docstring for the number of bits returned.
method

random.BitGenerator.spawn (n_children)

Create new independent child bit generators.

See SeedSequence spawning for additional notes on spawning children. Some bit generators also implement
jumped as a different approach for creating independent streams.

New in version 1.25.0.
Parameters

n_children
[int]

Returns

child_bit_generators
[list of BitGenerators]

Raises

TypeError
When the underlying SeedSequence does not implement spawning.

See also:

332 1. Python API

NumPy Reference, Release 2.2.0

random.Generator. spawn, random. SeedSequence. spawn
Equivalent method on the generator and seed sequence.

Mersenne Twister (MT19937)

class numpy.random.MT19937 (seed=None)

Container for the Mersenne Twister pseudo-random number generator.
Parameters

seed
[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener—
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial Bit Generator state. One may also pass in a SeedSequence instance.

Notes

MT19937 provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit
integers [1]. These are not directly consumable in Python and must be consumed by a Generator or similar
object that supports low-level access.

The Python stdlib module “random” also contains a Mersenne Twister pseudo-random number generator.
State and Seeding

The MT1 9937 state vector consists of a 624-element array of 32-bit unsigned integers plus a single integer value
between 0 and 624 that indexes the current position within the main array.

The input seed is processed by SeedSequence to fill the whole state. The first element is reset such that only its
most significant bit is set.

Parallel Features

The preferred way to use a BitGenerator in parallel applications is to use the SeedSequence. spawn method
to obtain entropy values, and to use these to generate new BitGenerators:

>>> from numpy.random import Generator, MT19937, SeedSequence
>>> sg = SeedSequence (1234)
>>> rg = [Generator (MT19937(s)) for s in sg.spawn(10)]

Another method is to use MT19937. jumped which advances the state as-if 2!2® random numbers have been
generated ([1], [2]). This allows the original sequence to be split so that distinct segments can be used in each
worker process. All generators should be chained to ensure that the segments come from the same sequence.

>>> from numpy.random import Generator, MT19937, SeedSequence
>>> sg = SeedSequence (1234)
>>> bit_generator = MT19937 (sqg)
>>> rg = []
>>> for _ in range (10):
rg.append (Generator (bit_generator))
Chain the BitGenerators
bit_generator = bit_generator. jumped /()

.

Compatibility Guarantee

MT19937 makes a guarantee that a fixed seed will always produce the same random integer stream.

1.1. NumPy’s module structure 333

NumPy Reference, Release 2.2.0

References

[1], [2]
Attributes

lock: threading.Lock
Lock instance that is shared so that the same bit git generator can be used in multiple Generators
without corrupting the state. Code that generates values from a bit generator should hold the
bit generator’s lock.

State

state Get or set the PRNG state

attribute

random.MT19937.state
Get or set the PRNG state

Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Parallel generation

Jumped([jumps]) Returns a new bit generator with the state jumped

method

random.MT19937. jumped (jumps=1)
Returns a new bit generator with the state jumped

The state of the returned bit generator is jumped as-if 2**(128 * jumps) random numbers have been generated.
Parameters

jumps
[integer, positive] Number of times to jump the state of the bit generator returned

Returns

bit_generator
[MT19937] New instance of generator jumped iter times

334 1. Python API

NumPy Reference, Release 2.2.0

Notes

The jump step is computed using a modified version of Matsumoto’s implementation of Horner’s method. The
step polynomial is precomputed to perform 2**128 steps. The jumped state has been verified to match the state
produced using Matsumoto’s original code.

References
(11, [2]
Extending
cffi CFFI interface
ctypes ctypes interface
attribute

random.MT19937.cffi
CFFI interface

Returns

interface
[namedtuple] Named tuple containing CFFI wrapper

* state_address - Memory address of the state struct
* state - pointer to the state struct
 next_uint64 - function pointer to produce 64 bit integers
¢ next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles
* bitgen - pointer to the bit generator struct

attribute

random.MT19937.ctypes
ctypes interface

Returns

interface
[namedtuple] Named tuple containing ctypes wrapper

* state_address - Memory address of the state struct

* state - pointer to the state struct

* next_uint64 - function pointer to produce 64 bit integers
 next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles

* bitgen - pointer to the bit generator struct

1.1. NumPy’s module structure 335

NumPy Reference, Release 2.2.0

Permuted congruential generator (64-bit, PCG64)

class numpy.random.PCG64 (seed=None)

BitGenerator for the PCG-64 pseudo-random number generator.
Parameters

seed
[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener—
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial Bi t Generator state. One may also pass in a SeedSeqguence instance.

Notes

PCG-64 is a 128-bit implementation of O’Neill’s permutation congruential generator ([1], [2]). PCG-64 has a
period of 2'28 and supports advancing an arbitrary number of steps as well as 2127 streams. The specific member

of the PCG family that we use is PCG XSL RR 128/64 as described in the paper ([2]).

PCG64 provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit integers.
These are not directly consumable in Python and must be consumed by a Generator or similar object that

supports low-level access.

Supports the method advance to advance the RNG an arbitrary number of steps. The state of the PCG-64 RNG

is represented by 2 128-bit unsigned integers.

State and Seeding

The PCG64 state vector consists of 2 unsigned 128-bit values, which are represented externally as Python ints.
One is the state of the PRNG, which is advanced by a linear congruential generator (LCG). The second is a fixed

odd increment used in the LCG.

The input seed is processed by SeedSequence to generate both values. The increment is not independently

settable.

Parallel Features

The preferred way to use a BitGenerator in parallel applications is to use the SeedSequence. spawn method

to obtain entropy values, and to use these to generate new BitGenerators:

>>> from numpy.random import Generator, PCG64, SeedSequence
>>> sg = SeedSequence (1234)
>>> rg = [Generator (PCG64(s)) for s in sg.spawn(10)]

Compatibility Guarantee

PCG64 makes a guarantee that a fixed seed will always produce the same random integer stream.

336 1. Python API

NumPy Reference, Release 2.2.0

References

(11, (2]

State

state Get or set the PRNG state

attribute

random.PCG64.state
Get or set the PRNG state

Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Parallel generation

advance(delta) Advance the underlying RNG as-if delta draws have oc-
curred.
Jumped([jumps]) Returns a new bit generator with the state jumped.
method

random.PCG64 .advance (delta)

Advance the underlying RNG as-if delta draws have occurred.
Parameters

delta
[integer, positive] Number of draws to advance the RNG. Must be less than the size state
variable in the underlying RNG.

Returns

self
[PCG64] RNG advanced delta steps

Notes

Advancing a RNG updates the underlying RNG state as-if a given number of calls to the underlying RNG have
been made. In general there is not a one-to-one relationship between the number output random values from a
particular distribution and the number of draws from the core RNG. This occurs for two reasons:

* The random values are simulated using a rejection-based method and so, on average, more than one value
from the underlying RNG is required to generate an single draw.

* The number of bits required to generate a simulated value differs from the number of bits generated by the
underlying RNG. For example, two 16-bit integer values can be simulated from a single draw of a 32-bit
RNG.

1.1. NumPy’s module structure 337

NumPy Reference, Release 2.2.0

Advancing the RNG state resets any pre-computed random numbers. This is required to ensure exact reproducibil-
ity.
method

random.PCG64 . jumped (jumps=1)

Returns a new bit generator with the state jumped.

Jumps the state as-if jumps * 210306068529402873165736369884012333109 random numbers have been gen-
erated.

Parameters

jumps
[integer, positive] Number of times to jump the state of the bit generator returned

Returns

bit_generator
[PCG64] New instance of generator jumped iter times

Notes

The step size is phi-1 when multiplied by 2**128 where phi is the golden ratio.

Extending
cffi CFFI interface
ctypes ctypes interface
attribute

random.PCG64.cffi
CFFI interface

Returns

interface
[namedtuple] Named tuple containing CFFI wrapper

* state_address - Memory address of the state struct
* state - pointer to the state struct
¢ next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
 next_double - function pointer to produce doubles
* bitgen - pointer to the bit generator struct

attribute

random.PCG64.ctypes

ctypes interface

Returns

338 1. Python API

NumPy Reference, Release 2.2.0

interface
[namedtuple] Named tuple containing ctypes wrapper

* state_address - Memory address of the state struct

e state - pointer to the state struct

* next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles

* bitgen - pointer to the bit generator struct

Permuted congruential generator (64-bit, PCG64 DXSM)

class numpy.random.PCG64DXSM (seed=None)
BitGenerator for the PCG-64 DXSM pseudo-random number generator.

Parameters

seed
[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener—
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial BitGenerator state. One may also pass in a SeedSequence instance.

Notes

PCG-64 DXSM is a 128-bit implementation of O’Neill’s permutation congruential generator ([1], [2]). PCG-64
DXSM has a period of 2'2® and supports advancing an arbitrary number of steps as well as 2'27 streams. The
specific member of the PCG family that we use is PCG CM DXSM 128/64. 1t differs from PCG64 in that it uses
the stronger DXSM output function, a 64-bit “cheap multiplier” in the LCG, and outputs from the state before
advancing it rather than advance-then-output.

PCG64DXSM provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit
integers. These are not directly consumable in Python and must be consumed by a Generat or or similar object
that supports low-level access.

Supports the method advance to advance the RNG an arbitrary number of steps. The state of the PCG-64 DXSM
RNG is represented by 2 128-bit unsigned integers.

State and Seeding

The PCG64DXSM state vector consists of 2 unsigned 128-bit values, which are represented externally as Python
ints. One is the state of the PRNG, which is advanced by a linear congruential generator (LCG). The second is a
fixed odd increment used in the LCG.

The input seed is processed by SeedSequence to generate both values. The increment is not independently
settable.

Parallel Features

The preferred way to use a BitGenerator in parallel applications is to use the SeedSequence. spawn method
to obtain entropy values, and to use these to generate new BitGenerators:

1.1. NumPy’s module structure 339

NumPy Reference, Release 2.2.0

>>> from numpy.random import Generator, PCG64DXSM, SeedSequence
>>> sg = SeedSequence (1234)
>>> rg = [Generator (PCG64DXSM(s)) for s in sg.spawn(10)]

Compatibility Guarantee

PCG64DXSM makes a guarantee that a fixed seed will always produce the same random integer stream.

References

(11, [2]

State

state Get or set the PRNG state

attribute

random.PCG64DXSM. state
Get or set the PRNG state

Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Parallel generation

advance(delta) Advance the underlying RNG as-if delta draws have oc-
curred.
Jumped([jumps]) Returns a new bit generator with the state jumped.
method

random.PCG64DXSM. advance (delta)

Advance the underlying RNG as-if delta draws have occurred.
Parameters

delta
[integer, positive] Number of draws to advance the RNG. Must be less than the size state
variable in the underlying RNG.

Returns

self
[PCG64] RNG advanced delta steps

340 1. Python API

NumPy Reference, Release 2.2.0

Notes

Advancing a RNG updates the underlying RNG state as-if a given number of calls to the underlying RNG have
been made. In general there is not a one-to-one relationship between the number output random values from a
particular distribution and the number of draws from the core RNG. This occurs for two reasons:

* The random values are simulated using a rejection-based method and so, on average, more than one value
from the underlying RNG is required to generate an single draw.

* The number of bits required to generate a simulated value differs from the number of bits generated by the
underlying RNG. For example, two 16-bit integer values can be simulated from a single draw of a 32-bit
RNG.

Advancing the RNG state resets any pre-computed random numbers. This is required to ensure exact reproducibil-
ity.

method

random.PCG64DXSM. jumped (jumps=1)

Returns a new bit generator with the state jumped.

Jumps the state as-if jumps * 210306068529402873165736369884012333109 random numbers have been gen-
erated.

Parameters

jumps
[integer, positive] Number of times to jump the state of the bit generator returned

Returns

bit_generator
[PCG64DXSM] New instance of generator jumped iter times

Notes

The step size is phi-1 when multiplied by 2**128 where phi is the golden ratio.

Extending
cffi CFFI interface
ctypes ctypes interface
attribute

random.PCG64DXSM.cffi
CFFI interface

Returns

interface
[namedtuple] Named tuple containing CFFI wrapper

* state_address - Memory address of the state struct
* state - pointer to the state struct

¢ next_uint64 - function pointer to produce 64 bit integers

1.1. NumPy’s module structure

341

NumPy Reference, Release 2.2.0

* next_uint32 - function pointer to produce 32 bit integers
 next_double - function pointer to produce doubles
* bitgen - pointer to the bit generator struct

attribute

random.PCG64DXSM. ctypes

ctypes interface
Returns

interface
[namedtuple] Named tuple containing ctypes wrapper

* state_address - Memory address of the state struct

* state - pointer to the state struct

* next_uint64 - function pointer to produce 64 bit integers
¢ next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles

* bitgen - pointer to the bit generator struct

Philox counter-based RNG

class numpy.random.Philox (seed=None, counter=None, key=None)

Container for the Philox (4x64) pseudo-random number generator.
Parameters

seed
[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener—
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial Bi t Generator state. One may also pass in a SeedSequence instance.

counter
[{None, int, array_like}, optional] Counter to use in the Philox state. Can be either a Python
int (long in 2.x) in [0, 2**256) or a 4-element uint64 array. If not provided, the RNG is
initialized at 0.

key
[{None, int, array_like}, optional] Key to use in the Philox state. Unlike seed, the value in
key is directly set. Can be either a Python int in [0, 2**128) or a 2-element uint64 array. key
and seed cannot both be used.

342 1. Python API

NumPy Reference, Release 2.2.0

Notes

Philox is a 64-bit PRNG that uses a counter-based design based on weaker (and faster) versions of cryptographic
functions [1]. Instances using different values of the key produce independent sequences. Philox has a period of
2256 _ 1 and supports arbitrary advancing and jumping the sequence in increments of 2128, These features allow
multiple non-overlapping sequences to be generated.

Philox provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit integers.
These are not directly consumable in Python and must be consumed by a Generator or similar object that
supports low-level access.

State and Seeding

The Philox state vector consists of a 256-bit value encoded as a 4-element uint64 array and a 128-bit value
encoded as a 2-element uint64 array. The former is a counter which is incremented by 1 for every 4 64-bit ran-
doms produced. The second is a key which determined the sequence produced. Using different keys produces
independent sequences.

The input seed is processed by SeedSequence to generate the key. The counter is set to 0.
Alternately, one can omit the seed parameter and set the key and counter directly.
Parallel Features

The preferred way to use a BitGenerator in parallel applications is to use the SeedSequence. spawn method
to obtain entropy values, and to use these to generate new BitGenerators:

>>> from numpy.random import Generator, Philox, SeedSequence
>>> sg = SeedSequence (1234)
>>> rg = [Generator (Philox(s)) for s in sg.spawn (10)]

Phi]ox can be used in parallel applications by calling the jumped method to advance the state as-if 2'2% random

numbers have been generated. Alternatively, advance can be used to advance the counter for any positive step
in [0, 2¥*256). When using jumped, all generators should be chained to ensure that the segments come from the
same sequence.

>>> from numpy.random import Generator, Philox
>>> bit_generator = Philox (1234)
>>> rg = []
>>> for _ in range(10):
rg.append (Generator (bit_generator))
bit_generator = bit_generator. jumped ()

Alternatively, Phi 1 ox can be used in parallel applications by using a sequence of distinct keys where each instance
uses different key.

>>> key = 2**96 + 2**33 + 2**17 + 2**9
>>> rg = [Generator (Philox (key=key+i)) for i in range (10)]

Compatibility Guarantee

Philox makes a guarantee that a fixed seed will always produce the same random integer stream.

1.1. NumPy’s module structure 343

NumPy Reference, Release 2.2.0

References

(1]

Examples

>>> from numpy.random import Generator, Philox
>>> rg = Generator (Philox (1234))

>>> rg.standard_normal ()

0.123 # random

Attributes

lock: threading.Lock
Lock instance that is shared so that the same bit git generator can be used in multiple Generators
without corrupting the state. Code that generates values from a bit generator should hold the
bit generator’s lock.

State

state Get or set the PRNG state

attribute

random.Philox.state
Get or set the PRNG state

Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Parallel generation

advance(delta) Advance the underlying RNG as-if delta draws have oc-
curred.
Fumped([jumps]) Returns a new bit generator with the state jumped
method

random.Philox.advance (delta)

Advance the underlying RNG as-if delta draws have occurred.
Parameters

delta
[integer, positive] Number of draws to advance the RNG. Must be less than the size state
variable in the underlying RNG.

Returns

344 1. Python API

NumPy Reference, Release 2.2.0

self
[Philox] RNG advanced delta steps

Notes

Advancing a RNG updates the underlying RNG state as-if a given number of calls to the underlying RNG have
been made. In general there is not a one-to-one relationship between the number output random values from a
particular distribution and the number of draws from the core RNG. This occurs for two reasons:

¢ The random values are simulated using a rejection-based method and so, on average, more than one value
from the underlying RNG is required to generate an single draw.

* The number of bits required to generate a simulated value differs from the number of bits generated by the
underlying RNG. For example, two 16-bit integer values can be simulated from a single draw of a 32-bit

RNG.
Advancing the RNG state resets any pre-computed random numbers. This is required to ensure exact reproducibil-
ity.
method

random.Philox.jumped (jumps=1)
Returns a new bit generator with the state jumped

The state of the returned bit generator is jumped as-if (2**128) * jumps random numbers have been generated.
Parameters

jumps
[integer, positive] Number of times to jump the state of the bit generator returned

Returns

bit_generator
[Philox] New instance of generator jumped iter times

Extending
cffi CFFlI interface
ctypes ctypes interface
attribute

random.Philox.cffi
CFFI interface

Returns

interface
[namedtuple] Named tuple containing CFFI wrapper

* state_address - Memory address of the state struct
e state - pointer to the state struct
* next_uint64 - function pointer to produce 64 bit integers

¢ next_uint32 - function pointer to produce 32 bit integers

1.1. NumPy’s module structure 345

NumPy Reference, Release 2.2.0

* next_double - function pointer to produce doubles

* bitgen - pointer to the bit generator struct

attribute

random.Philox.ctypes

ctypes interface
Returns

interface
[namedtuple] Named tuple containing ctypes wrapper

* state_address - Memory address of the state struct

* state - pointer to the state struct

¢ next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles

* bitgen - pointer to the bit generator struct

SFC64 Small Fast Chaotic PRNG

class numpy.random.SFC64 (seed=None)

BitGenerator for Chris Doty-Humphrey’s Small Fast Chaotic PRNG.
Parameters

seed
[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener—
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial Bi tGenerator state. One may also pass in a SeedSequence instance.

Notes

SFC64 is a 256-bit implementation of Chris Doty-Humphrey’s Small Fast Chaotic PRNG ([1]). SFC64 has a few
different cycles that one might be on, depending on the seed; the expected period will be about 22°° ([2]). SFC64
incorporates a 64-bit counter which means that the absolute minimum cycle length is 254 and that distinct seeds
will not run into each other for at least 264 iterations.

SFC64 provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit integers.
These are not directly consumable in Python and must be consumed by a Generator or similar object that
supports low-level access.

State and Seeding

The SFC64 state vector consists of 4 unsigned 64-bit values. The last is a 64-bit counter that increments by 1 each
iteration.

The input seed is processed by SeedSequence to generate the first 3 values, then the SF'C 64 algorithm is iterated
a small number of times to mix.

Compatibility Guarantee

SFC64 makes a guarantee that a fixed seed will always produce the same random integer stream.

346

1. Python API

NumPy Reference, Release 2.2.0

References

(11, (2]

State

state Get or set the PRNG state

attribute

random.SFC64.state
Get or set the PRNG state

Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Extending
cffi CFFI interface
ctypes ctypes interface
attribute

random.SFC64 .cffi
CFFI interface

Returns

interface
[namedtuple] Named tuple containing CFFI wrapper

* state_address - Memory address of the state struct
* state - pointer to the state struct
* next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles
* bitgen - pointer to the bit generator struct

attribute

random.SFC64.ctypes
ctypes interface

Returns

interface
[namedtuple] Named tuple containing ctypes wrapper

* state_address - Memory address of the state struct

1.1. NumPy’s module structure 347

NumPy Reference, Release 2.2.0

* state - pointer to the state struct

¢ next_uint64 - function pointer to produce 64 bit integers
* next_uint32 - function pointer to produce 32 bit integers
* next_double - function pointer to produce doubles

* bitgen - pointer to the bit generator struct

Seeding and entropy

A BitGenerator provides a stream of random values. In order to generate reproducible streams, BitGenerators support
setting their initial state via a seed. All of the provided BitGenerators will take an arbitrary-sized non-negative integer,
or a list of such integers, as a seed. BitGenerators need to take those inputs and process them into a high-quality internal
state for the BitGenerator. All of the BitGenerators in numpy delegate that task to SeedSequence, which uses hashing
techniques to ensure that even low-quality seeds generate high-quality initial states.

from numpy.random import PCGG64

bg = PCG64 (12345678903141592653589793)

SeedSequence is designed to be convenient for implementing best practices. We recommend that a stochastic pro-
gram defaults to using entropy from the OS so that each run is different. The program should print out or log that entropy.
In order to reproduce a past value, the program should allow the user to provide that value through some mechanism, a
command-line argument is common, so that the user can then re-enter that entropy to reproduce the result. SeedSe—
quence can take care of everything except for communicating with the user, which is up to you.

from numpy.random import PCG64, SeedSequence

Get the user's seed somehow, maybe through ‘argparse’ .

If the user did not provide a seed, it should return ‘None .
seed = get_user_seed()

ss = SeedSequence (seed)

print ('seed = '.format (ss.entropy))

bg = PCG64 (ss)

We default to using a 128-bit integer using entropy gathered from the OS. This is a good amount of entropy to initialize
all of the generators that we have in numpy. We do not recommend using small seeds below 32 bits for general use. Using
just a small set of seeds to instantiate larger state spaces means that there are some initial states that are impossible to
reach. This creates some biases if everyone uses such values.

There will not be anything wrong with the results, per se; even a seed of 0 is perfectly fine thanks to the processing that
SeedSequence does. If you just need some fixed value for unit tests or debugging, feel free to use whatever seed you
like. But if you want to make inferences from the results or publish them, drawing from a larger set of seeds is good
practice.

If you need to generate a good seed “offline”, then SeedSequence () .entropy or using secrets.
randbits (128) from the standard library are both convenient ways.

If you need to run several stochastic simulations in parallel, best practice is to construct a random generator instance for
each simulation. To make sure that the random streams have distinct initial states, you can use the spawn method of
SeedSequence. For instance, here we construct a list of 12 instances:

from numpy.random import PCG64, SeedSequence

High quality initial entropy
(continues on next page)

348 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
entropy = 0x87351080e25cb0fad77a44a3be03b491

base_seg = SeedSequence (entropy)
child_segs = base_seqg.spawn (12) # a list of 12 SeedSequences
generators = [PCG64 (seq) for seq in child_seqgs]

If you already have an initial random generator instance, you can shorten the above by using the spawn method:

from numpy.random import PCG64, SeedSequence
High quality initial entropy

entropy = 0x87351080e25cb0fad77a44a3be03b491
base_bitgen = PCG64 (entropy)

generators = base_bitgen.spawn (12)

An alternative way is to use the fact that a SeedSequence can be initialized by a tuple of elements. Here we use a base
entropy value and an integer worker_id

from numpy.random import PCG64, SeedSequence

High quality initial entropy

entropy = 0x87351080e25cb0fad77a44a3be03b491

sequences = [SeedSequence ((entropy, worker_id)) for worker_id in range(12)]
generators = [PCG64 (seq) for seqg in sequences]

Note that the sequences produced by the latter method will be distinct from those constructed via spawn.

SeedSequence([entropy, spawn_key, pool_size]) SeedSequence mixes sources of entropy in a reproducible
way to set the initial state for independent and very prob-
ably non-overlapping BitGenerators.

class numpy.random.SeedSequence (entropy=None, *, spawn_key=(), pool_size=4)

SeedSequence mixes sources of entropy in a reproducible way to set the initial state for independent and very
probably non-overlapping BitGenerators.

Once the SeedSequence is instantiated, you can call the generate_state method to get an appropriately sized
seed. Calling spawn (n) will create n SeedSequences that can be used to seed independent BitGenerators, i.e.
for different threads.

Parameters

entropy
[{None, int, sequence[int] }, optional] The entropy for creating a SeedSequence. All inte-
ger values must be non-negative.

spawn_key
[{0O, sequencel[int]}, optional] An additional source of entropy based on the position of this
SeedSequence in the tree of such objects created with the SeedSequence. spawn
method. Typically, only SeedSequence. spawn will set this, and users will not.

pool_size
[{int}, optional] Size of the pooled entropy to store. Default is 4 to give a 128-bit entropy pool.
8 (for 256 bits) is another reasonable choice if working with larger PRNGs, but there is very
little to be gained by selecting another value.

n_children_spawned
[{int}, optional] The number of children already spawned. Only pass this if reconstructing a
SeedSequence from a serialized form.

1.1. NumPy’s module structure 349

NumPy Reference, Release 2.2.0

Notes

Best practice for achieving reproducible bit streams is to use the default None for the initial entropy, and then use
SeedSequence.entropy to log/pickle the ent ropy for reproducibility:

>>> sgl = np.random.SeedSequence ()
>>> sqgl.entropy
243799254704924441050048792905230269161 # random

>>> sg2 = np.random.SeedSequence (sql.entropy)
>>> np.all(sgl.generate_state (10) == sg2.generate_state (10))
True
Attributes
entropy
n_children_spawned
pool
pool_size
spawn_key
state
Methods
generate_state(n_words[, dtype]) Return the requested number of words for PRNG
seeding.
spawn(n_children) Spawn a number of child SeedSequence s by ex-

tending the spawn_key.

method

random. SeedSequence .generate_state (n_words, dtype=np.uint32)
Return the requested number of words for PRNG seeding.

A BitGenerator should call this method in its constructor with an appropriate n_words parameter to properly
seed itself.

Parameters

n_words
[int]

dtype
[np.uint32 or np.uint64, optional] The size of each word. This should only be either uint 32
or uint64. Strings (uint32’, uint64’) are fine. Note that requesting uint 64 will draw
twice as many bits as uint 32 for the same n_words. This is a convenience for BitGenerators
that express their states as uint 64 arrays.

Returns

state
[uint32 or uint64 array, shape=(n_words,)]

method

350 1. Python API

NumPy Reference, Release 2.2.0

random. SeedSequence . spawn (n_children)

Spawn a number of child SeedSequence s by extending the spawn_key.
See SeedSequence spawning for additional notes on spawning children.
Parameters

n_children
[int]

Returns

seqs
[list of SeedSequence s]

See also:

random.Generator. spawn, random.BitGenerator. spawn
Equivalent method on the generator and bit generator.

Upgrading PCcG64 with PCG64DXSM

Uses of the PCG64 BitGenerator in a massively-parallel context have been shown to have statistical weaknesses
that were not apparent at the first release in numpy 1.17. Most users will never observe this weakness and are safe to
continue to use PCG64. We have introduced a new PCG64DXSM BitGenerator that will eventually become the new
default Bi t Generator implementation used by default_rng in future releases. PCG64DXSM solves the statistical
weakness while preserving the performance and the features of PCG64.

Does this affect me?

If you
1. only use a single Generator instance,
2. only use RandomState or the functions in numpy . random,
3. only use the PCG64 . jumped method to generate parallel streams,
4. explicitly use a BitGenerator other than PCG64,
then this weakness does not affect you at all. Carry on.

If you use moderate numbers of parallel streams created with default_rng or SeedSequence. spawn, in the
1000s, then the chance of observing this weakness is negligibly small. You can continue to use PCG 64 comfortably.

If you use very large numbers of parallel streams, in the millions, and draw large amounts of numbers from each, then
the chance of observing this weakness can become non-negligible, if still small. An example of such a use case would
be a very large distributed reinforcement learning problem with millions of long Monte Carlo playouts each generating
billions of random number draws. Such use cases should consider using PCG64DXSM explicitly or another modern
BitGenerator like SFC64 or Philox, but it is unlikely that any old results you may have calculated are invalid. In
any case, the weakness is a kind of Birthday Paradox collision. That is, a single pair of parallel streams out of the millions,
considered together, might fail a stringent set of statistical tests of randomness. The remaining millions of streams would
all be perfectly fine, and the effect of the bad pair in the whole calculation is very likely to be swamped by the remaining
streams in most applications.

1.1. NumPy’s module structure 351

https://en.wikipedia.org/wiki/Birthday_problem

NumPy Reference, Release 2.2.0

Technical details

Like many PRNG algorithms, PCG64 is constructed from a transition function, which advances a 128-bit state, and an
output function, that mixes the 128-bit state into a 64-bit integer to be output. One of the guiding design principles of
the PCG family of PRNGs is to balance the computational cost (and pseudorandomness strength) between the transition
function and the output function. The transition function is a 128-bit linear congruential generator (LCG), which consists
of multiplying the 128-bit state with a fixed multiplication constant and then adding a user-chosen increment, in 128-bit
modular arithmetic. LCGs are well-analyzed PRNGs with known weaknesses, though 128-bit LCGs are large enough
to pass stringent statistical tests on their own, with only the trivial output function. The output function of PCG64 is
intended to patch up some of those known weaknesses by doing “just enough” scrambling of the bits to assist in the
statistical properties without adding too much computational cost.

One of these known weaknesses is that advancing the state of the LCG by steps numbering a power of two (bg.
advance (2**N)) will leave the lower N bits identical to the state that was just left. For a single stream drawn from
sequentially, this is of little consequence. The remaining 128 — NV bits provide plenty of pseudorandomness that will be
mixed in for any practical N that can be observed in a single stream, which is why one does not need to worry about this if
you only use a single stream in your application. Similarly, the PCG64 . jumped method uses a carefully chosen number
of steps to avoid creating these collisions. However, once you start creating “randomly-initialized” parallel streams, either
using OS entropy by calling default_ rng repeatedly or using SeedSequence. spawn, then we need to consider
how many lower bits need to “collide” in order to create a bad pair of streams, and then evaluate the probability of cre-
ating such a collision. Empirically, it has been determined that if one shares the lower 58 bits of state and shares an
increment, then the pair of streams, when interleaved, will fail PractRand in a reasonable amount of time, after drawing
a few gigabytes of data. Following the standard Birthday Paradox calculations for a collision of 58 bits, we can see that
we can create 227, or about half a billion, streams which is when the probability of such a collision becomes high. Half a
billion streams is quite high, and the amount of data each stream needs to draw before the statistical correlations become
apparent to even the strict PractRand tests is in the gigabytes. But this is on the horizon for very large applications like
distributed reinforcement learning. There are reasons to expect that even in these applications a collision probably will
not have a practical effect in the total result, since the statistical problem is constrained to just the colliding pair.

Now, let us consider the case when the increment is not constrained to be the same. Our implementation of PCG64
seeds both the state and the increment; that is, two calls to default_rng (almost certainly) have different states and
increments. Upon our first release, we believed that having the seeded increment would provide a certain amount of extra
protection, that one would have to be “close” in both the state space and increment space in order to observe correlations
(PractRand failures) in a pair of streams. If that were true, then the “bottleneck” for collisions would be the 128-
bit entropy pool size inside of SeedSequence (and 128-bit collisions are in the “preposterously unlikely” category).
Unfortunately, this is not true.

One of the known properties of an LCG is that different increments create distinct streams, but with a known relationship.
Each LCG has an orbit that traverses all 2128 different 128-bit states. Two LCGs with different increments are related
in that one can “rotate” the orbit of the first LCG (advance it by a number of steps that we can compute from the two
increments) such that then both LCGs will always then have the same state, up to an additive constant and maybe an
inversion of the bits. If you then iterate both streams in lockstep, then the states will always remain related by that
same additive constant (and the inversion, if present). Recall that PCG64 is constructed from both a transition function
(the LCG) and an output function. It was expected that the scrambling effect of the output function would have been
strong enough to make the distinct streams practically independent (i.e. “passing the PractRand tests”) unless the two
increments were pathologically related to each other (e.g. 1 and 3). The output function XSL-RR of the then-standard
PCG algorithm that we implemented in PCG64 turns out to be too weak to cover up for the 58-bit collision of the
underlying LCG that we described above. For any given pair of increments, the size of the “colliding” space of states is
the same, so for this weakness, the extra distinctness provided by the increments does not translate into extra protection
from statistical correlations that PractRand can detect.

Fortunately, strengthening the output function is able to correct this weakness and does turn the extra distinctness provided
by differing increments into additional protection from these low-bit collisions. To the PCG author’s credit, she had
developed a stronger output function in response to related discussions during the long birth of the new Bit Generator
system. We NumPy developers chose to be “conservative” and use the XSL-RR variant that had undergone a longer
period of testing at that time. The DXSM output function adopts a “xorshift-multiply” construction used in strong integer

352 1. Python API

https://github.com/numpy/numpy/issues/16313
https://pracrand.sourceforge.net/
https://github.com/numpy/numpy/issues/13635#issuecomment-506088698

NumPy Reference, Release 2.2.0

hashes that has much better avalanche properties than the XSL-RR output function. While there are “pathological”
pairs of increments that induce “bad” additive constants that relate the two streams, the vast majority of pairs induce
“good” additive constants that make the merely-distinct streams of LCG states into practically-independent output streams.
Indeed, now the claim we once made about PCG64 is actually true of PCG64DXSM: collisions are possible, but both
streams have to simultaneously be both “close” in the 128 bit state space and “close” in the 127-bit increment space,
so that would be less likely than the negligible chance of colliding in the 128-bit internal SeedSequence pool. The
DXSM output function is more computationally intensive than XSL-RR, but some optimizations in the LCG more than
make up for the performance hit on most machines, so PCG64DXSM is a good, safe upgrade. There are, of course, an
infinite number of stronger output functions that one could consider, but most will have a greater computational cost, and
the DXSM output function has now received many CPU cycles of testing via PractRand at this time.

Compatibility policy

numpy . random has a somewhat stricter compatibility policy than the rest of NumPy. Users of pseudorandomness
often have use cases for being able to reproduce runs in fine detail given the same seed (so-called “stream compatibility”),
and so we try to balance those needs with the flexibility to enhance our algorithms. NEP 19 describes the evolution of
this policy.

The main kind of compatibility that we enforce is stream-compatibility from run to run under certain conditions. If you
create a Generator with the same BitGenerator, with the same seed, perform the same sequence of method calls
with the same arguments, on the same build of numpy, in the same environment, on the same machine, you should
get the same stream of numbers. Note that these conditions are very strict. There are a number of factors outside of
NumPy’s control that limit our ability to guarantee much more than this. For example, different CPUs implement floating
point arithmetic differently, and this can cause differences in certain edge cases that cascade to the rest of the stream.
Generator.multivariate_ normal,for another example, uses a matrix decomposition from numpy. Iinalg.
Even on the same platform, a different build of numpy may use a different version of this matrix decomposition algorithm
from the LAPACK that it links to, causing Generator.multivariate_normal toreturn completely different (but
equally valid!) results. We strive to prefer algorithms that are more resistant to these effects, but this is always imperfect.

Note: Most of the Generat or methods allow you to draw multiple values from a distribution as arrays. The requested
size of this array is a parameter, for the purposes of the above policy. Calling rng. random () 5 times is not guaranteed
to give the same numbers as rng . random (5) . We reserve the ability to decide to use different algorithms for different-
sized blocks. In practice, this happens rarely.

Like the rest of NumPy, we generally maintain API source compatibility from version to version. If we must make an
API-breaking change, then we will only do so with an appropriate deprecation period and warnings, according to general
NumPy policy.

Breaking stream-compatibility in order to introduce new features or improve performance in Generator or de—
fault_rng will be allowed with caution. Such changes will be considered features, and as such will be no faster
than the standard release cadence of features (i.e. on X.Y releases, never X.Y. 7). Slowness will not be considered a
bug for this purpose. Correctness bug fixes that break stream-compatibility can happen on bugfix releases, per usual, but
developers should consider if they can wait until the next feature release. We encourage developers to strongly weight
user’s pain from the break in stream-compatibility against the improvements. One example of a worthwhile improvement
would be to change algorithms for a significant increase in performance, for example, moving from the Box-Muller trans-
form method of Gaussian variate generation to the faster Ziggurat algorithm. An example of a discouraged improvement
would be tweaking the Ziggurat tables just a little bit for a small performance improvement.

Note: In particular, default_rng is allowed to change the default Bi t Generator that it uses (again, with caution
and plenty of advance warning).

In general, BitGenerator classes have stronger guarantees of version-to-version stream compatibility. This allows

1.1. NumPy’s module structure 353

https://numpy.org/neps/nep-0019-rng-policy.html#nep19
https://numpy.org/neps/nep-0023-backwards-compatibility.html#nep23
https://numpy.org/neps/nep-0023-backwards-compatibility.html#nep23
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Ziggurat_algorithm

NumPy Reference, Release 2.2.0

them to be a firmer building block for downstream users that need it. Their limited API surface makes it easier for them to
maintain this compatibility from version to version. See the docstrings of each Bit Generator class for their individual
compatibility guarantees.

The legacy RandomState and the associated convenience functions have a stricter version-to-version compatibility
guarantee. For reasons outlined in NEP 19, we had made stronger promises about their version-to-version stability early
in NumPy’s development. There are still some limited use cases for this kind of compatibility (like generating data for
tests), so we maintain as much compatibility as we can. There will be no more modifications to RandomState, not
even to fix correctness bugs. There are a few gray areas where we can make minor fixes to keep RandomSt ate working
without segfaulting as NumPy’s internals change, and some docstring fixes. However, the previously-mentioned caveats
about the variability from machine to machine and build to build still apply to RandomState just as much as it does to
Generator.

Features

Parallel random number generation

There are four main strategies implemented that can be used to produce repeatable pseudo-random numbers across
multiple processes (local or distributed).

SeedSequence spawhing

NumPy allows you to spawn new (with very high probability) independent Bi t Generator and Generator instances
via their spawn () method. This spawning is implemented by the SeedSequence used for initializing the bit gener-
ators random stream.

SeedSequence implements an algorithm to process a user-provided seed, typically as an integer of some size, and
to convert it into an initial state for a Bi t Generator. It uses hashing techniques to ensure that low-quality seeds are
turned into high quality initial states (at least, with very high probability).

For example, MT1 9937 has a state consisting of 624 uint 32 integers. A naive way to take a 32-bit integer seed would
be to just set the last element of the state to the 32-bit seed and leave the rest Os. This is a valid state for ¥T1 9937, but
not a good one. The Mersenne Twister algorithm suffers if there are too many Os. Similarly, two adjacent 32-bit integer
seeds (i.e. 12345 and 1234 6) would produce very similar streams.

SeedSequence avoids these problems by using successions of integer hashes with good avalanche properties to ensure
that flipping any bit in the input has about a 50% chance of flipping any bit in the output. Two input seeds that are very
close to each other will produce initial states that are very far from each other (with very high probability). It is also
constructed in such a way that you can provide arbitrary-sized integers or lists of integers. SeedSequence will take
all of the bits that you provide and mix them together to produce however many bits the consuming BitGenerator
needs to initialize itself.

These properties together mean that we can safely mix together the usual user-provided seed with simple incrementing
counters to get BitGenerator states that are (to very high probability) independent of each other. We can wrap this
together into an API that is easy to use and difficult to misuse. Note