
NumPy Reference
Release 2.2.0

Written by the NumPy community

January 19, 2025

CONTENTS

1 Python API 3

2 C API 1875

3 Other topics 2003

4 Acknowledgements 2057

Bibliography 2059

Python Module Index 2073

i

ii

NumPy Reference, Release 2.2.0

Release
2.2

Date
January 19, 2025

This reference manual details functions, modules, and objects included in NumPy, describing what they are and what they
do. For learning how to use NumPy, see the complete documentation.

CONTENTS 1

NumPy Reference, Release 2.2.0

2 CONTENTS

CHAPTER

ONE

PYTHON API

1.1 NumPy’s module structure

NumPy has a large number of submodules. Most regular usage of NumPy requires only the main namespace and a smaller
set of submodules. The rest either either special-purpose or niche namespaces.

1.1.1 Main namespaces

Regular/recommended user-facing namespaces for general use:
• numpy

• numpy.exceptions

• numpy.fft

• numpy.linalg

• numpy.polynomial

• numpy.random

• numpy.strings

• numpy.testing

• numpy.typing

1.1.2 Special-purpose namespaces

• numpy.ctypeslib - interacting with NumPy objects with ctypes
• numpy.dtypes - dtype classes (typically not used directly by end users)
• numpy.emath - mathematical functions with automatic domain
• numpy.lib - utilities & functionality which do not fit the main namespace
• numpy.rec - record arrays (largely superseded by dataframe libraries)
• numpy.version - small module with more detailed version info

3

https://docs.python.org/3/library/ctypes.html#module-ctypes

NumPy Reference, Release 2.2.0

1.1.3 Legacy namespaces

Prefer not to use these namespaces for new code. There are better alternatives and/or this code is deprecated or isn’t
reliable.

• numpy.char - legacy string functionality, only for fixed-width strings
• numpy.distutils (deprecated) - build system support
• numpy.f2py - Fortran binding generation (usually used from the command line only)
• numpy.ma - masked arrays (not very reliable, needs an overhaul)
• numpy.matlib (pending deprecation) - functions supporting matrix instances

Exceptions and Warnings (numpy.exceptions)

General exceptions used by NumPy. Note that some exceptions may be module specific, such as linear algebra errors.
New in version NumPy: 1.25
The exceptions module is new in NumPy 1.25. Older exceptions remain available through the main NumPy namespace
for compatibility.

Warnings

ComplexWarning The warning raised when casting a complex dtype to a real
dtype.

VisibleDeprecationWarning Visible deprecation warning.
RankWarning Matrix rank warning.

exception exceptions.ComplexWarning

The warning raised when casting a complex dtype to a real dtype.
As implemented, casting a complex number to a real discards its imaginary part, but this behavior may not be what
the user actually wants.

exception exceptions.VisibleDeprecationWarning

Visible deprecation warning.
By default, python will not show deprecation warnings, so this class can be used when a very visible warning is
helpful, for example because the usage is most likely a user bug.

exception exceptions.RankWarning

Matrix rank warning.
Issued by polynomial functions when the design matrix is rank deficient.

4 1. Python API

NumPy Reference, Release 2.2.0

Exceptions

AxisError(axis[, ndim, msg_prefix]) Axis supplied was invalid.
DTypePromotionError Multiple DTypes could not be converted to a common

one.
TooHardError max_work was exceeded.

exception exceptions.AxisError(axis, ndim=None, msg_prefix=None)
Axis supplied was invalid.
This is raised whenever an axis parameter is specified that is larger than the number of array dimensions. For
compatibility with code written against older numpy versions, which raised a mixture of ValueError and In-
dexError for this situation, this exception subclasses both to ensure that except ValueError and except
IndexError statements continue to catch AxisError.

Parameters
axis

[int or str] The out of bounds axis or a custom exception message. If an axis is provided, then
ndim should be specified as well.

ndim
[int, optional] The number of array dimensions.

msg_prefix
[str, optional] A prefix for the exception message.

Examples

>>> import numpy as np
>>> array_1d = np.arange(10)
>>> np.cumsum(array_1d, axis=1)
Traceback (most recent call last):
...

numpy.exceptions.AxisError: axis 1 is out of bounds for array of dimension 1

Negative axes are preserved:

>>> np.cumsum(array_1d, axis=-2)
Traceback (most recent call last):
...

numpy.exceptions.AxisError: axis -2 is out of bounds for array of dimension 1

The class constructor generally takes the axis and arrays’ dimensionality as arguments:

>>> print(np.exceptions.AxisError(2, 1, msg_prefix='error'))
error: axis 2 is out of bounds for array of dimension 1

Alternatively, a custom exception message can be passed:

>>> print(np.exceptions.AxisError('Custom error message'))
Custom error message

Attributes

1.1. NumPy’s module structure 5

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#IndexError

NumPy Reference, Release 2.2.0

axis
[int, optional] The out of bounds axis or None if a custom exception message was provided.
This should be the axis as passed by the user, before any normalization to resolve negative
indices.
New in version 1.22.

ndim
[int, optional] The number of array dimensions or None if a custom exception message was
provided.
New in version 1.22.

exception exceptions.DTypePromotionError

Multiple DTypes could not be converted to a common one.
This exception derives from TypeError and is raised whenever dtypes cannot be converted to a single common
one. This can be because they are of a different category/class or incompatible instances of the same one (see
Examples).

Notes

Many functions will use promotion to find the correct result and implementation. For these functions the error will
typically be chained with a more specific error indicating that no implementation was found for the input dtypes.
Typically promotion should be considered “invalid” between the dtypes of two arrays when arr1 == arr2 can safely
return all False because the dtypes are fundamentally different.

Examples

Datetimes and complex numbers are incompatible classes and cannot be promoted:

>>> import numpy as np
>>> np.result_type(np.dtype("M8[s]"), np.complex128)
Traceback (most recent call last):
...
DTypePromotionError: The DType <class 'numpy.dtype[datetime64]'> could not
be promoted by <class 'numpy.dtype[complex128]'>. This means that no common
DType exists for the given inputs. For example they cannot be stored in a
single array unless the dtype is `object`. The full list of DTypes is:
(<class 'numpy.dtype[datetime64]'>, <class 'numpy.dtype[complex128]'>)

For example for structured dtypes, the structure can mismatch and the same DTypePromotionError is given
when two structured dtypes with a mismatch in their number of fields is given:

>>> dtype1 = np.dtype([("field1", np.float64), ("field2", np.int64)])
>>> dtype2 = np.dtype([("field1", np.float64)])
>>> np.promote_types(dtype1, dtype2)
Traceback (most recent call last):
...
DTypePromotionError: field names `('field1', 'field2')` and `('field1',)`
mismatch.

exception exceptions.TooHardError

max_work was exceeded.

6 1. Python API

NumPy Reference, Release 2.2.0

This is raised whenever the maximum number of candidate solutions to consider specified by the max_work
parameter is exceeded. Assigning a finite number to max_work may have caused the operation to fail.

Discrete Fourier Transform (numpy.fft)

The SciPy module scipy.fft is a more comprehensive superset of numpy.fft, which includes only a basic set of
routines.

Standard FFTs

fft(a[, n, axis, norm, out]) Compute the one-dimensional discrete Fourier Trans-
form.

ifft(a[, n, axis, norm, out]) Compute the one-dimensional inverse discrete Fourier
Transform.

fft2(a[, s, axes, norm, out]) Compute the 2-dimensional discrete Fourier Transform.
ifft2(a[, s, axes, norm, out]) Compute the 2-dimensional inverse discrete Fourier

Transform.
fftn(a[, s, axes, norm, out]) Compute the N-dimensional discrete Fourier Transform.
ifftn(a[, s, axes, norm, out]) Compute the N-dimensional inverse discrete Fourier

Transform.

fft.fft(a, n=None, axis=-1, norm=None, out=None)
Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast
Fourier Transform (FFT) algorithm [CT].

Parameters
a

[array_like] Input array, can be complex.
n

[int, optional] Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

axis
[int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype.
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.

1.1. NumPy’s module structure 7

https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft

NumPy Reference, Release 2.2.0

Raises
IndexError

If axis is not a valid axis of a.
See also:

numpy.fft
for definition of the DFT and conventions used.

ifft
The inverse of fft.

fft2
The two-dimensional FFT.

fftn
The n-dimensional FFT.

rfftn
The n-dimensional FFT of real input.

fftfreq
Frequency bins for given FFT parameters.

Notes

FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently,
by using symmetries in the calculated terms. The symmetry is highest when n is a power of 2, and the transform is
therefore most efficient for these sizes.
The DFT is defined, with the conventions used in this implementation, in the documentation for the numpy.fft
module.

References

[CT]

Examples

>>> import numpy as np
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j,

2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j,
-1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j,
1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j])

In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in
the imaginary part, as described in the numpy.fft documentation:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x.

(continues on next page)

8 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
↪→..>]
>>> plt.show()

0.4 0.2 0.0 0.2 0.4

75

50

25

0

25

50

75

fft.ifft(a, n=None, axis=-1, norm=None, out=None)
Compute the one-dimensional inverse discrete Fourier Transform.
This function computes the inverse of the one-dimensional n-point discrete Fourier transform computed by fft.
In other words, ifft(fft(a)) == a to within numerical accuracy. For a general description of the algorithm
and definitions, see numpy.fft.
The input should be ordered in the same way as is returned by fft, i.e.,

• a[0] should contain the zero frequency term,
• a[1:n//2] should contain the positive-frequency terms,
• a[n//2 + 1:] should contain the negative-frequency terms, in increasing order starting from the most
negative frequency.

For an even number of input points, A[n//2] represents the sum of the values at the positive and negative Nyquist
frequencies, as the two are aliased together. See numpy.fft for details.

Parameters
a

[array_like] Input array, can be complex.
n

[int, optional] Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used. See notes about padding issues.

axis
[int, optional] Axis over which to compute the inverse DFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.

1.1. NumPy’s module structure 9

NumPy Reference, Release 2.2.0

New in version 1.20.0: The “backward”, “forward” values were added.
out

[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype.
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.

Raises
IndexError

If axis is not a valid axis of a.
See also:

numpy.fft
An introduction, with definitions and general explanations.

fft
The one-dimensional (forward) FFT, of which ifft is the inverse

ifft2
The two-dimensional inverse FFT.

ifftn
The n-dimensional inverse FFT.

Notes

If the input parameter n is larger than the size of the input, the input is padded by appending zeros at the end. Even
though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be
performed before calling ifft.

Examples

>>> import numpy as np
>>> np.fft.ifft([0, 4, 0, 0])
array([1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary

Create and plot a band-limited signal with random phases:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(400)
>>> n = np.zeros((400,), dtype=complex)
>>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
>>> s = np.fft.ifft(n)
>>> plt.plot(t, s.real, label='real')
[<matplotlib.lines.Line2D object at ...>]
>>> plt.plot(t, s.imag, '--', label='imaginary')
[<matplotlib.lines.Line2D object at ...>]
>>> plt.legend()

(continues on next page)

10 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
<matplotlib.legend.Legend object at ...>
>>> plt.show()

0 50 100 150 200 250 300 350 400

0.02

0.01

0.00

0.01

0.02

real
imaginary

fft.fft2(a, s=None, axes=(-2, -1), norm=None, out=None)
Compute the 2-dimensional discrete Fourier Transform.
This function computes the n-dimensional discrete Fourier Transform over any axes in anM-dimensional array by
means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the
input array, i.e., a 2-dimensional FFT.

Parameters
a

[array_like] Input array, can be complex
s

[sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along each axis, if
the given shape is smaller than that of the input, the input is cropped. If it is larger, the input
is padded with zeros.
Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).
If s is not given, the shape of the input along the axes specified by axes is used.
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two axes
are used. A repeated index in axes means the transform over that axis is performed multiple
times. A one-element sequence means that a one-dimensional FFT is performed. Default:
(-2, -1).

1.1. NumPy’s module structure 11

NumPy Reference, Release 2.2.0

Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
not be None.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence only the last axis can have s not equal
to the shape at that axis).
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.

Raises
ValueError

If s and axes have different length, or axes not given and len(s) != 2.
IndexError

If an element of axes is larger than than the number of axes of a.
See also:

numpy.fft
Overall view of discrete Fourier transforms, with definitions and conventions used.

ifft2
The inverse two-dimensional FFT.

fft
The one-dimensional FFT.

fftn
The n-dimensional FFT.

fftshift
Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third
quadrants, and second and fourth quadrants.

Notes

fft2 is just fftn with a different default for axes.
The output, analogously to fft, contains the term for zero frequency in the low-order corner of the transformed
axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of
the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency.
See fftn for details and a plotting example, and numpy.fft for definitions and conventions used.

12 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.mgrid[:5, :5][0]
>>> np.fft.fft2(a)
array([[50. +0.j , 0. +0.j , 0. +0.j , # may vary

0. +0.j , 0. +0.j],
[-12.5+17.20477401j, 0. +0.j , 0. +0.j ,

0. +0.j , 0. +0.j],
[-12.5 +4.0614962j , 0. +0.j , 0. +0.j ,

0. +0.j , 0. +0.j],
[-12.5 -4.0614962j , 0. +0.j , 0. +0.j ,

0. +0.j , 0. +0.j],
[-12.5-17.20477401j, 0. +0.j , 0. +0.j ,

0. +0.j , 0. +0.j]])

fft.ifft2(a, s=None, axes=(-2, -1), norm=None, out=None)
Compute the 2-dimensional inverse discrete Fourier Transform.
This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in
an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifft2(fft2(a)) ==
a to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input
array.
The input, analogously to ifft, should be ordered in the same way as is returned by fft2, i.e. it should have
the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half
of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the
second half of both axes, in order of decreasingly negative frequency.

Parameters
a

[array_like] Input array, can be complex.
s

[sequence of ints, optional] Shape (length of each axis) of the output (s[0] refers to axis 0,
s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along each axis, if the given
shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded
with zeros.
Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).
If s is not given, the shape of the input along the axes specified by axes is used. See notes for
issue on ifft zero padding.
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two axes
are used. A repeated index in axes means the transform over that axis is performed multiple
times. A one-element sequence means that a one-dimensional FFT is performed. Default:
(-2, -1).
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
not be None.

1.1. NumPy’s module structure 13

NumPy Reference, Release 2.2.0

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence is incompatible with passing in all but
the trivial s).
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.

Raises
ValueError

If s and axes have different length, or axes not given and len(s) != 2.
IndexError

If an element of axes is larger than than the number of axes of a.
See also:

numpy.fft
Overall view of discrete Fourier transforms, with definitions and conventions used.

fft2
The forward 2-dimensional FFT, of which ifft2 is the inverse.

ifftn
The inverse of the n-dimensional FFT.

fft
The one-dimensional FFT.

ifft
The one-dimensional inverse FFT.

Notes

ifft2 is just ifftn with a different default for axes.
See ifftn for details and a plotting example, and numpy.fft for definition and conventions used.
Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimension.
Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired,
it must be performed before ifft2 is called.

14 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = 4 * np.eye(4)
>>> np.fft.ifft2(a)
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary

[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])

fft.fftn(a, s=None, axes=None, norm=None, out=None)
Compute the N-dimensional discrete Fourier Transform.
This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional array by means of the Fast Fourier Transform (FFT).

Parameters
a

[array_like] Input array, can be complex.
s

[sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along any axis, if
the given shape is smaller than that of the input, the input is cropped. If it is larger, the input
is padded with zeros.
Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).
If s is not given, the shape of the input along the axes specified by axes is used.
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the FFT. If not given, the lastlen(s)
axes are used, or all axes if s is also not specified. Repeated indices in axes means that the
transform over that axis is performed multiple times.
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
be explicitly specified too.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence is incompatible with passing in all but
the trivial s).
New in version 2.0.0.

Returns

1.1. NumPy’s module structure 15

NumPy Reference, Release 2.2.0

out
[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and a, as explained in the parameters section above.

Raises
ValueError

If s and axes have different length.
IndexError

If an element of axes is larger than than the number of axes of a.
See also:

numpy.fft
Overall view of discrete Fourier transforms, with definitions and conventions used.

ifftn
The inverse of fftn, the inverse n-dimensional FFT.

fft
The one-dimensional FFT, with definitions and conventions used.

rfftn
The n-dimensional FFT of real input.

fft2
The two-dimensional FFT.

fftshift
Shifts zero-frequency terms to centre of array

Notes

The output, analogously to fft, contains the term for zero frequency in the low-order corner of all axes, the positive
frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the
negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.
See numpy.fft for details, definitions and conventions used.

Examples

>>> import numpy as np
>>> a = np.mgrid[:3, :3, :3][0]
>>> np.fft.fftn(a, axes=(1, 2))
array([[[0.+0.j, 0.+0.j, 0.+0.j], # may vary

[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]],
[[9.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]],
[[18.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]]])

>>> np.fft.fftn(a, (2, 2), axes=(0, 1))
array([[[2.+0.j, 2.+0.j, 2.+0.j], # may vary

[0.+0.j, 0.+0.j, 0.+0.j]],

(continues on next page)

16 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[[-2.+0.j, -2.+0.j, -2.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]]])

>>> import matplotlib.pyplot as plt
>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
... 2 * np.pi * np.arange(200) / 34)
>>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
>>> FS = np.fft.fftn(S)
>>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

0 50 100 150

0

25

50

75

100

125

150

175

fft.ifftn(a, s=None, axes=None, norm=None, out=None)
Compute the N-dimensional inverse discrete Fourier Transform.
This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in
an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifftn(fftn(a)) ==
a to within numerical accuracy. For a description of the definitions and conventions used, see numpy.fft.
The input, analogously to ifft, should be ordered in the same way as is returned by fftn, i.e. it should have the
term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes,
the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of
all axes, in order of decreasingly negative frequency.

Parameters
a

[array_like] Input array, can be complex.
s

[sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along any axis, if
the given shape is smaller than that of the input, the input is cropped. If it is larger, the input
is padded with zeros.
Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).

1.1. NumPy’s module structure 17

NumPy Reference, Release 2.2.0

If s is not given, the shape of the input along the axes specified by axes is used. See notes for
issue on ifft zero padding.
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the IFFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means
that the inverse transform over that axis is performed multiple times.
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
be explicitly specified too.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence is incompatible with passing in all but
the trivial s).
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s or a, as explained in the parameters section above.

Raises
ValueError

If s and axes have different length.
IndexError

If an element of axes is larger than than the number of axes of a.
See also:

numpy.fft
Overall view of discrete Fourier transforms, with definitions and conventions used.

fftn
The forward n-dimensional FFT, of which ifftn is the inverse.

ifft
The one-dimensional inverse FFT.

ifft2
The two-dimensional inverse FFT.

ifftshift
Undoes fftshift, shifts zero-frequency terms to beginning of array.

18 1. Python API

NumPy Reference, Release 2.2.0

Notes

See numpy.fft for definitions and conventions used.
Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimension.
Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired,
it must be performed before ifftn is called.

Examples

>>> import numpy as np
>>> a = np.eye(4)
>>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary

[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

Create and plot an image with band-limited frequency content:

>>> import matplotlib.pyplot as plt
>>> n = np.zeros((200,200), dtype=complex)
>>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
>>> im = np.fft.ifftn(n).real
>>> plt.imshow(im)
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

0 50 100 150

0

25

50

75

100

125

150

175

1.1. NumPy’s module structure 19

NumPy Reference, Release 2.2.0

Real FFTs

rfft(a[, n, axis, norm, out]) Compute the one-dimensional discrete Fourier Transform
for real input.

irfft(a[, n, axis, norm, out]) Computes the inverse of rfft.
rfft2(a[, s, axes, norm, out]) Compute the 2-dimensional FFT of a real array.
irfft2(a[, s, axes, norm, out]) Computes the inverse of rfft2.
rfftn(a[, s, axes, norm, out]) Compute the N-dimensional discrete Fourier Transform

for real input.
irfftn(a[, s, axes, norm, out]) Computes the inverse of rfftn.

fft.rfft(a, n=None, axis=-1, norm=None, out=None)
Compute the one-dimensional discrete Fourier Transform for real input.
This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by
means of an efficient algorithm called the Fast Fourier Transform (FFT).

Parameters
a

[array_like] Input array
n

[int, optional] Number of points along transformation axis in the input to use. If n is smaller
than the length of the input, the input is cropped. If it is larger, the input is padded with zeros.
If n is not given, the length of the input along the axis specified by axis is used.

axis
[int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype.
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. If n is even, the length of the transformed axis
is (n/2)+1. If n is odd, the length is (n+1)/2.

Raises
IndexError

If axis is not a valid axis of a.
See also:

numpy.fft
For definition of the DFT and conventions used.

20 1. Python API

NumPy Reference, Release 2.2.0

irfft
The inverse of rfft.

fft
The one-dimensional FFT of general (complex) input.

fftn
The n-dimensional FFT.

rfftn
The n-dimensional FFT of real input.

Notes

When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency
terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency
terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the
transformed axis of the output is therefore n//2 + 1.
When A = rfft(a) and fs is the sampling frequency, A[0] contains the zero-frequency term 0*fs, which is
real due to Hermitian symmetry.
If n is even, A[-1] contains the term representing both positive and negative Nyquist frequency (+fs/2 and -fs/2),
and must also be purely real. If n is odd, there is no term at fs/2; A[-1] contains the largest positive frequency
(fs/2*(n-1)/n), and is complex in the general case.
If the input a contains an imaginary part, it is silently discarded.

Examples

>>> import numpy as np
>>> np.fft.fft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary
>>> np.fft.rfft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j]) # may vary

Notice how the final element of the fft output is the complex conjugate of the second element, for real input. For
rfft, this symmetry is exploited to compute only the non-negative frequency terms.

fft.irfft(a, n=None, axis=-1, norm=None, out=None)
Computes the inverse of rfft.
This function computes the inverse of the one-dimensional n-point discrete Fourier Transform of real input com-
puted by rfft. In other words, irfft(rfft(a), len(a)) == a to within numerical accuracy. (See
Notes below for why len(a) is necessary here.)
The input is expected to be in the form returned by rfft, i.e. the real zero-frequency term followed by the complex
positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is
Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding
positive frequency terms.

Parameters
a

[array_like] The input array.
n

[int, optional] Length of the transformed axis of the output. For n output points, n//2+1

1.1. NumPy’s module structure 21

NumPy Reference, Release 2.2.0

input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If n is not given, it is taken to be 2*(m-1) where m is the length
of the input along the axis specified by axis.

axis
[int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[ndarray, optional] If provided, the result will be placed in this array. It should be of the
appropriate shape and dtype.
New in version 2.0.0.

Returns
out

[ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis, or
the last one if axis is not specified. The length of the transformed axis is n, or, if n is not given,
2*(m-1) where m is the length of the transformed axis of the input. To get an odd number
of output points, n must be specified.

Raises
IndexError

If axis is not a valid axis of a.
See also:

numpy.fft
For definition of the DFT and conventions used.

rfft
The one-dimensional FFT of real input, of which irfft is inverse.

fft
The one-dimensional FFT.

irfft2
The inverse of the two-dimensional FFT of real input.

irfftn
The inverse of the n-dimensional FFT of real input.

Notes

Returns the real valued n-point inverse discrete Fourier transform of a, where a contains the non-negative frequency
terms of a Hermitian-symmetric sequence. n is the length of the result, not the input.
If you specify an n such that a must be zero-padded or truncated, the extra/removed values will be added/removed
at high frequencies. One can thus resample a series to m points via Fourier interpolation by: a_resamp =
irfft(rfft(a), m).
The correct interpretation of the hermitian input depends on the length of the original data, as given by n. This is
because each input shape could correspond to either an odd or even length signal. By default, irfft assumes an

22 1. Python API

NumPy Reference, Release 2.2.0

even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart. By
Hermitian symmetry, the value is thus treated as purely real. To avoid losing information, the correct length of the
real inputmust be given.

Examples

>>> import numpy as np
>>> np.fft.ifft([1, -1j, -1, 1j])
array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary
>>> np.fft.irfft([1, -1j, -1])
array([0., 1., 0., 0.])

Notice how the last term in the input to the ordinary ifft is the complex conjugate of the second term, and the
output has zero imaginary part everywhere. When calling irfft, the negative frequencies are not specified, and
the output array is purely real.

fft.rfft2(a, s=None, axes=(-2, -1), norm=None, out=None)
Compute the 2-dimensional FFT of a real array.

Parameters
a

[array] Input array, taken to be real.
s

[sequence of ints, optional] Shape of the FFT.
Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the FFT. Default: (-2, -1).
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
not be None.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for the last inverse transform. incompatible with passing in
all but the trivial s).
New in version 2.0.0.

Returns
out

[ndarray] The result of the real 2-D FFT.
See also:

1.1. NumPy’s module structure 23

NumPy Reference, Release 2.2.0

rfftn
Compute the N-dimensional discrete Fourier Transform for real input.

Notes

This is really just rfftn with different default behavior. For more details see rfftn.

Examples

>>> import numpy as np
>>> a = np.mgrid[:5, :5][0]
>>> np.fft.rfft2(a)
array([[50. +0.j , 0. +0.j , 0. +0.j],

[-12.5+17.20477401j, 0. +0.j , 0. +0.j],
[-12.5 +4.0614962j , 0. +0.j , 0. +0.j],
[-12.5 -4.0614962j , 0. +0.j , 0. +0.j],
[-12.5-17.20477401j, 0. +0.j , 0. +0.j]])

fft.irfft2(a, s=None, axes=(-2, -1), norm=None, out=None)
Computes the inverse of rfft2.

Parameters
a

[array_like] The input array
s

[sequence of ints, optional] Shape of the real output to the inverse FFT.
Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] The axes over which to compute the inverse fft. Default: (-2,
-1), the last two axes.
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
not be None.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[ndarray, optional] If provided, the result will be placed in this array. It should be of the
appropriate shape and dtype for the last transformation.
New in version 2.0.0.

Returns

24 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray] The result of the inverse real 2-D FFT.

See also:

rfft2
The forward two-dimensional FFT of real input, of which irfft2 is the inverse.

rfft
The one-dimensional FFT for real input.

irfft
The inverse of the one-dimensional FFT of real input.

irfftn
Compute the inverse of the N-dimensional FFT of real input.

Notes

This is really irfftn with different defaults. For more details see irfftn.

Examples

>>> import numpy as np
>>> a = np.mgrid[:5, :5][0]
>>> A = np.fft.rfft2(a)
>>> np.fft.irfft2(A, s=a.shape)
array([[0., 0., 0., 0., 0.],

[1., 1., 1., 1., 1.],
[2., 2., 2., 2., 2.],
[3., 3., 3., 3., 3.],
[4., 4., 4., 4., 4.]])

fft.rfftn(a, s=None, axes=None, norm=None, out=None)
Compute the N-dimensional discrete Fourier Transform for real input.
This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with
the real transform performed over the last axis, while the remaining transforms are complex.

Parameters
a

[array_like] Input array, taken to be real.
s

[sequence of ints, optional] Shape (length along each transformed axis) to use from the input.
(s[0] refers to axis 0, s[1] to axis 1, etc.). The final element of s corresponds to n for
rfft(x, n), while for the remaining axes, it corresponds to n for fft(x, n). Along any
axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros.
Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).
If s is not given, the shape of the input along the axes specified by axes is used.
Deprecated since version 2.0: If s is not None, axes must not be None either.

1.1. NumPy’s module structure 25

NumPy Reference, Release 2.2.0

Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

axes
[sequence of ints, optional] Axes over which to compute the FFT. If not given, the lastlen(s)
axes are used, or all axes if s is also not specified.
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
be explicitly specified too.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype for all axes (and hence is incompatible with passing in all but
the trivial s).
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and a, as explained in the parameters section above. The
length of the last axis transformed will be s[-1]//2+1, while the remaining transformed
axes will have lengths according to s, or unchanged from the input.

Raises
ValueError

If s and axes have different length.
IndexError

If an element of axes is larger than than the number of axes of a.
See also:

irfftn
The inverse of rfftn, i.e. the inverse of the n-dimensional FFT of real input.

fft
The one-dimensional FFT, with definitions and conventions used.

rfft
The one-dimensional FFT of real input.

fftn
The n-dimensional FFT.

rfft2
The two-dimensional FFT of real input.

26 1. Python API

NumPy Reference, Release 2.2.0

Notes

The transform for real input is performed over the last transformation axis, as by rfft, then the transform over
the remaining axes is performed as by fftn. The order of the output is as for rfft for the final transformation
axis, and as for fftn for the remaining transformation axes.
See fft for details, definitions and conventions used.

Examples

>>> import numpy as np
>>> a = np.ones((2, 2, 2))
>>> np.fft.rfftn(a)
array([[[8.+0.j, 0.+0.j], # may vary

[0.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]]])

>>> np.fft.rfftn(a, axes=(2, 0))
array([[[4.+0.j, 0.+0.j], # may vary

[4.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]]])

fft.irfftn(a, s=None, axes=None, norm=None, out=None)
Computes the inverse of rfftn.
This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any
number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words,
irfftn(rfftn(a), a.shape) == a to within numerical accuracy. (The a.shape is necessary like
len(a) is for irfft, and for the same reason.)
The input should be ordered in the same way as is returned by rfftn, i.e. as for irfft for the final transformation
axis, and as for ifftn along all the other axes.

Parameters
a

[array_like] Input array.
s

[sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). s is also the number of input points used along this axis, except
for the last axis, where s[-1]//2+1 points of the input are used. Along any axis, if the
shape indicated by s is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros.
Changed in version 2.0: If it is -1, the whole input is used (no padding/trimming).
If s is not given, the shape of the input along the axes specified by axes is used. Except for the
last axis which is taken to be 2*(m-1) where m is the length of the input along that axis.
Deprecated since version 2.0: If s is not None, axes must not be None either.
Deprecated since version 2.0: s must contain only int s, not None values. None values
currently mean that the default value for n is used in the corresponding 1-D transform, but this
behaviour is deprecated.

1.1. NumPy’s module structure 27

NumPy Reference, Release 2.2.0

axes
[sequence of ints, optional] Axes over which to compute the inverse FFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means that
the inverse transform over that axis is performed multiple times.
Deprecated since version 2.0: If s is specified, the corresponding axes to be transformed must
be explicitly specified too.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[ndarray, optional] If provided, the result will be placed in this array. It should be of the
appropriate shape and dtype for the last transformation.
New in version 2.0.0.

Returns
out

[ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes,
or by a combination of s or a, as explained in the parameters section above. The length of each
transformed axis is as given by the corresponding element of s, or the length of the input in
every axis except for the last one if s is not given. In the final transformed axis the length of
the output when s is not given is 2*(m-1) where m is the length of the final transformed axis
of the input. To get an odd number of output points in the final axis, s must be specified.

Raises
ValueError

If s and axes have different length.
IndexError

If an element of axes is larger than than the number of axes of a.
See also:

rfftn
The forward n-dimensional FFT of real input, of which ifftn is the inverse.

fft
The one-dimensional FFT, with definitions and conventions used.

irfft
The inverse of the one-dimensional FFT of real input.

irfft2
The inverse of the two-dimensional FFT of real input.

28 1. Python API

NumPy Reference, Release 2.2.0

Notes

See fft for definitions and conventions used.
See rfft for definitions and conventions used for real input.
The correct interpretation of the hermitian input depends on the shape of the original data, as given by s. This is
because each input shape could correspond to either an odd or even length signal. By default, irfftn assumes
an even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart.
When performing the final complex to real transform, the last value is thus treated as purely real. To avoid losing
information, the correct shape of the real inputmust be given.

Examples

>>> import numpy as np
>>> a = np.zeros((3, 2, 2))
>>> a[0, 0, 0] = 3 * 2 * 2
>>> np.fft.irfftn(a)
array([[[1., 1.],

[1., 1.]],
[[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.]]])

Hermitian FFTs

hfft(a[, n, axis, norm, out]) Compute the FFT of a signal that has Hermitian symme-
try, i.e., a real spectrum.

ihfft(a[, n, axis, norm, out]) Compute the inverse FFT of a signal that has Hermitian
symmetry.

fft.hfft(a, n=None, axis=-1, norm=None, out=None)
Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.

Parameters
a

[array_like] The input array.
n

[int, optional] Length of the transformed axis of the output. For n output points, n//2 + 1
input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If n is not given, it is taken to be 2*(m-1) where m is the length
of the input along the axis specified by axis.

axis
[int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

1.1. NumPy’s module structure 29

NumPy Reference, Release 2.2.0

out
[ndarray, optional] If provided, the result will be placed in this array. It should be of the
appropriate shape and dtype.
New in version 2.0.0.

Returns
out

[ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis, or
the last one if axis is not specified. The length of the transformed axis is n, or, if n is not given,
2*m - 2 where m is the length of the transformed axis of the input. To get an odd number
of output points, n must be specified, for instance as 2*m - 1 in the typical case,

Raises
IndexError

If axis is not a valid axis of a.
See also:

rfft
Compute the one-dimensional FFT for real input.

ihfft
The inverse of hfft.

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So here it’s hfft for which you must supply
the length of the result if it is to be odd.

• even: ihfft(hfft(a, 2*len(a) - 2)) == a, within roundoff error,
• odd: ihfft(hfft(a, 2*len(a) - 1)) == a, within roundoff error.

The correct interpretation of the hermitian input depends on the length of the original data, as given by n. This
is because each input shape could correspond to either an odd or even length signal. By default, hfft assumes
an even output length which puts the last entry at the Nyquist frequency; aliasing with its symmetric counterpart.
By Hermitian symmetry, the value is thus treated as purely real. To avoid losing information, the shape of the full
signal must be given.

Examples

>>> import numpy as np
>>> signal = np.array([1, 2, 3, 4, 3, 2])
>>> np.fft.fft(signal)
array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary
>>> np.fft.hfft(signal[:4]) # Input first half of signal
array([15., -4., 0., -1., 0., -4.])
>>> np.fft.hfft(signal, 6) # Input entire signal and truncate
array([15., -4., 0., -1., 0., -4.])

>>> signal = np.array([[1, 1.j], [-1.j, 2]])
>>> np.conj(signal.T) - signal # check Hermitian symmetry
array([[0.-0.j, -0.+0.j], # may vary

(continues on next page)

30 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[0.+0.j, 0.-0.j]])

>>> freq_spectrum = np.fft.hfft(signal)
>>> freq_spectrum
array([[1., 1.],

[2., -2.]])

fft.ihfft(a, n=None, axis=-1, norm=None, out=None)
Compute the inverse FFT of a signal that has Hermitian symmetry.

Parameters
a

[array_like] Input array.
n

[int, optional] Length of the inverse FFT, the number of points along transformation axis in
the input to use. If n is smaller than the length of the input, the input is cropped. If it is larger,
the input is padded with zeros. If n is not given, the length of the input along the axis specified
by axis is used.

axis
[int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is used.

norm
[{“backward”, “ortho”, “forward”}, optional] Normalization mode (see numpy.fft). De-
fault is “backward”. Indicates which direction of the forward/backward pair of transforms is
scaled and with what normalization factor.
New in version 1.20.0: The “backward”, “forward” values were added.

out
[complex ndarray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype.
New in version 2.0.0.

Returns
out

[complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. The length of the transformed axis is n//2 +
1.

See also:

hfft, irfft

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian
symmetry in the time domain and is real in the frequency domain. So here it’s hfft for which you must supply
the length of the result if it is to be odd:

• even: ihfft(hfft(a, 2*len(a) - 2)) == a, within roundoff error,
• odd: ihfft(hfft(a, 2*len(a) - 1)) == a, within roundoff error.

1.1. NumPy’s module structure 31

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> spectrum = np.array([15, -4, 0, -1, 0, -4])
>>> np.fft.ifft(spectrum)
array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary
>>> np.fft.ihfft(spectrum)
array([1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary

Helper routines

fftfreq(n[, d, device]) Return the Discrete Fourier Transform sample frequen-
cies.

rfftfreq(n[, d, device]) Return the Discrete Fourier Transform sample frequen-
cies (for usage with rfft, irfft).

fftshift(x[, axes]) Shift the zero-frequency component to the center of the
spectrum.

ifftshift(x[, axes]) The inverse of fftshift.

fft.fftfreq(n, d=1.0, device=None)
Return the Discrete Fourier Transform sample frequencies.
The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at
the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.
Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

Parameters
n

[int] Window length.
d

[scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.
device

[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
f

[ndarray] Array of length n containing the sample frequencies.

32 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])

fft.rfftfreq(n, d=1.0, device=None)
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).
The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at
the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.
Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd

Unlike fftfreq (but like scipy.fftpack.rfftfreq) the Nyquist frequency component is considered to
be positive.

Parameters
n

[int] Window length.
d

[scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.
device

[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
f

[ndarray] Array of length n//2 + 1 containing the sample frequencies.

Examples

>>> import numpy as np
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
>>> fourier = np.fft.rfft(signal)
>>> n = signal.size
>>> sample_rate = 100
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
>>> freq
array([0., 10., 20., ..., -30., -20., -10.])
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
>>> freq
array([0., 10., 20., 30., 40., 50.])

1.1. NumPy’s module structure 33

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfftfreq.html#scipy.fftpack.rfftfreq

NumPy Reference, Release 2.2.0

fft.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component only
if len(x) is even.

Parameters
x

[array_like] Input array.
axes

[int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all axes.
Returns

y
[ndarray] The shifted array.

See also:

ifftshift
The inverse of fftshift.

Examples

>>> import numpy as np
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([0., 1., 2., ..., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

Shift the zero-frequency component only along the second axis:

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.fftshift(freqs, axes=(1,))
array([[2., 0., 1.],

[-4., 3., 4.],
[-1., -3., -2.]])

fft.ifftshift(x, axes=None)
The inverse of fftshift. Although identical for even-length x, the functions differ by one sample for odd-length
x.

Parameters
x

[array_like] Input array.
axes

[int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts all
axes.

Returns

34 1. Python API

NumPy Reference, Release 2.2.0

y
[ndarray] The shifted array.

See also:

fftshift
Shift zero-frequency component to the center of the spectrum.

Examples

>>> import numpy as np
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

Background information
Fourier analysis is fundamentally a method for expressing a function as a sum of periodic components, and for recovering
the function from those components. When both the function and its Fourier transform are replaced with discretized
counterparts, it is called the discrete Fourier transform (DFT). The DFT has become a mainstay of numerical computing
in part because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known
to Gauss (1805) and was brought to light in its current form by Cooley and Tukey [CT]. Press et al. [NR] provide an
accessible introduction to Fourier analysis and its applications.
Because the discrete Fourier transform separates its input into components that contribute at discrete frequencies, it has
a great number of applications in digital signal processing, e.g., for filtering, and in this context the discretized input to
the transform is customarily referred to as a signal, which exists in the time domain. The output is called a spectrum or
transform and exists in the frequency domain.

Implementation details
There are many ways to define the DFT, varying in the sign of the exponent, normalization, etc. In this implementation,
the DFT is defined as

Ak =

n−1∑
m=0

am exp
{
−2πi

mk

n

}
k = 0, . . . , n− 1.

The DFT is in general defined for complex inputs and outputs, and a single-frequency component at linear frequency f is
represented by a complex exponential am = exp{2πi fm∆t}, where∆t is the sampling interval.
The values in the result follow so-called “standard” order: If A = fft(a, n), then A[0] contains the zero-frequency
term (the sum of the signal), which is always purely real for real inputs. Then A[1:n/2] contains the positive-frequency
terms, and A[n/2+1:] contains the negative-frequency terms, in order of decreasingly negative frequency. For an even
number of input points, A[n/2] represents both positive and negative Nyquist frequency, and is also purely real for real
input. For an odd number of input points, A[(n-1)/2] contains the largest positive frequency, while A[(n+1)/2]
contains the largest negative frequency. The routine np.fft.fftfreq(n) returns an array giving the frequencies of
corresponding elements in the output. The routine np.fft.fftshift(A) shifts transforms and their frequencies to
put the zero-frequency components in the middle, and np.fft.ifftshift(A) undoes that shift.
When the input a is a time-domain signal and A = fft(a), np.abs(A) is its amplitude spectrum and np.
abs(A)**2 is its power spectrum. The phase spectrum is obtained by np.angle(A).

1.1. NumPy’s module structure 35

NumPy Reference, Release 2.2.0

The inverse DFT is defined as

am =
1

n

n−1∑
k=0

Ak exp
{
2πi

mk

n

}
m = 0, . . . , n− 1.

It differs from the forward transform by the sign of the exponential argument and the default normalization by 1/n.

Type Promotion
numpy.fft promotes float32 and complex64 arrays to float64 and complex128 arrays respectively. For
an FFT implementation that does not promote input arrays, see scipy.fftpack.

Normalization
The argument norm indicates which direction of the pair of direct/inverse transforms is scaled and with what normal-
ization factor. The default normalization ("backward") has the direct (forward) transforms unscaled and the inverse
(backward) transforms scaled by 1/n. It is possible to obtain unitary transforms by setting the keyword argument norm
to "ortho" so that both direct and inverse transforms are scaled by 1/√n. Finally, setting the keyword argument norm
to "forward" has the direct transforms scaled by 1/n and the inverse transforms unscaled (i.e. exactly opposite to the
default "backward"). None is an alias of the default option "backward" for backward compatibility.

Real and Hermitian transforms
When the input is purely real, its transform is Hermitian, i.e., the component at frequency fk is the complex conjugate
of the component at frequency −fk, which means that for real inputs there is no information in the negative frequency
components that is not already available from the positive frequency components. The family of rfft functions is
designed to operate on real inputs, and exploits this symmetry by computing only the positive frequency components, up
to and including the Nyquist frequency. Thus, n input points produce n/2+1 complex output points. The inverses of
this family assumes the same symmetry of its input, and for an output of n points uses n/2+1 input points.
Correspondingly, when the spectrum is purely real, the signal is Hermitian. The hfft family of functions exploits this
symmetry by using n/2+1 complex points in the input (time) domain for n real points in the frequency domain.
In higher dimensions, FFTs are used, e.g., for image analysis and filtering. The computational efficiency of the FFTmeans
that it can also be a faster way to compute large convolutions, using the property that a convolution in the time domain is
equivalent to a point-by-point multiplication in the frequency domain.

Higher dimensions
In two dimensions, the DFT is defined as

Akl =

M−1∑
m=0

N−1∑
n=0

amn exp
{
−2πi

(
mk

M
+

nl

N

)}
k = 0, . . . ,M − 1; l = 0, . . . , N − 1,

which extends in the obvious way to higher dimensions, and the inverses in higher dimensions also extend in the same
way.

References
Examples
For examples, see the various functions.

36 1. Python API

https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack

NumPy Reference, Release 2.2.0

Linear algebra (numpy.linalg)

The NumPy linear algebra functions rely on BLAS and LAPACK to provide efficient low level implementations of stan-
dard linear algebra algorithms. Those libraries may be provided by NumPy itself using C versions of a subset of their
reference implementations but, when possible, highly optimized libraries that take advantage of specialized processor
functionality are preferred. Examples of such libraries are OpenBLAS, MKL (TM), and ATLAS. Because those libraries
are multithreaded and processor dependent, environmental variables and external packages such as threadpoolctl may be
needed to control the number of threads or specify the processor architecture.
The SciPy library also contains a linalg submodule, and there is overlap in the functionality provided by the SciPy
and NumPy submodules. SciPy contains functions not found in numpy.linalg, such as functions related to LU
decomposition and the Schur decomposition, multiple ways of calculating the pseudoinverse, and matrix transcendentals
such as the matrix logarithm. Some functions that exist in both have augmented functionality in scipy.linalg. For
example, scipy.linalg.eig can take a second matrix argument for solving generalized eigenvalue problems. Some
functions in NumPy, however, have more flexible broadcasting options. For example, numpy.linalg.solve can
handle “stacked” arrays, while scipy.linalg.solve accepts only a single square array as its first argument.

Note: The term matrix as it is used on this page indicates a 2d numpy.array object, and not a numpy.matrix
object. The latter is no longer recommended, even for linear algebra. See the matrix object documentation for more
information.

The @ operator
Introduced in NumPy 1.10.0, the @ operator is preferable to other methods when computing the matrix product between
2d arrays. The numpy.matmul function implements the @ operator.

Matrix and vector products

dot(a, b[, out]) Dot product of two arrays.
linalg.multi_dot(arrays, *[, out]) Compute the dot product of two or more arrays in a sin-

gle function call, while automatically selecting the fastest
evaluation order.

vdot(a, b, /) Return the dot product of two vectors.
vecdot(x1, x2, /[, out, casting, order, ...]) Vector dot product of two arrays.
linalg.vecdot(x1, x2, /, *[, axis]) Computes the vector dot product.
inner(a, b, /) Inner product of two arrays.
outer(a, b[, out]) Compute the outer product of two vectors.
matmul(x1, x2, /[, out, casting, order, ...]) Matrix product of two arrays.
linalg.matmul(x1, x2, /) Computes the matrix product.
matvec(x1, x2, /[, out, casting, order, ...]) Matrix-vector dot product of two arrays.
vecmat(x1, x2, /[, out, casting, order, ...]) Vector-matrix dot product of two arrays.
tensordot(a, b[, axes]) Compute tensor dot product along specified axes.
linalg.tensordot(x1, x2, /, *[, axes]) Compute tensor dot product along specified axes.
einsum(subscripts, *operands[, out, dtype, ...]) Evaluates the Einstein summation convention on the

operands.
einsum_path(subscripts, *operands[, optimize]) Evaluates the lowest cost contraction order for an einsum

expression by considering the creation of intermediate ar-
rays.

linalg.matrix_power(a, n) Raise a square matrix to the (integer) power n.
kron(a, b) Kronecker product of two arrays.
linalg.cross(x1, x2, /, *[, axis]) Returns the cross product of 3-element vectors.

1.1. NumPy’s module structure 37

https://www.openblas.net/
https://github.com/joblib/threadpoolctl
https://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg
https://docs.scipy.org/doc/scipy/reference/linalg.html#module-scipy.linalg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig.html#scipy.linalg.eig
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html#scipy.linalg.solve

NumPy Reference, Release 2.2.0

numpy.dot(a, b, out=None)
Dot product of two arrays. Specifically,

• If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation).
• If both a and b are 2-D arrays, it is matrix multiplication, but using matmul or a @ b is preferred.
• If either a or b is 0-D (scalar), it is equivalent to multiply and using numpy.multiply(a, b) or a
* b is preferred.

• If a is an N-D array and b is a 1-D array, it is a sum product over the last axis of a and b.
• If a is an N-D array and b is an M-D array (where M>=2), it is a sum product over the last axis of a and the
second-to-last axis of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

It uses an optimized BLAS library when possible (see numpy.linalg).
Parameters

a
[array_like] First argument.

b
[array_like] Second argument.

out
[ndarray, optional] Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be C-contiguous, and its
dtype must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

Returns
output

[ndarray] Returns the dot product of a and b. If a and b are both scalars or both 1-D arrays
then a scalar is returned; otherwise an array is returned. If out is given, then it is returned.

Raises
ValueError

If the last dimension of a is not the same size as the second-to-last dimension of b.
See also:

vdot
Complex-conjugating dot product.

vecdot
Vector dot product of two arrays.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.

matmul
‘@’ operator as method with out parameter.

linalg.multi_dot
Chained dot product.

38 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.dot(3, 4)
12

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j])
(-13+0j)

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]]
>>> b = [[4, 1], [2, 2]]
>>> np.dot(a, b)
array([[4, 1],

[2, 2]])

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6))
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3))
>>> np.dot(a, b)[2,3,2,1,2,2]
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2])
499128

linalg.multi_dot(arrays, *, out=None)
Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest
evaluation order.
multi_dot chains numpy.dot and uses optimal parenthesization of the matrices [1] [2]. Depending on the
shapes of the matrices, this can speed up the multiplication a lot.
If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector.
The other arguments must be 2-D.
Think of multi_dot as:

def multi_dot(arrays): return functools.reduce(np.dot, arrays)

Parameters
arrays

[sequence of array_like] If the first argument is 1-D it is treated as row vector. If the last
argument is 1-D it is treated as column vector. The other arguments must be 2-D.

out
[ndarray, optional] Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be C-contiguous, and its
dtype must be the dtype that would be returned for dot(a, b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

Returns
output

[ndarray] Returns the dot product of the supplied arrays.

1.1. NumPy’s module structure 39

NumPy Reference, Release 2.2.0

See also:

numpy.dot
dot multiplication with two arguments.

Notes

The cost for a matrix multiplication can be calculated with the following function:

def cost(A, B):
return A.shape[0] * A.shape[1] * B.shape[1]

Assume we have three matrices A10x100, B100x5, C5x50.
The costs for the two different parenthesizations are as follows:

cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500
cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000

References

[1], [2]

Examples

multi_dot allows you to write:

>>> import numpy as np
>>> from numpy.linalg import multi_dot
>>> # Prepare some data
>>> A = np.random.random((10000, 100))
>>> B = np.random.random((100, 1000))
>>> C = np.random.random((1000, 5))
>>> D = np.random.random((5, 333))
>>> # the actual dot multiplication
>>> _ = multi_dot([A, B, C, D])

instead of:

>>> _ = np.dot(np.dot(np.dot(A, B), C), D)
>>> # or
>>> _ = A.dot(B).dot(C).dot(D)

numpy.vdot(a, b, /)
Return the dot product of two vectors.
The vdot function handles complex numbers differently than dot: if the first argument is complex, it is replaced
by its complex conjugate in the dot product calculation. vdot also handles multidimensional arrays differently
than dot: it does not perform a matrix product, but flattens the arguments to 1-D arrays before taking a vector dot
product.
Consequently, when the arguments are 2-D arrays of the same shape, this function effectively returns their Frobenius
inner product (also known as the trace inner product or the standard inner product on a vector space of matrices).

Parameters

40 1. Python API

https://en.wikipedia.org/wiki/Frobenius_inner_product
https://en.wikipedia.org/wiki/Frobenius_inner_product

NumPy Reference, Release 2.2.0

a
[array_like] If a is complex the complex conjugate is taken before calculation of the dot prod-
uct.

b
[array_like] Second argument to the dot product.

Returns
output

[ndarray] Dot product of a and b. Can be an int, float, or complex depending on the types of
a and b.

See also:

dot
Return the dot product without using the complex conjugate of the first argument.

Examples

>>> import numpy as np
>>> a = np.array([1+2j,3+4j])
>>> b = np.array([5+6j,7+8j])
>>> np.vdot(a, b)
(70-8j)
>>> np.vdot(b, a)
(70+8j)

Note that higher-dimensional arrays are flattened!

>>> a = np.array([[1, 4], [5, 6]])
>>> b = np.array([[4, 1], [2, 2]])
>>> np.vdot(a, b)
30
>>> np.vdot(b, a)
30
>>> 1*4 + 4*1 + 5*2 + 6*2
30

numpy.vecdot(x1, x2, / , out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes,
axis]) = <ufunc 'vecdot'>

Vector dot product of two arrays.
Let a be a vector in x1 and b be a corresponding vector in x2. The dot product is defined as:

a · b =

n−1∑
i=0

aibi

where the sum is over the last dimension (unless axis is specified) and where ai denotes the complex conjugate if
ai is complex and the identity otherwise.
New in version 2.0.0.

Parameters
x1, x2

[array_like] Input arrays, scalars not allowed.

1.1. NumPy’s module structure 41

NumPy Reference, Release 2.2.0

out
[ndarray, optional] A location into which the result is stored. If provided, it must have the
broadcasted shape of x1 and x2 with the last axis removed. If not provided or None, a freshly-
allocated array is used.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The vector dot product of the inputs. This is a scalar only when both x1, x2 are 1-d
vectors.

Raises
ValueError

If the last dimension of x1 is not the same size as the last dimension of x2.
If a scalar value is passed in.

See also:

vdot
same but flattens arguments first

matmul
Matrix-matrix product.

vecmat
Vector-matrix product.

matvec
Matrix-vector product.

einsum
Einstein summation convention.

Examples

>>> import numpy as np

Get the projected size along a given normal for an array of vectors.

>>> v = np.array([[0., 5., 0.], [0., 0., 10.], [0., 6., 8.]])
>>> n = np.array([0., 0.6, 0.8])
>>> np.vecdot(v, n)
array([3., 8., 10.])

linalg.vecdot(x1, x2, / , *, axis=-1)
Computes the vector dot product.
This function is restricted to arguments compatible with the Array API, contrary to numpy.vecdot.
Let a be a vector in x1 and b be a corresponding vector in x2. The dot product is defined as:

a · b =

n−1∑
i=0

aibi

42 1. Python API

NumPy Reference, Release 2.2.0

over the dimension specified by axis and where ai denotes the complex conjugate if ai is complex and the identity
otherwise.

Parameters
x1

[array_like] First input array.
x2

[array_like] Second input array.
axis

[int, optional] Axis over which to compute the dot product. Default: -1.
Returns

output
[ndarray] The vector dot product of the input.

See also:

numpy.vecdot

Examples

Get the projected size along a given normal for an array of vectors.

>>> v = np.array([[0., 5., 0.], [0., 0., 10.], [0., 6., 8.]])
>>> n = np.array([0., 0.6, 0.8])
>>> np.linalg.vecdot(v, n)
array([3., 8., 10.])

numpy.inner(a, b, /)
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product
over the last axes.

Parameters
a, b

[array_like] If a and b are nonscalar, their last dimensions must match.
Returns

out
[ndarray] If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an
array is returned. out.shape = (*a.shape[:-1], *b.shape[:-1])

Raises
ValueError

If both a and b are nonscalar and their last dimensions have different sizes.
See also:

tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

1.1. NumPy’s module structure 43

NumPy Reference, Release 2.2.0

vecdot
Vector dot product of two arrays.

einsum
Einstein summation convention.

Notes

For vectors (1-D arrays) it computes the ordinary inner-product:

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
= sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> import numpy as np
>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

Some multidimensional examples:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> c = np.inner(a, b)
>>> c.shape
(2, 3)
>>> c
array([[14, 38, 62],

[86, 110, 134]])

>>> a = np.arange(2).reshape((1,1,2))
>>> b = np.arange(6).reshape((3,2))
>>> c = np.inner(a, b)
>>> c.shape
(1, 1, 3)
>>> c
array([[[1, 3, 5]]])

An example where b is a scalar:

44 1. Python API

NumPy Reference, Release 2.2.0

>>> np.inner(np.eye(2), 7)
array([[7., 0.],

[0., 7.]])

numpy.outer(a, b, out=None)
Compute the outer product of two vectors.
Given two vectors a and b of length M and N, respectively, the outer product [1] is:

[[a_0*b_0 a_0*b_1 ... a_0*b_{N-1}]
[a_1*b_0 .
[... .
[a_{M-1}*b_0 a_{M-1}*b_{N-1}]]

Parameters
a

[(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.
b

[(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.
out

[(M, N) ndarray, optional] A location where the result is stored
Returns

out
[(M, N) ndarray] out[i, j] = a[i] * b[j]

See also:

inner
einsum

einsum('i,j->ij', a.ravel(), b.ravel()) is the equivalent.
ufunc.outer

A generalization to dimensions other than 1D and other operations. np.multiply.outer(a.
ravel(), b.ravel()) is the equivalent.

linalg.outer
An Array API compatible variation of np.outer, which accepts 1-dimensional inputs only.

tensordot
np.tensordot(a.ravel(), b.ravel(), axes=((), ())) is the equivalent.

References

[1]

1.1. NumPy’s module structure 45

NumPy Reference, Release 2.2.0

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> import numpy as np
>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([['a', 'aa', 'aaa'],

['b', 'bb', 'bbb'],
['c', 'cc', 'ccc']], dtype=object)

numpy.matmul(x1, x2, / , out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes,
axis]) = <ufunc 'matmul'>

Matrix product of two arrays.
Parameters

x1, x2
[array_like] Input arrays, scalars not allowed.

out
[ndarray, optional] A location into which the result is stored. If provided, it must have a shape
that matches the signature (n,k),(k,m)->(n,m). If not provided or None, a freshly-allocated
array is returned.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d
vectors.

Raises

46 1. Python API

NumPy Reference, Release 2.2.0

ValueError
If the last dimension of x1 is not the same size as the second-to-last dimension of x2.
If a scalar value is passed in.

See also:

vecdot
Complex-conjugating dot product for stacks of vectors.

matvec
Matrix-vector product for stacks of matrices and vectors.

vecmat
Vector-matrix product for stacks of vectors and matrices.

tensordot
Sum products over arbitrary axes.

einsum
Einstein summation convention.

dot
alternative matrix product with different broadcasting rules.

Notes

The behavior depends on the arguments in the following way.
• If both arguments are 2-D they are multiplied like conventional matrices.
• If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and
broadcast accordingly.

• If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix
multiplication the prepended 1 is removed. (For stacks of vectors, use vecmat.)

• If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix
multiplication the appended 1 is removed. (For stacks of vectors, use matvec.)

matmul differs from dot in two important ways:
• Multiplication by scalars is not allowed, use * instead.
• Stacks of matrices are broadcast together as if the matrices were elements, respecting the signature (n,k),
(k,m)->(n,m):

>>> a = np.ones([9, 5, 7, 4])
>>> c = np.ones([9, 5, 4, 3])
>>> np.dot(a, c).shape
(9, 5, 7, 9, 5, 3)
>>> np.matmul(a, c).shape
(9, 5, 7, 3)
>>> # n is 7, k is 4, m is 3

The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP 465.
It uses an optimized BLAS library when possible (see numpy.linalg).

1.1. NumPy’s module structure 47

https://peps.python.org/pep-0465/

NumPy Reference, Release 2.2.0

Examples

For 2-D arrays it is the matrix product:

>>> import numpy as np

>>> a = np.array([[1, 0],
... [0, 1]])
>>> b = np.array([[4, 1],
... [2, 2]])
>>> np.matmul(a, b)
array([[4, 1],

[2, 2]])

For 2-D mixed with 1-D, the result is the usual.

>>> a = np.array([[1, 0],
... [0, 1]])
>>> b = np.array([1, 2])
>>> np.matmul(a, b)
array([1, 2])
>>> np.matmul(b, a)
array([1, 2])

Broadcasting is conventional for stacks of arrays

>>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4))
>>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2))
>>> np.matmul(a,b).shape
(2, 2, 2)
>>> np.matmul(a, b)[0, 1, 1]
98
>>> sum(a[0, 1, :] * b[0 , :, 1])
98

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

>>> np.matmul([2j, 3j], [2j, 3j])
(-13+0j)

Scalar multiplication raises an error.

>>> np.matmul([1,2], 3)
Traceback (most recent call last):
...
ValueError: matmul: Input operand 1 does not have enough dimensions ...

The @ operator can be used as a shorthand for np.matmul on ndarrays.

>>> x1 = np.array([2j, 3j])
>>> x2 = np.array([2j, 3j])
>>> x1 @ x2
(-13+0j)

linalg.matmul(x1, x2, /)
Computes the matrix product.
This function is Array API compatible, contrary to numpy.matmul.

48 1. Python API

NumPy Reference, Release 2.2.0

Parameters
x1

[array_like] The first input array.
x2

[array_like] The second input array.
Returns

out
[ndarray] The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d
vectors.

Raises
ValueError

If the last dimension of x1 is not the same size as the second-to-last dimension of x2.
If a scalar value is passed in.

See also:

numpy.matmul

Examples

For 2-D arrays it is the matrix product:

>>> a = np.array([[1, 0],
... [0, 1]])
>>> b = np.array([[4, 1],
... [2, 2]])
>>> np.linalg.matmul(a, b)
array([[4, 1],

[2, 2]])

For 2-D mixed with 1-D, the result is the usual.

>>> a = np.array([[1, 0],
... [0, 1]])
>>> b = np.array([1, 2])
>>> np.linalg.matmul(a, b)
array([1, 2])
>>> np.linalg.matmul(b, a)
array([1, 2])

Broadcasting is conventional for stacks of arrays

>>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4))
>>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2))
>>> np.linalg.matmul(a,b).shape
(2, 2, 2)
>>> np.linalg.matmul(a, b)[0, 1, 1]
98
>>> sum(a[0, 1, :] * b[0 , :, 1])
98

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

1.1. NumPy’s module structure 49

NumPy Reference, Release 2.2.0

>>> np.linalg.matmul([2j, 3j], [2j, 3j])
(-13+0j)

Scalar multiplication raises an error.

>>> np.linalg.matmul([1,2], 3)
Traceback (most recent call last):
...
ValueError: matmul: Input operand 1 does not have enough dimensions ...

numpy.matvec(x1, x2, / , out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes,
axis]) = <ufunc 'matvec'>

Matrix-vector dot product of two arrays.
Given a matrix (or stack of matrices) A in x1 and a vector (or stack of vectors) v in x2, the matrix-vector product
is defined as:

A · b =

n−1∑
j=0

Aijvj

where the sum is over the last dimensions in x1 and x2 (unless axes is specified). (For a matrix-vector product
with the vector conjugated, use np.vecmat(x2, x1.mT).)
New in version 2.2.0.

Parameters
x1, x2

[array_like] Input arrays, scalars not allowed.
out

[ndarray, optional] A location into which the result is stored. If provided, it must have the
broadcasted shape of x1 and x2 with the summation axis removed. If not provided or None,
a freshly-allocated array is used.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The matrix-vector product of the inputs.
Raises

ValueError
If the last dimensions of x1 and x2 are not the same size.
If a scalar value is passed in.

See also:

vecdot
Vector-vector product.

vecmat
Vector-matrix product.

matmul
Matrix-matrix product.

50 1. Python API

NumPy Reference, Release 2.2.0

einsum
Einstein summation convention.

Examples

Rotate a set of vectors from Y to X along Z.

>>> a = np.array([[0., 1., 0.],
... [-1., 0., 0.],
... [0., 0., 1.]])
>>> v = np.array([[1., 0., 0.],
... [0., 1., 0.],
... [0., 0., 1.],
... [0., 6., 8.]])
>>> np.matvec(a, v)
array([[0., -1., 0.],

[1., 0., 0.],
[0., 0., 1.],
[6., 0., 8.]])

numpy.vecmat(x1, x2, / , out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes,
axis]) = <ufunc 'vecmat'>

Vector-matrix dot product of two arrays.
Given a vector (or stack of vector) v in x1 and a matrix (or stack of matrices) A in x2, the vector-matrix product
is defined as:

b · A =

n−1∑
i=0

viAij

where the sum is over the last dimension of x1 and the one-but-last dimensions in x2 (unless axes is specified)
and where vi denotes the complex conjugate if v is complex and the identity otherwise. (For a non-conjugated
vector-matrix product, use np.matvec(x2.mT, x1).)
New in version 2.2.0.

Parameters
x1, x2

[array_like] Input arrays, scalars not allowed.
out

[ndarray, optional] A location into which the result is stored. If provided, it must have the
broadcasted shape of x1 and x2 with the summation axis removed. If not provided or None,
a freshly-allocated array is used.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The vector-matrix product of the inputs.
Raises

ValueError
If the last dimensions of x1 and the one-but-last dimension of x2 are not the same size.
If a scalar value is passed in.

1.1. NumPy’s module structure 51

NumPy Reference, Release 2.2.0

See also:

vecdot
Vector-vector product.

matvec
Matrix-vector product.

matmul
Matrix-matrix product.

einsum
Einstein summation convention.

Examples

Project a vector along X and Y.

>>> v = np.array([0., 4., 2.])
>>> a = np.array([[1., 0., 0.],
... [0., 1., 0.],
... [0., 0., 0.]])
>>> np.vecmat(v, a)
array([0., 4., 0.])

numpy.tensordot(a, b, axes=2)
Compute tensor dot product along specified axes.
Given two tensors, a and b, and an array_like object containing two array_like objects, (a_axes, b_axes),
sum the products of a’s and b’s elements (components) over the axes specified by a_axes and b_axes. The third
argument can be a single non-negative integer_like scalar, N; if it is such, then the last N dimensions of a and the
first N dimensions of b are summed over.

Parameters
a, b

[array_like] Tensors to “dot”.
axes

[int or (2,) array_like]
• integer_like If an int N, sum over the last N axes of a and the first N axes of b in order. The
sizes of the corresponding axes must match.

• (2,) array_like Or, a list of axes to be summed over, first sequence applying to a, second to
b. Both elements array_like must be of the same length.

Returns
output

[ndarray] The tensor dot product of the input.
See also:

dot, einsum

52 1. Python API

NumPy Reference, Release 2.2.0

Notes

Three common use cases are:
• axes = 0 : tensor product a⊗ b

• axes = 1 : tensor dot product a · b

• axes = 2 : (default) tensor double contraction a : b

When axes is integer_like, the sequence of axes for evaluation will be: from the -Nth axis to the -1th axis in a, and
from the 0th axis to (N-1)th axis in b. For example, axes = 2 is the equal to axes = [[-2, -1], [0,
1]]. When N-1 is smaller than 0, or when -N is larger than -1, the element of a and b are defined as the axes.
When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the argument axes
should consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the
second axis second, and so forth. The calculation can be referred to numpy.einsum.
The shape of the result consists of the non-contracted axes of the first tensor, followed by the non-contracted axes
of the second.

Examples

An example on integer_like:

>>> a_0 = np.array([[1, 2], [3, 4]])
>>> b_0 = np.array([[5, 6], [7, 8]])
>>> c_0 = np.tensordot(a_0, b_0, axes=0)
>>> c_0.shape
(2, 2, 2, 2)
>>> c_0
array([[[[5, 6],

[7, 8]],
[[10, 12],
[14, 16]]],

[[[15, 18],
[21, 24]],
[[20, 24],
[28, 32]]]])

An example on array_like:

>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5, 2)
>>> c
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

A slower but equivalent way of computing the same…

1.1. NumPy’s module structure 53

NumPy Reference, Release 2.2.0

>>> d = np.zeros((5,2))
>>> for i in range(5):
... for j in range(2):
... for k in range(3):
... for n in range(4):
... d[i,j] += a[k,n,i] * b[n,k,j]
>>> c == d
array([[True, True],

[True, True],
[True, True],
[True, True],
[True, True]])

An extended example taking advantage of the overloading of + and *:

>>> a = np.array(range(1, 9))
>>> a.shape = (2, 2, 2)
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
>>> A.shape = (2, 2)
>>> a; A
array([[[1, 2],

[3, 4]],
[[5, 6],
[7, 8]]])

array([['a', 'b'],
['c', 'd']], dtype=object)

>>> np.tensordot(a, A) # third argument default is 2 for double-contraction
array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)

>>> np.tensordot(a, A, 1)
array([[['acc', 'bdd'],

['aaacccc', 'bbbdddd']],
[['aaaaacccccc', 'bbbbbdddddd'],
['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)

>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
array([[[[['a', 'b'],

['c', 'd']],
...

>>> np.tensordot(a, A, (0, 1))
array([[['abbbbb', 'cddddd'],

['aabbbbbb', 'ccdddddd']],
[['aaabbbbbbb', 'cccddddddd'],
['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)

>>> np.tensordot(a, A, (2, 1))
array([[['abb', 'cdd'],

['aaabbbb', 'cccdddd']],
[['aaaaabbbbbb', 'cccccdddddd'],
['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)

>>> np.tensordot(a, A, ((0, 1), (0, 1)))
array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)

54 1. Python API

NumPy Reference, Release 2.2.0

>>> np.tensordot(a, A, ((2, 1), (1, 0)))
array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)

linalg.tensordot(x1, x2, / , *, axes=2)
Compute tensor dot product along specified axes.
Given two tensors, a and b, and an array_like object containing two array_like objects, (a_axes, b_axes),
sum the products of a’s and b’s elements (components) over the axes specified by a_axes and b_axes. The third
argument can be a single non-negative integer_like scalar, N; if it is such, then the last N dimensions of a and the
first N dimensions of b are summed over.

Parameters
a, b

[array_like] Tensors to “dot”.
axes

[int or (2,) array_like]
• integer_like If an int N, sum over the last N axes of a and the first N axes of b in order. The
sizes of the corresponding axes must match.

• (2,) array_like Or, a list of axes to be summed over, first sequence applying to a, second to
b. Both elements array_like must be of the same length.

Returns
output

[ndarray] The tensor dot product of the input.
See also:

dot, einsum

Notes

Three common use cases are:
• axes = 0 : tensor product a⊗ b

• axes = 1 : tensor dot product a · b

• axes = 2 : (default) tensor double contraction a : b

When axes is integer_like, the sequence of axes for evaluation will be: from the -Nth axis to the -1th axis in a, and
from the 0th axis to (N-1)th axis in b. For example, axes = 2 is the equal to axes = [[-2, -1], [0,
1]]. When N-1 is smaller than 0, or when -N is larger than -1, the element of a and b are defined as the axes.
When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the argument axes
should consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the
second axis second, and so forth. The calculation can be referred to numpy.einsum.
The shape of the result consists of the non-contracted axes of the first tensor, followed by the non-contracted axes
of the second.

1.1. NumPy’s module structure 55

NumPy Reference, Release 2.2.0

Examples

An example on integer_like:

>>> a_0 = np.array([[1, 2], [3, 4]])
>>> b_0 = np.array([[5, 6], [7, 8]])
>>> c_0 = np.tensordot(a_0, b_0, axes=0)
>>> c_0.shape
(2, 2, 2, 2)
>>> c_0
array([[[[5, 6],

[7, 8]],
[[10, 12],
[14, 16]]],

[[[15, 18],
[21, 24]],
[[20, 24],
[28, 32]]]])

An example on array_like:

>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5, 2)
>>> c
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

A slower but equivalent way of computing the same…

>>> d = np.zeros((5,2))
>>> for i in range(5):
... for j in range(2):
... for k in range(3):
... for n in range(4):
... d[i,j] += a[k,n,i] * b[n,k,j]
>>> c == d
array([[True, True],

[True, True],
[True, True],
[True, True],
[True, True]])

An extended example taking advantage of the overloading of + and *:

>>> a = np.array(range(1, 9))
>>> a.shape = (2, 2, 2)
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object)
>>> A.shape = (2, 2)
>>> a; A
array([[[1, 2],

[3, 4]],
[[5, 6],

(continues on next page)

56 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[7, 8]]])

array([['a', 'b'],
['c', 'd']], dtype=object)

>>> np.tensordot(a, A) # third argument default is 2 for double-contraction
array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)

>>> np.tensordot(a, A, 1)
array([[['acc', 'bdd'],

['aaacccc', 'bbbdddd']],
[['aaaaacccccc', 'bbbbbdddddd'],
['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)

>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
array([[[[['a', 'b'],

['c', 'd']],
...

>>> np.tensordot(a, A, (0, 1))
array([[['abbbbb', 'cddddd'],

['aabbbbbb', 'ccdddddd']],
[['aaabbbbbbb', 'cccddddddd'],
['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)

>>> np.tensordot(a, A, (2, 1))
array([[['abb', 'cdd'],

['aaabbbb', 'cccdddd']],
[['aaaaabbbbbb', 'cccccdddddd'],
['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)

>>> np.tensordot(a, A, ((0, 1), (0, 1)))
array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)

>>> np.tensordot(a, A, ((2, 1), (1, 0)))
array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)

numpy.einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe', optimize=False)
Evaluates the Einstein summation convention on the operands.
Using the Einstein summation convention, many common multi-dimensional, linear algebraic array operations can
be represented in a simple fashion. In implicit mode einsum computes these values.
In explicitmode, einsum provides further flexibility to compute other array operations thatmight not be considered
classical Einstein summation operations, by disabling, or forcing summation over specified subscript labels.
See the notes and examples for clarification.

Parameters
subscripts

[str] Specifies the subscripts for summation as comma separated list of subscript labels. An
implicit (classical Einstein summation) calculation is performed unless the explicit indicator
‘->’ is included as well as subscript labels of the precise output form.

operands
[list of array_like] These are the arrays for the operation.

1.1. NumPy’s module structure 57

NumPy Reference, Release 2.2.0

out
[ndarray, optional] If provided, the calculation is done into this array.

dtype
[{data-type, None}, optional] If provided, forces the calculation to use the data type specified.
Note that you may have to also give a more liberal casting parameter to allow the conversions.
Default is None.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the output. ‘C’ means it should
be C contiguous. ‘F’ means it should be Fortran contiguous, ‘A’ means it should be ‘F’ if the
inputs are all ‘F’, ‘C’ otherwise. ‘K’ means it should be as close to the layout as the inputs as is
possible, including arbitrarily permuted axes. Default is ‘K’.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Setting this to ‘unsafe’ is not recommended, as it can adversely affect accumulations.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.
• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.
Default is ‘safe’.

optimize
[{False, True, ‘greedy’, ‘optimal’}, optional] Controls if intermediate optimization should oc-
cur. No optimization will occur if False and True will default to the ‘greedy’ algorithm.
Also accepts an explicit contraction list from the np.einsum_path function. See np.
einsum_path for more details. Defaults to False.

Returns
output

[ndarray] The calculation based on the Einstein summation convention.
See also:

einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
einsum

Similar verbose interface is provided by the einops package to cover additional operations: transpose, re-
shape/flatten, repeat/tile, squeeze/unsqueeze and reductions. The opt_einsum optimizes contraction order
for einsum-like expressions in backend-agnostic manner.

Notes

The Einstein summation convention can be used to compute many multi-dimensional, linear algebraic array oper-
ations. einsum provides a succinct way of representing these.
A non-exhaustive list of these operations, which can be computed byeinsum, is shown below along with examples:

• Trace of an array, numpy.trace.
• Return a diagonal, numpy.diag.
• Array axis summations, numpy.sum.

58 1. Python API

https://github.com/arogozhnikov/einops
https://optimized-einsum.readthedocs.io/en/stable/

NumPy Reference, Release 2.2.0

• Transpositions and permutations, numpy.transpose.
• Matrix multiplication and dot product, numpy.matmul

numpy.dot.
• Vector inner and outer products, numpy.inner

numpy.outer.
• Broadcasting, element-wise and scalar multiplication,

numpy.multiply.
• Tensor contractions, numpy.tensordot.
• Chained array operations, in efficient calculation order,

numpy.einsum_path.
The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of the
corresponding operand. Whenever a label is repeated it is summed, so np.einsum('i,i', a, b) is equiv-
alent to np.inner(a,b). If a label appears only once, it is not summed, so np.einsum('i', a) produces
a view of a with no changes. A further example np.einsum('ij,jk', a, b) describes traditional ma-
trix multiplication and is equivalent to np.matmul(a,b). Repeated subscript labels in one operand take the
diagonal. For example, np.einsum('ii', a) is equivalent to np.trace(a).
In implicit mode, the chosen subscripts are important since the axes of the output are reordered alphabetically.
This means that np.einsum('ij', a) doesn’t affect a 2D array, while np.einsum('ji', a) takes
its transpose. Additionally, np.einsum('ij,jk', a, b) returns a matrix multiplication, while, np.
einsum('ij,jh', a, b) returns the transpose of the multiplication since subscript ‘h’ precedes subscript
‘i’.
In explicit mode the output can be directly controlled by specifying output subscript labels. This requires the iden-
tifier ‘->’ as well as the list of output subscript labels. This feature increases the flexibility of the function since
summing can be disabled or forced when required. The call np.einsum('i->', a) is like np.sum(a)
if a is a 1-D array, and np.einsum('ii->i', a) is like np.diag(a) if a is a square 2-D array. The
difference is that einsum does not allow broadcasting by default. Additionally np.einsum('ij,jh->ih',
a, b) directly specifies the order of the output subscript labels and therefore returns matrix multiplication, unlike
the example above in implicit mode.
To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an ellipsis
to the left of each term, like np.einsum('...ii->...i', a). np.einsum('...i->...', a) is
like np.sum(a, axis=-1) for array a of any shape. To take the trace along the first and last axes, you can do
np.einsum('i...i', a), or to do a matrix-matrix product with the left-most indices instead of rightmost,
one can do np.einsum('ij...,jk...->ik...', a, b).
When there is only one operand, no axes are summed, and no output parameter is provided, a view into the operand
is returned instead of a new array. Thus, taking the diagonal as np.einsum('ii->i', a) produces a view
(changed in version 1.10.0).
einsum also provides an alternative way to provide the subscripts and operands as einsum(op0, sublist0,
op1, sublist1, ..., [sublistout]). If the output shape is not provided in this format einsum will
be calculated in implicit mode, otherwise it will be performed explicitly. The examples below have corresponding
einsum calls with the two parameter methods.
Views returned from einsum are now writeable whenever the input array is writeable. For example, np.
einsum('ijk...->kji...', a) will now have the same effect as np.swapaxes(a, 0, 2) and
np.einsum('ii->i', a) will return a writeable view of the diagonal of a 2D array.
Added the optimize argument which will optimize the contraction order of an einsum expression. For a con-
traction with three or more operands this can greatly increase the computational efficiency at the cost of a larger
memory footprint during computation.

1.1. NumPy’s module structure 59

NumPy Reference, Release 2.2.0

Typically a ‘greedy’ algorithm is applied which empirical tests have shown returns the optimal path in the majority
of cases. In some cases ‘optimal’ will return the superlative path through a more expensive, exhaustive search. For
iterative calculations it may be advisable to calculate the optimal path once and reuse that path by supplying it as
an argument. An example is given below.
See numpy.einsum_path for more details.

Examples

>>> a = np.arange(25).reshape(5,5)
>>> b = np.arange(5)
>>> c = np.arange(6).reshape(2,3)

Trace of a matrix:

>>> np.einsum('ii', a)
60
>>> np.einsum(a, [0,0])
60
>>> np.trace(a)
60

Extract the diagonal (requires explicit form):

>>> np.einsum('ii->i', a)
array([0, 6, 12, 18, 24])
>>> np.einsum(a, [0,0], [0])
array([0, 6, 12, 18, 24])
>>> np.diag(a)
array([0, 6, 12, 18, 24])

Sum over an axis (requires explicit form):

>>> np.einsum('ij->i', a)
array([10, 35, 60, 85, 110])
>>> np.einsum(a, [0,1], [0])
array([10, 35, 60, 85, 110])
>>> np.sum(a, axis=1)
array([10, 35, 60, 85, 110])

For higher dimensional arrays summing a single axis can be done with ellipsis:

>>> np.einsum('...j->...', a)
array([10, 35, 60, 85, 110])
>>> np.einsum(a, [Ellipsis,1], [Ellipsis])
array([10, 35, 60, 85, 110])

Compute a matrix transpose, or reorder any number of axes:

>>> np.einsum('ji', c)
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.einsum('ij->ji', c)
array([[0, 3],

[1, 4],

(continues on next page)

60 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[2, 5]])

>>> np.einsum(c, [1,0])
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.transpose(c)
array([[0, 3],

[1, 4],
[2, 5]])

Vector inner products:

>>> np.einsum('i,i', b, b)
30
>>> np.einsum(b, [0], b, [0])
30
>>> np.inner(b,b)
30

Matrix vector multiplication:

>>> np.einsum('ij,j', a, b)
array([30, 80, 130, 180, 230])
>>> np.einsum(a, [0,1], b, [1])
array([30, 80, 130, 180, 230])
>>> np.dot(a, b)
array([30, 80, 130, 180, 230])
>>> np.einsum('...j,j', a, b)
array([30, 80, 130, 180, 230])

Broadcasting and scalar multiplication:

>>> np.einsum('..., ...', 3, c)
array([[0, 3, 6],

[9, 12, 15]])
>>> np.einsum(',ij', 3, c)
array([[0, 3, 6],

[9, 12, 15]])
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
array([[0, 3, 6],

[9, 12, 15]])
>>> np.multiply(3, c)
array([[0, 3, 6],

[9, 12, 15]])

Vector outer product:

>>> np.einsum('i,j', np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])
>>> np.einsum(np.arange(2)+1, [0], b, [1])
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])
>>> np.outer(np.arange(2)+1, b)
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])

1.1. NumPy’s module structure 61

NumPy Reference, Release 2.2.0

Tensor contraction:

>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> np.einsum('ijk,jil->kl', a, b)
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> np.tensordot(a,b, axes=([1,0],[0,1]))
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

Writeable returned arrays (since version 1.10.0):

>>> a = np.zeros((3, 3))
>>> np.einsum('ii->i', a)[:] = 1
>>> a
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

Example of ellipsis use:

>>> a = np.arange(6).reshape((3,2))
>>> b = np.arange(12).reshape((4,3))
>>> np.einsum('ki,jk->ij', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])
>>> np.einsum('ki,...k->i...', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])
>>> np.einsum('k...,jk', a, b)
array([[10, 28, 46, 64],

[13, 40, 67, 94]])

Chained array operations. For more complicated contractions, speed ups might be achieved by repeatedly com-
puting a ‘greedy’ path or pre-computing the ‘optimal’ path and repeatedly applying it, using an einsum_path
insertion (since version 1.12.0). Performance improvements can be particularly significant with larger arrays:

>>> a = np.ones(64).reshape(2,4,8)

Basic einsum: ~1520ms (benchmarked on 3.1GHz Intel i5.)

>>> for iteration in range(500):
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)

Sub-optimal einsum (due to repeated path calculation time): ~330ms

62 1. Python API

NumPy Reference, Release 2.2.0

>>> for iteration in range(500):
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a,
... optimize='optimal')

Greedy einsum (faster optimal path approximation): ~160ms

>>> for iteration in range(500):
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')

Optimal einsum (best usage pattern in some use cases): ~110ms

>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a,
... optimize='optimal')[0]
>>> for iteration in range(500):
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)

numpy.einsum_path(subscripts, *operands, optimize='greedy')
Evaluates the lowest cost contraction order for an einsum expression by considering the creation of intermediate
arrays.

Parameters
subscripts

[str] Specifies the subscripts for summation.
*operands

[list of array_like] These are the arrays for the operation.
optimize

[{bool, list, tuple, ‘greedy’, ‘optimal’}] Choose the type of path. If a tuple is provided, the
second argument is assumed to be the maximum intermediate size created. If only a single
argument is provided the largest input or output array size is used as a maximum intermediate
size.
• if a list is given that starts with einsum_path, uses this as the contraction path
• if False no optimization is taken
• if True defaults to the ‘greedy’ algorithm
• ‘optimal’ An algorithm that combinatorially explores all possible ways of contracting the
listed tensors and chooses the least costly path. Scales exponentially with the number of
terms in the contraction.

• ‘greedy’ An algorithm that chooses the best pair contraction at each step. Effectively, this
algorithm searches the largest inner, Hadamard, and then outer products at each step. Scales
cubically with the number of terms in the contraction. Equivalent to the ‘optimal’ path for
most contractions.

Default is ‘greedy’.
Returns

path
[list of tuples] A list representation of the einsum path.

string_repr
[str] A printable representation of the einsum path.

See also:

1.1. NumPy’s module structure 63

NumPy Reference, Release 2.2.0

einsum, linalg.multi_dot

Notes

The resulting path indicates which terms of the input contraction should be contracted first, the result of this con-
traction is then appended to the end of the contraction list. This list can then be iterated over until all intermediate
contractions are complete.

Examples

We can begin with a chain dot example. In this case, it is optimal to contract the b and c tensors first as represented
by the first element of the path (1, 2). The resulting tensor is added to the end of the contraction and the
remaining contraction (0, 1) is then completed.

>>> np.random.seed(123)
>>> a = np.random.rand(2, 2)
>>> b = np.random.rand(2, 5)
>>> c = np.random.rand(5, 2)
>>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
>>> print(path_info[0])
['einsum_path', (1, 2), (0, 1)]
>>> print(path_info[1])
Complete contraction: ij,jk,kl->il # may vary

Naive scaling: 4
Optimized scaling: 3
Naive FLOP count: 1.600e+02

Optimized FLOP count: 5.600e+01
Theoretical speedup: 2.857
Largest intermediate: 4.000e+00 elements

scaling current remaining

3 kl,jk->jl ij,jl->il
3 jl,ij->il il->il

A more complex index transformation example.

>>> I = np.random.rand(10, 10, 10, 10)
>>> C = np.random.rand(10, 10)
>>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
... optimize='greedy')

>>> print(path_info[0])
['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
>>> print(path_info[1])
Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary

Naive scaling: 8
Optimized scaling: 5
Naive FLOP count: 8.000e+08

Optimized FLOP count: 8.000e+05
Theoretical speedup: 1000.000
Largest intermediate: 1.000e+04 elements

--
scaling current remaining
--

(continues on next page)

64 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
5 abcd,ea->bcde fb,gc,hd,bcde->efgh
5 bcde,fb->cdef gc,hd,cdef->efgh
5 cdef,gc->defg hd,defg->efgh
5 defg,hd->efgh efgh->efgh

linalg.matrix_power(a, n)
Raise a square matrix to the (integer) power n.
For positive integers n, the power is computed by repeated matrix squarings and matrix multiplications. If n ==
0, the identity matrix of the same shape as M is returned. If n < 0, the inverse is computed and then raised to
the abs(n).

Note: Stacks of object matrices are not currently supported.

Parameters
a

[(…, M, M) array_like] Matrix to be “powered”.
n

[int] The exponent can be any integer or long integer, positive, negative, or zero.
Returns

a**n
[(…, M, M) ndarray or matrix object] The return value is the same shape and type as M; if
the exponent is positive or zero then the type of the elements is the same as those ofM. If the
exponent is negative the elements are floating-point.

Raises
LinAlgError

For matrices that are not square or that (for negative powers) cannot be inverted numerically.

Examples

>>> import numpy as np
>>> from numpy.linalg import matrix_power
>>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
>>> matrix_power(i, 3) # should = -i
array([[0, -1],

[1, 0]])
>>> matrix_power(i, 0)
array([[1, 0],

[0, 1]])
>>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
array([[0., 1.],

[-1., 0.]])

Somewhat more sophisticated example

>>> q = np.zeros((4, 4))
>>> q[0:2, 0:2] = -i
>>> q[2:4, 2:4] = i

(continues on next page)

1.1. NumPy’s module structure 65

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> q # one of the three quaternion units not equal to 1
array([[0., -1., 0., 0.],

[1., 0., 0., 0.],
[0., 0., 0., 1.],
[0., 0., -1., 0.]])

>>> matrix_power(q, 2) # = -np.eye(4)
array([[-1., 0., 0., 0.],

[0., -1., 0., 0.],
[0., 0., -1., 0.],
[0., 0., 0., -1.]])

numpy.kron(a, b)
Kronecker product of two arrays.
Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first.

Parameters
a, b

[array_like]
Returns

out
[ndarray]

See also:

outer
The outer product

Notes

The function assumes that the number of dimensions of a and b are the same, if necessary prepending the smallest
with ones. If a.shape = (r0,r1,..,rN) and b.shape = (s0,s1,...,sN), the Kronecker product
has shape (r0*s0, r1*s1, ..., rN*SN). The elements are products of elements from a and b, organized
explicitly by:

kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

where:

kt = it * st + jt, t = 0,...,N

In the common 2-D case (N=1), the block structure can be visualized:

[[a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b],
[... ...],
[a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b]]

66 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.kron([1,10,100], [5,6,7])
array([5, 6, 7, ..., 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([5, 50, 500, ..., 7, 70, 700])

>>> np.kron(np.eye(2), np.ones((2,2)))
array([[1., 1., 0., 0.],

[1., 1., 0., 0.],
[0., 0., 1., 1.],
[0., 0., 1., 1.]])

>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
>>> c = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
>>> c[K] == a[I]*b[J]
True

linalg.cross(x1, x2, / , *, axis=-1)
Returns the cross product of 3-element vectors.
If x1 and/or x2 are multi-dimensional arrays, then the cross-product of each pair of corresponding 3-element
vectors is independently computed.
This function is Array API compatible, contrary to numpy.cross.

Parameters
x1

[array_like] The first input array.
x2

[array_like] The second input array. Must be compatible with x1 for all non-compute axes.
The size of the axis over which to compute the cross-product must be the same size as the
respective axis in x1.

axis
[int, optional] The axis (dimension) of x1 and x2 containing the vectors for which to compute
the cross-product. Default: -1.

Returns
out

[ndarray] An array containing the cross products.
See also:

numpy.cross

1.1. NumPy’s module structure 67

NumPy Reference, Release 2.2.0

Examples

Vector cross-product.

>>> x = np.array([1, 2, 3])
>>> y = np.array([4, 5, 6])
>>> np.linalg.cross(x, y)
array([-3, 6, -3])

Multiple vector cross-products. Note that the direction of the cross product vector is defined by the right-hand rule.

>>> x = np.array([[1,2,3], [4,5,6]])
>>> y = np.array([[4,5,6], [1,2,3]])
>>> np.linalg.cross(x, y)
array([[-3, 6, -3],

[3, -6, 3]])

>>> x = np.array([[1, 2], [3, 4], [5, 6]])
>>> y = np.array([[4, 5], [6, 1], [2, 3]])
>>> np.linalg.cross(x, y, axis=0)
array([[-24, 6],

[18, 24],
[-6, -18]])

Decompositions

linalg.cholesky(a, /, *[, upper]) Cholesky decomposition.
linalg.outer(x1, x2, /) Compute the outer product of two vectors.
linalg.qr(a[, mode]) Compute the qr factorization of a matrix.
linalg.svd(a[, full_matrices, compute_uv, ...]) Singular Value Decomposition.
linalg.svdvals(x, /) Returns the singular values of a matrix (or a stack of ma-

trices) x.

linalg.cholesky(a, / , *, upper=False)
Cholesky decomposition.
Return the lower or upper Cholesky decomposition, L * L.H or U.H * U, of the square matrix a, where
L is lower-triangular, U is upper-triangular, and .H is the conjugate transpose operator (which is the ordinary
transpose if a is real-valued). a must be Hermitian (symmetric if real-valued) and positive-definite. No checking
is performed to verify whether a is Hermitian or not. In addition, only the lower or upper-triangular and diagonal
elements of a are used. Only L or U is actually returned.

Parameters
a

[(…, M, M) array_like] Hermitian (symmetric if all elements are real), positive-definite input
matrix.

upper
[bool] If True, the result must be the upper-triangular Cholesky factor. If False, the result
must be the lower-triangular Cholesky factor. Default: False.

Returns
L

[(…, M, M) array_like] Lower or upper-triangular Cholesky factor of a. Returns a matrix
object if a is a matrix object.

68 1. Python API

NumPy Reference, Release 2.2.0

Raises
LinAlgError

If the decomposition fails, for example, if a is not positive-definite.
See also:

scipy.linalg.cholesky
Similar function in SciPy.

scipy.linalg.cholesky_banded
Cholesky decompose a banded Hermitian positive-definite matrix.

scipy.linalg.cho_factor
Cholesky decomposition of a matrix, to use in scipy.linalg.cho_solve.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
The Cholesky decomposition is often used as a fast way of solving

Ax = b

(when A is both Hermitian/symmetric and positive-definite).
First, we solve for y in

Ly = b,

and then for x in

LHx = y.

Examples

>>> import numpy as np
>>> A = np.array([[1,-2j],[2j,5]])
>>> A
array([[1.+0.j, -0.-2.j],

[0.+2.j, 5.+0.j]])
>>> L = np.linalg.cholesky(A)
>>> L
array([[1.+0.j, 0.+0.j],

[0.+2.j, 1.+0.j]])
>>> np.dot(L, L.T.conj()) # verify that L * L.H = A
array([[1.+0.j, 0.-2.j],

[0.+2.j, 5.+0.j]])
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
>>> np.linalg.cholesky(A) # an ndarray object is returned
array([[1.+0.j, 0.+0.j],

[0.+2.j, 1.+0.j]])
>>> # But a matrix object is returned if A is a matrix object
>>> np.linalg.cholesky(np.matrix(A))
matrix([[1.+0.j, 0.+0.j],

[0.+2.j, 1.+0.j]])

(continues on next page)

1.1. NumPy’s module structure 69

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky.html#scipy.linalg.cholesky
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky_banded.html#scipy.linalg.cholesky_banded
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_factor.html#scipy.linalg.cho_factor
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html#scipy.linalg.cho_solve

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> # The upper-triangular Cholesky factor can also be obtained.
>>> np.linalg.cholesky(A, upper=True)
array([[1.-0.j, 0.-2.j],

[0.-0.j, 1.-0.j]])

linalg.outer(x1, x2, /)
Compute the outer product of two vectors.
This function is Array API compatible. Compared to np.outer it accepts 1-dimensional inputs only.

Parameters
x1

[(M,) array_like] One-dimensional input array of size N. Must have a numeric data type.
x2

[(N,) array_like] One-dimensional input array of size M. Must have a numeric data type.
Returns

out
[(M, N) ndarray] out[i, j] = a[i] * b[j]

See also:

outer

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.linalg.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.linalg.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.linalg.outer(x, [1, 2, 3])

(continues on next page)

70 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
array([['a', 'aa', 'aaa'],

['b', 'bb', 'bbb'],
['c', 'cc', 'ccc']], dtype=object)

linalg.qr(a, mode='reduced')
Compute the qr factorization of a matrix.
Factor the matrix a as qr, where q is orthonormal and r is upper-triangular.

Parameters
a

[array_like, shape (…, M, N)] An array-like object with the dimensionality of at least 2.
mode

[{‘reduced’, ‘complete’, ‘r’, ‘raw’}, optional, default: ‘reduced’] If K = min(M, N), then
• ‘reduced’ : returns Q, R with dimensions (…, M, K), (…, K, N)
• ‘complete’ : returns Q, R with dimensions (…, M, M), (…, M, N)
• ‘r’ : returns R only with dimensions (…, K, N)
• ‘raw’ : returns h, tau with dimensions (…, N, M), (…, K,)
The options ‘reduced’, ‘complete, and ‘raw’ are new in numpy 1.8, see the notes for more
information. The default is ‘reduced’, and to maintain backward compatibility with earlier
versions of numpy both it and the old default ‘full’ can be omitted. Note that array h returned
in ‘raw’ mode is transposed for calling Fortran. The ‘economic’ mode is deprecated. Themodes
‘full’ and ‘economic’ may be passed using only the first letter for backwards compatibility, but
all others must be spelled out. See the Notes for more explanation.

Returns
When mode is ‘reduced’ or ‘complete’, the result will be a namedtuple with
the attributes Q and R.
Q

[ndarray of float or complex, optional] A matrix with orthonormal columns. When mode
= ‘complete’ the result is an orthogonal/unitary matrix depending on whether or not a is
real/complex. The determinant may be either +/- 1 in that case. In case the number of di-
mensions in the input array is greater than 2 then a stack of the matrices with above properties
is returned.

R
[ndarray of float or complex, optional] The upper-triangular matrix or a stack of upper-
triangular matrices if the number of dimensions in the input array is greater than 2.

(h, tau)
[ndarrays of np.double or np.cdouble, optional] The array h contains the Householder reflectors
that generate q along with r. The tau array contains scaling factors for the reflectors. In the
deprecated ‘economic’ mode only h is returned.

Raises
LinAlgError

If factoring fails.
See also:

scipy.linalg.qr
Similar function in SciPy.

1.1. NumPy’s module structure 71

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr.html#scipy.linalg.qr

NumPy Reference, Release 2.2.0

scipy.linalg.rq
Compute RQ decomposition of a matrix.

Notes

This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr.
For more information on the qr factorization, see for example: https://en.wikipedia.org/wiki/QR_factorization
Subclasses of ndarray are preserved except for the ‘raw’ mode. So if a is of type matrix, all the return values
will be matrices too.
New ‘reduced’, ‘complete’, and ‘raw’ options for mode were added in NumPy 1.8.0 and the old option ‘full’ was made
an alias of ‘reduced’. In addition the options ‘full’ and ‘economic’ were deprecated. Because ‘full’ was the previous
default and ‘reduced’ is the new default, backward compatibility can be maintained by letting mode default. The
‘raw’ option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can
be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed
to be FORTRAN compatible. No routines using the ‘raw’ return are currently exposed by numpy, but some are
available in lapack_lite and just await the necessary work.

Examples

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> a = rng.normal(size=(9, 6))
>>> Q, R = np.linalg.qr(a)
>>> np.allclose(a, np.dot(Q, R)) # a does equal QR
True
>>> R2 = np.linalg.qr(a, mode='r')
>>> np.allclose(R, R2) # mode='r' returns the same R as mode='full'
True
>>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input
>>> Q, R = np.linalg.qr(a)
>>> Q.shape
(3, 2, 2)
>>> R.shape
(3, 2, 2)
>>> np.allclose(a, np.matmul(Q, R))
True

Example illustrating a common use of qr: solving of least squares problems
What are the least-squares-best m and y0 in y = y0 + mx for the following data: {(0,1), (1,0), (1,2), (2,1)}.
(Graph the points and you’ll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-
determined matrix equation Ax = b, where:

A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
x = array([[y0], [m]])
b = array([[1], [0], [2], [1]])

If A = QR such that Q is orthonormal (which is always possible via Gram-Schmidt), then x = inv(R) * (Q.T)
* b. (In numpy practice, however, we simply use lstsq.)

>>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
>>> A
array([[0, 1],

(continues on next page)

72 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.rq.html#scipy.linalg.rq
https://en.wikipedia.org/wiki/QR_factorization

NumPy Reference, Release 2.2.0

(continued from previous page)
[1, 1],
[1, 1],
[2, 1]])

>>> b = np.array([1, 2, 2, 3])
>>> Q, R = np.linalg.qr(A)
>>> p = np.dot(Q.T, b)
>>> np.dot(np.linalg.inv(R), p)
array([1., 1.])

linalg.svd(a, full_matrices=True, compute_uv=True, hermitian=False)
Singular Value Decomposition.
When a is a 2D array, and full_matrices=False, then it is factorized as u @ np.diag(s) @ vh =
(u * s) @ vh, where u and the Hermitian transpose of vh are 2D arrays with orthonormal columns and s is a
1D array of a’s singular values. When a is higher-dimensional, SVD is applied in stacked mode as explained below.

Parameters
a

[(…, M, N) array_like] A real or complex array with a.ndim >= 2.
full_matrices

[bool, optional] If True (default), u and vh have the shapes (..., M, M) and (..., N,
N), respectively. Otherwise, the shapes are (..., M, K) and (..., K, N), respectively,
where K = min(M, N).

compute_uv
[bool, optional] Whether or not to compute u and vh in addition to s. True by default.

hermitian
[bool, optional] If True, a is assumed to be Hermitian (symmetric if real-valued), enabling a
more efficient method for finding singular values. Defaults to False.

Returns
When compute_uv is True, the result is a namedtuple with the following
attribute names:
U

[{ (…, M, M), (…, M, K) } array] Unitary array(s). The first a.ndim - 2 dimensions have
the same size as those of the input a. The size of the last two dimensions depends on the value
of full_matrices. Only returned when compute_uv is True.

S
[(…, K) array] Vector(s) with the singular values, within each vector sorted in descending
order. The first a.ndim - 2 dimensions have the same size as those of the input a.

Vh
[{ (…, N, N), (…, K, N) } array] Unitary array(s). The first a.ndim - 2 dimensions have
the same size as those of the input a. The size of the last two dimensions depends on the value
of full_matrices. Only returned when compute_uv is True.

Raises
LinAlgError

If SVD computation does not converge.
See also:

scipy.linalg.svd
Similar function in SciPy.

1.1. NumPy’s module structure 73

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd.html#scipy.linalg.svd

NumPy Reference, Release 2.2.0

scipy.linalg.svdvals
Compute singular values of a matrix.

Notes

The decomposition is performed using LAPACK routine _gesdd.
SVD is usually described for the factorization of a 2D matrix A. The higher-dimensional case will be discussed
below. In the 2D case, SVD is written as A = USV H , where A = a, U = u, S = np.diag(s) and V H = vh.
The 1D array s contains the singular values of a and u and vh are unitary. The rows of vh are the eigenvectors
of AHA and the columns of u are the eigenvectors of AAH . In both cases the corresponding (possibly non-zero)
eigenvalues are given by s**2.
If a has more than two dimensions, then broadcasting rules apply, as explained in Linear algebra on several matrices
at once. This means that SVD is working in “stacked” mode: it iterates over all indices of the first a.ndim - 2
dimensions and for each combination SVD is applied to the last two indices. The matrix a can be reconstructed
from the decomposition with either (u * s[..., None, :]) @ vh or u @ (s[..., None] * vh).
(The @ operator can be replaced by the function np.matmul for python versions below 3.5.)
If a is a matrix object (as opposed to an ndarray), then so are all the return values.

Examples

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> a = rng.normal(size=(9, 6)) + 1j*rng.normal(size=(9, 6))
>>> b = rng.normal(size=(2, 7, 8, 3)) + 1j*rng.normal(size=(2, 7, 8, 3))

Reconstruction based on full SVD, 2D case:

>>> U, S, Vh = np.linalg.svd(a, full_matrices=True)
>>> U.shape, S.shape, Vh.shape
((9, 9), (6,), (6, 6))
>>> np.allclose(a, np.dot(U[:, :6] * S, Vh))
True
>>> smat = np.zeros((9, 6), dtype=complex)
>>> smat[:6, :6] = np.diag(S)
>>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
True

Reconstruction based on reduced SVD, 2D case:

>>> U, S, Vh = np.linalg.svd(a, full_matrices=False)
>>> U.shape, S.shape, Vh.shape
((9, 6), (6,), (6, 6))
>>> np.allclose(a, np.dot(U * S, Vh))
True
>>> smat = np.diag(S)
>>> np.allclose(a, np.dot(U, np.dot(smat, Vh)))
True

Reconstruction based on full SVD, 4D case:

>>> U, S, Vh = np.linalg.svd(b, full_matrices=True)
>>> U.shape, S.shape, Vh.shape

(continues on next page)

74 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svdvals.html#scipy.linalg.svdvals

NumPy Reference, Release 2.2.0

(continued from previous page)
((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
>>> np.allclose(b, np.matmul(U[..., :3] * S[..., None, :], Vh))
True
>>> np.allclose(b, np.matmul(U[..., :3], S[..., None] * Vh))
True

Reconstruction based on reduced SVD, 4D case:

>>> U, S, Vh = np.linalg.svd(b, full_matrices=False)
>>> U.shape, S.shape, Vh.shape
((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
>>> np.allclose(b, np.matmul(U * S[..., None, :], Vh))
True
>>> np.allclose(b, np.matmul(U, S[..., None] * Vh))
True

linalg.svdvals(x, /)
Returns the singular values of a matrix (or a stack of matrices) x. When x is a stack of matrices, the function will
compute the singular values for each matrix in the stack.
This function is Array API compatible.
Calling np.svdvals(x) to get singular values is the same as np.svd(x, compute_uv=False, her-
mitian=False).

Parameters
x

[(…, M, N) array_like] Input array having shape (…, M, N) and whose last two dimensions
form matrices on which to perform singular value decomposition. Should have a floating-point
data type.

Returns
out

[ndarray] An array with shape (…, K) that contains the vector(s) of singular values of length
K, where K = min(M, N).

See also:

scipy.linalg.svdvals
Compute singular values of a matrix.

Examples

>>> np.linalg.svdvals([[1, 2, 3, 4, 5],
... [1, 4, 9, 16, 25],
... [1, 8, 27, 64, 125]])
array([146.68862757, 5.57510612, 0.60393245])

Determine the rank of a matrix using singular values:

>>> s = np.linalg.svdvals([[1, 2, 3],
... [2, 4, 6],
... [-1, 1, -1]]); s
array([8.38434191e+00, 1.64402274e+00, 2.31534378e-16])

(continues on next page)

1.1. NumPy’s module structure 75

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svdvals.html#scipy.linalg.svdvals

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> np.count_nonzero(s > 1e-10) # Matrix of rank 2
2

Matrix eigenvalues

linalg.eig(a) Compute the eigenvalues and right eigenvectors of a
square array.

linalg.eigh(a[, UPLO]) Return the eigenvalues and eigenvectors of a complex
Hermitian (conjugate symmetric) or a real symmetric ma-
trix.

linalg.eigvals(a) Compute the eigenvalues of a general matrix.
linalg.eigvalsh(a[, UPLO]) Compute the eigenvalues of a complex Hermitian or real

symmetric matrix.

linalg.eig(a)
Compute the eigenvalues and right eigenvectors of a square array.

Parameters
a

[(…, M, M) array] Matrices for which the eigenvalues and right eigenvectors will be computed
Returns

A namedtuple with the following attributes:
eigenvalues

[(…, M) array] The eigenvalues, each repeated according to its multiplicity. The eigenvalues
are not necessarily ordered. The resulting array will be of complex type, unless the imaginary
part is zero in which case it will be cast to a real type. When a is real the resulting eigenvalues
will be real (0 imaginary part) or occur in conjugate pairs

eigenvectors
[(…, M, M) array] The normalized (unit “length”) eigenvectors, such that the column
eigenvectors[:,i] is the eigenvector corresponding to the eigenvalue eigenval-
ues[i].

Raises
LinAlgError

If the eigenvalue computation does not converge.
See also:

eigvals
eigenvalues of a non-symmetric array.

eigh
eigenvalues and eigenvectors of a real symmetric or complex Hermitian (conjugate symmetric) array.

eigvalsh
eigenvalues of a real symmetric or complex Hermitian (conjugate symmetric) array.

scipy.linalg.eig
Similar function in SciPy that also solves the generalized eigenvalue problem.

scipy.linalg.schur
Best choice for unitary and other non-Hermitian normal matrices.

76 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig.html#scipy.linalg.eig
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.schur.html#scipy.linalg.schur

NumPy Reference, Release 2.2.0

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of
general square arrays.
The number w is an eigenvalue of a if there exists a vector v such that a @ v = w * v. Thus, the arrays a,
eigenvalues, and eigenvectors satisfy the equations a @ eigenvectors[:,i] = eigenvalues[i] *
eigenvectors[:,i] for i ∈ {0, ...,M − 1}.
The array eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent,
although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigen-
vectors are linearly independent and a can be diagonalized by a similarity transformation using eigenvectors, i.e,
inv(eigenvectors) @ a @ eigenvectors is diagonal.
For non-Hermitian normal matrices the SciPy function scipy.linalg.schur is preferred because the matrix
eigenvectors is guaranteed to be unitary, which is not the case when using eig. The Schur factorization produces
an upper triangular matrix rather than a diagonal matrix, but for normal matrices only the diagonal of the upper
triangular matrix is needed, the rest is roundoff error.
Finally, it is emphasized that eigenvectors consists of the right (as in right-hand side) eigenvectors of a. A vector y
satisfying y.T @ a = z * y.T for some number z is called a left eigenvector of a, and, in general, the left and
right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other.

References

G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp.

Examples

>>> import numpy as np
>>> from numpy import linalg as LA

(Almost) trivial example with real eigenvalues and eigenvectors.

>>> eigenvalues, eigenvectors = LA.eig(np.diag((1, 2, 3)))
>>> eigenvalues
array([1., 2., 3.])
>>> eigenvectors
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

Real matrix possessing complex eigenvalues and eigenvectors; note that the eigenvalues are complex conjugates of
each other.

>>> eigenvalues, eigenvectors = LA.eig(np.array([[1, -1], [1, 1]]))
>>> eigenvalues
array([1.+1.j, 1.-1.j])
>>> eigenvectors
array([[0.70710678+0.j , 0.70710678-0.j],

[0. -0.70710678j, 0. +0.70710678j]])

Complex-valued matrix with real eigenvalues (but complex-valued eigenvectors); note that a.conj().T == a,
i.e., a is Hermitian.

1.1. NumPy’s module structure 77

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.schur.html#scipy.linalg.schur

NumPy Reference, Release 2.2.0

>>> a = np.array([[1, 1j], [-1j, 1]])
>>> eigenvalues, eigenvectors = LA.eig(a)
>>> eigenvalues
array([2.+0.j, 0.+0.j])
>>> eigenvectors
array([[0. +0.70710678j, 0.70710678+0.j], # may vary

[0.70710678+0.j , -0. +0.70710678j]])

Be careful about round-off error!

>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. eigenvalues are 1 +/- 1e-9
>>> eigenvalues, eigenvectors = LA.eig(a)
>>> eigenvalues
array([1., 1.])
>>> eigenvectors
array([[1., 0.],

[0., 1.]])

linalg.eigh(a, UPLO='L')
Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.
Returns two objects, a 1-D array containing the eigenvalues of a, and a 2-D square array or matrix (depending on
the input type) of the corresponding eigenvectors (in columns).

Parameters
a

[(…, M, M) array] Hermitian or real symmetric matrices whose eigenvalues and eigenvectors
are to be computed.

UPLO
[{‘L’, ‘U’}, optional] Specifies whether the calculation is done with the lower triangular part of
a (‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts
of the diagonal will be considered in the computation to preserve the notion of a Hermitian
matrix. It therefore follows that the imaginary part of the diagonal will always be treated as
zero.

Returns
A namedtuple with the following attributes:
eigenvalues

[(…, M) ndarray] The eigenvalues in ascending order, each repeated according to its multi-
plicity.

eigenvectors
[{(…, M, M) ndarray, (…, M, M) matrix}] The column eigenvectors[:, i] is the
normalized eigenvector corresponding to the eigenvalue eigenvalues[i]. Will return a
matrix object if a is a matrix object.

Raises
LinAlgError

If the eigenvalue computation does not converge.
See also:

eigvalsh
eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays.

78 1. Python API

NumPy Reference, Release 2.2.0

eig
eigenvalues and right eigenvectors for non-symmetric arrays.

eigvals
eigenvalues of non-symmetric arrays.

scipy.linalg.eigh
Similar function in SciPy (but also solves the generalized eigenvalue problem).

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd.
The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1] The array eigenval-
ues of (column) eigenvectors is unitary and a, eigenvalues, and eigenvectors satisfy the equations dot(a,
eigenvectors[:, i]) = eigenvalues[i] * eigenvectors[:, i].

References

[1]

Examples

>>> import numpy as np
>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> a
array([[1.+0.j, -0.-2.j],

[0.+2.j, 5.+0.j]])
>>> eigenvalues, eigenvectors = LA.eigh(a)
>>> eigenvalues
array([0.17157288, 5.82842712])
>>> eigenvectors
array([[-0.92387953+0.j , -0.38268343+0.j], # may vary

[0. +0.38268343j, 0. -0.92387953j]])

>>> (np.dot(a, eigenvectors[:, 0]) -
... eigenvalues[0] * eigenvectors[:, 0]) # verify 1st eigenval/vec pair
array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
>>> (np.dot(a, eigenvectors[:, 1]) -
... eigenvalues[1] * eigenvectors[:, 1]) # verify 2nd eigenval/vec pair
array([0.+0.j, 0.+0.j])

>>> A = np.matrix(a) # what happens if input is a matrix object
>>> A
matrix([[1.+0.j, -0.-2.j],

[0.+2.j, 5.+0.j]])
>>> eigenvalues, eigenvectors = LA.eigh(A)
>>> eigenvalues
array([0.17157288, 5.82842712])
>>> eigenvectors
matrix([[-0.92387953+0.j , -0.38268343+0.j], # may vary

[0. +0.38268343j, 0. -0.92387953j]])

1.1. NumPy’s module structure 79

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html#scipy.linalg.eigh

NumPy Reference, Release 2.2.0

>>> # demonstrate the treatment of the imaginary part of the diagonal
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
>>> a
array([[5.+2.j, 9.-2.j],

[0.+2.j, 2.-1.j]])
>>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
>>> b
array([[5.+0.j, 0.-2.j],

[0.+2.j, 2.+0.j]])
>>> wa, va = LA.eigh(a)
>>> wb, vb = LA.eig(b)
>>> wa
array([1., 6.])
>>> wb
array([6.+0.j, 1.+0.j])
>>> va
array([[-0.4472136 +0.j , -0.89442719+0.j], # may vary

[0. +0.89442719j, 0. -0.4472136j]])
>>> vb
array([[0.89442719+0.j , -0. +0.4472136j],

[-0. +0.4472136j, 0.89442719+0.j]])

linalg.eigvals(a)
Compute the eigenvalues of a general matrix.
Main difference between eigvals and eig: the eigenvectors aren’t returned.

Parameters
a

[(…,M,M) array_like] A complex- or real-valuedmatrix whose eigenvalues will be computed.
Returns

w
[(…, M,) ndarray] The eigenvalues, each repeated according to its multiplicity. They are not
necessarily ordered, nor are they necessarily real for real matrices.

Raises
LinAlgError

If the eigenvalue computation does not converge.
See also:

eig
eigenvalues and right eigenvectors of general arrays

eigvalsh
eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays.

eigh
eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.

scipy.linalg.eigvals
Similar function in SciPy.

80 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvals.html#scipy.linalg.eigvals

NumPy Reference, Release 2.2.0

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of
general square arrays.

Examples

Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a
matrix on the left by an orthogonal matrix, Q, and on the right byQ.T (the transpose ofQ), preserves the eigenvalues
of the “middle” matrix. In other words, if Q is orthogonal, then Q * A * Q.T has the same eigenvalues as A:

>>> import numpy as np
>>> from numpy import linalg as LA
>>> x = np.random.random()
>>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
>>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
(1.0, 1.0, 0.0)

Now multiply a diagonal matrix by Q on one side and by Q.T on the other:

>>> D = np.diag((-1,1))
>>> LA.eigvals(D)
array([-1., 1.])
>>> A = np.dot(Q, D)
>>> A = np.dot(A, Q.T)
>>> LA.eigvals(A)
array([1., -1.]) # random

linalg.eigvalsh(a, UPLO='L')
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
Main difference from eigh: the eigenvectors are not computed.

Parameters
a

[(…, M, M) array_like] A complex- or real-valued matrix whose eigenvalues are to be com-
puted.

UPLO
[{‘L’, ‘U’}, optional] Specifies whether the calculation is done with the lower triangular part of
a (‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts
of the diagonal will be considered in the computation to preserve the notion of a Hermitian
matrix. It therefore follows that the imaginary part of the diagonal will always be treated as
zero.

Returns
w

[(…, M,) ndarray] The eigenvalues in ascending order, each repeated according to its multi-
plicity.

Raises
LinAlgError

If the eigenvalue computation does not converge.

1.1. NumPy’s module structure 81

NumPy Reference, Release 2.2.0

See also:

eigh
eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.

eigvals
eigenvalues of general real or complex arrays.

eig
eigenvalues and right eigenvectors of general real or complex arrays.

scipy.linalg.eigvalsh
Similar function in SciPy.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
The eigenvalues are computed using LAPACK routines _syevd, _heevd.

Examples

>>> import numpy as np
>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> LA.eigvalsh(a)
array([0.17157288, 5.82842712]) # may vary

>>> # demonstrate the treatment of the imaginary part of the diagonal
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
>>> a
array([[5.+2.j, 9.-2.j],

[0.+2.j, 2.-1.j]])
>>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
>>> # with:
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
>>> b
array([[5.+0.j, 0.-2.j],

[0.+2.j, 2.+0.j]])
>>> wa = LA.eigvalsh(a)
>>> wb = LA.eigvals(b)
>>> wa; wb
array([1., 6.])
array([6.+0.j, 1.+0.j])

82 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvalsh.html#scipy.linalg.eigvalsh

NumPy Reference, Release 2.2.0

Norms and other numbers

linalg.norm(x[, ord, axis, keepdims]) Matrix or vector norm.
linalg.matrix_norm(x, /, *[, keepdims, ord]) Computes the matrix norm of a matrix (or a stack of ma-

trices) x.
linalg.vector_norm(x, /, *[, axis, ...]) Computes the vector norm of a vector (or batch of vec-

tors) x.
linalg.cond(x[, p]) Compute the condition number of a matrix.
linalg.det(a) Compute the determinant of an array.
linalg.matrix_rank(A[, tol, hermitian, rtol]) Return matrix rank of array using SVD method
linalg.slogdet(a) Compute the sign and (natural) logarithm of the determi-

nant of an array.
trace(a[, offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
linalg.trace(x, /, *[, offset, dtype]) Returns the sum along the specified diagonals of a matrix

(or a stack of matrices) x.

linalg.norm(x, ord=None, axis=None, keepdims=False)
Matrix or vector norm.
This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms
(described below), depending on the value of the ord parameter.

Parameters
x

[array_like] Input array. If axis is None, x must be 1-D or 2-D, unless ord is None. If both
axis and ord are None, the 2-norm of x.ravel will be returned.

ord
[{int, float, inf, -inf, ‘fro’, ‘nuc’}, optional] Order of the norm (see table under Notes for what
values are supported for matrices and vectors respectively). inf means numpy’s inf object.
The default is None.

axis
[{None, int, 2-tuple of ints}, optional.] If axis is an integer, it specifies the axis of x along
which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D
matrices, and the matrix norms of these matrices are computed. If axis is None then either
a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned. The default is
None.

keepdims
[bool, optional] If this is set to True, the axes which are normed over are left in the result
as dimensions with size one. With this option the result will broadcast correctly against the
original x.

Returns
n

[float or ndarray] Norm of the matrix or vector(s).
See also:

scipy.linalg.norm
Similar function in SciPy.

1.1. NumPy’s module structure 83

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.norm.html#scipy.linalg.norm

NumPy Reference, Release 2.2.0

Notes

For values of ord < 1, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful for
various numerical purposes.
The following norms can be calculated:

ord norm for matrices norm for vectors
None Frobenius norm 2-norm
‘fro’ Frobenius norm –
‘nuc’ nuclear norm –
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 – sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other – sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [1]:
||A||F = [

∑
i,j abs(ai,j)

2]1/2

The nuclear norm is the sum of the singular values.
Both the Frobenius and nuclear norm orders are only defined for matrices and raise a ValueError when x.ndim
!= 2.

References

[1]

Examples

>>> import numpy as np
>>> from numpy import linalg as LA
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, ..., 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],

[-1, 0, 1],
[2, 3, 4]])

>>> LA.norm(a)
7.745966692414834
>>> LA.norm(b)
7.745966692414834
>>> LA.norm(b, 'fro')
7.745966692414834
>>> LA.norm(a, np.inf)

(continues on next page)

84 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
4.0
>>> LA.norm(b, np.inf)
9.0
>>> LA.norm(a, -np.inf)
0.0
>>> LA.norm(b, -np.inf)
2.0

>>> LA.norm(a, 1)
20.0
>>> LA.norm(b, 1)
7.0
>>> LA.norm(a, -1)
-4.6566128774142013e-010
>>> LA.norm(b, -1)
6.0
>>> LA.norm(a, 2)
7.745966692414834
>>> LA.norm(b, 2)
7.3484692283495345

>>> LA.norm(a, -2)
0.0
>>> LA.norm(b, -2)
1.8570331885190563e-016 # may vary
>>> LA.norm(a, 3)
5.8480354764257312 # may vary
>>> LA.norm(a, -3)
0.0

Using the axis argument to compute vector norms:

>>> c = np.array([[1, 2, 3],
... [-1, 1, 4]])
>>> LA.norm(c, axis=0)
array([1.41421356, 2.23606798, 5.])
>>> LA.norm(c, axis=1)
array([3.74165739, 4.24264069])
>>> LA.norm(c, ord=1, axis=1)
array([6., 6.])

Using the axis argument to compute matrix norms:

>>> m = np.arange(8).reshape(2,2,2)
>>> LA.norm(m, axis=(1,2))
array([3.74165739, 11.22497216])
>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
(3.7416573867739413, 11.224972160321824)

linalg.matrix_norm(x, / , *, keepdims=False, ord='fro')
Computes the matrix norm of a matrix (or a stack of matrices) x.
This function is Array API compatible.

Parameters
x

1.1. NumPy’s module structure 85

NumPy Reference, Release 2.2.0

[array_like] Input array having shape (…, M, N) and whose two innermost dimensions form
MxN matrices.

keepdims
[bool, optional] If this is set to True, the axes which are normed over are left in the result as
dimensions with size one. Default: False.

ord
[{1, -1, 2, -2, inf, -inf, ‘fro’, ‘nuc’}, optional] The order of the norm. For details see the table
under Notes in numpy.linalg.norm.

See also:

numpy.linalg.norm
Generic norm function

Examples

>>> from numpy import linalg as LA
>>> a = np.arange(9) - 4
>>> a
array([-4, -3, -2, ..., 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],

[-1, 0, 1],
[2, 3, 4]])

>>> LA.matrix_norm(b)
7.745966692414834
>>> LA.matrix_norm(b, ord='fro')
7.745966692414834
>>> LA.matrix_norm(b, ord=np.inf)
9.0
>>> LA.matrix_norm(b, ord=-np.inf)
2.0

>>> LA.matrix_norm(b, ord=1)
7.0
>>> LA.matrix_norm(b, ord=-1)
6.0
>>> LA.matrix_norm(b, ord=2)
7.3484692283495345
>>> LA.matrix_norm(b, ord=-2)
1.8570331885190563e-016 # may vary

linalg.vector_norm(x, / , *, axis=None, keepdims=False, ord=2)
Computes the vector norm of a vector (or batch of vectors) x.
This function is Array API compatible.

Parameters
x

[array_like] Input array.
axis

[{None, int, 2-tuple of ints}, optional] If an integer, axis specifies the axis (dimension) along

86 1. Python API

NumPy Reference, Release 2.2.0

which to compute vector norms. If an n-tuple, axis specifies the axes (dimensions) along
which to compute batched vector norms. If None, the vector norm must be computed over
all array values (i.e., equivalent to computing the vector norm of a flattened array). Default:
None.

keepdims
[bool, optional] If this is set to True, the axes which are normed over are left in the result as
dimensions with size one. Default: False.

ord
[{int, float, inf, -inf}, optional] The order of the norm. For details see the table under Notes
in numpy.linalg.norm.

See also:

numpy.linalg.norm
Generic norm function

Examples

>>> from numpy import linalg as LA
>>> a = np.arange(9) + 1
>>> a
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> b = a.reshape((3, 3))
>>> b
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

>>> LA.vector_norm(b)
16.881943016134134
>>> LA.vector_norm(b, ord=np.inf)
9.0
>>> LA.vector_norm(b, ord=-np.inf)
1.0

>>> LA.vector_norm(b, ord=0)
9.0
>>> LA.vector_norm(b, ord=1)
45.0
>>> LA.vector_norm(b, ord=-1)
0.3534857623790153
>>> LA.vector_norm(b, ord=2)
16.881943016134134
>>> LA.vector_norm(b, ord=-2)
0.8058837395885292

linalg.cond(x, p=None)
Compute the condition number of a matrix.
This function is capable of returning the condition number using one of seven different norms, depending on the
value of p (see Parameters below).

Parameters

1.1. NumPy’s module structure 87

NumPy Reference, Release 2.2.0

x
[(…, M, N) array_like] The matrix whose condition number is sought.

p
[{None, 1, -1, 2, -2, inf, -inf, ‘fro’}, optional] Order of the norm used in the condition number
computation:

p norm for matrices
None 2-norm, computed directly using the SVD
‘fro’ Frobenius norm
inf max(sum(abs(x), axis=1))
-inf min(sum(abs(x), axis=1))
1 max(sum(abs(x), axis=0))
-1 min(sum(abs(x), axis=0))
2 2-norm (largest sing. value)
-2 smallest singular value

inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares
norm.

Returns
c

[{float, inf}] The condition number of the matrix. May be infinite.
See also:

numpy.linalg.norm

Notes

The condition number of x is defined as the norm of x times the norm of the inverse of x [1]; the norm can be the
usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms.

References

[1]

Examples

>>> import numpy as np
>>> from numpy import linalg as LA
>>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
>>> a
array([[1, 0, -1],

[0, 1, 0],
[1, 0, 1]])

>>> LA.cond(a)
1.4142135623730951
>>> LA.cond(a, 'fro')
3.1622776601683795
>>> LA.cond(a, np.inf)

(continues on next page)

88 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
2.0
>>> LA.cond(a, -np.inf)
1.0
>>> LA.cond(a, 1)
2.0
>>> LA.cond(a, -1)
1.0
>>> LA.cond(a, 2)
1.4142135623730951
>>> LA.cond(a, -2)
0.70710678118654746 # may vary
>>> (min(LA.svd(a, compute_uv=False)) *
... min(LA.svd(LA.inv(a), compute_uv=False)))
0.70710678118654746 # may vary

linalg.det(a)
Compute the determinant of an array.

Parameters
a

[(…, M, M) array_like] Input array to compute determinants for.
Returns

det
[(…) array_like] Determinant of a.

See also:

slogdet
Another way to represent the determinant, more suitable for large matrices where underflow/overflow may
occur.

scipy.linalg.det
Similar function in SciPy.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> np.linalg.det(a)
-2.0 # may vary

Computing determinants for a stack of matrices:

1.1. NumPy’s module structure 89

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.det.html#scipy.linalg.det

NumPy Reference, Release 2.2.0

>>> a = np.array([[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]])
>>> a.shape
(3, 2, 2)
>>> np.linalg.det(a)
array([-2., -3., -8.])

linalg.matrix_rank(A, tol=None, hermitian=False, *, rtol=None)
Return matrix rank of array using SVD method
Rank of the array is the number of singular values of the array that are greater than tol.

Parameters
A

[{(M,), (…, M, N)} array_like] Input vector or stack of matrices.
tol

[(…) array_like, float, optional] Threshold below which SVD values are considered zero. If tol
is None, and S is an array with singular values forM, and eps is the epsilon value for datatype
of S, then tol is set to S.max() * max(M, N) * eps.

hermitian
[bool, optional] If True, A is assumed to be Hermitian (symmetric if real-valued), enabling a
more efficient method for finding singular values. Defaults to False.

rtol
[(…) array_like, float, optional] Parameter for the relative tolerance component. Only tol or
rtol can be set at a time. Defaults to max(M, N) * eps.
New in version 2.0.0.

Returns
rank

[(…) array_like] Rank of A.

Notes

The default threshold to detect rank deficiency is a test on the magnitude of the singular values of A. By default,
we identify singular values less than S.max() * max(M, N) * eps as indicating rank deficiency (with
the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in Numerical recipes in the
discussion of SVD solutions for linear least squares [2].
This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD compu-
tation. Imagine that there is a column in A that is an exact (in floating point) linear combination of other columns
in A. Computing the SVD on A will not produce a singular value exactly equal to 0 in general: any difference of
the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our thresh-
old for small SVD values takes this numerical imprecision into account, and the default threshold will detect such
numerical rank deficiency. The threshold may declare a matrix A rank deficient even if the linear combination of
some columns of A is not exactly equal to another column of A but only numerically very close to another column
of A.
We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in
the 2007 edition ofNumerical recipes there is an alternative threshold of S.max() * np.finfo(A.dtype).
eps / 2. * np.sqrt(m + n + 1.). The authors describe this threshold as being based on “expected
roundoff error” (p 71).
The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have
more information about the sources of error in A that would make you consider other tolerance values to detect

90 1. Python API

NumPy Reference, Release 2.2.0

effective rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on
your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating
point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the
uncertainties are absolute rather than relative.

References

[1], [2]

Examples

>>> import numpy as np
>>> from numpy.linalg import matrix_rank
>>> matrix_rank(np.eye(4)) # Full rank matrix
4
>>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
>>> matrix_rank(I)
3
>>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
1
>>> matrix_rank(np.zeros((4,)))
0

linalg.slogdet(a)
Compute the sign and (natural) logarithm of the determinant of an array.
If an array has a very small or very large determinant, then a call to detmay overflow or underflow. This routine is
more robust against such issues, because it computes the logarithm of the determinant rather than the determinant
itself.

Parameters
a

[(…, M, M) array_like] Input array, has to be a square 2-D array.
Returns

A namedtuple with the following attributes:
sign

[(…) array_like] A number representing the sign of the determinant. For a real matrix, this is
1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on
the unit circle), or else 0.

logabsdet
[(…) array_like] The natural log of the absolute value of the determinant.

If the determinant is zero, then sign will be 0 and logabsdet
will be -inf. In all cases, the determinant is equal to
sign * np.exp(logabsdet).

See also:

det

1.1. NumPy’s module structure 91

NumPy Reference, Release 2.2.0

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
The determinant is computed via LU factorization using the LAPACK routine z/dgetrf.

Examples

The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> (sign, logabsdet) = np.linalg.slogdet(a)
>>> (sign, logabsdet)
(-1, 0.69314718055994529) # may vary
>>> sign * np.exp(logabsdet)
-2.0

Computing log-determinants for a stack of matrices:

>>> a = np.array([[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]])
>>> a.shape
(3, 2, 2)
>>> sign, logabsdet = np.linalg.slogdet(a)
>>> (sign, logabsdet)
(array([-1., -1., -1.]), array([0.69314718, 1.09861229, 2.07944154]))
>>> sign * np.exp(logabsdet)
array([-2., -3., -8.])

This routine succeeds where ordinary det does not:

>>> np.linalg.det(np.eye(500) * 0.1)
0.0
>>> np.linalg.slogdet(np.eye(500) * 0.1)
(1, -1151.2925464970228)

numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
If a is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements a[i,i+offset]
for all i.
If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-
arrays whose traces are returned. The shape of the resulting array is the same as that of a with axis1 and axis2
removed.

Parameters
a

[array_like] Input array, from which the diagonals are taken.
offset

[int, optional] Offset of the diagonal from themain diagonal. Can be both positive and negative.
Defaults to 0.

axis1, axis2
[int, optional] Axes to be used as the first and second axis of the 2-D sub-arrays from which
the diagonals should be taken. Defaults are the first two axes of a.

92 1. Python API

NumPy Reference, Release 2.2.0

dtype
[dtype, optional] Determines the data-type of the returned array and of the accumulator where
the elements are summed. If dtype has the value None and a is of integer type of precision
less than the default integer precision, then the default integer precision is used. Otherwise,
the precision is the same as that of a.

out
[ndarray, optional] Array into which the output is placed. Its type is preserved and it must be
of the right shape to hold the output.

Returns
sum_along_diagonals

[ndarray] If a is 2-D, the sum along the diagonal is returned. If a has larger dimensions, then
an array of sums along diagonals is returned.

See also:

diag, diagonal, diagflat

Examples

>>> import numpy as np
>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])

>>> a = np.arange(24).reshape((2,2,2,3))
>>> np.trace(a).shape
(2, 3)

linalg.trace(x, / , *, offset=0, dtype=None)
Returns the sum along the specified diagonals of a matrix (or a stack of matrices) x.
This function is Array API compatible, contrary to numpy.trace.

Parameters
x

[(…,M,N) array_like] Input array having shape (…, M, N) and whose innermost two dimen-
sions form MxN matrices.

offset
[int, optional] Offset specifying the off-diagonal relative to the main diagonal, where:

* offset = 0: the main diagonal.
* offset > 0: off-diagonal above the main diagonal.
* offset < 0: off-diagonal below the main diagonal.

dtype
[dtype, optional] Data type of the returned array.

Returns
out

[ndarray] An array containing the traces and whose shape is determined by removing the last
two dimensions and storing the traces in the last array dimension. For example, if x has rank

1.1. NumPy’s module structure 93

NumPy Reference, Release 2.2.0

k and shape: (I, J, K, …, L, M, N), then an output array has rank k-2 and shape: (I, J, K, …,
L) where:

out[i, j, k, ..., l] = trace(a[i, j, k, ..., l, :, :])

The returned array must have a data type as described by the dtype parameter above.
See also:

numpy.trace

Examples

>>> np.linalg.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2, 2, 2))
>>> np.linalg.trace(a)
array([3, 11])

Trace is computed with the last two axes as the 2-d sub-arrays. This behavior differs from numpy.trace which
uses the first two axes by default.

>>> a = np.arange(24).reshape((3, 2, 2, 2))
>>> np.linalg.trace(a).shape
(3, 2)

Traces adjacent to the main diagonal can be obtained by using the offset argument:

>>> a = np.arange(9).reshape((3, 3)); a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.linalg.trace(a, offset=1) # First superdiagonal
6
>>> np.linalg.trace(a, offset=2) # Second superdiagonal
2
>>> np.linalg.trace(a, offset=-1) # First subdiagonal
10
>>> np.linalg.trace(a, offset=-2) # Second subdiagonal
6

Solving equations and inverting matrices

linalg.solve(a, b) Solve a linear matrix equation, or system of linear scalar
equations.

linalg.tensorsolve(a, b[, axes]) Solve the tensor equation a x = b for x.
linalg.lstsq(a, b[, rcond]) Return the least-squares solution to a linear matrix equa-

tion.
linalg.inv(a) Compute the inverse of a matrix.
linalg.pinv(a[, rcond, hermitian, rtol]) Compute the (Moore-Penrose) pseudo-inverse of a ma-

trix.
linalg.tensorinv(a[, ind]) Compute the 'inverse' of an N-dimensional array.

94 1. Python API

NumPy Reference, Release 2.2.0

linalg.solve(a, b)
Solve a linear matrix equation, or system of linear scalar equations.
Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

Parameters
a

[(…, M, M) array_like] Coefficient matrix.
b

[{(M,), (…, M, K)}, array_like] Ordinate or “dependent variable” values.
Returns

x
[{(…, M,), (…, M, K)} ndarray] Solution to the system a x = b. Returned shape is (…, M) if
b is shape (M,) and (…, M, K) if b is (…, M, K), where the “…” part is broadcasted between
a and b.

Raises
LinAlgError

If a is singular or not square.
See also:

scipy.linalg.solve
Similar function in SciPy.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
The solutions are computed using LAPACK routine _gesv.
a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either
is not true, use lstsq for the least-squares best “solution” of the system/equation.
Changed in version 2.0: The b array is only treated as a shape (M,) column vector if it is exactly 1-dimensional.
In all other instances it is treated as a stack of (M, K) matrices. Previously b would be treated as a stack of (M,)
vectors if b.ndim was equal to a.ndim - 1.

References

[1]

Examples

Solve the system of equations: x0 + 2 * x1 = 1 and 3 * x0 + 5 * x1 = 2:

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 5]])
>>> b = np.array([1, 2])
>>> x = np.linalg.solve(a, b)
>>> x
array([-1., 1.])

1.1. NumPy’s module structure 95

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html#scipy.linalg.solve

NumPy Reference, Release 2.2.0

Check that the solution is correct:

>>> np.allclose(np.dot(a, x), b)
True

linalg.tensorsolve(a, b, axes=None)
Solve the tensor equation a x = b for x.
It is assumed that all indices of x are summed over in the product, together with the rightmost indices of a, as is
done in, for example, tensordot(a, x, axes=x.ndim).

Parameters
a

[array_like] Coefficient tensor, of shape b.shape + Q. Q, a tuple, equals the shape of that
sub-tensor of a consisting of the appropriate number of its rightmost indices, and must be such
that prod(Q) == prod(b.shape) (in which sense a is said to be ‘square’).

b
[array_like] Right-hand tensor, which can be of any shape.

axes
[tuple of ints, optional] Axes in a to reorder to the right, before inversion. If None (default),
no reordering is done.

Returns
x

[ndarray, shape Q]
Raises

LinAlgError
If a is singular or not ‘square’ (in the above sense).

See also:

numpy.tensordot, tensorinv, numpy.einsum

Examples

>>> import numpy as np
>>> a = np.eye(2*3*4)
>>> a.shape = (2*3, 4, 2, 3, 4)
>>> rng = np.random.default_rng()
>>> b = rng.normal(size=(2*3, 4))
>>> x = np.linalg.tensorsolve(a, b)
>>> x.shape
(2, 3, 4)
>>> np.allclose(np.tensordot(a, x, axes=3), b)
True

linalg.lstsq(a, b, rcond=None)
Return the least-squares solution to a linear matrix equation.
Computes the vector x that approximately solves the equation a @ x = b. The equation may be under-, well-,
or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than
its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is

96 1. Python API

NumPy Reference, Release 2.2.0

the “exact” solution of the equation. Else, x minimizes the Euclidean 2-norm ||b − ax||. If there are multiple
minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters
a

[(M, N) array_like] “Coefficient” matrix.
b

[{(M,), (M, K)} array_like] Ordinate or “dependent variable” values. If b is two-dimensional,
the least-squares solution is calculated for each of the K columns of b.

rcond
[float, optional] Cut-off ratio for small singular values of a. For the purposes of rank deter-
mination, singular values are treated as zero if they are smaller than rcond times the largest
singular value of a. The default uses the machine precision times max(M, N). Passing -1
will use machine precision.
Changed in version 2.0: Previously, the default was -1, but a warning was given that this would
change.

Returns
x

[{(N,), (N, K)} ndarray] Least-squares solution. If b is two-dimensional, the solutions are in
the K columns of x.

residuals
[{(1,), (K,), (0,)} ndarray] Sums of squared residuals: Squared Euclidean 2-norm for each
column in b - a @ x. If the rank of a is < N or M <= N, this is an empty array. If b is
1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,).

rank
[int] Rank of matrix a.

s
[(min(M, N),) ndarray] Singular values of a.

Raises
LinAlgError

If computation does not converge.
See also:

scipy.linalg.lstsq
Similar function in SciPy.

Notes

If b is a matrix, then all array results are returned as matrices.

1.1. NumPy’s module structure 97

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html#scipy.linalg.lstsq

NumPy Reference, Release 2.2.0

Examples

Fit a line, y = mx + c, through some noisy data-points:

>>> import numpy as np
>>> x = np.array([0, 1, 2, 3])
>>> y = np.array([-1, 0.2, 0.9, 2.1])

By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more
or less, -1.
We can rewrite the line equation as y = Ap, where A = [[x 1]] and p = [[m], [c]]. Now use lstsq
to solve for p:

>>> A = np.vstack([x, np.ones(len(x))]).T
>>> A
array([[0., 1.],

[1., 1.],
[2., 1.],
[3., 1.]])

>>> m, c = np.linalg.lstsq(A, y)[0]
>>> m, c
(1.0 -0.95) # may vary

Plot the data along with the fitted line:

>>> import matplotlib.pyplot as plt
>>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
>>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
>>> _ = plt.legend()
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0 Original data
Fitted line

linalg.inv(a)
Compute the inverse of a matrix.
Given a square matrix a, return the matrix ainv satisfying a @ ainv = ainv @ a = eye(a.shape[0]).

98 1. Python API

NumPy Reference, Release 2.2.0

Parameters
a

[(…, M, M) array_like] Matrix to be inverted.
Returns

ainv
[(…, M, M) ndarray or matrix] Inverse of the matrix a.

Raises
LinAlgError

If a is not square or inversion fails.
See also:

scipy.linalg.inv
Similar function in SciPy.

numpy.linalg.cond
Compute the condition number of a matrix.

numpy.linalg.svd
Compute the singular value decomposition of a matrix.

Notes

Broadcasting rules apply, see the numpy.linalg documentation for details.
If a is detected to be singular, a LinAlgError is raised. If a is ill-conditioned, a LinAlgError may or may
not be raised, and results may be inaccurate due to floating-point errors.

References

[1]

Examples

>>> import numpy as np
>>> from numpy.linalg import inv
>>> a = np.array([[1., 2.], [3., 4.]])
>>> ainv = inv(a)
>>> np.allclose(a @ ainv, np.eye(2))
True
>>> np.allclose(ainv @ a, np.eye(2))
True

If a is a matrix object, then the return value is a matrix as well:

>>> ainv = inv(np.matrix(a))
>>> ainv
matrix([[-2. , 1.],

[1.5, -0.5]])

Inverses of several matrices can be computed at once:

1.1. NumPy’s module structure 99

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.inv.html#scipy.linalg.inv

NumPy Reference, Release 2.2.0

>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
>>> inv(a)
array([[[-2. , 1.],

[1.5 , -0.5]],
[[-1.25, 0.75],
[0.75, -0.25]]])

If a matrix is close to singular, the computed inverse may not satisfy a @ ainv = ainv @ a = eye(a.
shape[0]) even if a LinAlgError is not raised:

>>> a = np.array([[2,4,6],[2,0,2],[6,8,14]])
>>> inv(a) # No errors raised
array([[-1.12589991e+15, -5.62949953e+14, 5.62949953e+14],

[-1.12589991e+15, -5.62949953e+14, 5.62949953e+14],
[1.12589991e+15, 5.62949953e+14, -5.62949953e+14]])

>>> a @ inv(a)
array([[0. , -0.5 , 0.], # may vary

[-0.5 , 0.625, 0.25],
[0. , 0. , 1.]])

To detect ill-conditioned matrices, you can use numpy.linalg.cond to compute its condition number [1]. The
larger the condition number, the more ill-conditioned the matrix is. As a rule of thumb, if the condition number
cond(a) = 10**k, then you may lose up to k digits of accuracy on top of what would be lost to the numerical
method due to loss of precision from arithmetic methods.

>>> from numpy.linalg import cond
>>> cond(a)
np.float64(8.659885634118668e+17) # may vary

It is also possible to detect ill-conditioning by inspecting the matrix’s singular values directly. The ratio between
the largest and the smallest singular value is the condition number:

>>> from numpy.linalg import svd
>>> sigma = svd(a, compute_uv=False) # Do not compute singular vectors
>>> sigma.max()/sigma.min()
8.659885634118668e+17 # may vary

linalg.pinv(a, rcond=None, hermitian=False, *, rtol=<no value>)
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large
singular values.

Parameters
a

[(…, M, N) array_like] Matrix or stack of matrices to be pseudo-inverted.
rcond

[(…) array_like of float, optional] Cutoff for small singular values. Singular values less than
or equal to rcond * largest_singular_value are set to zero. Broadcasts against
the stack of matrices. Default: 1e-15.

hermitian
[bool, optional] If True, a is assumed to be Hermitian (symmetric if real-valued), enabling a
more efficient method for finding singular values. Defaults to False.

rtol
[(…) array_like of float, optional] Same as rcond, but it’s an Array API compatible parameter

100 1. Python API

NumPy Reference, Release 2.2.0

name. Only rcond or rtol can be set at a time. If none of them are provided then NumPy’s
1e-15 default is used. If rtol=None is passed then the API standard default is used.
New in version 2.0.0.

Returns
B

[(…, N, M) ndarray] The pseudo-inverse of a. If a is a matrix instance, then so is B.
Raises

LinAlgError
If the SVD computation does not converge.

See also:

scipy.linalg.pinv
Similar function in SciPy.

scipy.linalg.pinvh
Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.

Notes

The pseudo-inverse of a matrix A, denoted A+, is defined as: “the matrix that ‘solves’ [the least-squares problem]
Ax = b,” i.e., if x̄ is said solution, then A+ is that matrix such that x̄ = A+b.
It can be shown that ifQ1ΣQ

T
2 = A is the singular value decomposition of A, then A+ = Q2Σ

+QT
1 , whereQ1,2

are orthogonal matrices, Σ is a diagonal matrix consisting of A’s so-called singular values, (followed, typically,
by zeros), and then Σ+ is simply the diagonal matrix consisting of the reciprocals of A’s singular values (again,
followed by zeros). [1]

References

[1]

Examples

The following example checks that a * a+ * a == a and a+ * a * a+ == a+:

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> a = rng.normal(size=(9, 6))
>>> B = np.linalg.pinv(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

linalg.tensorinv(a, ind=2)
Compute the ‘inverse’ of an N-dimensional array.
The result is an inverse for a relative to the tensordot operation tensordot(a, b, ind), i. e., up to floating-
point accuracy, tensordot(tensorinv(a), a, ind) is the “identity” tensor for the tensordot operation.

Parameters

1.1. NumPy’s module structure 101

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinv.html#scipy.linalg.pinv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinvh.html#scipy.linalg.pinvh

NumPy Reference, Release 2.2.0

a
[array_like] Tensor to ‘invert’. Its shape must be ‘square’, i. e., prod(a.shape[:ind])
== prod(a.shape[ind:]).

ind
[int, optional] Number of first indices that are involved in the inverse sum. Must be a positive
integer, default is 2.

Returns
b

[ndarray] a’s tensordot inverse, shape a.shape[ind:] + a.shape[:ind].
Raises

LinAlgError
If a is singular or not ‘square’ (in the above sense).

See also:

numpy.tensordot, tensorsolve

Examples

>>> import numpy as np
>>> a = np.eye(4*6)
>>> a.shape = (4, 6, 8, 3)
>>> ainv = np.linalg.tensorinv(a, ind=2)
>>> ainv.shape
(8, 3, 4, 6)
>>> rng = np.random.default_rng()
>>> b = rng.normal(size=(4, 6))
>>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
True

>>> a = np.eye(4*6)
>>> a.shape = (24, 8, 3)
>>> ainv = np.linalg.tensorinv(a, ind=1)
>>> ainv.shape
(8, 3, 24)
>>> rng = np.random.default_rng()
>>> b = rng.normal(size=24)
>>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
True

Other matrix operations

diagonal(a[, offset, axis1, axis2]) Return specified diagonals.
linalg.diagonal(x, /, *[, offset]) Returns specified diagonals of a matrix (or a stack of ma-

trices) x.
linalg.matrix_transpose(x, /) Transposes a matrix (or a stack of matrices) x.

numpy.diagonal(a, offset=0, axis1=0, axis2=1)
Return specified diagonals.

102 1. Python API

NumPy Reference, Release 2.2.0

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i,
i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine
the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by removing
axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals.
In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of the
values in the diagonal.
In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated.
Writing to the resulting array continues to work as it used to, but a FutureWarning is issued.
Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting array
will produce an error.
In some future release, it will return a read/write view and writing to the returned array will alter your original
array. The returned array will have the same type as the input array.
If you don’t write to the array returned by this function, then you can just ignore all of the above.
If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use np.
diagonal(a).copy() instead of just np.diagonal(a). This will work with both past and future versions
of NumPy.

Parameters
a

[array_like] Array from which the diagonals are taken.
offset

[int, optional] Offset of the diagonal from the main diagonal. Can be positive or negative.
Defaults to main diagonal (0).

axis1
[int, optional] Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals
should be taken. Defaults to first axis (0).

axis2
[int, optional] Axis to be used as the second axis of the 2-D sub-arrays fromwhich the diagonals
should be taken. Defaults to second axis (1).

Returns
array_of_diagonals

[ndarray] If a is 2-D, then a 1-D array containing the diagonal and of the same type as a is
returned unless a is a matrix, in which case a 1-D array rather than a (2-D) matrix is
returned in order to maintain backward compatibility.
If a.ndim > 2, then the dimensions specified by axis1 and axis2 are removed, and a new
axis inserted at the end corresponding to the diagonal.

Raises
ValueError

If the dimension of a is less than 2.
See also:

diag
MATLAB work-a-like for 1-D and 2-D arrays.

diagflat
Create diagonal arrays.

1.1. NumPy’s module structure 103

NumPy Reference, Release 2.2.0

trace
Sum along diagonals.

Examples

>>> import numpy as np
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])

A 3-D example:

>>> a = np.arange(8).reshape(2,2,2); a
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> a.diagonal(0, # Main diagonals of two arrays created by skipping
... 0, # across the outer(left)-most axis last and
... 1) # the "middle" (row) axis first.
array([[0, 6],

[1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most (column)
axis, and that the diagonals are “packed” in rows.

>>> a[:,:,0] # main diagonal is [0 6]
array([[0, 2],

[4, 6]])
>>> a[:,:,1] # main diagonal is [1 7]
array([[1, 3],

[5, 7]])

The anti-diagonal can be obtained by reversing the order of elements using either numpy.flipud or numpy.
fliplr.

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.fliplr(a).diagonal() # Horizontal flip
array([2, 4, 6])
>>> np.flipud(a).diagonal() # Vertical flip
array([6, 4, 2])

Note that the order in which the diagonal is retrieved varies depending on the flip function.
linalg.diagonal(x, / , *, offset=0)

Returns specified diagonals of a matrix (or a stack of matrices) x.

104 1. Python API

NumPy Reference, Release 2.2.0

This function is Array API compatible, contrary to numpy.diagonal, the matrix is assumed to be defined by
the last two dimensions.

Parameters
x

[(…,M,N) array_like] Input array having shape (…, M, N) and whose innermost two dimen-
sions form MxN matrices.

offset
[int, optional] Offset specifying the off-diagonal relative to the main diagonal, where:

* offset = 0: the main diagonal.
* offset > 0: off-diagonal above the main diagonal.
* offset < 0: off-diagonal below the main diagonal.

Returns
out

[(…,min(N,M)) ndarray] An array containing the diagonals and whose shape is determined by
removing the last two dimensions and appending a dimension equal to the size of the resulting
diagonals. The returned array must have the same data type as x.

See also:

numpy.diagonal

Examples

>>> a = np.arange(4).reshape(2, 2); a
array([[0, 1],

[2, 3]])
>>> np.linalg.diagonal(a)
array([0, 3])

A 3-D example:

>>> a = np.arange(8).reshape(2, 2, 2); a
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.linalg.diagonal(a)
array([[0, 3],

[4, 7]])

Diagonals adjacent to the main diagonal can be obtained by using the offset argument:

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.linalg.diagonal(a, offset=1) # First superdiagonal
array([1, 5])
>>> np.linalg.diagonal(a, offset=2) # Second superdiagonal
array([2])

(continues on next page)

1.1. NumPy’s module structure 105

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> np.linalg.diagonal(a, offset=-1) # First subdiagonal
array([3, 7])
>>> np.linalg.diagonal(a, offset=-2) # Second subdiagonal
array([6])

The anti-diagonal can be obtained by reversing the order of elements using either numpy.flipud or numpy.
fliplr.

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.linalg.diagonal(np.fliplr(a)) # Horizontal flip
array([2, 4, 6])
>>> np.linalg.diagonal(np.flipud(a)) # Vertical flip
array([6, 4, 2])

Note that the order in which the diagonal is retrieved varies depending on the flip function.
linalg.matrix_transpose(x, /)

Transposes a matrix (or a stack of matrices) x.
This function is Array API compatible.

Parameters
x

[array_like] Input array having shape (…, M, N) and whose two innermost dimensions form
MxN matrices.

Returns
out

[ndarray] An array containing the transpose for each matrix and having shape (…, N, M).
See also:

transpose
Generic transpose method.

Examples

>>> import numpy as np
>>> np.matrix_transpose([[1, 2], [3, 4]])
array([[1, 3],

[2, 4]])

>>> np.matrix_transpose([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
array([[[1, 3],

[2, 4]],
[[5, 7],
[6, 8]]])

106 1. Python API

NumPy Reference, Release 2.2.0

Exceptions

linalg.LinAlgError Generic Python-exception-derived object raised by linalg
functions.

exception linalg.LinAlgError

Generic Python-exception-derived object raised by linalg functions.
General purpose exception class, derived from Python’s ValueError class, programmatically raised in linalg func-
tions when a Linear Algebra-related condition would prevent further correct execution of the function.

Parameters
None

Examples

>>> from numpy import linalg as LA
>>> LA.inv(np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "...linalg.py", line 350,
in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))

File "...linalg.py", line 249,
in solve
raise LinAlgError('Singular matrix')

numpy.linalg.LinAlgError: Singular matrix

Linear algebra on several matrices at once
Several of the linear algebra routines listed above are able to compute results for several matrices at once, if they are
stacked into the same array.
This is indicated in the documentation via input parameter specifications such as a : (..., M, M) array_like.
This means that if for instance given an input array a.shape == (N, M, M), it is interpreted as a “stack” of N
matrices, each of size M-by-M. Similar specification applies to return values, for instance the determinant has det :
(...) and will in this case return an array of shape det(a).shape == (N,). This generalizes to linear algebra
operations on higher-dimensional arrays: the last 1 or 2 dimensions of a multidimensional array are interpreted as vectors
or matrices, as appropriate for each operation.

numpy.polynomial

A sub-package for efficiently dealing with polynomials.
Within the documentation for this sub-package, a “finite power series,” i.e., a polynomial (also referred to simply as a
“series”) is represented by a 1-D numpy array of the polynomial’s coefficients, ordered from lowest order term to highest.
For example, array([1,2,3]) represents P_0 + 2*P_1 + 3*P_2, where P_n is the n-th order basis polynomial appli-
cable to the specific module in question, e.g., polynomial (which “wraps” the “standard” basis) or chebyshev. For
optimal performance, all operations on polynomials, including evaluation at an argument, are implemented as operations
on the coefficients. Additional (module-specific) information can be found in the docstring for the module of interest.
This package provides convenience classes for each of six different kinds of polynomials:

1.1. NumPy’s module structure 107

NumPy Reference, Release 2.2.0

Name Provides
Polynomial Power series
Chebyshev Chebyshev series
Legendre Legendre series
Laguerre Laguerre series
Hermite Hermite series
HermiteE HermiteE series

These convenience classes provide a consistent interface for creating, manipulating, and fitting data with polynomials of
different bases. The convenience classes are the preferred interface for the polynomial package, and are available from
the numpy.polynomial namespace. This eliminates the need to navigate to the corresponding submodules, e.g. np.
polynomial.Polynomial or np.polynomial.Chebyshev instead of np.polynomial.polynomial.
Polynomial or np.polynomial.chebyshev.Chebyshev, respectively. The classes provide a more consistent
and concise interface than the type-specific functions defined in the submodules for each type of polynomial. For example,
to fit a Chebyshev polynomial with degree 1 to data given by arrays xdata and ydata, the fit class method:

>>> from numpy.polynomial import Chebyshev
>>> xdata = [1, 2, 3, 4]
>>> ydata = [1, 4, 9, 16]
>>> c = Chebyshev.fit(xdata, ydata, deg=1)

is preferred over the chebyshev.chebfit function from the np.polynomial.chebyshev module:

>>> from numpy.polynomial.chebyshev import chebfit
>>> c = chebfit(xdata, ydata, deg=1)

See Using the convenience classes for more details.

Convenience Classes
The following lists the various constants and methods common to all of the classes representing the various kinds of
polynomials. In the following, the term Poly represents any one of the convenience classes (e.g. Polynomial,
Chebyshev, Hermite, etc.) while the lowercase p represents an instance of a polynomial class.

Constants

• Poly.domain – Default domain
• Poly.window – Default window
• Poly.basis_name – String used to represent the basis
• Poly.maxpower – Maximum value n such that p**n is allowed
• Poly.nickname – String used in printing

108 1. Python API

NumPy Reference, Release 2.2.0

Creation

Methods for creating polynomial instances.
• Poly.basis(degree) – Basis polynomial of given degree
• Poly.identity() – p where p(x) = x for all x
• Poly.fit(x, y, deg) – p of degree deg with coefficients determined by the least-squares fit to the data x,
y

• Poly.fromroots(roots) – p with specified roots
• p.copy() – Create a copy of p

Conversion

Methods for converting a polynomial instance of one kind to another.
• p.cast(Poly) – Convert p to instance of kind Poly
• p.convert(Poly) – Convert p to instance of kind Poly or map between domain and window

Calculus

• p.deriv() – Take the derivative of p
• p.integ() – Integrate p

Validation

• Poly.has_samecoef(p1, p2) – Check if coefficients match
• Poly.has_samedomain(p1, p2) – Check if domains match
• Poly.has_sametype(p1, p2) – Check if types match
• Poly.has_samewindow(p1, p2) – Check if windows match

Misc

• p.linspace() – Return x, p(x) at equally-spaced points in domain
• p.mapparms() – Return the parameters for the linear mapping between domain and window.
• p.roots() – Return the roots of p.
• p.trim() – Remove trailing coefficients.
• p.cutdeg(degree) – Truncate p to given degree
• p.truncate(size) – Truncate p to given size

1.1. NumPy’s module structure 109

NumPy Reference, Release 2.2.0

Configuration

numpy.polynomial.
set_default_printstyle(style)

Set the default format for the string representation of poly-
nomials.

polynomial.set_default_printstyle(style)
Set the default format for the string representation of polynomials.
Values for style must be valid inputs to __format__, i.e. ‘ascii’ or ‘unicode’.

Parameters
style

[str] Format string for default printing style. Must be either ‘ascii’ or ‘unicode’.

Notes

The default format depends on the platform: ‘unicode’ is used on Unix-based systems and ‘ascii’ on Windows. This
determination is based on default font support for the unicode superscript and subscript ranges.

Examples

>>> p = np.polynomial.Polynomial([1, 2, 3])
>>> c = np.polynomial.Chebyshev([1, 2, 3])
>>> np.polynomial.set_default_printstyle('unicode')
>>> print(p)
1.0 + 2.0·x + 3.0·x²
>>> print(c)
1.0 + 2.0·T₁(x) + 3.0·T₂(x)
>>> np.polynomial.set_default_printstyle('ascii')
>>> print(p)
1.0 + 2.0 x + 3.0 x**2
>>> print(c)
1.0 + 2.0 T_1(x) + 3.0 T_2(x)
>>> # Formatting supersedes all class/package-level defaults
>>> print(f"{p:unicode}")
1.0 + 2.0·x + 3.0·x²

Random sampling (numpy.random)

Quick start
The numpy.random module implements pseudo-random number generators (PRNGs or RNGs, for short) with the
ability to draw samples from a variety of probability distributions. In general, users will create a Generator instance
with default_rng and call the various methods on it to obtain samples from different distributions.

>>> import numpy as np
>>> rng = np.random.default_rng()
Generate one random float uniformly distributed over the range [0, 1)
>>> rng.random()
0.06369197489564249 # may vary
Generate an array of 10 numbers according to a unit Gaussian distribution
>>> rng.standard_normal(10)

(continues on next page)

110 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
array([-0.31018314, -1.8922078 , -0.3628523 , -0.63526532, 0.43181166, # may vary

0.51640373, 1.25693945, 0.07779185, 0.84090247, -2.13406828])
Generate an array of 5 integers uniformly over the range [0, 10)
>>> rng.integers(low=0, high=10, size=5)
array([8, 7, 6, 2, 0]) # may vary

Our RNGs are deterministic sequences and can be reproduced by specifying a seed integer to derive its initial state. By
default, with no seed provided, default_rng will seed the RNG from nondeterministic data from the operating system
and therefore generate different numbers each time. The pseudo-random sequences will be independent for all practical
purposes, at least those purposes for which our pseudo-randomness was good for in the first place.

>>> import numpy as np
>>> rng1 = np.random.default_rng()
>>> rng1.random()
0.6596288841243357 # may vary
>>> rng2 = np.random.default_rng()
>>> rng2.random()
0.11885628817151628 # may vary

Warning: The pseudo-random number generators implemented in this module are designed for statistical modeling
and simulation. They are not suitable for security or cryptographic purposes. See the secrets module from the
standard library for such use cases.

Seeds should be large positive integers. default_rng can take positive integers of any size. We recommend using very
large, unique numbers to ensure that your seed is different from anyone else’s. This is good practice to ensure that your
results are statistically independent from theirs unless you are intentionally trying to reproduce their result. A convenient
way to get such a seed number is to use secrets.randbits to get an arbitrary 128-bit integer.

>>> import numpy as np
>>> import secrets
>>> secrets.randbits(128)
122807528840384100672342137672332424406 # may vary
>>> rng1 = np.random.default_rng(122807528840384100672342137672332424406)
>>> rng1.random()
0.5363922081269535
>>> rng2 = np.random.default_rng(122807528840384100672342137672332424406)
>>> rng2.random()
0.5363922081269535

See the documentation on default_rng and SeedSequence for more advanced options for controlling the seed in
specialized scenarios.
Generator and its associated infrastructure was introduced in NumPy version 1.17.0. There is still a lot of code that
uses the older RandomState and the functions in numpy.random. While there are no plans to remove them at this
time, we do recommend transitioning toGenerator as you can. The algorithms are faster, more flexible, andwill receive
more improvements in the future. For the most part, Generator can be used as a replacement for RandomState.
See Legacy random generation for information on the legacy infrastructure, What’s new or different for information on
transitioning, and NEP 19 for some of the reasoning for the transition.

1.1. NumPy’s module structure 111

https://docs.python.org/3/library/secrets.html#module-secrets
https://docs.python.org/3/library/secrets.html#secrets.randbits
https://numpy.org/neps/nep-0019-rng-policy.html#nep19

NumPy Reference, Release 2.2.0

Design
Users primarily interact with Generator instances. Each Generator instance owns a BitGenerator instance
that implements the core RNG algorithm. The BitGenerator has a limited set of responsibilities. It manages state
and provides functions to produce random doubles and random unsigned 32- and 64-bit values.
The Generator takes the bit generator-provided stream and transforms them into more useful distributions, e.g., sim-
ulated normal random values. This structure allows alternative bit generators to be used with little code duplication.
NumPy implements several different BitGenerator classes implementing different RNG algorithms. de-
fault_rng currently uses PCG64 as the default BitGenerator. It has better statistical properties and performance
than the MT19937 algorithm used in the legacy RandomState. See Bit generators for more details on the supported
BitGenerators.
default_rng and BitGenerators delegate the conversion of seeds into RNG states to SeedSequence internally.
SeedSequence implements a sophisticated algorithm that intermediates between the user’s input and the internal
implementation details of each BitGenerator algorithm, each of which can require different amounts of bits for its
state. Importantly, it lets you use arbitrary-sized integers and arbitrary sequences of such integers to mix together into
the RNG state. This is a useful primitive for constructing a flexible pattern for parallel RNG streams.
For backward compatibility, we still maintain the legacy RandomState class. It continues to use the MT19937 algo-
rithm by default, and old seeds continue to reproduce the same results. The convenience Functions in numpy.random are
still aliases to the methods on a single global RandomState instance. See Legacy random generation for the complete
details. SeeWhat’s new or different for a detailed comparison between Generator and RandomState.

Parallel Generation

The included generators can be used in parallel, distributed applications in a number of ways:
• SeedSequence spawning

• Sequence of integer seeds

• Independent streams

• Jumping the BitGenerator state

Users with a very large amount of parallelism will want to consult Upgrading PCG64 with PCG64DXSM.

Concepts
Random Generator

The Generator provides access to a wide range of distributions, and served as a replacement for RandomState. The
main difference between the two is that Generator relies on an additional BitGenerator to manage state and generate
the random bits, which are then transformed into random values from useful distributions. The default BitGenerator used
by Generator is PCG64. The BitGenerator can be changed by passing an instantized BitGenerator to Generator.
numpy.random.default_rng(seed=None)

Construct a new Generator with the default BitGenerator (PCG64).
Parameters

seed
[{None, int, array_like[ints], SeedSequence, BitGenerator, Generator, RandomState}, op-
tional] A seed to initialize the BitGenerator. If None, then fresh, unpredictable entropy
will be pulled from the OS. If an int or array_like[ints] is passed, then all values
must be non-negative and will be passed to SeedSequence to derive the initial BitGen-
erator state. One may also pass in a SeedSequence instance. Additionally, when passed

112 1. Python API

NumPy Reference, Release 2.2.0

a BitGenerator, it will be wrapped by Generator. If passed a Generator, it will
be returned unaltered. When passed a legacy RandomState instance it will be coerced to a
Generator.

Returns
Generator

The initialized generator object.

Notes

If seed is not a BitGenerator or a Generator, a new BitGenerator is instantiated. This function does
not manage a default global instance.
See Seeding and entropy for more information about seeding.

Examples

default_rng is the recommended constructor for the random number class Generator. Here are several
ways we can construct a random number generator using default_rng and the Generator class.
Here we use default_rng to generate a random float:

>>> import numpy as np
>>> rng = np.random.default_rng(12345)
>>> print(rng)
Generator(PCG64)
>>> rfloat = rng.random()
>>> rfloat
0.22733602246716966
>>> type(rfloat)
<class 'float'>

Here we use default_rng to generate 3 random integers between 0 (inclusive) and 10 (exclusive):

>>> import numpy as np
>>> rng = np.random.default_rng(12345)
>>> rints = rng.integers(low=0, high=10, size=3)
>>> rints
array([6, 2, 7])
>>> type(rints[0])
<class 'numpy.int64'>

Here we specify a seed so that we have reproducible results:

>>> import numpy as np
>>> rng = np.random.default_rng(seed=42)
>>> print(rng)
Generator(PCG64)
>>> arr1 = rng.random((3, 3))
>>> arr1
array([[0.77395605, 0.43887844, 0.85859792],

[0.69736803, 0.09417735, 0.97562235],
[0.7611397 , 0.78606431, 0.12811363]])

If we exit and restart our Python interpreter, we’ll see that we generate the same random numbers again:

1.1. NumPy’s module structure 113

NumPy Reference, Release 2.2.0

>>> import numpy as np
>>> rng = np.random.default_rng(seed=42)
>>> arr2 = rng.random((3, 3))
>>> arr2
array([[0.77395605, 0.43887844, 0.85859792],

[0.69736803, 0.09417735, 0.97562235],
[0.7611397 , 0.78606431, 0.12811363]])

class numpy.random.Generator(bit_generator)
Container for the BitGenerators.
Generator exposes a number of methods for generating random numbers drawn from a variety of probability
distributions. In addition to the distribution-specific arguments, each method takes a keyword argument size that
defaults to None. If size is None, then a single value is generated and returned. If size is an integer, then a 1-D
array filled with generated values is returned. If size is a tuple, then an array with that shape is filled and returned.
The function numpy.random.default_rng will instantiate a Generator with numpy’s default BitGen-
erator.
No Compatibility Guarantee
Generator does not provide a version compatibility guarantee. In particular, as better algorithms evolve the bit
stream may change.

Parameters
bit_generator

[BitGenerator] BitGenerator to use as the core generator.
See also:

default_rng
Recommended constructor for Generator.

Notes

The Python stdlib module random contains pseudo-random number generator with a number of methods that are
similar to the ones available in Generator. It uses Mersenne Twister, and this bit generator can be accessed
using MT19937. Generator, besides being NumPy-aware, has the advantage that it provides a much larger
number of probability distributions to choose from.

Examples

>>> from numpy.random import Generator, PCG64
>>> rng = Generator(PCG64())
>>> rng.standard_normal()
-0.203 # random

114 1. Python API

https://docs.python.org/3/library/random.html#module-random

NumPy Reference, Release 2.2.0

Accessing the BitGenerator and spawning

bit_generator Gets the bit generator instance used by the generator
spawn(n_children) Create new independent child generators.

attribute
random.Generator.bit_generator

Gets the bit generator instance used by the generator
Returns

bit_generator
[BitGenerator] The bit generator instance used by the generator

method
random.Generator.spawn(n_children)

Create new independent child generators.
See SeedSequence spawning for additional notes on spawning children.
New in version 1.25.0.

Parameters
n_children

[int]
Returns

child_generators
[list of Generators]

Raises
TypeError

When the underlying SeedSequence does not implement spawning.
See also:

random.BitGenerator.spawn, random.SeedSequence.spawn
Equivalent method on the bit generator and seed sequence.

bit_generator
The bit generator instance used by the generator.

Examples

Starting from a seeded default generator:

>>> # High quality entropy created with: f"0x{secrets.randbits(128):x}"
>>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501
>>> rng = np.random.default_rng(entropy)

Create two new generators for example for parallel execution:

>>> child_rng1, child_rng2 = rng.spawn(2)

1.1. NumPy’s module structure 115

NumPy Reference, Release 2.2.0

Drawn numbers from each are independent but derived from the initial seeding entropy:

>>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform()
(0.19029263503854454, 0.9475673279178444, 0.4702687338396767)

It is safe to spawn additional children from the original rng or the children:

>>> more_child_rngs = rng.spawn(20)
>>> nested_spawn = child_rng1.spawn(20)

Simple random data

integers(low[, high, size, dtype, endpoint]) Return random integers from low (inclusive) to high (ex-
clusive), or if endpoint=True, low (inclusive) to high (in-
clusive).

random([size, dtype, out]) Return random floats in the half-open interval [0.0, 1.0).
choice(a[, size, replace, p, axis, shuffle]) Generates a random sample from a given array
bytes(length) Return random bytes.

method
random.Generator.integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

Return random integers from low (inclusive) to high (exclusive), or if endpoint=True, low (inclusive) to high
(inclusive). Replaces RandomState.randint (with endpoint=False) and RandomState.random_integers (with end-
point=True)
Return random integers from the “discrete uniform” distribution of the specified dtype. If high is None (the default),
then results are from 0 to low.

Parameters
low

[int or array-like of ints] Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is 0 and this value is used for high).

high
[int or array-like of ints, optional] If provided, one above the largest (signed) integer to be
drawn from the distribution (see above for behavior if high=None). If array-like, must
contain integer values

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result. Byteorder must be native. The default value is
np.int64.

endpoint
[bool, optional] If true, sample from the interval [low, high] instead of the default [low, high)
Defaults to False

Returns
out

[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

116 1. Python API

NumPy Reference, Release 2.2.0

Notes

When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard
integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]).

References

[1]

Examples

>>> rng = np.random.default_rng()
>>> rng.integers(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
>>> rng.integers(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> rng.integers(5, size=(2, 4))
array([[4, 0, 2, 1],

[3, 2, 2, 0]]) # random

Generate a 1 x 3 array with 3 different upper bounds

>>> rng.integers(1, [3, 5, 10])
array([2, 2, 9]) # random

Generate a 1 by 3 array with 3 different lower bounds

>>> rng.integers([1, 5, 7], 10)
array([9, 8, 7]) # random

Generate a 2 by 4 array using broadcasting with dtype of uint8

>>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
array([[8, 6, 9, 7],

[1, 16, 9, 12]], dtype=uint8) # random

method
random.Generator.random(size=None, dtype=np.float64, out=None)

Return random floats in the half-open interval [0.0, 1.0).
Results are from the “continuous uniform” distribution over the stated interval. To sample Unif [a, b), b > a use
uniform or multiply the output of random by (b - a) and add a:

(b - a) * random() + a

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

1.1. NumPy’s module structure 117

NumPy Reference, Release 2.2.0

dtype
[dtype, optional] Desired dtype of the result, only float64 and float32 are supported.
Byteorder must be native. The default value is np.float64.

out
[ndarray, optional] Alternative output array in which to place the result. If size is not None, it
must have the same shape as the provided size and must match the type of the output values.

Returns
out

[float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

See also:

uniform
Draw samples from the parameterized uniform distribution.

Examples

>>> rng = np.random.default_rng()
>>> rng.random()
0.47108547995356098 # random
>>> type(rng.random())
<class 'float'>
>>> rng.random((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random

Three-by-two array of random numbers from [-5, 0):

>>> 5 * rng.random((3, 2)) - 5
array([[-3.99149989, -0.52338984], # random

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

method
random.Generator.choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

Generates a random sample from a given array
Parameters

a
[{array_like, int}] If an ndarray, a random sample is generated from its elements. If an int,
the random sample is generated from np.arange(a).

size
[{int, tuple[int]}, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn from the 1-d a. If a has more than one dimension, the size
shape will be inserted into the axis dimension, so the output ndim will be a.ndim - 1 +
len(size). Default is None, in which case a single value is returned.

replace
[bool, optional] Whether the sample is with or without replacement. Default is True, meaning
that a value of a can be selected multiple times.

118 1. Python API

NumPy Reference, Release 2.2.0

p
[1-D array_like, optional] The probabilities associated with each entry in a. If not given, the
sample assumes a uniform distribution over all entries in a.

axis
[int, optional] The axis along which the selection is performed. The default, 0, selects by row.

shuffle
[bool, optional] Whether the sample is shuffled when sampling without replacement. Default
is True, False provides a speedup.

Returns
samples

[single item or ndarray] The generated random samples
Raises

ValueError
If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p
is not a vector of probabilities, if a and p have different lengths, or if replace=False and the
sample size is greater than the population size.

See also:

integers, shuffle, permutation

Notes

Setting user-specified probabilities through p uses a more general but less efficient sampler than the default. The
general sampler produces a different sample than the optimized sampler even if each element of p is 1 / len(a).
pmust sum to 1 when cast to float64. To ensure this, you may wish to normalize using p = p / np.sum(p,
dtype=float).
When passing a as an integer type and size is not specified, the return type is a native Python int.

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> rng = np.random.default_rng()
>>> rng.choice(5, 3)
array([0, 3, 4]) # random
>>> #This is equivalent to rng.integers(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0]) # random

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> rng.choice(5, 3, replace=False)
array([3,1,0]) # random
>>> #This is equivalent to rng.permutation(np.arange(5))[:3]

Generate a uniform random sample from a 2-D array along the first axis (the default), without replacement:

1.1. NumPy’s module structure 119

NumPy Reference, Release 2.2.0

>>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
array([[3, 4, 5], # random

[0, 1, 2]])

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0]) # random

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random

dtype='<U11')

method
random.Generator.bytes(length)

Return random bytes.
Parameters

length
[int] Number of random bytes.

Returns
out

[bytes] String of length length.

Notes

This function generates random bytes from a discrete uniform distribution. The generated bytes are independent
from the CPU’s native endianness.

Examples

>>> rng = np.random.default_rng()
>>> rng.bytes(10)
b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random

Permutations

The methods for randomly permuting a sequence are

shuffle(x[, axis]) Modify an array or sequence in-place by shuffling its con-
tents.

permutation(x[, axis]) Randomly permute a sequence, or return a permuted
range.

permuted(x[, axis, out]) Randomly permute x along axis axis.

method

120 1. Python API

NumPy Reference, Release 2.2.0

random.Generator.shuffle(x, axis=0)
Modify an array or sequence in-place by shuffling its contents.
The order of sub-arrays is changed but their contents remains the same.

Parameters
x

[ndarray or MutableSequence] The array, list or mutable sequence to be shuffled.
axis

[int, optional] The axis which x is shuffled along. Default is 0. It is only supported onndarray
objects.

Returns
None

See also:

permuted
permutation

Notes

An important distinction between methods shuffle and permuted is how they both treat the axis parameter
which can be found at Handling the axis parameter.

Examples

>>> rng = np.random.default_rng()
>>> arr = np.arange(10)
>>> arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> rng.shuffle(arr)
>>> arr
array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

>>> arr = np.arange(9).reshape((3, 3))
>>> arr
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> rng.shuffle(arr)
>>> arr
array([[3, 4, 5], # random

[6, 7, 8],
[0, 1, 2]])

>>> arr = np.arange(9).reshape((3, 3))
>>> arr
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> rng.shuffle(arr, axis=1)
>>> arr

(continues on next page)

1.1. NumPy’s module structure 121

NumPy Reference, Release 2.2.0

(continued from previous page)
array([[2, 0, 1], # random

[5, 3, 4],
[8, 6, 7]])

method
random.Generator.permutation(x, axis=0)

Randomly permute a sequence, or return a permuted range.
Parameters

x
[int or array_like] If x is an integer, randomly permute np.arange(x). If x is an array,
make a copy and shuffle the elements randomly.

axis
[int, optional] The axis which x is shuffled along. Default is 0.

Returns
out

[ndarray] Permuted sequence or array range.

Examples

>>> rng = np.random.default_rng()
>>> rng.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

>>> rng.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12]) # random

>>> arr = np.arange(9).reshape((3, 3))
>>> rng.permutation(arr)
array([[6, 7, 8], # random

[0, 1, 2],
[3, 4, 5]])

>>> rng.permutation("abc")
Traceback (most recent call last):

...
numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0

>>> arr = np.arange(9).reshape((3, 3))
>>> rng.permutation(arr, axis=1)
array([[0, 2, 1], # random

[3, 5, 4],
[6, 8, 7]])

method
random.Generator.permuted(x, axis=None, out=None)

Randomly permute x along axis axis.
Unlike shuffle, each slice along the given axis is shuffled independently of the others.

122 1. Python API

NumPy Reference, Release 2.2.0

Parameters
x

[array_like, at least one-dimensional] Array to be shuffled.
axis

[int, optional] Slices of x in this axis are shuffled. Each slice is shuffled independently of the
others. If axis is None, the flattened array is shuffled.

out
[ndarray, optional] If given, this is the destination of the shuffled array. If out is None, a
shuffled copy of the array is returned.

Returns
ndarray

If out is None, a shuffled copy of x is returned. Otherwise, the shuffled array is stored in out,
and out is returned

See also:

shuffle
permutation

Notes

An important distinction between methods shuffle and permuted is how they both treat the axis parameter
which can be found at Handling the axis parameter.

Examples

Create a numpy.random.Generator instance:

>>> rng = np.random.default_rng()

Create a test array:

>>> x = np.arange(24).reshape(3, 8)
>>> x
array([[0, 1, 2, 3, 4, 5, 6, 7],

[8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]])

Shuffle the rows of x:

>>> y = rng.permuted(x, axis=1)
>>> y
array([[4, 3, 6, 7, 1, 2, 5, 0], # random

[15, 10, 14, 9, 12, 11, 8, 13],
[17, 16, 20, 21, 18, 22, 23, 19]])

x has not been modified:

>>> x
array([[0, 1, 2, 3, 4, 5, 6, 7],

[8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]])

1.1. NumPy’s module structure 123

NumPy Reference, Release 2.2.0

To shuffle the rows of x in-place, pass x as the out parameter:

>>> y = rng.permuted(x, axis=1, out=x)
>>> x
array([[3, 0, 4, 7, 1, 6, 2, 5], # random

[8, 14, 13, 9, 12, 11, 15, 10],
[17, 18, 16, 22, 19, 23, 20, 21]])

Note that when the out parameter is given, the return value is out:

>>> y is x
True

The following table summarizes the behaviors of the methods.

method copy/in-place axis handling
shuffle in-place as if 1d
permutation copy as if 1d
permuted either (use ‘out’ for in-place) axis independent

The following subsections provide more details about the differences.

In-place vs. copy

The main difference between Generator.shuffle and Generator.permutation is that Generator.
shuffle operates in-place, while Generator.permutation returns a copy.
By default, Generator.permuted returns a copy. To operate in-place with Generator.permuted, pass the
same array as the first argument and as the value of the out parameter. For example,

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> x = np.arange(0, 15).reshape(3, 5)
>>> x
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

>>> y = rng.permuted(x, axis=1, out=x)
>>> x
array([[1, 0, 2, 4, 3], # random

[6, 7, 8, 9, 5],
[10, 14, 11, 13, 12]])

Note that when out is given, the return value is out:

>>> y is x
True

124 1. Python API

NumPy Reference, Release 2.2.0

Handling the axis parameter

An important distinction for these methods is how they handle the axis parameter. Both Generator.shuffle
and Generator.permutation treat the input as a one-dimensional sequence, and the axis parameter determines
which dimension of the input array to use as the sequence. In the case of a two-dimensional array, axis=0will, in effect,
rearrange the rows of the array, and axis=1 will rearrange the columns. For example

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> x = np.arange(0, 15).reshape(3, 5)
>>> x
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])

>>> rng.permutation(x, axis=1)
array([[1, 3, 2, 0, 4], # random

[6, 8, 7, 5, 9],
[11, 13, 12, 10, 14]])

Note that the columns have been rearranged “in bulk”: the values within each column have not changed.
The method Generator.permuted treats the axis parameter similar to how numpy.sort treats it. Each slice
along the given axis is shuffled independently of the others. Compare the following example of the use of Generator.
permuted to the above example of Generator.permutation:

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> rng.permuted(x, axis=1)
array([[1, 0, 2, 4, 3], # random

[5, 7, 6, 9, 8],
[10, 14, 12, 13, 11]])

In this example, the values within each row (i.e. the values along axis=1) have been shuffled independently. This is not
a “bulk” shuffle of the columns.

Shuffling non-NumPy sequences

Generator.shuffle works on non-NumPy sequences. That is, if it is given a sequence that is not a NumPy array,
it shuffles that sequence in-place.

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> a = ['A', 'B', 'C', 'D', 'E']
>>> rng.shuffle(a) # shuffle the list in-place
>>> a
['B', 'D', 'A', 'E', 'C'] # random

1.1. NumPy’s module structure 125

NumPy Reference, Release 2.2.0

Distributions

beta(a, b[, size]) Draw samples from a Beta distribution.
binomial(n, p[, size]) Draw samples from a binomial distribution.
chisquare(df[, size]) Draw samples from a chi-square distribution.
dirichlet(alpha[, size]) Draw samples from the Dirichlet distribution.
exponential([scale, size]) Draw samples from an exponential distribution.
f(dfnum, dfden[, size]) Draw samples from an F distribution.
gamma(shape[, scale, size]) Draw samples from a Gamma distribution.
geometric(p[, size]) Draw samples from the geometric distribution.
gumbel([loc, scale, size]) Draw samples from a Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric distribution.
laplace([loc, scale, size]) Draw samples from the Laplace or double exponential

distribution with specified location (or mean) and scale
(decay).

logistic([loc, scale, size]) Draw samples from a logistic distribution.
lognormal([mean, sigma, size]) Draw samples from a log-normal distribution.
logseries(p[, size]) Draw samples from a logarithmic series distribution.
multinomial(n, pvals[, size]) Draw samples from a multinomial distribution.
multivariate_hypergeometric(colors, nsam-
ple)

Generate variates from amultivariate hypergeometric dis-
tribution.

multivariate_normal(mean, cov[, size, ...]) Draw random samples from a multivariate normal distri-
bution.

negative_binomial(n, p[, size]) Draw samples from a negative binomial distribution.
noncentral_chisquare(df, nonc[, size]) Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size]) Draw samples from the noncentral F distribution.
normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distri-

bution.
pareto(a[, size]) Draw samples from a Pareto II (AKALomax) distribution

with specified shape.
poisson([lam, size]) Draw samples from a Poisson distribution.
power(a[, size]) Draws samples in [0, 1] from a power distribution with

positive exponent a - 1.
rayleigh([scale, size]) Draw samples from a Rayleigh distribution.
standard_cauchy([size]) Draw samples from a standard Cauchy distribution with

mode = 0.
standard_exponential([size, dtype, method,
out])

Draw samples from the standard exponential distribution.

standard_gamma(shape[, size, dtype, out]) Draw samples from a standard Gamma distribution.
standard_normal([size, dtype, out]) Draw samples from a standard Normal distribution

(mean=0, stdev=1).
standard_t(df[, size]) Draw samples from a standard Student's t distribution

with df degrees of freedom.
triangular(left, mode, right[, size]) Draw samples from the triangular distribution over the in-

terval [left, right].
uniform([low, high, size]) Draw samples from a uniform distribution.
vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
wald(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distri-

bution.
weibull(a[, size]) Draw samples from a Weibull distribution.
zipf(a[, size]) Draw samples from a Zipf distribution.

126 1. Python API

NumPy Reference, Release 2.2.0

method
random.Generator.beta(a, b, size=None)

Draw samples from a Beta distribution.
The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has
the probability distribution function

f(x; a, b) =
1

B(α, β)
xα−1(1− x)β−1,

where the normalization, B, is the beta function,

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.

It is often seen in Bayesian inference and order statistics.
Parameters

a
[float or array_like of floats] Alpha, positive (>0).

b
[float or array_like of floats] Beta, positive (>0).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a and b
are both scalars. Otherwise, np.broadcast(a, b).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized beta distribution.

References

[1]

Examples

The beta distribution has mean a/(a+b). If a == b and both are > 1, the distribution is symmetric with mean 0.5.

>>> rng = np.random.default_rng()
>>> a, b, size = 2.0, 2.0, 10000
>>> sample = rng.beta(a=a, b=b, size=size)
>>> np.mean(sample)
0.5047328775385895 # may vary

Otherwise the distribution is skewed left or right according to whether a or b is greater. The distribution is mirror
symmetric. See for example:

>>> a, b, size = 2, 7, 10000
>>> sample_left = rng.beta(a=a, b=b, size=size)
>>> sample_right = rng.beta(a=b, b=a, size=size)
>>> m_left, m_right = np.mean(sample_left), np.mean(sample_right)
>>> print(m_left, m_right)

(continues on next page)

1.1. NumPy’s module structure 127

NumPy Reference, Release 2.2.0

(continued from previous page)
0.2238596793678923 0.7774613834041182 # may vary
>>> print(m_left - a/(a+b))
0.001637457145670096 # may vary
>>> print(m_right - b/(a+b))
-0.0003163943736596009 # may vary

Display the histogram of the two samples:

>>> import matplotlib.pyplot as plt
>>> plt.hist([sample_left, sample_right],
... 50, density=True, histtype='bar')
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

method
random.Generator.binomial(n, p, size=None)

Draw samples from a binomial distribution.
Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success
where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in
use)

Parameters
n

[int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.

p
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns

128 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized binomial distribution, where each
sample is equal to the number of successes over the n trials.

See also:

scipy.stats.binom
probability density function, distribution or cumulative density function, etc.

Notes

The probability mass function (PMF) for the binomial distribution is

P (N) =

(
n

N

)
pN (1− p)n−N ,

where n is the number of trials, p is the probability of success, and N is the number of successes.
When estimating the standard error of a proportion in a population by using a random sample, the normal distribu-
tion works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples,
in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be
used in this case.

References

[1], [2], [3], [4], [5]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> n, p, size = 10, .5, 10000
>>> s = rng.binomial(n, p, 10000)

Assume a company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of p=0.1.
All nine wells fail. What is the probability of that happening?
Over size = 20,000 trials the probability of this happening is on average:

>>> n, p, size = 9, 0.1, 20000
>>> np.sum(rng.binomial(n=n, p=p, size=size) == 0)/size
0.39015 # may vary

The following can be used to visualize a sample with n=100, p=0.4 and the corresponding probability density
function:

>>> import matplotlib.pyplot as plt
>>> from scipy.stats import binom
>>> n, p, size = 100, 0.4, 10000
>>> sample = rng.binomial(n, p, size=size)
>>> count, bins, _ = plt.hist(sample, 30, density=True)
>>> x = np.arange(n)
>>> y = binom.pmf(x, n, p)
>>> plt.plot(x, y, linewidth=2, color='r')

1.1. NumPy’s module structure 129

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom

NumPy Reference, Release 2.2.0

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

method
random.Generator.chisquare(df, size=None)

Draw samples from a chi-square distribution.
When df independent random variables, each with standard normal distributions (mean 0, variance 1), are squared
and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis
testing.

Parameters
df

[float or array_like of floats] Number of degrees of freedom, must be > 0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array(df).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized chi-square distribution.
Raises

ValueError
When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

130 1. Python API

NumPy Reference, Release 2.2.0

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random variables:

Q =

df∑
i=1

X2
i

is chi-square distributed, denoted

Q ∼ χ2
k.

The probability density function of the chi-squared distribution is

p(x) =
(1/2)k/2

Γ(k/2)
xk/2−1e−x/2,

where Γ is the gamma function,

Γ(x) =

∫ −∞

0

tx−1e−tdt.

References

[1]

Examples

>>> rng = np.random.default_rng()
>>> rng.chisquare(2,4)
array([1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random

The distribution of a chi-square random variable with 20 degrees of freedom looks as follows:

>>> import matplotlib.pyplot as plt
>>> import scipy.stats as stats
>>> s = rng.chisquare(20, 10000)
>>> count, bins, _ = plt.hist(s, 30, density=True)
>>> x = np.linspace(0, 60, 1000)
>>> plt.plot(x, stats.chi2.pdf(x, df=20))
>>> plt.xlim([0, 60])
>>> plt.show()

method
random.Generator.dirichlet(alpha, size=None)

Draw samples from the Dirichlet distribution.
Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can
be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a
multinomial distribution in Bayesian inference.

Parameters
alpha

[sequence of floats, length k] Parameter of the distribution (length k for sample of length k).

1.1. NumPy’s module structure 131

NumPy Reference, Release 2.2.0

0 10 20 30 40 50 60
0.00

0.01

0.02

0.03

0.04

0.05

0.06

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n), then m * n
* k samples are drawn. Default is None, in which case a vector of length k is returned.

Returns
samples

[ndarray,] The drawn samples, of shape (size, k).
Raises

ValueError
If any value in alpha is less than zero

Notes

The Dirichlet distribution is a distribution over vectors x that fulfil the conditions xi > 0 and
∑k

i=1 xi = 1.
The probability density function p of a Dirichlet-distributed random vector X is proportional to

p(x) ∝
k∏

i=1

xαi−1
i ,

where α is a vector containing the positive concentration parameters.
The method uses the following property for computation: let Y be a random vector which has components that
follow a standard gamma distribution, then X = 1∑k

i=1 Yi
Y is Dirichlet-distributed

132 1. Python API

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial
length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but
allowing some variation in the relative sizes of the pieces.

>>> rng = np.random.default_rng()
>>> s = rng.dirichlet((10, 5, 3), 20).transpose()

>>> import matplotlib.pyplot as plt
>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20
Lengths of Strings

method
random.Generator.exponential(scale=1.0, size=None)

Draw samples from an exponential distribution.
Its probability density function is

f(x;
1

β
) =

1

β
exp(−x

β
),

for x > 0 and 0 elsewhere. β is the scale parameter, which is the inverse of the rate parameter λ = 1/β. The
rate parameter is an alternative, widely used parameterization of the exponential distribution [3].
The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to
Wikipedia [2].

Parameters

1.1. NumPy’s module structure 133

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats] The scale parameter, β = 1/λ. Must be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized exponential distribution.

References

[1], [2], [3]

Examples

Assume a company has 10000 customer support agents and the time between customer calls is exponentially dis-
tributed and that the average time between customer calls is 4 minutes.

>>> scale, size = 4, 10000
>>> rng = np.random.default_rng()
>>> time_between_calls = rng.exponential(scale=scale, size=size)

What is the probability that a customer will call in the next 4 to 5 minutes?

>>> x = ((time_between_calls < 5).sum())/size
>>> y = ((time_between_calls < 4).sum())/size
>>> x - y
0.08 # may vary

The corresponding distribution can be visualized as follows:

>>> import matplotlib.pyplot as plt
>>> scale, size = 4, 10000
>>> rng = np.random.default_rng()
>>> sample = rng.exponential(scale=scale, size=size)
>>> count, bins, _ = plt.hist(sample, 30, density=True)
>>> plt.plot(bins, scale**(-1)*np.exp(-scale**-1*bins), linewidth=2, color='r')
>>> plt.show()

method
random.Generator.f(dfnum, dfden, size=None)

Draw samples from an F distribution.
Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters must be greater than zero.
The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distri-
bution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Parameters
dfnum

[float or array_like of floats] Degrees of freedom in numerator, must be > 0.

134 1. Python API

NumPy Reference, Release 2.2.0

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

dfden
[float or array_like of float] Degrees of freedom in denominator, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum and
dfden are both scalars. Otherwise, np.broadcast(dfnum, dfden).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Fisher distribution.
See also:

scipy.stats.f
probability density function, distribution or cumulative density function, etc.

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable
dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the within-
groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

1.1. NumPy’s module structure 135

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

An example from Glantz[1], pp 47-40:
Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data gives a
value of 36.01.
Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> rng = np.random.default_rng()
>>> s = rng.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> np.sort(s)[-10]
7.61988120985 # random

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.
The corresponding probability density function for n = 20 and m = 20 is:

>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> dfnum, dfden, size = 20, 20, 10000
>>> s = rng.f(dfnum=dfnum, dfden=dfden, size=size)
>>> bins, density, _ = plt.hist(s, 30, density=True)
>>> x = np.linspace(0, 5, 1000)
>>> plt.plot(x, stats.f.pdf(x, dfnum, dfden))
>>> plt.xlim([0, 5])
>>> plt.show()

method
random.Generator.gamma(shape, scale=1.0, size=None)

Draw samples from a Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale (sometimes designated “theta”), where both parameters are > 0.

Parameters
shape

[float or array_like of floats] The shape of the gamma distribution. Must be non-negative.
scale

[float or array_like of floats, optional] The scale of the gamma distribution. Must be non-
negative. Default is equal to 1.

136 1. Python API

NumPy Reference, Release 2.2.0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if shape and
scale are both scalars. Otherwise, np.broadcast(shape, scale).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized gamma distribution.
See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

p(x) = xk−1 e−x/θ

θkΓ(k)
,

where k is the shape and θ the scale, and Γ is the Gamma function.
The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

1.1. NumPy’s module structure 137

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> rng = np.random.default_rng()
>>> s = rng.gamma(shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, _ = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

method
random.Generator.geometric(p, size=None)

Draw samples from the geometric distribution.
Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve
success. It is therefore supported on the positive integers, k = 1, 2,
The probability mass function of the geometric distribution is

f(k) = (1− p)k−1p

where p is the probability of success of an individual trial.

138 1. Python API

NumPy Reference, Release 2.2.0

Parameters
p

[float or array_like of floats] The probability of success of an individual trial.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array(p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized geometric distribution.

References

[1]

Examples

Draw 10,000 values from the geometric distribution, with the probability of an individual success equal to p =
0.35:

>>> p, size = 0.35, 10000
>>> rng = np.random.default_rng()
>>> sample = rng.geometric(p=p, size=size)

What proportion of trials succeeded after a single run?

>>> (sample == 1).sum()/size
0.34889999999999999 # may vary

The geometric distribution with p=0.35 looks as follows:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(sample, bins=30, density=True)
>>> plt.plot(bins, (1-p)**(bins-1)*p)
>>> plt.xlim([0, 25])
>>> plt.show()

method
random.Generator.gumbel(loc=0.0, scale=1.0, size=None)

Draw samples from a Gumbel distribution.
Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel
distribution, see Notes and References below.

Parameters
loc

[float or array_like of floats, optional] The location of the mode of the distribution. Default is
0.

scale
[float or array_like of floats, optional] The scale parameter of the distribution. Default is 1.
Must be non- negative.

1.1. NumPy’s module structure 139

NumPy Reference, Release 2.2.0

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

0.5

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.
See also:

scipy.stats.gumbel_l
scipy.stats.gumbel_r
scipy.stats.genextreme
weibull

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-like”
tails.
The probability density for the Gumbel distribution is

p(x) =
e−(x−µ)/β

β
e−e−(x−µ)/β

,

where µ is the mode, a location parameter, and β is the scale parameter.
The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology liter-
ature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger than if one
used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a
Gaussian process, which underestimated the frequency of extreme events.

140 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also
includes the Weibull and Frechet.
The function has a mean of µ+ 0.57721β and a variance of π2

6 β2.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> mu, beta = 0, 0.1 # location and scale
>>> s = rng.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 30, density=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = rng.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, _ = plt.hist(maxima, 30, density=True)

(continues on next page)

1.1. NumPy’s module structure 141

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10

12

14

method
random.Generator.hypergeometric(ngood, nbad, nsample, size=None)

Draw samples from a Hypergeometric distribution.
Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good
selection), nbad (ways to make a bad selection), and nsample (number of items sampled, which is less than or equal
to the sum ngood + nbad).

Parameters
ngood

[int or array_like of ints] Number of ways to make a good selection. Must be nonnegative and
less than 10**9.

nbad
[int or array_like of ints] Number of ways to make a bad selection. Must be nonnegative and
less than 10**9.

nsample
[int or array_like of ints] Number of items sampled. Must be nonnegative and less than ngood
+ nbad.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast(ngood, nbad,
nsample).size samples are drawn.

142 1. Python API

NumPy Reference, Release 2.2.0

Returns
out

[ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution. Each
sample is the number of good items within a randomly selected subset of size nsample taken
from a set of ngood good items and nbad bad items.

See also:

multivariate_hypergeometric
Draw samples from the multivariate hypergeometric distribution.

scipy.stats.hypergeom
probability density function, distribution or cumulative density function, etc.

Notes

The probability mass function (PMF) for the Hypergeometric distribution is

P (x) =

(
g
x

)(
b

n−x

)(
g+b
n

) ,

where 0 ≤ x ≤ n and n− b ≤ x ≤ g

for P(x) the probability of x good results in the drawn sample, g = ngood, b = nbad, and n = nsample.
Consider an urn with black and white marbles in it, ngood of them are black and nbad are white. If you draw
nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls
in the drawn sample.
Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.
The arguments ngood and nbad each must be less than 10**9. For extremely large arguments, the algorithm that
is used to compute the samples [4] breaks down because of loss of precision in floating point calculations. For
such large values, if nsample is not also large, the distribution can be approximated with the binomial distribution,
binomial(n=nsample, p=ngood/(ngood + nbad)).

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
>>> from matplotlib.pyplot import hist
>>> hist(s)
note that it is very unlikely to grab both bad items

1.1. NumPy’s module structure 143

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom

NumPy Reference, Release 2.2.0

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it
that 12 or more of them are one color?

>>> s = rng.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

method
random.Generator.laplace(loc=0.0, scale=1.0, size=None)

Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).
The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Parameters
loc

[float or array_like of floats, optional] The position, µ, of the distribution peak. Default is 0.
scale

[float or array_like of floats, optional] λ, the exponential decay. Default is 1. Must be non-
negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

Notes

It has the probability density function

f(x;µ, λ) =
1

2λ
exp

(
−|x− µ|

λ

)
.

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function
of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics
and health sciences, this distribution seems to model the data better than the standard Gaussian distribution.

References

[1], [2], [3], [4]

144 1. Python API

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> rng = np.random.default_rng()
>>> s = rng.laplace(loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 30, density=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

8 6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

method
random.Generator.logistic(loc=0.0, scale=1.0, size=None)

Draw samples from a logistic distribution.
Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and
scale (>0).

Parameters
loc

[float or array_like of floats, optional] Parameter of the distribution. Default is 0.
scale

[float or array_like of floats, optional] Parameter of the distribution. Must be non-negative.
Default is 1.

1.1. NumPy’s module structure 145

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized logistic distribution.
See also:

scipy.stats.logistic
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Logistic distribution is

P (x) =
e−(x−µ)/s

s(1 + e−(x−µ)/s)2
,

where µ = location and s = scale.
The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions,
in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming
the performance of each player is a logistically distributed random variable.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> rng = np.random.default_rng()
>>> s = rng.logistic(loc, scale, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, bins=50, label='Sampled data')

plot sampled data against the exact distribution

>>> def logistic(x, loc, scale):
... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
>>> logistic_values = logistic(bins, loc, scale)
>>> bin_spacing = np.mean(np.diff(bins))
>>> plt.plot(bins, logistic_values * bin_spacing * s.size, label='Logistic PDF')
>>> plt.legend()
>>> plt.show()

method

146 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic

NumPy Reference, Release 2.2.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

200

400

600

800

1000 Sampled data
Logistic PDF

random.Generator.lognormal(mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.
Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note
that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Parameters
mean

[float or array_like of floats, optional] Mean value of the underlying normal distribution. De-
fault is 0.

sigma
[float or array_like of floats, optional] Standard deviation of the underlying normal distribution.
Must be non-negative. Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mean and
sigma are both scalars. Otherwise, np.broadcast(mean, sigma).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized log-normal distribution.
See also:

scipy.stats.lognorm
probability density function, distribution, cumulative density function, etc.

1.1. NumPy’s module structure 147

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm

NumPy Reference, Release 2.2.0

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function for the
log-normal distribution is:

p(x) =
1

σx
√
2π

e(−
(ln(x)−µ)2

2σ2)

where µ is the mean and σ is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = rng.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, density=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal
probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> rng = rng
>>> b = []
>>> for i in range(1000):
... a = 10. + rng.standard_normal(100)
... b.append(np.prod(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, _ = plt.hist(b, 100, density=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

148 1. Python API

NumPy Reference, Release 2.2.0

0 100 200 300 400
0.000

0.005

0.010

0.015

0.020

0.025

0.030

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

0 100 200 300 400 500 600 700
0.000

0.005

0.010

0.015

0.020

method
random.Generator.logseries(p, size=None)

Draw samples from a logarithmic series distribution.
Samples are drawn from a log series distribution with specified shape parameter, 0 <= p < 1.

Parameters

1.1. NumPy’s module structure 149

NumPy Reference, Release 2.2.0

p
[float or array_like of floats] Shape parameter for the distribution. Must be in the range [0, 1).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array(p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized logarithmic series distribution.
See also:

scipy.stats.logser
probability density function, distribution or cumulative density function, etc.

Notes

The probability mass function for the Log Series distribution is

P (k) =
−pk

k ln(1− p)
,

where p = probability.
The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher,
Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3].

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a = .6
>>> rng = np.random.default_rng()
>>> s = rng.logseries(a, 10000)
>>> import matplotlib.pyplot as plt
>>> bins = np.arange(-.5, max(s) + .5)
>>> count, bins, _ = plt.hist(s, bins=bins, label='Sample count')

plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*np.log(1-p))
>>> centres = np.arange(1, max(s) + 1)
>>> plt.plot(centres, logseries(centres, a) * s.size, 'r', label='logseries PMF')
>>> plt.legend()
>>> plt.show()

method

150 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser

NumPy Reference, Release 2.2.0

0 2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000
Sample count
logseries PMF

random.Generator.multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.
The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with
one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1
through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_i = [X_0,
X_1, ..., X_p], represent the number of times the outcome was i.

Parameters
n

[int or array-like of ints] Number of experiments.
pvals

[array-like of floats] Probabilities of each of the p different outcomes with shape (k0, k1,
..., kn, p). Each element pvals[i,j,...,:] must sum to 1 (however, the last
element is always assumed to account for the remaining probability, as long as sum(pvals[.
.., :-1], axis=-1) <= 1.0. Must have at least 1 dimension where pvals.shape[-1]
> 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn each with p elements. Default is None where the output size
is determined by the broadcast shape of n and all by the final dimension of pvals, which is
denoted as b=(b0, b1, ..., bq). If size is not None, then it must be compatible with
the broadcast shape b. Specifically, size must have q or more elements and size[-(q-j):] must
equal bj.

Returns
out

[ndarray] The drawn samples, of shape size, if provided. When size is provided, the output
shape is size + (p,) If not specified, the shape is determined by the broadcast shape of n and
pvals, (b0, b1, ..., bq) augmented with the dimension of the multinomial, p, so
that that output shape is (b0, b1, ..., bq, p).
Each entry out[i,j,...,:] is a p-dimensional value drawn from the distribution.

1.1. NumPy’s module structure 151

NumPy Reference, Release 2.2.0

Examples

Throw a dice 20 times:

>>> rng = np.random.default_rng()
>>> rng.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]]) # random

It landed 4 times on 1, once on 2, etc.
Now, throw the dice 20 times, and 20 times again:

>>> rng.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3],

[2, 4, 3, 4, 0, 7]]) # random

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.
Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times,
and 20 times again:

>>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
array([[[2, 4, 0, 1, 2, 1],

[1, 3, 0, 3, 1, 2]],
[[1, 4, 4, 4, 4, 3],
[3, 3, 2, 5, 5, 2]]]) # random

The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing
the dice 20 times.
A loaded die is more likely to land on number 6:

>>> rng.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26]) # random

Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

>>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
array([[2, 1, 4, 3, 0, 0],

[3, 3, 3, 6, 1, 4]], dtype=int64) # random

Generate categorical random variates from two categories where the first has 3 outcomes and the second has 2.

>>> rng.multinomial(1, [[.1, .5, .4], [.3, .7, .0]])
array([[0, 0, 1],

[0, 1, 0]], dtype=int64) # random

argmax(axis=-1) is then used to return the categories.

>>> pvals = [[.1, .5, .4], [.3, .7, .0]]
>>> rvs = rng.multinomial(1, pvals, size=(4,2))
>>> rvs.argmax(axis=-1)
array([[0, 1],

[2, 0],
[2, 1],
[2, 0]], dtype=int64) # random

The same output dimension can be produced using broadcasting.

152 1. Python API

NumPy Reference, Release 2.2.0

>>> rvs = rng.multinomial([[1]] * 4, pvals)
>>> rvs.argmax(axis=-1)
array([[0, 1],

[2, 0],
[2, 1],
[2, 0]], dtype=int64) # random

The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and
assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice
as much weight on one side as on the other should be sampled like so:

>>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62]) # random

not like:

>>> rng.multinomial(100, [1.0, 2.0]) # WRONG
Traceback (most recent call last):
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

method
random.Generator.multivariate_hypergeometric(colors, nsample, size=None, method='marginals')

Generate variates from a multivariate hypergeometric distribution.
The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution.
Choose nsample items at random without replacement from a collection with N distinct types. N is the length
of colors, and the values in colors are the number of occurrences of that type in the collection. The total
number of items in the collection is sum(colors). Each random variate generated by this function is a vector
of length N holding the counts of the different types that occurred in the nsample items.
The name colors comes from a common description of the distribution: it is the probability distribution of the
number of marbles of each color selected without replacement from an urn containing marbles of different colors;
colors[i] is the number of marbles in the urn with color i.

Parameters
colors

[sequence of integers] The number of each type of item in the collection from which a sample
is drawn. The values in colors must be nonnegative. To avoid loss of precision in the
algorithm, sum(colors) must be less than 10**9 when method is “marginals”.

nsample
[int] The number of items selected. nsample must not be greater than sum(colors).

size
[int or tuple of ints, optional] The number of variates to generate, either an integer or a tuple
holding the shape of the array of variates. If the given size is, e.g., (k, m), then k * m
variates are drawn, where one variate is a vector of length len(colors), and the return
value has shape (k, m, len(colors)). If size is an integer, the output has shape
(size, len(colors)). Default is None, in which case a single variate is returned as an
array with shape (len(colors),).

method
[string, optional] Specify the algorithm that is used to generate the variates. Must be ‘count’ or
‘marginals’ (the default). See the Notes for a description of the methods.

Returns

1.1. NumPy’s module structure 153

NumPy Reference, Release 2.2.0

variates
[ndarray] Array of variates drawn from the multivariate hypergeometric distribution.

See also:

hypergeometric
Draw samples from the (univariate) hypergeometric distribution.

Notes

The two methods do not return the same sequence of variates.
The “count” algorithm is roughly equivalent to the following numpy code:

choices = np.repeat(np.arange(len(colors)), colors)
selection = np.random.choice(choices, nsample, replace=False)
variate = np.bincount(selection, minlength=len(colors))

The “count” algorithm uses a temporary array of integers with length sum(colors).
The “marginals” algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It
is roughly equivalent to:

variate = np.zeros(len(colors), dtype=np.int64)
`remaining` is the cumulative sum of `colors` from the last
element to the first; e.g. if `colors` is [3, 1, 5], then
`remaining` is [9, 6, 5].
remaining = np.cumsum(colors[::-1])[::-1]
for i in range(len(colors)-1):

if nsample < 1:
break

variate[i] = hypergeometric(colors[i], remaining[i+1],
nsample)

nsample -= variate[i]
variate[-1] = nsample

The default method is “marginals”. For some cases (e.g. when colors contains relatively small integers), the “count”
method can be significantly faster than the “marginals” method. If performance of the algorithm is important, test
the two methods with typical inputs to decide which works best.

Examples

>>> colors = [16, 8, 4]
>>> seed = 4861946401452
>>> gen = np.random.Generator(np.random.PCG64(seed))
>>> gen.multivariate_hypergeometric(colors, 6)
array([5, 0, 1])
>>> gen.multivariate_hypergeometric(colors, 6, size=3)
array([[5, 0, 1],

[2, 2, 2],
[3, 3, 0]])

>>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
array([[[3, 2, 1],

[3, 2, 1]],
[[4, 1, 1],
[3, 2, 1]]])

154 1. Python API

NumPy Reference, Release 2.2.0

method
random.Generator.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8, *,

method='svd')

Draw random samples from a multivariate normal distribution.
The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal
distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These pa-
rameters are analogous to the mean (average or “center”) and variance (the squared standard deviation, or “width”)
of the one-dimensional normal distribution.

Parameters
mean

[1-D array_like, of length N] Mean of the N-dimensional distribution.
cov

[2-D array_like, of shape (N, N)] Covariance matrix of the distribution. It must be symmetric
and positive-semidefinite for proper sampling.

size
[int or tuple of ints, optional] Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in anm-by-n-by-k arrangement. Because each sample isN-dimensional,
the output shape is (m,n,k,N). If no shape is specified, a single (N-D) sample is returned.

check_valid
[{ ‘warn’, ‘raise’, ‘ignore’ }, optional] Behavior when the covariance matrix is not positive
semidefinite.

tol
[float, optional] Tolerance when checking the singular values in covariance matrix. cov is cast
to double before the check.

method
[{ ‘svd’, ‘eigh’, ‘cholesky’}, optional] The cov input is used to compute a factor matrix A such
that A @ A.T = cov. This argument is used to select the method used to compute the
factor matrix A. The default method ‘svd’ is the slowest, while ‘cholesky’ is the fastest but less
robust than the slowest method. The method eigh uses eigen decomposition to compute A and
is faster than svd but slower than cholesky.

Returns
out

[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).
In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from the
distribution.

Notes

The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be
generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution.
Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we
draw N-dimensional samples,X = [x1, x2, ...xN]. The covariance matrix element Cij is the covariance of xi and
xj . The element Cii is the variance of xi (i.e. its “spread”).
Instead of specifying the full covariance matrix, popular approximations include:

• Spherical covariance (cov is a multiple of the identity matrix)

1.1. NumPy’s module structure 155

NumPy Reference, Release 2.2.0

• Diagonal covariance (cov has non-negative elements, and only on the diagonal)
This geometrical property can be seen in two dimensions by plotting generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x, y = rng.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariancematrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior
of this method is undefined and backwards compatibility is not guaranteed.
This function internally uses linear algebra routines, and thus results may not be identical (even up to precision)
across architectures, OSes, or even builds. For example, this is likely if cov has multiple equal singular values and
method is 'svd' (default). In this case, method='cholesky' may be more robust.

References

[1], [2]

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> rng = np.random.default_rng()
>>> x = rng.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

We can use a different method other than the default to factorize cov:

>>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
>>> y.shape
(3, 3, 2)

Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6,
-3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively,
and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

>>> cov = np.array([[6, -3], [-3, 3.5]])
>>> pts = rng.multivariate_normal([0, 0], cov, size=800)

Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values:

>>> pts.mean(axis=0)
array([0.0326911 , -0.01280782]) # may vary
>>> np.cov(pts.T)
array([[5.96202397, -2.85602287],

(continues on next page)

156 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[-2.85602287, 3.47613949]]) # may vary

>>> np.corrcoef(pts.T)[0, 1]
-0.6273591314603949 # may vary

We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation
of the components of this sample.

>>> import matplotlib.pyplot as plt
>>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()

10 5 0 5 10

6

4

2

0

2

4

6

method
random.Generator.negative_binomial(n, p, size=None)

Draw samples from a negative binomial distribution.
Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability
of success where n is > 0 and p is in the interval (0, 1].

Parameters
n

[float or array_like of floats] Parameter of the distribution, > 0.
p

[float or array_like of floats] Parameter of the distribution. Must satisfy 0 < p <= 1.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized negative binomial distribution,

1.1. NumPy’s module structure 157

NumPy Reference, Release 2.2.0

where each sample is equal to N, the number of failures that occurred before a total of n
successes was reached.

Notes

The probability mass function of the negative binomial distribution is

P (N ;n, p) =
Γ(N + n)

N !Γ(n)
pn(1− p)N ,

where n is the number of successes, p is the probability of success, N + n is the number of trials, and Γ is the
gamma function. When n is an integer, Γ(N+n)

N !Γ(n) =
(
N+n−1

N

)
, which is the more common form of this term in the

pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the
last trial.
If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number of
non-“1”s that appear before the third “1” is a negative binomial distribution.
Because this method internally calls Generator.poisson with an intermediate random value, a ValueError
is raised when the choice of n and p would result in the mean + 10 sigma of the sampled intermediate distribution
exceeding the max acceptable value of the Generator.poisson method. This happens when p is too low (a
lot of failures happen for every success) and n is too big (a lot of successes are allowed). Therefore, the n and p
values must satisfy the constraint:

n
1− p

p
+ 10n

√
n
1− p

p
< 263 − 1− 10

√
263 − 1,

Where the left side of the equation is the derived mean + 10 sigma of a sample from the gamma distribution
internally used as the lam parameter of a poisson sample, and the right side of the equation is the constraint for
maximum value of lam in Generator.poisson.

References

[1], [2]

Examples

Draw samples from the distribution:
A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success
of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?

>>> rng = np.random.default_rng()
>>> s = rng.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print(i, "wells drilled, probability of one success =", probability)

method
random.Generator.noncentral_chisquare(df, nonc, size=None)

Draw samples from a noncentral chi-square distribution.
The noncentral χ2 distribution is a generalization of the χ2 distribution.

158 1. Python API

NumPy Reference, Release 2.2.0

Parameters
df

[float or array_like of floats] Degrees of freedom, must be > 0.
nonc

[float or array_like of floats] Non-centrality, must be non-negative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
and nonc are both scalars. Otherwise, np.broadcast(df, nonc).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distribution.

Notes

The probability density function for the noncentral Chi-square distribution is

P (x; df, nonc) =

∞∑
i=0

e−nonc/2(nonc/2)i

i!
PYdf+2i

(x),

where Yq is the Chi-square with q degrees of freedom.

References

[1]

Examples

Draw values from the distribution and plot the histogram

>>> rng = np.random.default_rng()
>>> import matplotlib.pyplot as plt
>>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

>>> plt.figure()
>>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> values2 = plt.hist(rng.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

1.1. NumPy’s module structure 159

NumPy Reference, Release 2.2.0

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

160 1. Python API

NumPy Reference, Release 2.2.0

>>> plt.figure()
>>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

method
random.Generator.noncentral_f(dfnum, dfden, nonc, size=None)

Draw samples from the noncentral F distribution.
Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Parameters
dfnum

[float or array_like of floats] Numerator degrees of freedom, must be > 0.
dfden

[float or array_like of floats] Denominator degrees of freedom, must be > 0.
nonc

[float or array_like of floats] Non-centrality parameter, the sum of the squares of the numerator
means, must be >= 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum, df-
den, and nonc are all scalars. Otherwise, np.broadcast(dfnum, dfden, nonc).
size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribution.

1.1. NumPy’s module structure 161

NumPy Reference, Release 2.2.0

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific
alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic
follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic.

References

[1], [2]

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null
hypothesis. We’ll plot the two probability distributions for comparison.

>>> rng = np.random.default_rng()
>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = rng.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

method
random.Generator.normal(loc=0.0, scale=1.0, size=None)

Draw random samples from a normal (Gaussian) distribution.

162 1. Python API

NumPy Reference, Release 2.2.0

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both
Gauss and Laplace independently [2], is often called the bell curve because of its characteristic shape (see the
example below).
The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of
samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2].

Parameters
loc

[float or array_like of floats] Mean (“centre”) of the distribution.
scale

[float or array_like of floats] Standard deviation (spread or “width”) of the distribution. Must
be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized normal distribution.
See also:

scipy.stats.norm
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ is the mean and σ the standard deviation. The square of the standard deviation, σ2, is called the variance.
The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches
0.607 times its maximum at x+σ and x−σ [2]). This implies that normal is more likely to return samples lying
close to the mean, rather than those far away.

References

[1], [2]

1.1. NumPy’s module structure 163

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> rng = np.random.default_rng()
>>> s = rng.normal(mu, sigma, 1000)

Verify the mean and the standard deviation:

>>> abs(mu - np.mean(s))
0.0 # may vary

>>> abs(sigma - np.std(s, ddof=1))
0.0 # may vary

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 30, density=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show()

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

5

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> rng = np.random.default_rng()
>>> rng.normal(3, 2.5, size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

method
random.Generator.pareto(a, size=None)

Draw samples from a Pareto II (AKA Lomax) distribution with specified shape.

164 1. Python API

NumPy Reference, Release 2.2.0

Parameters
a

[float or array_like of floats] Shape of the distribution. Must be positive.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the Pareto II distribution.
See also:

scipy.stats.pareto
Pareto I distribution

scipy.stats.lomax
Lomax (Pareto II) distribution

scipy.stats.genpareto
Generalized Pareto distribution

Notes

The probability density for the Pareto II distribution is

p(x) =
a

x+ 1a+1 , x ≥ 0

where a > 0 is the shape.
The Pareto II distribution is a shifted and scaled version of the Pareto I distribution, which can be found in scipy.
stats.pareto.

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a = 3.
>>> rng = np.random.default_rng()
>>> s = rng.pareto(a, 10000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(0, 3, 50)
>>> pdf = a / (x+1)**(a+1)
>>> plt.hist(s, bins=x, density=True, label='histogram')
>>> plt.plot(x, pdf, linewidth=2, color='r', label='pdf')

(continues on next page)

1.1. NumPy’s module structure 165

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> plt.xlim(x.min(), x.max())
>>> plt.legend()
>>> plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0 histogram
pdf

method
random.Generator.poisson(lam=1.0, size=None)

Draw samples from a Poisson distribution.
The Poisson distribution is the limit of the binomial distribution for large N.

Parameters
lam

[float or array_like of floats] Expected number of events occurring in a fixed-time interval,
must be >= 0. A sequence must be broadcastable over the requested size.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if lam is a
scalar. Otherwise, np.array(lam).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

166 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability mass function (PMF) of Poisson distribution is

f(k;λ) =
λke−λ

k!

For events with an expected separation λ the Poisson distribution f(k;λ) describes the probability of k events
occurring within the observed interval λ.
Because the output is limited to the range of the C int64 type, a ValueError is raised when lam is within 10 sigma
of the maximum representable value.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> lam, size = 5, 10000
>>> s = rng.poisson(lam=lam, size=size)

Verify the mean and variance, which should be approximately lam:

>>> s.mean(), s.var()
(4.9917 5.1088311) # may vary

Display the histogram and probability mass function:

>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> x = np.arange(0, 21)
>>> pmf = stats.poisson.pmf(x, mu=lam)
>>> plt.hist(s, bins=x, density=True, width=0.5)
>>> plt.stem(x, pmf, 'C1-')
>>> plt.show()

Draw each 100 values for lambda 100 and 500:

>>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

method
random.Generator.power(a, size=None)

Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
Also known as the power function distribution.

Parameters
a

[float or array_like of floats] Parameter of the distribution. Must be non-negative.

1.1. NumPy’s module structure 167

NumPy Reference, Release 2.2.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized power distribution.
Raises

ValueError
If a <= 0.

Notes

The probability density function is

P (x; a) = axa−1, 0 ≤ x ≤ 1, a > 0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case
of the Beta distribution.
It is used, for example, in modeling the over-reporting of insurance claims.

References

[1], [2]

168 1. Python API

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> a = 5. # shape
>>> samples = 1000
>>> s = rng.power(a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = rng.power(5, 1000000)
>>> rvsp = rng.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + Generator.pareto(5)')

1.1. NumPy’s module structure 169

NumPy Reference, Release 2.2.0

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
power(5)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of 1 + Generator.pareto(5)

method
random.Generator.rayleigh(scale=1.0, size=None)

Draw samples from a Rayleigh distribution.
The χ and Weibull distributions are generalizations of the Rayleigh.

Parameters
scale

[float or array_like of floats, optional] Scale, also equals the mode. Must be non-negative.
Default is 1.

170 1. Python API

NumPy Reference, Release 2.2.0

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of stats.pareto(5)

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

Notes

The probability density function for the Rayleigh distribution is

P (x; scale) =
x

scale2
e

−x2

2·scale2

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

>>> from matplotlib.pyplot import hist
>>> rng = np.random.default_rng()
>>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are
likely to be larger than 3 meters?

1.1. NumPy’s module structure 171

NumPy Reference, Release 2.2.0

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = rng.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003 # random

method
random.Generator.standard_cauchy(size=None)

Draw samples from a standard Cauchy distribution with mode = 0.
Also known as the Lorentz distribution.

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
samples

[ndarray or scalar] The drawn samples.

Notes

The probability density function for the full Cauchy distribution is

P (x;x0, γ) =
1

πγ
[
1 + (x−x0

γ)2
]

and the Standard Cauchy distribution just sets x0 = 0 and γ = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral
line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x
axis.
When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distri-
bution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like
a Gaussian distribution, but with heavier tails.

References

[1], [2], [3]

172 1. Python API

NumPy Reference, Release 2.2.0

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> s = rng.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

20 10 0 10 20
0

20000

40000

60000

80000

100000

120000

140000

method
random.Generator.standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

Draw samples from the standard exponential distribution.
standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result, only float64 and float32 are supported.
Byteorder must be native. The default value is np.float64.

method
[str, optional] Either ‘inv’ or ‘zig’. ‘inv’ uses the default inverse CDF method. ‘zig’ uses the
much faster Ziggurat method of Marsaglia and Tsang.

out
[ndarray, optional] Alternative output array in which to place the result. If size is not None, it
must have the same shape as the provided size and must match the type of the output values.

Returns
out

[float or ndarray] Drawn samples.

1.1. NumPy’s module structure 173

NumPy Reference, Release 2.2.0

Examples

Output a 3x8000 array:

>>> rng = np.random.default_rng()
>>> n = rng.standard_exponential((3, 8000))

method
random.Generator.standard_gamma(shape, size=None, dtype=np.float64, out=None)

Draw samples from a standard Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale=1.

Parameters
shape

[float or array_like of floats] Parameter, must be non-negative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if shape
is a scalar. Otherwise, np.array(shape).size samples are drawn.

dtype
[dtype, optional] Desired dtype of the result, only float64 and float32 are supported.
Byteorder must be native. The default value is np.float64.

out
[ndarray, optional] Alternative output array in which to place the result. If size is not None, it
must have the same shape as the provided size and must match the type of the output values.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.
See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

p(x) = xk−1 e−x/θ

θkΓ(k)
,

where k is the shape and θ the scale, and Γ is the Gamma function.
The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

174 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> rng = np.random.default_rng()
>>> s = rng.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, _ = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

0 2 4 6 8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

method
random.Generator.standard_normal(size=None, dtype=np.float64, out=None)

Draw samples from a standard Normal distribution (mean=0, stdev=1).
Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result, only float64 and float32 are supported.
Byteorder must be native. The default value is np.float64.

1.1. NumPy’s module structure 175

NumPy Reference, Release 2.2.0

out
[ndarray, optional] Alternative output array in which to place the result. If size is not None, it
must have the same shape as the provided size and must match the type of the output values.

Returns
out

[float or ndarray] A floating-point array of shape size of drawn samples, or a single sample
if size was not specified.

See also:

normal
Equivalent function with additional loc and scale arguments for setting the mean and standard deviation.

Notes

For random samples from the normal distribution with mean mu and standard deviation sigma, use one of:

mu + sigma * rng.standard_normal(size=...)
rng.normal(mu, sigma, size=...)

Examples

>>> rng = np.random.default_rng()
>>> rng.standard_normal()
2.1923875335537315 # random

>>> s = rng.standard_normal(8000)
>>> s
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random

-0.38672696, -0.4685006]) # random
>>> s.shape
(8000,)
>>> s = rng.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

method
random.Generator.standard_t(df, size=None)

Draw samples from a standard Student’s t distribution with df degrees of freedom.
A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

Parameters
df

[float or array_like of floats] Degrees of freedom, must be > 0.

176 1. Python API

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array(df).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribution.

Notes

The probability density function for the t distribution is

P (x, df) =
Γ(df+1

2)
√
πdfΓ(df2)

(
1 +

x2

df

)−(df+1)/2

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.
The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

References

[1], [2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in kilojoules (kJ) is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will
be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either
positive or negative, hence making our test 2-tailed.
Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom.
We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard
deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an
unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square
root).

>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727
>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> t
-2.8207540608310198

We draw 1000000 samples from Student’s t distribution with the adequate degrees of freedom.

1.1. NumPy’s module structure 177

NumPy Reference, Release 2.2.0

>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> s = rng.standard_t(10, size=1000000)
>>> h = plt.hist(s, bins=100, density=True)

Does our t statistic land in one of the two critical regions found at both tails of the distribution?

>>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
0.018318 #random < 0.05, statistic is in critical region

The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance
threshold.
Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being
true is too low, and we reject the null hypothesis of no deviation.

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.1

0.2

0.3

0.4

method
random.Generator.triangular(left, mode, right, size=None)

Draw samples from the triangular distribution over the interval [left, right].
The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Parameters
left

[float or array_like of floats] Lower limit.
mode

[float or array_like of floats] The value where the peak of the distribution occurs. The value
must fulfill the condition left <= mode <= right.

right
[float or array_like of floats] Upper limit, must be larger than left.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if left, mode,

178 1. Python API

NumPy Reference, Release 2.2.0

and right are all scalars. Otherwise, np.broadcast(left, mode, right).size
samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized triangular distribution.

Notes

The probability density function for the triangular distribution is

P (x; l,m, r) =

2(x−l)

(r−l)(m−l) for l ≤ x ≤ m,
2(r−x)

(r−l)(r−m) form ≤ x ≤ r,

0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used in simulations.

References

[1]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> h = plt.hist(rng.triangular(-3, 0, 8, 100000), bins=200,
... density=True)
>>> plt.show()

2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20

method

1.1. NumPy’s module structure 179

NumPy Reference, Release 2.2.0

random.Generator.uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.
Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uniform.

Parameters
low

[float or array_like of floats, optional] Lower boundary of the output interval. All values gen-
erated will be greater than or equal to low. The default value is 0.

high
[float or array_like of floats] Upper boundary of the output interval. All values generated will
be less than high. The high limit may be included in the returned array of floats due to floating-
point rounding in the equation low + (high-low) * random_sample(). high - low
must be non-negative. The default value is 1.0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if low
and high are both scalars. Otherwise, np.broadcast(low, high).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized uniform distribution.
See also:

integers
Discrete uniform distribution, yielding integers.

random
Floats uniformly distributed over [0, 1).

Notes

The probability density function of the uniform distribution is

p(x) =
1

b− a

anywhere within the interval [a, b), and zero elsewhere.
When high == low, values of low will be returned.

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> s = rng.uniform(-1,0,1000)

All values are within the given interval:

180 1. Python API

NumPy Reference, Release 2.2.0

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 15, density=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

1.0 0.8 0.6 0.4 0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

method
random.Generator.vonmises(mu, kappa, size=None)

Draw samples from a von Mises distribution.
Samples are drawn from a von Mises distribution with specified mode (mu) and concentration (kappa), on the
interval [-pi, pi].
The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution
on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Parameters
mu

[float or array_like of floats] Mode (“center”) of the distribution.
kappa

[float or array_like of floats] Concentration of the distribution, has to be >=0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mu and
kappa are both scalars. Otherwise, np.broadcast(mu, kappa).size samples are
drawn.

Returns

1.1. NumPy’s module structure 181

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized von Mises distribution.

See also:

scipy.stats.vonmises
probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the von Mises distribution is

p(x) =
eκcos(x−µ)

2πI0(κ)
,

where µ is the mode and κ the concentration, and I0(κ) is the modified Bessel function of order 0.
The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory,
aerodynamics, fluid mechanics, and philosophy of science.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and concentration
>>> rng = np.random.default_rng()
>>> s = rng.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s, 50, density=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
>>> plt.plot(x, y, linewidth=2, color='r')
>>> plt.show()

method
random.Generator.wald(mean, scale, size=None)

Draw samples from a Wald, or inverse Gaussian, distribution.
As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.
The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Parameters

182 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises

NumPy Reference, Release 2.2.0

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

mean
[float or array_like of floats] Distribution mean, must be > 0.

scale
[float or array_like of floats] Scale parameter, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mean and
scale are both scalars. Otherwise, np.broadcast(mean, scale).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Wald distribution.

Notes

The probability density function for the Wald distribution is

P (x;mean, scale) =

√
scale

2πx3
e

−scale(x−mean)2

2·mean2x

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

1.1. NumPy’s module structure 183

NumPy Reference, Release 2.2.0

References

[1], [2], [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> h = plt.hist(rng.wald(3, 2, 100000), bins=200, density=True)
>>> plt.show()

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

method
random.Generator.weibull(a, size=None)

Draw samples from a Weibull distribution.
Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

X = (−ln(U))1/a

Here, U is drawn from the uniform distribution over (0,1].
The more common 2-parameter Weibull, including a scale parameter λ is just X = λ(−ln(U))1/a.

Parameters
a

[float or array_like of floats] Shape parameter of the distribution. Must be nonnegative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns

184 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:

scipy.stats.weibull_max
scipy.stats.weibull_min
scipy.stats.genextreme
gumbel

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.
The probability density for the Weibull distribution is

p(x) =
a

λ
(
x

λ
)a−1e−(x/λ)a ,

where a is the shape and λ the scale.
The function has its peak (the mode) at λ(a−1

a)1/a.
When a = 1, the Weibull distribution reduces to the exponential distribution.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> rng = np.random.default_rng()
>>> a = 5. # shape
>>> s = rng.weibull(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> def weibull(x, n, a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)
>>> count, bins, _ = plt.hist(rng.weibull(5., 1000))
>>> x = np.linspace(0, 2, 1000)
>>> bin_spacing = np.mean(np.diff(bins))
>>> plt.plot(x, weibull(x, 1., 5.) * bin_spacing * s.size, label='Weibull PDF')
>>> plt.legend()
>>> plt.show()

method

1.1. NumPy’s module structure 185

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

50

100

150

200

250 Weibull PDF

random.Generator.zipf(a, size=None)
Draw samples from a Zipf distribution.
Samples are drawn from a Zipf distribution with specified parameter a > 1.
The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf’s
law: the frequency of an item is inversely proportional to its rank in a frequency table.

Parameters
a

[float or array_like of floats] Distribution parameter. Must be greater than 1.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Zipf distribution.
See also:

scipy.stats.zipf
probability density function, distribution, or cumulative density function, etc.

186 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf

NumPy Reference, Release 2.2.0

Notes

The probability mass function (PMF) for the Zipf distribution is

p(k) =
k−a

ζ(a)
,

for integers k ≥ 1, where ζ is the Riemann Zeta function.
It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample
of a language is inversely proportional to its rank in the frequency table.

References

[1]

Examples

Draw samples from the distribution:

>>> a = 4.0
>>> n = 20000
>>> rng = np.random.default_rng()
>>> s = rng.zipf(a, size=n)

Display the histogram of the samples, along with the expected histogram based on the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import zeta

bincount provides a fast histogram for small integers.

>>> count = np.bincount(s)
>>> k = np.arange(1, s.max() + 1)

>>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
>>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
... label='expected count')
>>> plt.semilogy()
>>> plt.grid(alpha=0.4)
>>> plt.legend()
>>> plt.title(f'Zipf sample, a={a}, size={n}')
>>> plt.show()

Legacy random generation

The RandomState provides access to legacy generators. This generator is considered frozen and will have no further
improvements. It is guaranteed to produce the same values as the final point release of NumPy v1.16. These all depend
on Box-Muller normals or inverse CDF exponentials or gammas. This class should only be used if it is essential to have
randoms that are identical to what would have been produced by previous versions of NumPy.
RandomState adds additional information to the state which is required when using Box-Muller normals since these
are produced in pairs. It is important to use RandomState.get_state, and not the underlying bit generators state,
when accessing the state so that these extra values are saved.

1.1. NumPy’s module structure 187

NumPy Reference, Release 2.2.0

0 2 4 6 8 10 12 14 16

100

101

102

103

104

Zipf sample, a=4.0, size=20000

expected count
sample count

Although we provide the MT19937 BitGenerator for use independent of RandomState, note that its default seeding
uses SeedSequence rather than the legacy seeding algorithm. RandomState will use the legacy seeding algorithm.
The methods to use the legacy seeding algorithm are currently private as the main reason to use them is just to implement
RandomState. However, one can reset the state of MT19937 using the state of the RandomState:

from numpy.random import MT19937
from numpy.random import RandomState

rs = RandomState(12345)
mt19937 = MT19937()
mt19937.state = rs.get_state()
rs2 = RandomState(mt19937)

Same output
rs.standard_normal()
rs2.standard_normal()

rs.random()
rs2.random()

rs.standard_exponential()
rs2.standard_exponential()

class numpy.random.RandomState(seed=None)
Container for the slow Mersenne Twister pseudo-random number generator. Consider using a different BitGener-
ator with the Generator container instead.
RandomState and Generator expose a number of methods for generating random numbers drawn from a
variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword
argument size that defaults to None. If size is None, then a single value is generated and returned. If size is an
integer, then a 1-D array filled with generated values is returned. If size is a tuple, then an array with that shape is
filled and returned.
Compatibility Guarantee
A fixed bit generator using a fixed seed and a fixed series of calls to ‘RandomState’ methods using the same param-
eters will always produce the same results up to roundoff error except when the values were incorrect. Random-

188 1. Python API

NumPy Reference, Release 2.2.0

State is effectively frozen and will only receive updates that are required by changes in the internals of Numpy.
More substantial changes, including algorithmic improvements, are reserved for Generator.

Parameters
seed

[{None, int, array_like, BitGenerator}, optional] Random seed used to initialize the pseudo-
random number generator or an instantized BitGenerator. If an integer or array, used as a
seed for the MT19937 BitGenerator. Values can be any integer between 0 and 2**32 - 1
inclusive, an array (or other sequence) of such integers, or None (the default). If seed is
None, then the MT19937 BitGenerator is initialized by reading data from /dev/urandom
(or the Windows analogue) if available or seed from the clock otherwise.

See also:

Generator
MT19937
numpy.random.BitGenerator

Notes

The Python stdlib module “random” also contains a Mersenne Twister pseudo-random number generator with a
number of methods that are similar to the ones available in RandomState. RandomState, besides being
NumPy-aware, has the advantage that it provides a much larger number of probability distributions to choose from.

Seeding and state

get_state([legacy]) Return a tuple representing the internal state of the gen-
erator.

set_state(state) Set the internal state of the generator from a tuple.
seed([seed]) Reseed a legacy MT19937 BitGenerator

method
random.RandomState.get_state(legacy=True)

Return a tuple representing the internal state of the generator.
For more details, see set_state.

Parameters
legacy

[bool, optional] Flag indicating to return a legacy tuple state when the BitGenerator is
MT19937, instead of a dict. Raises ValueError if the underlying bit generator is not an in-
stance of MT19937.

Returns
out

[{tuple(str, ndarray of 624 uints, int, int, float), dict}] If legacy is True, the returned tuple has
the following items:
1. the string ‘MT19937’.
2. a 1-D array of 624 unsigned integer keys.

1.1. NumPy’s module structure 189

NumPy Reference, Release 2.2.0

3. an integer pos.
4. an integer has_gauss.
5. a float cached_gaussian.
If legacy is False, or the BitGenerator is not MT19937, then state is returned as a dictionary.

See also:

set_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

method
random.RandomState.set_state(state)

Set the internal state of the generator from a tuple.
For use if one has reason to manually (re-)set the internal state of the bit generator used by the RandomState
instance. By default, RandomState uses the “Mersenne Twister”[1] pseudo-random number generating algorithm.

Parameters
state

[{tuple(str, ndarray of 624 uints, int, int, float), dict}] The state tuple has the following items:
1. the string ‘MT19937’, specifying the Mersenne Twister algorithm.
2. a 1-D array of 624 unsigned integers keys.
3. an integer pos.
4. an integer has_gauss.
5. a float cached_gaussian.
If state is a dictionary, it is directly set using the BitGenerators state property.

Returns
out

[None] Returns ‘None’ on success.
See also:

get_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.
For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some
information about the cached Gaussian value: state = ('MT19937', keys, pos).

190 1. Python API

NumPy Reference, Release 2.2.0

References

[1]
method
random.RandomState.seed(seed=None)

Reseed a legacy MT19937 BitGenerator

Notes

This is a convenience, legacy function.
The best practice is to not reseed a BitGenerator, rather to recreate a new one. This method is here for legacy
reasons. This example demonstrates best practice.

>>> from numpy.random import MT19937
>>> from numpy.random import RandomState, SeedSequence
>>> rs = RandomState(MT19937(SeedSequence(123456789)))
Later, you want to restart the stream
>>> rs = RandomState(MT19937(SeedSequence(987654321)))

Simple random data

rand(d0, d1, ..., dn) Random values in a given shape.
randn(d0, d1, ..., dn) Return a sample (or samples) from the "standard normal"

distribution.
randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (ex-

clusive).
random_integers(low[, high, size]) Random integers of type numpy.int_ between low and

high, inclusive.
random_sample([size]) Return random floats in the half-open interval [0.0, 1.0).
choice(a[, size, replace, p]) Generates a random sample from a given 1-D array
bytes(length) Return random bytes.

method
random.RandomState.rand(d0, d1, ..., dn)

Random values in a given shape.

Note: This is a convenience function for users porting code from Matlab, and wraps random_sample. That
function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like numpy.
zeros and numpy.ones.

Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).
Parameters

d0, d1, …, dn
[int, optional] The dimensions of the returned array, must be non-negative. If no argument is
given a single Python float is returned.

Returns

1.1. NumPy’s module structure 191

NumPy Reference, Release 2.2.0

out
[ndarray, shape (d0, d1, ..., dn)] Random values.

See also:

random

Examples

>>> np.random.rand(3,2)
array([[0.14022471, 0.96360618], #random

[0.37601032, 0.25528411], #random
[0.49313049, 0.94909878]]) #random

method
random.RandomState.randn(d0, d1, ..., dn)

Return a sample (or samples) from the “standard normal” distribution.

Note: This is a convenience function for users porting code from Matlab, and wraps standard_normal.
That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like
numpy.zeros and numpy.ones.

Note: New code should use the standard_normalmethod of a Generator instance instead; please see the
Quick start.

If positive int_like arguments are provided, randn generates an array of shape (d0, d1, ..., dn), filled
with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1. A single
float randomly sampled from the distribution is returned if no argument is provided.

Parameters
d0, d1, …, dn

[int, optional] The dimensions of the returned array, must be non-negative. If no argument is
given a single Python float is returned.

Returns
Z

[ndarray or float] A (d0, d1, ..., dn)-shaped array of floating-point samples from the
standard normal distribution, or a single such float if no parameters were supplied.

See also:

standard_normal
Similar, but takes a tuple as its argument.

normal
Also accepts mu and sigma arguments.

random.Generator.standard_normal
which should be used for new code.

192 1. Python API

NumPy Reference, Release 2.2.0

Notes

For random samples from the normal distribution with mean mu and standard deviation sigma, use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 # random

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 3 + 2.5 * np.random.randn(2, 4)
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

method
random.RandomState.randint(low, high=None, size=None, dtype=int)

Return random integers from low (inclusive) to high (exclusive).
Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval
[low, high). If high is None (the default), then results are from [0, low).

Note: New code should use the integers method of a Generator instance instead; please see the Quick
start.

Parameters
low

[int or array-like of ints] Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is one above the highest such integer).

high
[int or array-like of ints, optional] If provided, one above the largest (signed) integer to be
drawn from the distribution (see above for behavior if high=None). If array-like, must
contain integer values

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result. Byteorder must be native. The default value is
long.

Warning: This function defaults to the C-long dtype, which is 32bit on windows and
otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s
default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Which corresponds
to np.intp. (dtype=int is not the same as in most NumPy functions.)

Returns

1.1. NumPy’s module structure 193

NumPy Reference, Release 2.2.0

out
[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

random_integers
similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.

random.Generator.integers
which should be used for new code.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1], # random

[3, 2, 2, 0]])

Generate a 1 x 3 array with 3 different upper bounds

>>> np.random.randint(1, [3, 5, 10])
array([2, 2, 9]) # random

Generate a 1 by 3 array with 3 different lower bounds

>>> np.random.randint([1, 5, 7], 10)
array([9, 8, 7]) # random

Generate a 2 by 4 array using broadcasting with dtype of uint8

>>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
array([[8, 6, 9, 7], # random

[1, 16, 9, 12]], dtype=uint8)

method
random.RandomState.random_integers(low, high=None, size=None)

Random integers of type numpy.int_ between low and high, inclusive.
Return random integers of type numpy.int_ from the “discrete uniform” distribution in the closed interval [low,
high]. If high is None (the default), then results are from [1, low]. The numpy.int_ type translates to the C long
integer type and its precision is platform dependent.
This function has been deprecated. Use randint instead.
Deprecated since version 1.11.0.

Parameters

194 1. Python API

NumPy Reference, Release 2.2.0

low
[int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in which
case this parameter is the highest such integer).

high
[int, optional] If provided, the largest (signed) integer to be drawn from the distribution (see
above for behavior if high=None).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
out

[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

randint
Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value if high
is omitted.

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4 # random
>>> type(np.random.random_integers(5))
<class 'numpy.int64'>
>>> np.random.random_integers(5, size=(3,2))
array([[5, 4], # random

[3, 3],
[4, 5]])

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from
the set 0, 5/8, 10/8, 15/8, 20/8):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([0.625, 1.25 , 0.625, 0.625, 2.5]) # random

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

1.1. NumPy’s module structure 195

NumPy Reference, Release 2.2.0

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, density=True)
>>> plt.show()

2 4 6 8 10 12
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

method
random.RandomState.random_sample(size=None)

Return random floats in the half-open interval [0.0, 1.0).
Results are from the “continuous uniform” distribution over the stated interval. To sample Unif [a, b), b > a
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Note: New code should use the random method of a Generator instance instead; please see the Quick start.

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
out

[float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

See also:

random.Generator.random
which should be used for new code.

196 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> np.random.random_sample()
0.47108547995356098 # random
>>> type(np.random.random_sample())
<class 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984], # random

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

method
random.RandomState.choice(a, size=None, replace=True, p=None)

Generates a random sample from a given 1-D array

Note: New code should use the choice method of a Generator instance instead; please see the Quick start.

Warning: This function uses the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit
platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and
64bit on 64bit platforms.

Parameters
a

[1-D array-like or int] If an ndarray, a random sample is generated from its elements. If an
int, the random sample is generated as if it were np.arange(a)

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

replace
[boolean, optional]Whether the sample is with or without replacement. Default is True, mean-
ing that a value of a can be selected multiple times.

p
[1-D array-like, optional] The probabilities associated with each entry in a. If not given, the
sample assumes a uniform distribution over all entries in a.

Returns
samples

[single item or ndarray] The generated random samples
Raises

ValueError
If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if
p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the
sample size is greater than the population size

1.1. NumPy’s module structure 197

NumPy Reference, Release 2.2.0

See also:

randint, shuffle, permutation
random.Generator.choice

which should be used in new code

Notes

Setting user-specified probabilities through p uses a more general but less efficient sampler than the default. The
general sampler produces a different sample than the optimized sampler even if each element of p is 1 / len(a).
Sampling random rows from a 2-D array is not possible with this function, but is possible with Generator.choice
through its axis keyword.

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4]) # random
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0]) # random

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0]) # random
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0]) # random

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random

dtype='<U11')

method
random.RandomState.bytes(length)

Return random bytes.

Note: New code should use the bytes method of a Generator instance instead; please see the Quick start.

Parameters

198 1. Python API

NumPy Reference, Release 2.2.0

length
[int] Number of random bytes.

Returns
out

[bytes] String of length length.

See also:

random.Generator.bytes
which should be used for new code.

Examples

>>> np.random.bytes(10)
b' eh\x85\x022SZ\xbf\xa4' #random

Permutations

shuffle(x) Modify a sequence in-place by shuffling its contents.
permutation(x) Randomly permute a sequence, or return a permuted

range.

method
random.RandomState.shuffle(x)

Modify a sequence in-place by shuffling its contents.
This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is
changed but their contents remains the same.

Note: New code should use the shufflemethod of a Generator instance instead; please see the Quick start.

Parameters
x

[ndarray or MutableSequence] The array, list or mutable sequence to be shuffled.
Returns

None

See also:

random.Generator.shuffle
which should be used for new code.

1.1. NumPy’s module structure 199

NumPy Reference, Release 2.2.0

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8] # random

Multi-dimensional arrays are only shuffled along the first axis:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5], # random

[6, 7, 8],
[0, 1, 2]])

method
random.RandomState.permutation(x)

Randomly permute a sequence, or return a permuted range.
If x is a multi-dimensional array, it is only shuffled along its first index.

Note: New code should use the permutationmethod of a Generator instance instead; please see the Quick
start.

Parameters
x

[int or array_like] If x is an integer, randomly permute np.arange(x). If x is an array,
make a copy and shuffle the elements randomly.

Returns
out

[ndarray] Permuted sequence or array range.

See also:

random.Generator.permutation
which should be used for new code.

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12]) # random

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8], # random

(continues on next page)

200 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[0, 1, 2],
[3, 4, 5]])

Distributions

beta(a, b[, size]) Draw samples from a Beta distribution.
binomial(n, p[, size]) Draw samples from a binomial distribution.
chisquare(df[, size]) Draw samples from a chi-square distribution.
dirichlet(alpha[, size]) Draw samples from the Dirichlet distribution.
exponential([scale, size]) Draw samples from an exponential distribution.
f(dfnum, dfden[, size]) Draw samples from an F distribution.
gamma(shape[, scale, size]) Draw samples from a Gamma distribution.
geometric(p[, size]) Draw samples from the geometric distribution.
gumbel([loc, scale, size]) Draw samples from a Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric distribution.
laplace([loc, scale, size]) Draw samples from the Laplace or double exponential

distribution with specified location (or mean) and scale
(decay).

logistic([loc, scale, size]) Draw samples from a logistic distribution.
lognormal([mean, sigma, size]) Draw samples from a log-normal distribution.
logseries(p[, size]) Draw samples from a logarithmic series distribution.
multinomial(n, pvals[, size]) Draw samples from a multinomial distribution.
multivariate_normal(mean, cov[, size, ...]) Draw random samples from a multivariate normal distri-

bution.
negative_binomial(n, p[, size]) Draw samples from a negative binomial distribution.
noncentral_chisquare(df, nonc[, size]) Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size]) Draw samples from the noncentral F distribution.
normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distri-

bution.
pareto(a[, size]) Draw samples from a Pareto II or Lomax distribution with

specified shape.
poisson([lam, size]) Draw samples from a Poisson distribution.
power(a[, size]) Draws samples in [0, 1] from a power distribution with

positive exponent a - 1.
rayleigh([scale, size]) Draw samples from a Rayleigh distribution.
standard_cauchy([size]) Draw samples from a standard Cauchy distribution with

mode = 0.
standard_exponential([size]) Draw samples from the standard exponential distribution.
standard_gamma(shape[, size]) Draw samples from a standard Gamma distribution.
standard_normal([size]) Draw samples from a standard Normal distribution

(mean=0, stdev=1).
standard_t(df[, size]) Draw samples from a standard Student's t distribution

with df degrees of freedom.
triangular(left, mode, right[, size]) Draw samples from the triangular distribution over the in-

terval [left, right].
uniform([low, high, size]) Draw samples from a uniform distribution.
vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
wald(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distri-

bution.
continues on next page

1.1. NumPy’s module structure 201

NumPy Reference, Release 2.2.0

Table 2 – continued from previous page
weibull(a[, size]) Draw samples from a Weibull distribution.
zipf(a[, size]) Draw samples from a Zipf distribution.

method
random.RandomState.beta(a, b, size=None)

Draw samples from a Beta distribution.
The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has
the probability distribution function

f(x; a, b) =
1

B(α, β)
xα−1(1− x)β−1,

where the normalization, B, is the beta function,

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.

It is often seen in Bayesian inference and order statistics.

Note: New code should use the beta method of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Alpha, positive (>0).
b

[float or array_like of floats] Beta, positive (>0).
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a and b
are both scalars. Otherwise, np.broadcast(a, b).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized beta distribution.

See also:

random.Generator.beta
which should be used for new code.

method
random.RandomState.binomial(n, p, size=None)

Draw samples from a binomial distribution.
Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success
where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in
use)

202 1. Python API

NumPy Reference, Release 2.2.0

Note: New code should use the binomial method of a Generator instance instead; please see the Quick
start.

Parameters
n

[int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.

p
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized binomial distribution, where each
sample is equal to the number of successes over the n trials.

See also:

scipy.stats.binom
probability density function, distribution or cumulative density function, etc.

random.Generator.binomial
which should be used for new code.

Notes

The probability mass function (PMF) for the binomial distribution is

P (N) =

(
n

N

)
pN (1− p)n−N ,

where n is the number of trials, p is the probability of success, and N is the number of successes.
When estimating the standard error of a proportion in a population by using a random sample, the normal distribu-
tion works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples,
in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be
used in this case.

1.1. NumPy’s module structure 203

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom

NumPy Reference, Release 2.2.0

References

[1], [2], [3], [4], [5]

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of
success of 0.1. All nine wells fail. What is the probability of that happening?
Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
answer = 0.38885, or 38%.

method
random.RandomState.chisquare(df, size=None)

Draw samples from a chi-square distribution.
When df independent random variables, each with standard normal distributions (mean 0, variance 1), are squared
and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis
testing.

Note: New code should use the chisquare method of a Generator instance instead; please see the Quick
start.

Parameters
df

[float or array_like of floats] Number of degrees of freedom, must be > 0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array(df).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized chi-square distribution.
Raises

ValueError
When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

See also:

random.Generator.chisquare
which should be used for new code.

204 1. Python API

NumPy Reference, Release 2.2.0

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random variables:

Q =

df∑
i=1

X2
i

is chi-square distributed, denoted

Q ∼ χ2
k.

The probability density function of the chi-squared distribution is

p(x) =
(1/2)k/2

Γ(k/2)
xk/2−1e−x/2,

where Γ is the gamma function,

Γ(x) =

∫ −∞

0

tx−1e−tdt.

References

[1]

Examples

>>> np.random.chisquare(2,4)
array([1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random

method
random.RandomState.dirichlet(alpha, size=None)

Draw samples from the Dirichlet distribution.
Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can
be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a
multinomial distribution in Bayesian inference.

Note: New code should use the dirichlet method of a Generator instance instead; please see the Quick
start.

Parameters
alpha

[sequence of floats, length k] Parameter of the distribution (length k for sample of length k).
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n), then m * n
* k samples are drawn. Default is None, in which case a vector of length k is returned.

Returns
samples

[ndarray,] The drawn samples, of shape (size, k).

1.1. NumPy’s module structure 205

NumPy Reference, Release 2.2.0

Raises
ValueError

If any value in alpha is less than or equal to zero

See also:

random.Generator.dirichlet
which should be used for new code.

Notes

The Dirichlet distribution is a distribution over vectors x that fulfil the conditions xi > 0 and
∑k

i=1 xi = 1.
The probability density function p of a Dirichlet-distributed random vector X is proportional to

p(x) ∝
k∏

i=1

xαi−1
i ,

where α is a vector containing the positive concentration parameters.
The method uses the following property for computation: let Y be a random vector which has components that
follow a standard gamma distribution, then X = 1∑k

i=1 Yi
Y is Dirichlet-distributed

References

[1], [2]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial
length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but
allowing some variation in the relative sizes of the pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

>>> import matplotlib.pyplot as plt
>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

method
random.RandomState.exponential(scale=1.0, size=None)

Draw samples from an exponential distribution.
Its probability density function is

f(x;
1

β
) =

1

β
exp(−x

β
),

for x > 0 and 0 elsewhere. β is the scale parameter, which is the inverse of the rate parameter λ = 1/β. The
rate parameter is an alternative, widely used parameterization of the exponential distribution [3].

206 1. Python API

NumPy Reference, Release 2.2.0

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20
Lengths of Strings

The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to
Wikipedia [2].

Note: New code should use the exponentialmethod of a Generator instance instead; please see the Quick
start.

Parameters
scale

[float or array_like of floats] The scale parameter, β = 1/λ. Must be non-negative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized exponential distribution.

See also:

random.Generator.exponential
which should be used for new code.

1.1. NumPy’s module structure 207

NumPy Reference, Release 2.2.0

References

[1], [2], [3]

Examples

A real world example: Assume a company has 10000 customer support agents and the average time between
customer calls is 4 minutes.

>>> n = 10000
>>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

What is the probability that a customer will call in the next 4 to 5 minutes?

>>> x = ((time_between_calls < 5).sum())/n
>>> y = ((time_between_calls < 4).sum())/n
>>> x-y
0.08 # may vary

method
random.RandomState.f(dfnum, dfden, size=None)

Draw samples from an F distribution.
Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters must be greater than zero.
The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distri-
bution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Note: New code should use the f method of a Generator instance instead; please see the Quick start.

Parameters
dfnum

[float or array_like of floats] Degrees of freedom in numerator, must be > 0.
dfden

[float or array_like of float] Degrees of freedom in denominator, must be > 0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum and
dfden are both scalars. Otherwise, np.broadcast(dfnum, dfden).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Fisher distribution.

See also:

scipy.stats.f
probability density function, distribution or cumulative density function, etc.

208 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f

NumPy Reference, Release 2.2.0

random.Generator.f
which should be used for new code.

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable
dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the within-
groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

References

[1], [2]

Examples

An example from Glantz[1], pp 47-40:
Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data gives a
value of 36.01.
Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> np.sort(s)[-10]
7.61988120985 # random

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.

method
random.RandomState.gamma(shape, scale=1.0, size=None)

Draw samples from a Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale (sometimes designated “theta”), where both parameters are > 0.

Note: New code should use the gamma method of a Generator instance instead; please see the Quick start.

Parameters
shape

[float or array_like of floats] The shape of the gamma distribution. Must be non-negative.

1.1. NumPy’s module structure 209

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats, optional] The scale of the gamma distribution. Must be non-
negative. Default is equal to 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if shape and
scale are both scalars. Otherwise, np.broadcast(shape, scale).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized gamma distribution.

See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

random.Generator.gamma
which should be used for new code.

Notes

The probability density for the Gamma distribution is

p(x) = xk−1 e−x/θ

θkΓ(k)
,

where k is the shape and θ the scale, and Γ is the Gamma function.
The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

210 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

0 2 4 6 8 10 12 14 16
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

method
random.RandomState.geometric(p, size=None)

Draw samples from the geometric distribution.
Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve
success. It is therefore supported on the positive integers, k = 1, 2,
The probability mass function of the geometric distribution is

f(k) = (1− p)k−1p

where p is the probability of success of an individual trial.

Note: New code should use the geometric method of a Generator instance instead; please see the Quick
start.

Parameters
p

[float or array_like of floats] The probability of success of an individual trial.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array(p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized geometric distribution.

See also:

random.Generator.geometric
which should be used for new code.

1.1. NumPy’s module structure 211

NumPy Reference, Release 2.2.0

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to
0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

method
random.RandomState.gumbel(loc=0.0, scale=1.0, size=None)

Draw samples from a Gumbel distribution.
Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel
distribution, see Notes and References below.

Note: New code should use the gumbel method of a Generator instance instead; please see the Quick start.

Parameters
loc

[float or array_like of floats, optional] The location of the mode of the distribution. Default is
0.

scale
[float or array_like of floats, optional] The scale parameter of the distribution. Default is 1.
Must be non- negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.

See also:

scipy.stats.gumbel_l
scipy.stats.gumbel_r
scipy.stats.genextreme
weibull
random.Generator.gumbel

which should be used for new code.

212 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-like”
tails.
The probability density for the Gumbel distribution is

p(x) =
e−(x−µ)/β

β
e−e−(x−µ)/β

,

where µ is the mode, a location parameter, and β is the scale parameter.
The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology liter-
ature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger than if one
used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a
Gaussian process, which underestimated the frequency of extreme events.
It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also
includes the Weibull and Frechet.
The function has a mean of µ+ 0.57721β and a variance of π2

6 β2.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, density=True)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta

(continues on next page)

1.1. NumPy’s module structure 213

NumPy Reference, Release 2.2.0

0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(continued from previous page)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10

12

14

method
random.RandomState.hypergeometric(ngood, nbad, nsample, size=None)

Draw samples from a Hypergeometric distribution.
Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good
selection), nbad (ways to make a bad selection), and nsample (number of items sampled, which is less than or equal

214 1. Python API

NumPy Reference, Release 2.2.0

to the sum ngood + nbad).

Note: New code should use the hypergeometric method of a Generator instance instead; please see the
Quick start.

Parameters
ngood

[int or array_like of ints] Number of ways to make a good selection. Must be nonnegative.
nbad

[int or array_like of ints] Number of ways to make a bad selection. Must be nonnegative.
nsample

[int or array_like of ints] Number of items sampled. Must be at least 1 and at most ngood +
nbad.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast(ngood, nbad,
nsample).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution. Each
sample is the number of good items within a randomly selected subset of size nsample taken
from a set of ngood good items and nbad bad items.

See also:

scipy.stats.hypergeom
probability density function, distribution or cumulative density function, etc.

random.Generator.hypergeometric
which should be used for new code.

Notes

The probability mass function (PMF) for the Hypergeometric distribution is

P (x) =

(
g
x

)(
b

n−x

)(
g+b
n

) ,

where 0 ≤ x ≤ n and n− b ≤ x ≤ g

for P(x) the probability of x good results in the drawn sample, g = ngood, b = nbad, and n = nsample.
Consider an urn with black and white marbles in it, ngood of them are black and nbad are white. If you draw
nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls
in the drawn sample.
Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.

1.1. NumPy’s module structure 215

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom

NumPy Reference, Release 2.2.0

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> from matplotlib.pyplot import hist
>>> hist(s)
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it
that 12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

method
random.RandomState.laplace(loc=0.0, scale=1.0, size=None)

Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).
The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Note: New code should use the laplacemethod of a Generator instance instead; please see the Quick start.

Parameters
loc

[float or array_like of floats, optional] The position, µ, of the distribution peak. Default is 0.
scale

[float or array_like of floats, optional] λ, the exponential decay. Default is 1. Must be non-
negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

See also:

216 1. Python API

NumPy Reference, Release 2.2.0

random.Generator.laplace
which should be used for new code.

Notes

It has the probability density function

f(x;µ, λ) =
1

2λ
exp

(
−|x− µ|

λ

)
.

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function
of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics
and health sciences, this distribution seems to model the data better than the standard Gaussian distribution.

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

method
random.RandomState.logistic(loc=0.0, scale=1.0, size=None)

Draw samples from a logistic distribution.
Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and
scale (>0).

Note: New code should use the logistic method of a Generator instance instead; please see the Quick
start.

Parameters
loc

[float or array_like of floats, optional] Parameter of the distribution. Default is 0.

1.1. NumPy’s module structure 217

NumPy Reference, Release 2.2.0

8 6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

scale
[float or array_like of floats, optional] Parameter of the distribution. Must be non-negative.
Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized logistic distribution.

See also:

scipy.stats.logistic
probability density function, distribution or cumulative density function, etc.

random.Generator.logistic
which should be used for new code.

Notes

The probability density for the Logistic distribution is

P (x) = P (x) =
e−(x−µ)/s

s(1 + e−(x−µ)/s)2
,

where µ = location and s = scale.
The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions,
in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming
the performance of each player is a logistically distributed random variable.

218 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic

NumPy Reference, Release 2.2.0

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=50)

plot against distribution

>>> def logist(x, loc, scale):
... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
>>> lgst_val = logist(bins, loc, scale)
>>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
>>> plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

200

400

600

800

1000

method
random.RandomState.lognormal(mean=0.0, sigma=1.0, size=None)

Draw samples from a log-normal distribution.
Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note
that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Note: New code should use the lognormal method of a Generator instance instead; please see the Quick
start.

Parameters

1.1. NumPy’s module structure 219

NumPy Reference, Release 2.2.0

mean
[float or array_like of floats, optional] Mean value of the underlying normal distribution. De-
fault is 0.

sigma
[float or array_like of floats, optional] Standard deviation of the underlying normal distribution.
Must be non-negative. Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mean and
sigma are both scalars. Otherwise, np.broadcast(mean, sigma).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized log-normal distribution.

See also:

scipy.stats.lognorm
probability density function, distribution, cumulative density function, etc.

random.Generator.lognormal
which should be used for new code.

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function for the
log-normal distribution is:

p(x) =
1

σx
√
2π

e(−
(ln(x)−µ)2

2σ2)

where µ is the mean and σ is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

220 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm

NumPy Reference, Release 2.2.0

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal
probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.standard_normal(100)
... b.append(np.prod(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

method
random.RandomState.logseries(p, size=None)

Draw samples from a logarithmic series distribution.
Samples are drawn from a log series distribution with specified shape parameter, 0 <= p < 1.

1.1. NumPy’s module structure 221

NumPy Reference, Release 2.2.0

0 200 400 600 800
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Note: New code should use the logseries method of a Generator instance instead; please see the Quick
start.

Parameters
p

[float or array_like of floats] Shape parameter for the distribution. Must be in the range [0, 1).
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array(p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized logarithmic series distribution.

See also:

scipy.stats.logser
probability density function, distribution or cumulative density function, etc.

random.Generator.logseries
which should be used for new code.

222 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser

NumPy Reference, Release 2.2.0

Notes

The probability density for the Log Series distribution is

P (k) =
−pk

k ln(1− p)
,

where p = probability.
The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher,
Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3].

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s)

plot against distribution

>>> def logseries(k, p):
... return -p**k/(k*np.log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/
... logseries(bins, a).max(), 'r')
>>> plt.show()

2 4 6 8 10 12 14 16
0

2000

4000

6000

8000

method

1.1. NumPy’s module structure 223

NumPy Reference, Release 2.2.0

random.RandomState.multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.
The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with
one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1
through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_i = [X_0,
X_1, ..., X_p], represent the number of times the outcome was i.

Note: New code should use the multinomialmethod of a Generator instance instead; please see the Quick
start.

Warning: This function defaults to the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit
platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and
64bit on 64bit platforms.

Parameters
n

[int] Number of experiments.
pvals

[sequence of floats, length p] Probabilities of each of the p different outcomes. These must
sum to 1 (however, the last element is always assumed to account for the remaining probability,
as long as sum(pvals[:-1]) <= 1).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
out

[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).
In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from the
distribution.

See also:

random.Generator.multinomial
which should be used for new code.

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]]) # random

It landed 4 times on 1, once on 2, etc.
Now, throw the dice 20 times, and 20 times again:

224 1. Python API

NumPy Reference, Release 2.2.0

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3], # random

[2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.
A loaded die is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26]) # random

The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and
assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice
as much weight on one side as on the other should be sampled like so:

>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62]) # random

not like:

>>> np.random.multinomial(100, [1.0, 2.0]) # WRONG
Traceback (most recent call last):
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

method
random.RandomState.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

Draw random samples from a multivariate normal distribution.
The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal
distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These pa-
rameters are analogous to the mean (average or “center”) and variance (standard deviation, or “width,” squared) of
the one-dimensional normal distribution.

Note: New code should use the multivariate_normal method of a Generator instance instead; please
see the Quick start.

Parameters
mean

[1-D array_like, of length N] Mean of the N-dimensional distribution.
cov

[2-D array_like, of shape (N, N)] Covariance matrix of the distribution. It must be symmetric
and positive-semidefinite for proper sampling.

size
[int or tuple of ints, optional] Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in anm-by-n-by-k arrangement. Because each sample isN-dimensional,
the output shape is (m,n,k,N). If no shape is specified, a single (N-D) sample is returned.

check_valid
[{ ‘warn’, ‘raise’, ‘ignore’ }, optional] Behavior when the covariance matrix is not positive
semidefinite.

1.1. NumPy’s module structure 225

NumPy Reference, Release 2.2.0

tol
[float, optional] Tolerance when checking the singular values in covariance matrix. cov is cast
to double before the check.

Returns
out

[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).
In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from the
distribution.

See also:

random.Generator.multivariate_normal
which should be used for new code.

Notes

The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be
generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution.
Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we
draw N-dimensional samples,X = [x1, x2, ...xN]. The covariance matrix element Cij is the covariance of xi and
xj . The element Cii is the variance of xi (i.e. its “spread”).
Instead of specifying the full covariance matrix, popular approximations include:

• Spherical covariance (cov is a multiple of the identity matrix)
• Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariancematrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior
of this method is undefined and backwards compatibility is not guaranteed.

226 1. Python API

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6,
-3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively,
and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

>>> cov = np.array([[6, -3], [-3, 3.5]])
>>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values:

>>> pts.mean(axis=0)
array([0.0326911 , -0.01280782]) # may vary
>>> np.cov(pts.T)
array([[5.96202397, -2.85602287],

[-2.85602287, 3.47613949]]) # may vary
>>> np.corrcoef(pts.T)[0, 1]
-0.6273591314603949 # may vary

We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation
of the components of this sample.

>>> import matplotlib.pyplot as plt
>>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()

method
random.RandomState.negative_binomial(n, p, size=None)

Draw samples from a negative binomial distribution.
Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability
of success where n is > 0 and p is in the interval [0, 1].

Note: New code should use the negative_binomialmethod of a Generator instance instead; please see
the Quick start.

Parameters
n

[float or array_like of floats] Parameter of the distribution, > 0.

1.1. NumPy’s module structure 227

NumPy Reference, Release 2.2.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
6

4

2

0

2

4

6

p
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of failures that occurred before a total of n
successes was reached.

Warning: This function returns the C-long dtype, which is 32bit on windows and otherwise
64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer
is 32bit on 32bit platforms and 64bit on 64bit platforms.

See also:

random.Generator.negative_binomial
which should be used for new code.

228 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability mass function of the negative binomial distribution is

P (N ;n, p) =
Γ(N + n)

N !Γ(n)
pn(1− p)N ,

where n is the number of successes, p is the probability of success, N + n is the number of trials, and Γ is the
gamma function. When n is an integer, Γ(N+n)

N !Γ(n) =
(
N+n−1

N

)
, which is the more common form of this term in the

pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the
last trial.
If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number of
non-“1”s that appear before the third “1” is a negative binomial distribution.

References

[1], [2]

Examples

Draw samples from the distribution:
A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success
of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print(i, "wells drilled, probability of one success =", probability)

method
random.RandomState.noncentral_chisquare(df, nonc, size=None)

Draw samples from a noncentral chi-square distribution.
The noncentral χ2 distribution is a generalization of the χ2 distribution.

Note: New code should use the noncentral_chisquaremethod of a Generator instance instead; please
see the Quick start.

Parameters
df

[float or array_like of floats] Degrees of freedom, must be > 0.
nonc

[float or array_like of floats] Non-centrality, must be non-negative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
and nonc are both scalars. Otherwise, np.broadcast(df, nonc).size samples are
drawn.

1.1. NumPy’s module structure 229

NumPy Reference, Release 2.2.0

Returns
out

[ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distribution.

See also:

random.Generator.noncentral_chisquare
which should be used for new code.

Notes

The probability density function for the noncentral Chi-square distribution is

P (x; df, nonc) =

∞∑
i=0

e−nonc/2(nonc/2)i

i!
PYdf+2i

(x),

where Yq is the Chi-square with q degrees of freedom.

References

[1]

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

230 1. Python API

NumPy Reference, Release 2.2.0

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

method

1.1. NumPy’s module structure 231

NumPy Reference, Release 2.2.0

random.RandomState.noncentral_f(dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.
Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Note: New code should use the noncentral_f method of a Generator instance instead; please see the
Quick start.

Parameters
dfnum

[float or array_like of floats] Numerator degrees of freedom, must be > 0.
dfden

[float or array_like of floats] Denominator degrees of freedom, must be > 0.
nonc

[float or array_like of floats] Non-centrality parameter, the sum of the squares of the numerator
means, must be >= 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum, df-
den, and nonc are all scalars. Otherwise, np.broadcast(dfnum, dfden, nonc).
size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribution.

See also:

random.Generator.noncentral_f
which should be used for new code.

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific
alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic
follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic.

References

[1], [2]

232 1. Python API

NumPy Reference, Release 2.2.0

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null
hypothesis. We’ll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

method
random.RandomState.normal(loc=0.0, scale=1.0, size=None)

Draw random samples from a normal (Gaussian) distribution.
The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both
Gauss and Laplace independently [2], is often called the bell curve because of its characteristic shape (see the
example below).
The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of
samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2].

Note: New code should use the normal method of a Generator instance instead; please see the Quick start.

Parameters
loc

[float or array_like of floats] Mean (“centre”) of the distribution.

1.1. NumPy’s module structure 233

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats] Standard deviation (spread or “width”) of the distribution. Must
be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized normal distribution.

See also:

scipy.stats.norm
probability density function, distribution or cumulative density function, etc.

random.Generator.normal
which should be used for new code.

Notes

The probability density for the Gaussian distribution is

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ is the mean and σ the standard deviation. The square of the standard deviation, σ2, is called the variance.
The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches
0.607 times its maximum at x+ σ and x− σ [2]). This implies that normal is more likely to return samples lying
close to the mean, rather than those far away.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the standard deviation:

>>> abs(mu - np.mean(s))
0.0 # may vary

>>> abs(sigma - np.std(s, ddof=1))
0.1 # may vary

234 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm

NumPy Reference, Release 2.2.0

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show()

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> np.random.normal(3, 2.5, size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

method
random.RandomState.pareto(a, size=None)

Draw samples from a Pareto II or Lomax distribution with specified shape.
The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained
from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes). The smallest value
of the Lomax distribution is zero while for the classical Pareto distribution it is mu, where the standard Pareto
distribution has location mu = 1. Lomax can also be considered as a simplified version of the Generalized Pareto
distribution (available in SciPy), with the scale set to one and the location set to zero.
The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20 rule”.
In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent
fill the remaining 80 percent of the range.

Note: New code should use the pareto method of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Shape of the distribution. Must be positive.

1.1. NumPy’s module structure 235

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Pareto distribution.

See also:

scipy.stats.lomax
probability density function, distribution or cumulative density function, etc.

scipy.stats.genpareto
probability density function, distribution or cumulative density function, etc.

random.Generator.pareto
which should be used for new code.

Notes

The probability density for the Pareto distribution is

p(x) =
ama

xa+1

where a is the shape andm the scale.
The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also
found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download
frequency for projects in Sourceforge [1]. It is one of the so-called “fat-tailed” distributions.

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, density=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()

method

236 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto

NumPy Reference, Release 2.2.0

5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

random.RandomState.poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.
The Poisson distribution is the limit of the binomial distribution for large N.

Note: New code should use the poissonmethod of a Generator instance instead; please see the Quick start.

Parameters
lam

[float or array_like of floats] Expected number of events occurring in a fixed-time interval,
must be >= 0. A sequence must be broadcastable over the requested size.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if lam is a
scalar. Otherwise, np.array(lam).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

See also:

random.Generator.poisson
which should be used for new code.

1.1. NumPy’s module structure 237

NumPy Reference, Release 2.2.0

Notes

The probability mass function (PMF) of Poisson distribution is

f(k;λ) =
λke−λ

k!

For events with an expected separation λ the Poisson distribution f(k;λ) describes the probability of k events
occurring within the observed interval λ.
Because the output is limited to the range of the C int64 type, a ValueError is raised when lam is within 10 sigma
of the maximum representable value.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, density=True)
>>> plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

method

238 1. Python API

NumPy Reference, Release 2.2.0

random.RandomState.power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
Also known as the power function distribution.

Note: New code should use the power method of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Parameter of the distribution. Must be non-negative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized power distribution.
Raises

ValueError
If a <= 0.

See also:

random.Generator.power
which should be used for new code.

Notes

The probability density function is

P (x; a) = axa−1, 0 ≤ x ≤ 1, a > 0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case
of the Beta distribution.
It is used, for example, in modeling the over-reporting of insurance claims.

References

[1], [2]

1.1. NumPy’s module structure 239

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

240 1. Python API

NumPy Reference, Release 2.2.0

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
np.random.power(5)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of 1 + np.random.pareto(5)

method
random.RandomState.rayleigh(scale=1.0, size=None)

Draw samples from a Rayleigh distribution.
The χ and Weibull distributions are generalizations of the Rayleigh.

Note: New code should use the rayleigh method of a Generator instance instead; please see the Quick
start.

1.1. NumPy’s module structure 241

NumPy Reference, Release 2.2.0

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of stats.pareto(5)

Parameters
scale

[float or array_like of floats, optional] Scale, also equals the mode. Must be non-negative.
Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

See also:

random.Generator.rayleigh
which should be used for new code.

Notes

The probability density function for the Rayleigh distribution is

P (x; scale) =
x

scale2
e

−x2

2·scale2

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

242 1. Python API

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

>>> from matplotlib.pyplot import hist
>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are
likely to be larger than 3 meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003 # random

method
random.RandomState.standard_cauchy(size=None)

Draw samples from a standard Cauchy distribution with mode = 0.
Also known as the Lorentz distribution.

Note: New code should use the standard_cauchy method of a Generator instance instead; please see
the Quick start.

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
samples

[ndarray or scalar] The drawn samples.

See also:

random.Generator.standard_cauchy
which should be used for new code.

1.1. NumPy’s module structure 243

NumPy Reference, Release 2.2.0

Notes

The probability density function for the full Cauchy distribution is

P (x;x0, γ) =
1

πγ
[
1 + (x−x0

γ)2
]

and the Standard Cauchy distribution just sets x0 = 0 and γ = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral
line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x
axis.
When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distri-
bution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like
a Gaussian distribution, but with heavier tails.

References

[1], [2], [3]

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

20 10 0 10 20
0

20000

40000

60000

80000

100000

120000

140000

method

244 1. Python API

NumPy Reference, Release 2.2.0

random.RandomState.standard_exponential(size=None)
Draw samples from the standard exponential distribution.
standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Note: New code should use the standard_exponentialmethod of a Generator instance instead; please
see the Quick start.

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
out

[float or ndarray] Drawn samples.

See also:

random.Generator.standard_exponential
which should be used for new code.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

method
random.RandomState.standard_gamma(shape, size=None)

Draw samples from a standard Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale=1.

Note: New code should use the standard_gamma method of a Generator instance instead; please see the
Quick start.

Parameters
shape

[float or array_like of floats] Parameter, must be non-negative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if shape
is a scalar. Otherwise, np.array(shape).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.

1.1. NumPy’s module structure 245

NumPy Reference, Release 2.2.0

See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

random.Generator.standard_gamma
which should be used for new code.

Notes

The probability density for the Gamma distribution is

p(x) = xk−1 e−x/θ

θkΓ(k)
,

where k is the shape and θ the scale, and Γ is the Gamma function.
The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

method
random.RandomState.standard_normal(size=None)

Draw samples from a standard Normal distribution (mean=0, stdev=1).

Note: New code should use the standard_normalmethod of a Generator instance instead; please see the
Quick start.

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

246 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Returns
out

[float or ndarray] A floating-point array of shape size of drawn samples, or a single sample
if size was not specified.

See also:

normal
Equivalent function with additional loc and scale arguments for setting the mean and standard deviation.

random.Generator.standard_normal
which should be used for new code.

Notes

For random samples from the normal distribution with mean mu and standard deviation sigma, use one of:

mu + sigma * np.random.standard_normal(size=...)
np.random.normal(mu, sigma, size=...)

Examples

>>> np.random.standard_normal()
2.1923875335537315 #random

>>> s = np.random.standard_normal(8000)
>>> s
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random

-0.38672696, -0.4685006]) # random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))

(continues on next page)

1.1. NumPy’s module structure 247

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> s.shape
(3, 4, 2)

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

method
random.RandomState.standard_t(df, size=None)

Draw samples from a standard Student’s t distribution with df degrees of freedom.
A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

Note: New code should use the standard_t method of a Generator instance instead; please see the Quick
start.

Parameters
df

[float or array_like of floats] Degrees of freedom, must be > 0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array(df).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribution.

See also:

random.Generator.standard_t
which should be used for new code.

Notes

The probability density function for the t distribution is

P (x, df) =
Γ(df+1

2)
√
πdfΓ(df2)

(
1 +

x2

df

)−(df+1)/2

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.
The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

248 1. Python API

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in kilojoules (kJ) is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will
be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either
positive or negative, hence making our test 2-tailed.
Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom.
We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard
deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an
unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square
root).

>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727
>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> t
-2.8207540608310198

We draw 1000000 samples from Student’s t distribution with the adequate degrees of freedom.

>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_t(10, size=1000000)
>>> h = plt.hist(s, bins=100, density=True)

Does our t statistic land in one of the two critical regions found at both tails of the distribution?

>>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
0.018318 #random < 0.05, statistic is in critical region

The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance
threshold.
Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being
true is too low, and we reject the null hypothesis of no deviation.

method
random.RandomState.triangular(left, mode, right, size=None)

Draw samples from the triangular distribution over the interval [left, right].
The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Note: New code should use the triangular method of a Generator instance instead; please see the Quick
start.

1.1. NumPy’s module structure 249

NumPy Reference, Release 2.2.0

15 10 5 0 5 10 15
0.0

0.1

0.2

0.3

0.4

Parameters
left

[float or array_like of floats] Lower limit.
mode

[float or array_like of floats] The value where the peak of the distribution occurs. The value
must fulfill the condition left <= mode <= right.

right
[float or array_like of floats] Upper limit, must be larger than left.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if left, mode,
and right are all scalars. Otherwise, np.broadcast(left, mode, right).size
samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized triangular distribution.

See also:

random.Generator.triangular
which should be used for new code.

250 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability density function for the triangular distribution is

P (x; l,m, r) =

2(x−l)

(r−l)(m−l) for l ≤ x ≤ m,
2(r−x)

(r−l)(r−m) form ≤ x ≤ r,

0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used in simulations.

References

[1]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... density=True)
>>> plt.show()

2 0 2 4 6 8
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

method
random.RandomState.uniform(low=0.0, high=1.0, size=None)

Draw samples from a uniform distribution.
Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uniform.

Note: New code should use the uniformmethod of a Generator instance instead; please see the Quick start.

1.1. NumPy’s module structure 251

NumPy Reference, Release 2.2.0

Parameters
low

[float or array_like of floats, optional] Lower boundary of the output interval. All values gen-
erated will be greater than or equal to low. The default value is 0.

high
[float or array_like of floats] Upper boundary of the output interval. All values generated will
be less than or equal to high. The high limit may be included in the returned array of floats due
to floating-point rounding in the equation low + (high-low) * random_sample().
The default value is 1.0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if low
and high are both scalars. Otherwise, np.broadcast(low, high).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized uniform distribution.

See also:

randint
Discrete uniform distribution, yielding integers.

random_integers
Discrete uniform distribution over the closed interval [low, high].

random_sample
Floats uniformly distributed over [0, 1).

random
Alias for random_sample.

rand
Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2 array of
floats, uniformly distributed over [0, 1).

random.Generator.uniform
which should be used for new code.

Notes

The probability density function of the uniform distribution is

p(x) =
1

b− a

anywhere within the interval [a, b), and zero elsewhere.
When high == low, values of low will be returned. If high < low, the results are officially undefined and may
eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality
condition. The high limit may be included in the returned array of floats due to floating-point rounding in the
equation low + (high-low) * random_sample(). For example:

252 1. Python API

NumPy Reference, Release 2.2.0

>>> x = np.float32(5*0.99999999)
>>> x
np.float32(5.0)

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, density=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

1.0 0.8 0.6 0.4 0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

method
random.RandomState.vonmises(mu, kappa, size=None)

Draw samples from a von Mises distribution.
Samples are drawn from a von Mises distribution with specified mode (mu) and concentration (kappa), on the
interval [-pi, pi].
The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution
on the unit circle. It may be thought of as the circular analogue of the normal distribution.

1.1. NumPy’s module structure 253

NumPy Reference, Release 2.2.0

Note: New code should use the vonmises method of a Generator instance instead; please see the Quick
start.

Parameters
mu

[float or array_like of floats] Mode (“center”) of the distribution.
kappa

[float or array_like of floats] Concentration of the distribution, has to be >=0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mu and
kappa are both scalars. Otherwise, np.broadcast(mu, kappa).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized von Mises distribution.

See also:

scipy.stats.vonmises
probability density function, distribution, or cumulative density function, etc.

random.Generator.vonmises
which should be used for new code.

Notes

The probability density for the von Mises distribution is

p(x) =
eκcos(x−µ)

2πI0(κ)
,

where µ is the mode and κ the concentration, and I0(κ) is the modified Bessel function of order 0.
The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory,
aerodynamics, fluid mechanics, and philosophy of science.

References

[1], [2]

254 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and concentration
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s, 50, density=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
>>> plt.plot(x, y, linewidth=2, color='r')
>>> plt.show()

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

method
random.RandomState.wald(mean, scale, size=None)

Draw samples from a Wald, or inverse Gaussian, distribution.
As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.
The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Note: New code should use the wald method of a Generator instance instead; please see the Quick start.

Parameters
mean

[float or array_like of floats] Distribution mean, must be > 0.

1.1. NumPy’s module structure 255

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats] Scale parameter, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mean and
scale are both scalars. Otherwise, np.broadcast(mean, scale).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Wald distribution.

See also:

random.Generator.wald
which should be used for new code.

Notes

The probability density function for the Wald distribution is

P (x;mean, scale) =

√
scale

2πx3
e

−scale(x−mean)2

2·mean2x

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

References

[1], [2], [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
>>> plt.show()

method
random.RandomState.weibull(a, size=None)

Draw samples from a Weibull distribution.
Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

X = (−ln(U))1/a

Here, U is drawn from the uniform distribution over (0,1].
The more common 2-parameter Weibull, including a scale parameter λ is just X = λ(−ln(U))1/a.

Note: New code should use the weibullmethod of a Generator instance instead; please see the Quick start.

256 1. Python API

NumPy Reference, Release 2.2.0

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

Parameters
a

[float or array_like of floats] Shape parameter of the distribution. Must be nonnegative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:

scipy.stats.weibull_max
scipy.stats.weibull_min
scipy.stats.genextreme
gumbel
random.Generator.weibull

which should be used for new code.

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.
The probability density for the Weibull distribution is

p(x) =
a

λ
(
x

λ
)a−1e−(x/λ)a ,

where a is the shape and λ the scale.
The function has its peak (the mode) at λ(a−1

a)1/a.

1.1. NumPy’s module structure 257

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

When a = 1, the Weibull distribution reduces to the exponential distribution.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

50

100

150

200

method
random.RandomState.zipf(a, size=None)

Draw samples from a Zipf distribution.
Samples are drawn from a Zipf distribution with specified parameter a > 1.
The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf’s
law: the frequency of an item is inversely proportional to its rank in a frequency table.

258 1. Python API

NumPy Reference, Release 2.2.0

Note: New code should use the zipf method of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Distribution parameter. Must be greater than 1.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Zipf distribution.

See also:

scipy.stats.zipf
probability density function, distribution, or cumulative density function, etc.

random.Generator.zipf
which should be used for new code.

Notes

The probability mass function (PMF) for the Zipf distribution is

p(k) =
k−a

ζ(a)
,

for integers k ≥ 1, where ζ is the Riemann Zeta function.
It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample
of a language is inversely proportional to its rank in the frequency table.

References

[1]

Examples

Draw samples from the distribution:

>>> a = 4.0
>>> n = 20000
>>> s = np.random.zipf(a, n)

Display the histogram of the samples, along with the expected histogram based on the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import zeta

1.1. NumPy’s module structure 259

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf

NumPy Reference, Release 2.2.0

bincount provides a fast histogram for small integers.

>>> count = np.bincount(s)
>>> k = np.arange(1, s.max() + 1)

>>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
>>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
... label='expected count')
>>> plt.semilogy()
>>> plt.grid(alpha=0.4)
>>> plt.legend()
>>> plt.title(f'Zipf sample, a={a}, size={n}')
>>> plt.show()

0 5 10 15 20 25 30

10 1

100

101

102

103

104

Zipf sample, a=4.0, size=20000

expected count
sample count

Functions in numpy.random

Many of the RandomState methods above are exported as functions in numpy.random This usage is discouraged, as it
is implemented via a global RandomState instance which is not advised on two counts:

• It uses global state, which means results will change as the code changes
• It uses a RandomState rather than the more modern Generator.

For backward compatible legacy reasons, we will not change this.

beta(a, b[, size]) Draw samples from a Beta distribution.
binomial(n, p[, size]) Draw samples from a binomial distribution.
bytes(length) Return random bytes.
chisquare(df[, size]) Draw samples from a chi-square distribution.
choice(a[, size, replace, p]) Generates a random sample from a given 1-D array
dirichlet(alpha[, size]) Draw samples from the Dirichlet distribution.
exponential([scale, size]) Draw samples from an exponential distribution.
f(dfnum, dfden[, size]) Draw samples from an F distribution.
gamma(shape[, scale, size]) Draw samples from a Gamma distribution.

continues on next page

260 1. Python API

NumPy Reference, Release 2.2.0

Table 3 – continued from previous page
geometric(p[, size]) Draw samples from the geometric distribution.
get_state([legacy]) Return a tuple representing the internal state of the gen-

erator.
gumbel([loc, scale, size]) Draw samples from a Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size]) Draw samples from a Hypergeometric distribution.
laplace([loc, scale, size]) Draw samples from the Laplace or double exponential

distribution with specified location (or mean) and scale
(decay).

logistic([loc, scale, size]) Draw samples from a logistic distribution.
lognormal([mean, sigma, size]) Draw samples from a log-normal distribution.
logseries(p[, size]) Draw samples from a logarithmic series distribution.
multinomial(n, pvals[, size]) Draw samples from a multinomial distribution.
multivariate_normal(mean, cov[, size, ...]) Draw random samples from a multivariate normal distri-

bution.
negative_binomial(n, p[, size]) Draw samples from a negative binomial distribution.
noncentral_chisquare(df, nonc[, size]) Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size]) Draw samples from the noncentral F distribution.
normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distri-

bution.
pareto(a[, size]) Draw samples from a Pareto II or Lomax distribution with

specified shape.
permutation(x) Randomly permute a sequence, or return a permuted

range.
poisson([lam, size]) Draw samples from a Poisson distribution.
power(a[, size]) Draws samples in [0, 1] from a power distribution with

positive exponent a - 1.
rand(d0, d1, ..., dn) Random values in a given shape.
randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (ex-

clusive).
randn(d0, d1, ..., dn) Return a sample (or samples) from the "standard normal"

distribution.
random([size]) Return random floats in the half-open interval [0.0, 1.0).
random_integers(low[, high, size]) Random integers of type numpy.int_ between low and

high, inclusive.
random_sample([size]) Return random floats in the half-open interval [0.0, 1.0).
ranf(*args, **kwargs) This is an alias of random_sample.
rayleigh([scale, size]) Draw samples from a Rayleigh distribution.
sample(*args, **kwargs) This is an alias of random_sample.
seed([seed]) Reseed the singleton RandomState instance.
set_state(state) Set the internal state of the generator from a tuple.
shuffle(x) Modify a sequence in-place by shuffling its contents.
standard_cauchy([size]) Draw samples from a standard Cauchy distribution with

mode = 0.
standard_exponential([size]) Draw samples from the standard exponential distribution.
standard_gamma(shape[, size]) Draw samples from a standard Gamma distribution.
standard_normal([size]) Draw samples from a standard Normal distribution

(mean=0, stdev=1).
standard_t(df[, size]) Draw samples from a standard Student's t distribution

with df degrees of freedom.
triangular(left, mode, right[, size]) Draw samples from the triangular distribution over the in-

terval [left, right].
uniform([low, high, size]) Draw samples from a uniform distribution.

continues on next page

1.1. NumPy’s module structure 261

NumPy Reference, Release 2.2.0

Table 3 – continued from previous page
vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
wald(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distri-

bution.
weibull(a[, size]) Draw samples from a Weibull distribution.
zipf(a[, size]) Draw samples from a Zipf distribution.

random.beta(a, b, size=None)
Draw samples from a Beta distribution.
The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has
the probability distribution function

f(x; a, b) =
1

B(α, β)
xα−1(1− x)β−1,

where the normalization, B, is the beta function,

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.

It is often seen in Bayesian inference and order statistics.

Note: New code should use the beta method of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Alpha, positive (>0).
b

[float or array_like of floats] Beta, positive (>0).
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a and b
are both scalars. Otherwise, np.broadcast(a, b).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized beta distribution.

See also:

random.Generator.beta
which should be used for new code.

random.binomial(n, p, size=None)
Draw samples from a binomial distribution.
Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success
where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in
use)

262 1. Python API

NumPy Reference, Release 2.2.0

Note: New code should use the binomial method of a Generator instance instead; please see the Quick
start.

Parameters
n

[int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.

p
[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized binomial distribution, where each
sample is equal to the number of successes over the n trials.

See also:

scipy.stats.binom
probability density function, distribution or cumulative density function, etc.

random.Generator.binomial
which should be used for new code.

Notes

The probability mass function (PMF) for the binomial distribution is

P (N) =

(
n

N

)
pN (1− p)n−N ,

where n is the number of trials, p is the probability of success, and N is the number of successes.
When estimating the standard error of a proportion in a population by using a random sample, the normal distribu-
tion works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples,
in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be
used in this case.

1.1. NumPy’s module structure 263

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom

NumPy Reference, Release 2.2.0

References

[1], [2], [3], [4], [5]

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of
success of 0.1. All nine wells fail. What is the probability of that happening?
Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
answer = 0.38885, or 38%.

random.bytes(length)
Return random bytes.

Note: New code should use the bytes method of a Generator instance instead; please see the Quick start.

Parameters
length

[int] Number of random bytes.
Returns

out
[bytes] String of length length.

See also:

random.Generator.bytes
which should be used for new code.

Examples

>>> np.random.bytes(10)
b' eh\x85\x022SZ\xbf\xa4' #random

random.chisquare(df, size=None)
Draw samples from a chi-square distribution.
When df independent random variables, each with standard normal distributions (mean 0, variance 1), are squared
and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis
testing.

264 1. Python API

NumPy Reference, Release 2.2.0

Note: New code should use the chisquare method of a Generator instance instead; please see the Quick
start.

Parameters
df

[float or array_like of floats] Number of degrees of freedom, must be > 0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array(df).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized chi-square distribution.
Raises

ValueError
When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

See also:

random.Generator.chisquare
which should be used for new code.

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random variables:

Q =

df∑
i=1

X2
i

is chi-square distributed, denoted

Q ∼ χ2
k.

The probability density function of the chi-squared distribution is

p(x) =
(1/2)k/2

Γ(k/2)
xk/2−1e−x/2,

where Γ is the gamma function,

Γ(x) =

∫ −∞

0

tx−1e−tdt.

1.1. NumPy’s module structure 265

NumPy Reference, Release 2.2.0

References

[1]

Examples

>>> np.random.chisquare(2,4)
array([1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random

random.choice(a, size=None, replace=True, p=None)
Generates a random sample from a given 1-D array

Note: New code should use the choice method of a Generator instance instead; please see the Quick start.

Warning: This function uses the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit
platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and
64bit on 64bit platforms.

Parameters
a

[1-D array-like or int] If an ndarray, a random sample is generated from its elements. If an
int, the random sample is generated as if it were np.arange(a)

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

replace
[boolean, optional]Whether the sample is with or without replacement. Default is True, mean-
ing that a value of a can be selected multiple times.

p
[1-D array-like, optional] The probabilities associated with each entry in a. If not given, the
sample assumes a uniform distribution over all entries in a.

Returns
samples

[single item or ndarray] The generated random samples
Raises

ValueError
If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if
p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the
sample size is greater than the population size

See also:

randint, shuffle, permutation
random.Generator.choice

which should be used in new code

266 1. Python API

NumPy Reference, Release 2.2.0

Notes

Setting user-specified probabilities through p uses a more general but less efficient sampler than the default. The
general sampler produces a different sample than the optimized sampler even if each element of p is 1 / len(a).
Sampling random rows from a 2-D array is not possible with this function, but is possible with Generator.
choice through its axis keyword.

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4]) # random
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0]) # random

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0]) # random
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0]) # random

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random

dtype='<U11')

random.dirichlet(alpha, size=None)
Draw samples from the Dirichlet distribution.
Draw size samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can
be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a
multinomial distribution in Bayesian inference.

Note: New code should use the dirichlet method of a Generator instance instead; please see the Quick
start.

Parameters
alpha

[sequence of floats, length k] Parameter of the distribution (length k for sample of length k).

1.1. NumPy’s module structure 267

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n), then m * n
* k samples are drawn. Default is None, in which case a vector of length k is returned.

Returns
samples

[ndarray,] The drawn samples, of shape (size, k).
Raises

ValueError
If any value in alpha is less than or equal to zero

See also:

random.Generator.dirichlet
which should be used for new code.

Notes

The Dirichlet distribution is a distribution over vectors x that fulfil the conditions xi > 0 and
∑k

i=1 xi = 1.
The probability density function p of a Dirichlet-distributed random vector X is proportional to

p(x) ∝
k∏

i=1

xαi−1
i ,

where α is a vector containing the positive concentration parameters.
The method uses the following property for computation: let Y be a random vector which has components that
follow a standard gamma distribution, then X = 1∑k

i=1 Yi
Y is Dirichlet-distributed

References

[1], [2]

Examples

Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial
length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but
allowing some variation in the relative sizes of the pieces.

>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

>>> import matplotlib.pyplot as plt
>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
>>> plt.title("Lengths of Strings")

268 1. Python API

NumPy Reference, Release 2.2.0

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20
Lengths of Strings

random.exponential(scale=1.0, size=None)
Draw samples from an exponential distribution.
Its probability density function is

f(x;
1

β
) =

1

β
exp(−x

β
),

for x > 0 and 0 elsewhere. β is the scale parameter, which is the inverse of the rate parameter λ = 1/β. The
rate parameter is an alternative, widely used parameterization of the exponential distribution [3].
The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to
Wikipedia [2].

Note: New code should use the exponentialmethod of a Generator instance instead; please see the Quick
start.

Parameters
scale

[float or array_like of floats] The scale parameter, β = 1/λ. Must be non-negative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized exponential distribution.

See also:

random.Generator.exponential
which should be used for new code.

1.1. NumPy’s module structure 269

NumPy Reference, Release 2.2.0

References

[1], [2], [3]

Examples

A real world example: Assume a company has 10000 customer support agents and the average time between
customer calls is 4 minutes.

>>> n = 10000
>>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

What is the probability that a customer will call in the next 4 to 5 minutes?

>>> x = ((time_between_calls < 5).sum())/n
>>> y = ((time_between_calls < 4).sum())/n
>>> x-y
0.08 # may vary

random.f(dfnum, dfden, size=None)
Draw samples from an F distribution.
Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters must be greater than zero.
The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distri-
bution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Note: New code should use the f method of a Generator instance instead; please see the Quick start.

Parameters
dfnum

[float or array_like of floats] Degrees of freedom in numerator, must be > 0.
dfden

[float or array_like of float] Degrees of freedom in denominator, must be > 0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum and
dfden are both scalars. Otherwise, np.broadcast(dfnum, dfden).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Fisher distribution.

See also:

scipy.stats.f
probability density function, distribution or cumulative density function, etc.

random.Generator.f
which should be used for new code.

270 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f

NumPy Reference, Release 2.2.0

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable
dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the within-
groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

References

[1], [2]

Examples

An example from Glantz[1], pp 47-40:
Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data gives a
value of 36.01.
Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom
>>> dfden = 48. # within groups degrees of freedom
>>> s = np.random.f(dfnum, dfden, 1000)

The lower bound for the top 1% of the samples is :

>>> np.sort(s)[-10]
7.61988120985 # random

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.

random.gamma(shape, scale=1.0, size=None)
Draw samples from a Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale (sometimes designated “theta”), where both parameters are > 0.

Note: New code should use the gamma method of a Generator instance instead; please see the Quick start.

Parameters
shape

[float or array_like of floats] The shape of the gamma distribution. Must be non-negative.
scale

[float or array_like of floats, optional] The scale of the gamma distribution. Must be non-
negative. Default is equal to 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if shape and

1.1. NumPy’s module structure 271

NumPy Reference, Release 2.2.0

scale are both scalars. Otherwise, np.broadcast(shape, scale).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized gamma distribution.

See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

random.Generator.gamma
which should be used for new code.

Notes

The probability density for the Gamma distribution is

p(x) = xk−1 e−x/θ

θkΓ(k)
,

where k is the shape and θ the scale, and Γ is the Gamma function.
The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
>>> s = np.random.gamma(shape, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1)*(np.exp(-bins/scale) /
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

random.geometric(p, size=None)
Draw samples from the geometric distribution.
Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve
success. It is therefore supported on the positive integers, k = 1, 2,

272 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

0 2 4 6 8 10 12 14 16
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

The probability mass function of the geometric distribution is

f(k) = (1− p)k−1p

where p is the probability of success of an individual trial.

Note: New code should use the geometric method of a Generator instance instead; please see the Quick
start.

Parameters
p

[float or array_like of floats] The probability of success of an individual trial.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array(p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized geometric distribution.

See also:

random.Generator.geometric
which should be used for new code.

1.1. NumPy’s module structure 273

NumPy Reference, Release 2.2.0

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to
0.35:

>>> z = np.random.geometric(p=0.35, size=10000)

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000.
0.34889999999999999 #random

random.get_state(legacy=True)
Return a tuple representing the internal state of the generator.
For more details, see set_state.

Parameters
legacy

[bool, optional] Flag indicating to return a legacy tuple state when the BitGenerator is
MT19937, instead of a dict. Raises ValueError if the underlying bit generator is not an in-
stance of MT19937.

Returns
out

[{tuple(str, ndarray of 624 uints, int, int, float), dict}] If legacy is True, the returned tuple has
the following items:
1. the string ‘MT19937’.
2. a 1-D array of 624 unsigned integer keys.
3. an integer pos.
4. an integer has_gauss.
5. a float cached_gaussian.
If legacy is False, or the BitGenerator is not MT19937, then state is returned as a dictionary.

See also:

set_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.

random.gumbel(loc=0.0, scale=1.0, size=None)
Draw samples from a Gumbel distribution.
Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel
distribution, see Notes and References below.

Note: New code should use the gumbel method of a Generator instance instead; please see the Quick start.

274 1. Python API

NumPy Reference, Release 2.2.0

Parameters
loc

[float or array_like of floats, optional] The location of the mode of the distribution. Default is
0.

scale
[float or array_like of floats, optional] The scale parameter of the distribution. Default is 1.
Must be non- negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.

See also:

scipy.stats.gumbel_l
scipy.stats.gumbel_r
scipy.stats.genextreme
weibull
random.Generator.gumbel

which should be used for new code.

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-like”
tails.
The probability density for the Gumbel distribution is

p(x) =
e−(x−µ)/β

β
e−e−(x−µ)/β

,

where µ is the mode, a location parameter, and β is the scale parameter.
The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology liter-
ature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall
rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger than if one
used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a
Gaussian process, which underestimated the frequency of extreme events.
It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also
includes the Weibull and Frechet.
The function has a mean of µ+ 0.57721β and a variance of π2

6 β2.

1.1. NumPy’s module structure 275

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show()

0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, density=True)
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))

(continues on next page)

276 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show()

0.25 0.30 0.35 0.40 0.45
0

2

4

6

8

10

12

14

random.hypergeometric(ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.
Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good
selection), nbad (ways to make a bad selection), and nsample (number of items sampled, which is less than or equal
to the sum ngood + nbad).

Note: New code should use the hypergeometric method of a Generator instance instead; please see the
Quick start.

Parameters
ngood

[int or array_like of ints] Number of ways to make a good selection. Must be nonnegative.
nbad

[int or array_like of ints] Number of ways to make a bad selection. Must be nonnegative.
nsample

[int or array_like of ints] Number of items sampled. Must be at least 1 and at most ngood +
nbad.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast(ngood, nbad,
nsample).size samples are drawn.

Returns

1.1. NumPy’s module structure 277

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution. Each
sample is the number of good items within a randomly selected subset of size nsample taken
from a set of ngood good items and nbad bad items.

See also:

scipy.stats.hypergeom
probability density function, distribution or cumulative density function, etc.

random.Generator.hypergeometric
which should be used for new code.

Notes

The probability mass function (PMF) for the Hypergeometric distribution is

P (x) =

(
g
x

)(
b

n−x

)(
g+b
n

) ,

where 0 ≤ x ≤ n and n− b ≤ x ≤ g

for P(x) the probability of x good results in the drawn sample, g = ngood, b = nbad, and n = nsample.
Consider an urn with black and white marbles in it, ngood of them are black and nbad are white. If you draw
nsample balls without replacement, then the hypergeometric distribution describes the distribution of black balls
in the drawn sample.
Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10
number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
>>> from matplotlib.pyplot import hist
>>> hist(s)
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it
that 12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000)
>>> sum(s>=12)/100000. + sum(s<=3)/100000.
answer = 0.003 ... pretty unlikely!

278 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom

NumPy Reference, Release 2.2.0

random.laplace(loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).
The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Note: New code should use the laplacemethod of a Generator instance instead; please see the Quick start.

Parameters
loc

[float or array_like of floats, optional] The position, µ, of the distribution peak. Default is 0.
scale

[float or array_like of floats, optional] λ, the exponential decay. Default is 1. Must be non-
negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

See also:

random.Generator.laplace
which should be used for new code.

Notes

It has the probability density function

f(x;µ, λ) =
1

2λ
exp

(
−|x− µ|

λ

)
.

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function
of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics
and health sciences, this distribution seems to model the data better than the standard Gaussian distribution.

References

[1], [2], [3], [4]

1.1. NumPy’s module structure 279

NumPy Reference, Release 2.2.0

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1.
>>> s = np.random.laplace(loc, scale, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> x = np.arange(-8., 8., .01)
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
>>> plt.plot(x, pdf)

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) *
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g)

8 6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

random.logistic(loc=0.0, scale=1.0, size=None)
Draw samples from a logistic distribution.
Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and
scale (>0).

Note: New code should use the logistic method of a Generator instance instead; please see the Quick
start.

Parameters
loc

[float or array_like of floats, optional] Parameter of the distribution. Default is 0.

280 1. Python API

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats, optional] Parameter of the distribution. Must be non-negative.
Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized logistic distribution.

See also:

scipy.stats.logistic
probability density function, distribution or cumulative density function, etc.

random.Generator.logistic
which should be used for new code.

Notes

The probability density for the Logistic distribution is

P (x) = P (x) =
e−(x−µ)/s

s(1 + e−(x−µ)/s)2
,

where µ = location and s = scale.
The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions,
in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming
the performance of each player is a logistically distributed random variable.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=50)

plot against distribution

>>> def logist(x, loc, scale):
... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
>>> lgst_val = logist(bins, loc, scale)
>>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
>>> plt.show()

1.1. NumPy’s module structure 281

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic

NumPy Reference, Release 2.2.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

200

400

600

800

1000

random.lognormal(mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.
Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note
that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Note: New code should use the lognormal method of a Generator instance instead; please see the Quick
start.

Parameters
mean

[float or array_like of floats, optional] Mean value of the underlying normal distribution. De-
fault is 0.

sigma
[float or array_like of floats, optional] Standard deviation of the underlying normal distribution.
Must be non-negative. Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mean and
sigma are both scalars. Otherwise, np.broadcast(mean, sigma).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized log-normal distribution.

See also:

scipy.stats.lognorm
probability density function, distribution, cumulative density function, etc.

282 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm

NumPy Reference, Release 2.2.0

random.Generator.lognormal
which should be used for new code.

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function for the
log-normal distribution is:

p(x) =
1

σx
√
2π

e(−
(ln(x)−µ)2

2σ2)

where µ is the mean and σ is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation
>>> s = np.random.lognormal(mu, sigma, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r')
>>> plt.axis('tight')
>>> plt.show()

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal
probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = []
>>> for i in range(1000):
... a = 10. + np.random.standard_normal(100)
... b.append(np.prod(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive
>>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
>>> sigma = np.std(np.log(b))
>>> mu = np.mean(np.log(b))

1.1. NumPy’s module structure 283

NumPy Reference, Release 2.2.0

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

>>> x = np.linspace(min(bins), max(bins), 10000)
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2)
>>> plt.show()

0 200 400 600 800
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

random.logseries(p, size=None)
Draw samples from a logarithmic series distribution.
Samples are drawn from a log series distribution with specified shape parameter, 0 <= p < 1.

Note: New code should use the logseries method of a Generator instance instead; please see the Quick

284 1. Python API

NumPy Reference, Release 2.2.0

start.

Parameters
p

[float or array_like of floats] Shape parameter for the distribution. Must be in the range [0, 1).
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if p is a
scalar. Otherwise, np.array(p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized logarithmic series distribution.

See also:

scipy.stats.logser
probability density function, distribution or cumulative density function, etc.

random.Generator.logseries
which should be used for new code.

Notes

The probability density for the Log Series distribution is

P (k) =
−pk

k ln(1− p)
,

where p = probability.
The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher,
Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3].

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a = .6
>>> s = np.random.logseries(a, 10000)
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s)

plot against distribution

1.1. NumPy’s module structure 285

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser

NumPy Reference, Release 2.2.0

>>> def logseries(k, p):
... return -p**k/(k*np.log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/
... logseries(bins, a).max(), 'r')
>>> plt.show()

2 4 6 8 10 12 14 16
0

2000

4000

6000

8000

random.multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.
The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with
one of p possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1
through 6. Each sample drawn from the distribution represents n such experiments. Its values, X_i = [X_0,
X_1, ..., X_p], represent the number of times the outcome was i.

Note: New code should use the multinomialmethod of a Generator instance instead; please see the Quick
start.

Warning: This function defaults to the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit
platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and
64bit on 64bit platforms.

Parameters
n

[int] Number of experiments.
pvals

[sequence of floats, length p] Probabilities of each of the p different outcomes. These must
sum to 1 (however, the last element is always assumed to account for the remaining probability,
as long as sum(pvals[:-1]) <= 1).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m

286 1. Python API

NumPy Reference, Release 2.2.0

* n * k samples are drawn. Default is None, in which case a single value is returned.
Returns

out
[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).
In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from the
distribution.

See also:

random.Generator.multinomial
which should be used for new code.

Examples

Throw a dice 20 times:

>>> np.random.multinomial(20, [1/6.]*6, size=1)
array([[4, 1, 7, 5, 2, 1]]) # random

It landed 4 times on 1, once on 2, etc.
Now, throw the dice 20 times, and 20 times again:

>>> np.random.multinomial(20, [1/6.]*6, size=2)
array([[3, 4, 3, 3, 4, 3], # random

[2, 4, 3, 4, 0, 7]])

For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc.
A loaded die is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([11, 16, 14, 17, 16, 26]) # random

The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and
assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice
as much weight on one side as on the other should be sampled like so:

>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
array([38, 62]) # random

not like:

>>> np.random.multinomial(100, [1.0, 2.0]) # WRONG
Traceback (most recent call last):
ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

random.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)
Draw random samples from a multivariate normal distribution.
The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal
distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These pa-
rameters are analogous to the mean (average or “center”) and variance (standard deviation, or “width,” squared) of
the one-dimensional normal distribution.

1.1. NumPy’s module structure 287

NumPy Reference, Release 2.2.0

Note: New code should use the multivariate_normal method of a Generator instance instead; please
see the Quick start.

Parameters
mean

[1-D array_like, of length N] Mean of the N-dimensional distribution.
cov

[2-D array_like, of shape (N, N)] Covariance matrix of the distribution. It must be symmetric
and positive-semidefinite for proper sampling.

size
[int or tuple of ints, optional] Given a shape of, for example, (m,n,k), m*n*k samples are
generated, and packed in anm-by-n-by-k arrangement. Because each sample isN-dimensional,
the output shape is (m,n,k,N). If no shape is specified, a single (N-D) sample is returned.

check_valid
[{ ‘warn’, ‘raise’, ‘ignore’ }, optional] Behavior when the covariance matrix is not positive
semidefinite.

tol
[float, optional] Tolerance when checking the singular values in covariance matrix. cov is cast
to double before the check.

Returns
out

[ndarray] The drawn samples, of shape size, if that was provided. If not, the shape is (N,).
In other words, each entry out[i,j,...,:] is an N-dimensional value drawn from the
distribution.

See also:

random.Generator.multivariate_normal
which should be used for new code.

Notes

The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be
generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution.
Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we
draw N-dimensional samples,X = [x1, x2, ...xN]. The covariance matrix element Cij is the covariance of xi and
xj . The element Cii is the variance of xi (i.e. its “spread”).
Instead of specifying the full covariance matrix, popular approximations include:

• Spherical covariance (cov is a multiple of the identity matrix)
• Diagonal covariance (cov has non-negative elements, and only on the diagonal)

This geometrical property can be seen in two dimensions by plotting generated data-points:

>>> mean = [0, 0]
>>> cov = [[1, 0], [0, 100]] # diagonal covariance

288 1. Python API

NumPy Reference, Release 2.2.0

Diagonal covariance means that points are oriented along x or y-axis:

>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, 'x')
>>> plt.axis('equal')
>>> plt.show()

Note that the covariancematrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior
of this method is undefined and backwards compatibility is not guaranteed.

References

[1], [2]

Examples

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
>>> x.shape
(3, 3, 2)

Here we generate 800 samples from the bivariate normal distribution with mean [0, 0] and covariance matrix [[6,
-3], [-3, 3.5]]. The expected variances of the first and second components of the sample are 6 and 3.5, respectively,
and the expected correlation coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

>>> cov = np.array([[6, -3], [-3, 3.5]])
>>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

Check that the mean, covariance, and correlation coefficient of the sample are close to the expected values:

>>> pts.mean(axis=0)
array([0.0326911 , -0.01280782]) # may vary
>>> np.cov(pts.T)
array([[5.96202397, -2.85602287],

[-2.85602287, 3.47613949]]) # may vary
>>> np.corrcoef(pts.T)[0, 1]
-0.6273591314603949 # may vary

We can visualize this data with a scatter plot. The orientation of the point cloud illustrates the negative correlation
of the components of this sample.

>>> import matplotlib.pyplot as plt
>>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
>>> plt.axis('equal')
>>> plt.grid()
>>> plt.show()

random.negative_binomial(n, p, size=None)
Draw samples from a negative binomial distribution.
Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability
of success where n is > 0 and p is in the interval [0, 1].

1.1. NumPy’s module structure 289

NumPy Reference, Release 2.2.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
6

4

2

0

2

4

6

Note: New code should use the negative_binomialmethod of a Generator instance instead; please see
the Quick start.

Parameters
n

[float or array_like of floats] Parameter of the distribution, > 0.
p

[float or array_like of floats] Parameter of the distribution, >= 0 and <=1.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if n and p
are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of failures that occurred before a total of n
successes was reached.

Warning: This function returns the C-long dtype, which is 32bit on windows and otherwise
64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer
is 32bit on 32bit platforms and 64bit on 64bit platforms.

See also:

random.Generator.negative_binomial
which should be used for new code.

290 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability mass function of the negative binomial distribution is

P (N ;n, p) =
Γ(N + n)

N !Γ(n)
pn(1− p)N ,

where n is the number of successes, p is the probability of success, N + n is the number of trials, and Γ is the
gamma function. When n is an integer, Γ(N+n)

N !Γ(n) =
(
N+n−1

N

)
, which is the more common form of this term in the

pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the
last trial.
If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number of
non-“1”s that appear before the third “1” is a negative binomial distribution.

References

[1], [2]

Examples

Draw samples from the distribution:
A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success
of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a
single success after drilling 5 wells, after 6 wells, etc.?

>>> s = np.random.negative_binomial(1, 0.1, 100000)
>>> for i in range(1, 11):
... probability = sum(s<i) / 100000.
... print(i, "wells drilled, probability of one success =", probability)

random.noncentral_chisquare(df, nonc, size=None)
Draw samples from a noncentral chi-square distribution.
The noncentral χ2 distribution is a generalization of the χ2 distribution.

Note: New code should use the noncentral_chisquaremethod of a Generator instance instead; please
see the Quick start.

Parameters
df

[float or array_like of floats] Degrees of freedom, must be > 0.
nonc

[float or array_like of floats] Non-centrality, must be non-negative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
and nonc are both scalars. Otherwise, np.broadcast(df, nonc).size samples are
drawn.

Returns

1.1. NumPy’s module structure 291

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distribution.

See also:

random.Generator.noncentral_chisquare
which should be used for new code.

Notes

The probability density function for the noncentral Chi-square distribution is

P (x; df, nonc) =

∞∑
i=0

e−nonc/2(nonc/2)i

i!
PYdf+2i

(x),

where Yq is the Chi-square with q degrees of freedom.

References

[1]

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

292 1. Python API

NumPy Reference, Release 2.2.0

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000),
... bins=np.arange(0., 25, .1), density=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
>>> plt.show()

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

>>> plt.figure()
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
... bins=200, density=True)
>>> plt.show()

0 20 40 60 80
0.00

0.01

0.02

0.03

0.04

random.noncentral_f(dfnum, dfden, nonc, size=None)

1.1. NumPy’s module structure 293

NumPy Reference, Release 2.2.0

Draw samples from the noncentral F distribution.
Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator) and
dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Note: New code should use the noncentral_f method of a Generator instance instead; please see the
Quick start.

Parameters
dfnum

[float or array_like of floats] Numerator degrees of freedom, must be > 0.
dfden

[float or array_like of floats] Denominator degrees of freedom, must be > 0.
nonc

[float or array_like of floats] Non-centrality parameter, the sum of the squares of the numerator
means, must be >= 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if dfnum, df-
den, and nonc are all scalars. Otherwise, np.broadcast(dfnum, dfden, nonc).
size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribution.

See also:

random.Generator.noncentral_f
which should be used for new code.

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific
alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic
follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic.

References

[1], [2]

294 1. Python API

NumPy Reference, Release 2.2.0

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null
hypothesis. We’ll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom
>>> dfden = 20 # within groups degrees of freedom
>>> nonc = 3.0
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
>>> import matplotlib.pyplot as plt
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

random.normal(loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.
The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both
Gauss and Laplace independently [2], is often called the bell curve because of its characteristic shape (see the
example below).
The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of
samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2].

Note: New code should use the normal method of a Generator instance instead; please see the Quick start.

Parameters
loc

[float or array_like of floats] Mean (“centre”) of the distribution.

1.1. NumPy’s module structure 295

NumPy Reference, Release 2.2.0

scale
[float or array_like of floats] Standard deviation (spread or “width”) of the distribution. Must
be non-negative.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if loc and
scale are both scalars. Otherwise, np.broadcast(loc, scale).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized normal distribution.

See also:

scipy.stats.norm
probability density function, distribution or cumulative density function, etc.

random.Generator.normal
which should be used for new code.

Notes

The probability density for the Gaussian distribution is

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ is the mean and σ the standard deviation. The square of the standard deviation, σ2, is called the variance.
The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches
0.607 times its maximum at x+ σ and x− σ [2]). This implies that normal is more likely to return samples lying
close to the mean, rather than those far away.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the standard deviation:

>>> abs(mu - np.mean(s))
0.0 # may vary

>>> abs(sigma - np.std(s, ddof=1))
0.1 # may vary

296 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm

NumPy Reference, Release 2.2.0

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, density=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show()

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> np.random.normal(3, 2.5, size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

random.pareto(a, size=None)
Draw samples from a Pareto II or Lomax distribution with specified shape.
The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained
from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes). The smallest value
of the Lomax distribution is zero while for the classical Pareto distribution it is mu, where the standard Pareto
distribution has location mu = 1. Lomax can also be considered as a simplified version of the Generalized Pareto
distribution (available in SciPy), with the scale set to one and the location set to zero.
The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20 rule”.
In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent
fill the remaining 80 percent of the range.

Note: New code should use the pareto method of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Shape of the distribution. Must be positive.

1.1. NumPy’s module structure 297

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Pareto distribution.

See also:

scipy.stats.lomax
probability density function, distribution or cumulative density function, etc.

scipy.stats.genpareto
probability density function, distribution or cumulative density function, etc.

random.Generator.pareto
which should be used for new code.

Notes

The probability density for the Pareto distribution is

p(x) =
ama

xa+1

where a is the shape andm the scale.
The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also
found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download
frequency for projects in Sourceforge [1]. It is one of the so-called “fat-tailed” distributions.

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode
>>> s = (np.random.pareto(a, 1000) + 1) * m

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, _ = plt.hist(s, 100, density=True)
>>> fit = a*m**a / bins**(a+1)
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
>>> plt.show()

298 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto

NumPy Reference, Release 2.2.0

5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

1.2

random.permutation(x)
Randomly permute a sequence, or return a permuted range.
If x is a multi-dimensional array, it is only shuffled along its first index.

Note: New code should use the permutationmethod of a Generator instance instead; please see the Quick
start.

Parameters
x

[int or array_like] If x is an integer, randomly permute np.arange(x). If x is an array,
make a copy and shuffle the elements randomly.

Returns
out

[ndarray] Permuted sequence or array range.

See also:

random.Generator.permutation
which should be used for new code.

1.1. NumPy’s module structure 299

NumPy Reference, Release 2.2.0

Examples

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15, 1, 9, 4, 12]) # random

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8], # random

[0, 1, 2],
[3, 4, 5]])

random.poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.
The Poisson distribution is the limit of the binomial distribution for large N.

Note: New code should use the poissonmethod of a Generator instance instead; please see the Quick start.

Parameters
lam

[float or array_like of floats] Expected number of events occurring in a fixed-time interval,
must be >= 0. A sequence must be broadcastable over the requested size.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if lam is a
scalar. Otherwise, np.array(lam).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

See also:

random.Generator.poisson
which should be used for new code.

Notes

The probability mass function (PMF) of Poisson distribution is

f(k;λ) =
λke−λ

k!

For events with an expected separation λ the Poisson distribution f(k;λ) describes the probability of k events
occurring within the observed interval λ.
Because the output is limited to the range of the C int64 type, a ValueError is raised when lam is within 10 sigma
of the maximum representable value.

300 1. Python API

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

Draw samples from the distribution:

>>> import numpy as np
>>> s = np.random.poisson(5, 10000)

Display histogram of the sample:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 14, density=True)
>>> plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

random.power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
Also known as the power function distribution.

Note: New code should use the power method of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Parameter of the distribution. Must be non-negative.

1.1. NumPy’s module structure 301

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized power distribution.
Raises

ValueError
If a <= 0.

See also:

random.Generator.power
which should be used for new code.

Notes

The probability density function is

P (x; a) = axa−1, 0 ≤ x ≤ 1, a > 0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case
of the Beta distribution.
It is used, for example, in modeling the over-reporting of insurance claims.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> samples = 1000
>>> s = np.random.power(a, samples)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=30)
>>> x = np.linspace(0, 1, 100)
>>> y = a*x**(a-1.)
>>> normed_y = samples*np.diff(bins)[0]*y
>>> plt.plot(x, normed_y)
>>> plt.show()

Compare the power function distribution to the inverse of the Pareto.

302 1. Python API

NumPy Reference, Release 2.2.0

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

>>> from scipy import stats
>>> rvs = np.random.power(5, 1000000)
>>> rvsp = np.random.pareto(5, 1000000)
>>> xx = np.linspace(0,1,100)
>>> powpdf = stats.powerlaw.pdf(xx,5)

>>> plt.figure()
>>> plt.hist(rvs, bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('np.random.power(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of 1 + np.random.pareto(5)')

>>> plt.figure()
>>> plt.hist(1./(1.+rvsp), bins=50, density=True)
>>> plt.plot(xx,powpdf,'r-')
>>> plt.title('inverse of stats.pareto(5)')

random.rand(d0, d1, ..., dn)
Random values in a given shape.

Note: This is a convenience function for users porting code from Matlab, and wraps random_sample. That
function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like numpy.
zeros and numpy.ones.

Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).
Parameters

d0, d1, …, dn
[int, optional] The dimensions of the returned array, must be non-negative. If no argument is

1.1. NumPy’s module structure 303

NumPy Reference, Release 2.2.0

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
np.random.power(5)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of 1 + np.random.pareto(5)

304 1. Python API

NumPy Reference, Release 2.2.0

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
inverse of stats.pareto(5)

given a single Python float is returned.
Returns

out
[ndarray, shape (d0, d1, ..., dn)] Random values.

See also:

random

Examples

>>> np.random.rand(3,2)
array([[0.14022471, 0.96360618], #random

[0.37601032, 0.25528411], #random
[0.49313049, 0.94909878]]) #random

random.randint(low, high=None, size=None, dtype=int)
Return random integers from low (inclusive) to high (exclusive).
Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval
[low, high). If high is None (the default), then results are from [0, low).

Note: New code should use the integers method of a Generator instance instead; please see the Quick
start.

Parameters
low

[int or array-like of ints] Lowest (signed) integers to be drawn from the distribution (unless
high=None, in which case this parameter is one above the highest such integer).

high
[int or array-like of ints, optional] If provided, one above the largest (signed) integer to be

1.1. NumPy’s module structure 305

NumPy Reference, Release 2.2.0

drawn from the distribution (see above for behavior if high=None). If array-like, must
contain integer values

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

dtype
[dtype, optional] Desired dtype of the result. Byteorder must be native. The default value is
long.

Warning: This function defaults to the C-long dtype, which is 32bit on windows and
otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s
default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Which corresponds
to np.intp. (dtype=int is not the same as in most NumPy functions.)

Returns
out

[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

random_integers
similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.

random.Generator.integers
which should be used for new code.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1], # random

[3, 2, 2, 0]])

Generate a 1 x 3 array with 3 different upper bounds

>>> np.random.randint(1, [3, 5, 10])
array([2, 2, 9]) # random

Generate a 1 by 3 array with 3 different lower bounds

>>> np.random.randint([1, 5, 7], 10)
array([9, 8, 7]) # random

Generate a 2 by 4 array using broadcasting with dtype of uint8

306 1. Python API

NumPy Reference, Release 2.2.0

>>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
array([[8, 6, 9, 7], # random

[1, 16, 9, 12]], dtype=uint8)

random.randn(d0, d1, ..., dn)
Return a sample (or samples) from the “standard normal” distribution.

Note: This is a convenience function for users porting code from Matlab, and wraps standard_normal.
That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like
numpy.zeros and numpy.ones.

Note: New code should use the standard_normalmethod of a Generator instance instead; please see the
Quick start.

If positive int_like arguments are provided, randn generates an array of shape (d0, d1, ..., dn), filled
with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1. A single
float randomly sampled from the distribution is returned if no argument is provided.

Parameters
d0, d1, …, dn

[int, optional] The dimensions of the returned array, must be non-negative. If no argument is
given a single Python float is returned.

Returns
Z

[ndarray or float] A (d0, d1, ..., dn)-shaped array of floating-point samples from the
standard normal distribution, or a single such float if no parameters were supplied.

See also:

standard_normal
Similar, but takes a tuple as its argument.

normal
Also accepts mu and sigma arguments.

random.Generator.standard_normal
which should be used for new code.

Notes

For random samples from the normal distribution with mean mu and standard deviation sigma, use:

sigma * np.random.randn(...) + mu

1.1. NumPy’s module structure 307

NumPy Reference, Release 2.2.0

Examples

>>> np.random.randn()
2.1923875335537315 # random

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 3 + 2.5 * np.random.randn(2, 4)
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

random.random(size=None)
Return random floats in the half-open interval [0.0, 1.0). Alias for random_sample to ease forward-porting to
the new random API.

random.random_integers(low, high=None, size=None)
Random integers of type numpy.int_ between low and high, inclusive.
Return random integers of type numpy.int_ from the “discrete uniform” distribution in the closed interval [low,
high]. If high is None (the default), then results are from [1, low]. The numpy.int_ type translates to the C long
integer type and its precision is platform dependent.
This function has been deprecated. Use randint instead.
Deprecated since version 1.11.0.

Parameters
low

[int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in which
case this parameter is the highest such integer).

high
[int, optional] If provided, the largest (signed) integer to be drawn from the distribution (see
above for behavior if high=None).

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
out

[int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

randint
Similar to random_integers, only for the half-open interval [low, high), and 0 is the lowest value if high
is omitted.

308 1. Python API

NumPy Reference, Release 2.2.0

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4 # random
>>> type(np.random.random_integers(5))
<class 'numpy.int64'>
>>> np.random.random_integers(5, size=(3,2))
array([[5, 4], # random

[3, 3],
[4, 5]])

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from
the set 0, 5/8, 10/8, 15/8, 20/8):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([0.625, 1.25 , 0.625, 0.625, 2.5]) # random

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, density=True)
>>> plt.show()

2 4 6 8 10 12
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

1.1. NumPy’s module structure 309

NumPy Reference, Release 2.2.0

random.random_sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).
Results are from the “continuous uniform” distribution over the stated interval. To sample Unif [a, b), b > a
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Note: New code should use the random method of a Generator instance instead; please see the Quick start.

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
out

[float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

See also:

random.Generator.random
which should be used for new code.

Examples

>>> np.random.random_sample()
0.47108547995356098 # random
>>> type(np.random.random_sample())
<class 'float'>
>>> np.random.random_sample((5,))
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984], # random

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

random.ranf(*args, **kwargs)
This is an alias of random_sample. See random_sample for the complete documentation.

random.rayleigh(scale=1.0, size=None)
Draw samples from a Rayleigh distribution.
The χ and Weibull distributions are generalizations of the Rayleigh.

Note: New code should use the rayleigh method of a Generator instance instead; please see the Quick
start.

310 1. Python API

NumPy Reference, Release 2.2.0

Parameters
scale

[float or array_like of floats, optional] Scale, also equals the mode. Must be non-negative.
Default is 1.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

See also:

random.Generator.rayleigh
which should be used for new code.

Notes

The probability density function for the Rayleigh distribution is

P (x; scale) =
x

scale2
e

−x2

2·scale2

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

>>> from matplotlib.pyplot import hist
>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are
likely to be larger than 3 meters?

>>> meanvalue = 1
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue
>>> s = np.random.rayleigh(modevalue, 1000000)

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000.
0.087300000000000003 # random

1.1. NumPy’s module structure 311

NumPy Reference, Release 2.2.0

random.sample(*args, **kwargs)
This is an alias of random_sample. See random_sample for the complete documentation.

random.seed(seed=None)
Reseed the singleton RandomState instance.
See also:

numpy.random.Generator

Notes

This is a convenience, legacy function that exists to support older code that uses the singleton RandomState. Best
practice is to use a dedicated Generator instance rather than the random variate generation methods exposed
directly in the random module.

random.set_state(state)
Set the internal state of the generator from a tuple.
For use if one has reason to manually (re-)set the internal state of the bit generator used by the RandomState
instance. By default, RandomState uses the “Mersenne Twister”[1] pseudo-random number generating algorithm.

Parameters
state

[{tuple(str, ndarray of 624 uints, int, int, float), dict}] The state tuple has the following items:
1. the string ‘MT19937’, specifying the Mersenne Twister algorithm.
2. a 1-D array of 624 unsigned integers keys.
3. an integer pos.
4. an integer has_gauss.
5. a float cached_gaussian.
If state is a dictionary, it is directly set using the BitGenerators state property.

Returns
out

[None] Returns ‘None’ on success.
See also:

get_state

Notes

set_state and get_state are not needed to work with any of the random distributions in NumPy. If the
internal state is manually altered, the user should know exactly what he/she is doing.
For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some
information about the cached Gaussian value: state = ('MT19937', keys, pos).

312 1. Python API

NumPy Reference, Release 2.2.0

References

[1]
random.shuffle(x)

Modify a sequence in-place by shuffling its contents.
This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is
changed but their contents remains the same.

Note: New code should use the shufflemethod of a Generator instance instead; please see the Quick start.

Parameters
x

[ndarray or MutableSequence] The array, list or mutable sequence to be shuffled.
Returns

None

See also:

random.Generator.shuffle
which should be used for new code.

Examples

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8] # random

Multi-dimensional arrays are only shuffled along the first axis:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5], # random

[6, 7, 8],
[0, 1, 2]])

random.standard_cauchy(size=None)
Draw samples from a standard Cauchy distribution with mode = 0.
Also known as the Lorentz distribution.

Note: New code should use the standard_cauchy method of a Generator instance instead; please see
the Quick start.

Parameters

1.1. NumPy’s module structure 313

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
samples

[ndarray or scalar] The drawn samples.

See also:

random.Generator.standard_cauchy
which should be used for new code.

Notes

The probability density function for the full Cauchy distribution is

P (x;x0, γ) =
1

πγ
[
1 + (x−x0

γ)2
]

and the Standard Cauchy distribution just sets x0 = 0 and γ = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral
line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x
axis.
When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distri-
bution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like
a Gaussian distribution, but with heavier tails.

References

[1], [2], [3]

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
>>> plt.show()

random.standard_exponential(size=None)
Draw samples from the standard exponential distribution.
standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Note: New code should use the standard_exponentialmethod of a Generator instance instead; please
see the Quick start.

Parameters

314 1. Python API

NumPy Reference, Release 2.2.0

20 10 0 10 20
0

20000

40000

60000

80000

100000

120000

140000

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
out

[float or ndarray] Drawn samples.

See also:

random.Generator.standard_exponential
which should be used for new code.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000))

random.standard_gamma(shape, size=None)
Draw samples from a standard Gamma distribution.
Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”) and
scale=1.

Note: New code should use the standard_gamma method of a Generator instance instead; please see the
Quick start.

Parameters
shape

[float or array_like of floats] Parameter, must be non-negative.

1.1. NumPy’s module structure 315

NumPy Reference, Release 2.2.0

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if shape
is a scalar. Otherwise, np.array(shape).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.

See also:

scipy.stats.gamma
probability density function, distribution or cumulative density function, etc.

random.Generator.standard_gamma
which should be used for new code.

Notes

The probability density for the Gamma distribution is

p(x) = xk−1 e−x/θ

θkΓ(k)
,

where k is the shape and θ the scale, and Γ is the Gamma function.
The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width
>>> s = np.random.standard_gamma(shape, 1000000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, density=True)
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r')
>>> plt.show()

316 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma

NumPy Reference, Release 2.2.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

random.standard_normal(size=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).

Note: New code should use the standard_normalmethod of a Generator instance instead; please see the
Quick start.

Parameters
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

Returns
out

[float or ndarray] A floating-point array of shape size of drawn samples, or a single sample
if size was not specified.

See also:

normal
Equivalent function with additional loc and scale arguments for setting the mean and standard deviation.

random.Generator.standard_normal
which should be used for new code.

1.1. NumPy’s module structure 317

NumPy Reference, Release 2.2.0

Notes

For random samples from the normal distribution with mean mu and standard deviation sigma, use one of:

mu + sigma * np.random.standard_normal(size=...)
np.random.normal(mu, sigma, size=...)

Examples

>>> np.random.standard_normal()
2.1923875335537315 #random

>>> s = np.random.standard_normal(8000)
>>> s
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random

-0.38672696, -0.4685006]) # random
>>> s.shape
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2))
>>> s.shape
(3, 4, 2)

Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random

[0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random

random.standard_t(df, size=None)
Draw samples from a standard Student’s t distribution with df degrees of freedom.
A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

Note: New code should use the standard_t method of a Generator instance instead; please see the Quick
start.

Parameters
df

[float or array_like of floats] Degrees of freedom, must be > 0.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if df is a
scalar. Otherwise, np.array(df).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribution.

See also:

318 1. Python API

NumPy Reference, Release 2.2.0

random.Generator.standard_t
which should be used for new code.

Notes

The probability density function for the t distribution is

P (x, df) =
Γ(df+1

2)
√
πdfΓ(df2)

(
1 +

x2

df

)−(df+1)/2

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.
The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

References

[1], [2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in kilojoules (kJ) is:

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ? Our null hypothesis will
be the absence of deviation, and the alternate hypothesis will be the presence of an effect that could be either
positive or negative, hence making our test 2-tailed.
Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees of freedom.
We set our significance level to 95% and compute the t statistic using the empirical mean and empirical standard
deviation of our intake. We use a ddof of 1 to base the computation of our empirical standard deviation on an
unbiased estimate of the variance (note: the final estimate is not unbiased due to the concave nature of the square
root).

>>> np.mean(intake)
6753.636363636364
>>> intake.std(ddof=1)
1142.1232221373727
>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
>>> t
-2.8207540608310198

We draw 1000000 samples from Student’s t distribution with the adequate degrees of freedom.

>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_t(10, size=1000000)
>>> h = plt.hist(s, bins=100, density=True)

Does our t statistic land in one of the two critical regions found at both tails of the distribution?

1.1. NumPy’s module structure 319

NumPy Reference, Release 2.2.0

>>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
0.018318 #random < 0.05, statistic is in critical region

The probability value for this 2-tailed test is about 1.83%, which is lower than the 5% pre-determined significance
threshold.
Therefore, the probability of observing values as extreme as our intake conditionally on the null hypothesis being
true is too low, and we reject the null hypothesis of no deviation.

15 10 5 0 5 10 15
0.0

0.1

0.2

0.3

0.4

random.triangular(left, mode, right, size=None)
Draw samples from the triangular distribution over the interval [left, right].
The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Note: New code should use the triangular method of a Generator instance instead; please see the Quick
start.

Parameters
left

[float or array_like of floats] Lower limit.
mode

[float or array_like of floats] The value where the peak of the distribution occurs. The value
must fulfill the condition left <= mode <= right.

right
[float or array_like of floats] Upper limit, must be larger than left.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m *
n * k samples are drawn. If size is None (default), a single value is returned if left, mode,
and right are all scalars. Otherwise, np.broadcast(left, mode, right).size
samples are drawn.

320 1. Python API

NumPy Reference, Release 2.2.0

Returns
out

[ndarray or scalar] Drawn samples from the parameterized triangular distribution.

See also:

random.Generator.triangular
which should be used for new code.

Notes

The probability density function for the triangular distribution is

P (x; l,m, r) =

2(x−l)

(r−l)(m−l) for l ≤ x ≤ m,
2(r−x)

(r−l)(r−m) form ≤ x ≤ r,

0 otherwise.

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but
some knowledge of the limits and mode exists. Often it is used in simulations.

References

[1]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
... density=True)
>>> plt.show()

2 0 2 4 6 8
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

1.1. NumPy’s module structure 321

NumPy Reference, Release 2.2.0

random.uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.
Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uniform.

Note: New code should use the uniformmethod of a Generator instance instead; please see the Quick start.

Parameters
low

[float or array_like of floats, optional] Lower boundary of the output interval. All values gen-
erated will be greater than or equal to low. The default value is 0.

high
[float or array_like of floats] Upper boundary of the output interval. All values generated will
be less than or equal to high. The high limit may be included in the returned array of floats due
to floating-point rounding in the equation low + (high-low) * random_sample().
The default value is 1.0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if low
and high are both scalars. Otherwise, np.broadcast(low, high).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized uniform distribution.

See also:

randint
Discrete uniform distribution, yielding integers.

random_integers
Discrete uniform distribution over the closed interval [low, high].

random_sample
Floats uniformly distributed over [0, 1).

random
Alias for random_sample.

rand
Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2 array of
floats, uniformly distributed over [0, 1).

random.Generator.uniform
which should be used for new code.

322 1. Python API

NumPy Reference, Release 2.2.0

Notes

The probability density function of the uniform distribution is

p(x) =
1

b− a

anywhere within the interval [a, b), and zero elsewhere.
When high == low, values of low will be returned. If high < low, the results are officially undefined and may
eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality
condition. The high limit may be included in the returned array of floats due to floating-point rounding in the
equation low + (high-low) * random_sample(). For example:

>>> x = np.float32(5*0.99999999)
>>> x
np.float32(5.0)

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True
>>> np.all(s < 0)
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, density=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

random.vonmises(mu, kappa, size=None)
Draw samples from a von Mises distribution.
Samples are drawn from a von Mises distribution with specified mode (mu) and concentration (kappa), on the
interval [-pi, pi].
The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution
on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Note: New code should use the vonmises method of a Generator instance instead; please see the Quick
start.

Parameters
mu

[float or array_like of floats] Mode (“center”) of the distribution.

1.1. NumPy’s module structure 323

NumPy Reference, Release 2.2.0

1.0 0.8 0.6 0.4 0.2 0.0
0.0

0.2

0.4

0.6

0.8

1.0

kappa
[float or array_like of floats] Concentration of the distribution, has to be >=0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mu and
kappa are both scalars. Otherwise, np.broadcast(mu, kappa).size samples are
drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized von Mises distribution.

See also:

scipy.stats.vonmises
probability density function, distribution, or cumulative density function, etc.

random.Generator.vonmises
which should be used for new code.

Notes

The probability density for the von Mises distribution is

p(x) =
eκcos(x−µ)

2πI0(κ)
,

where µ is the mode and κ the concentration, and I0(κ) is the modified Bessel function of order 0.
The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory,
aerodynamics, fluid mechanics, and philosophy of science.

324 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and concentration
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import i0
>>> plt.hist(s, 50, density=True)
>>> x = np.linspace(-np.pi, np.pi, num=51)
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
>>> plt.plot(x, y, linewidth=2, color='r')
>>> plt.show()

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

random.wald(mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.
As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.
The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Note: New code should use the wald method of a Generator instance instead; please see the Quick start.

Parameters

1.1. NumPy’s module structure 325

NumPy Reference, Release 2.2.0

mean
[float or array_like of floats] Distribution mean, must be > 0.

scale
[float or array_like of floats] Scale parameter, must be > 0.

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if mean and
scale are both scalars. Otherwise, np.broadcast(mean, scale).size samples
are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Wald distribution.

See also:

random.Generator.wald
which should be used for new code.

Notes

The probability density function for the Wald distribution is

P (x;mean, scale) =

√
scale

2πx3
e

−scale(x−mean)2

2·mean2x

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

References

[1], [2], [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
>>> plt.show()

random.weibull(a, size=None)
Draw samples from a Weibull distribution.
Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

X = (−ln(U))1/a

Here, U is drawn from the uniform distribution over (0,1].
The more common 2-parameter Weibull, including a scale parameter λ is just X = λ(−ln(U))1/a.

326 1. Python API

NumPy Reference, Release 2.2.0

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

Note: New code should use the weibullmethod of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Shape parameter of the distribution. Must be nonnegative.
size

[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:

scipy.stats.weibull_max
scipy.stats.weibull_min
scipy.stats.genextreme
gumbel
random.Generator.weibull

which should be used for new code.

1.1. NumPy’s module structure 327

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme

NumPy Reference, Release 2.2.0

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.
The probability density for the Weibull distribution is

p(x) =
a

λ
(
x

λ
)a−1e−(x/λ)a ,

where a is the shape and λ the scale.
The function has its peak (the mode) at λ(a−1

a)1/a.
When a = 1, the Weibull distribution reduces to the exponential distribution.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> x = np.arange(1,100.)/50.
>>> def weib(x,n,a):
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
>>> x = np.arange(1,100.)/50.
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

random.zipf(a, size=None)
Draw samples from a Zipf distribution.
Samples are drawn from a Zipf distribution with specified parameter a > 1.
The Zipf distribution (also known as the zeta distribution) is a discrete probability distribution that satisfies Zipf’s
law: the frequency of an item is inversely proportional to its rank in a frequency table.

Note: New code should use the zipf method of a Generator instance instead; please see the Quick start.

Parameters
a

[float or array_like of floats] Distribution parameter. Must be greater than 1.

328 1. Python API

NumPy Reference, Release 2.2.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

50

100

150

200

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if a is a
scalar. Otherwise, np.array(a).size samples are drawn.

Returns
out

[ndarray or scalar] Drawn samples from the parameterized Zipf distribution.

See also:

scipy.stats.zipf
probability density function, distribution, or cumulative density function, etc.

random.Generator.zipf
which should be used for new code.

Notes

The probability mass function (PMF) for the Zipf distribution is

p(k) =
k−a

ζ(a)
,

for integers k ≥ 1, where ζ is the Riemann Zeta function.
It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample
of a language is inversely proportional to its rank in the frequency table.

1.1. NumPy’s module structure 329

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf

NumPy Reference, Release 2.2.0

References

[1]

Examples

Draw samples from the distribution:

>>> a = 4.0
>>> n = 20000
>>> s = np.random.zipf(a, n)

Display the histogram of the samples, along with the expected histogram based on the probability density function:

>>> import matplotlib.pyplot as plt
>>> from scipy.special import zeta

bincount provides a fast histogram for small integers.

>>> count = np.bincount(s)
>>> k = np.arange(1, s.max() + 1)

>>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
>>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
... label='expected count')
>>> plt.semilogy()
>>> plt.grid(alpha=0.4)
>>> plt.legend()
>>> plt.title(f'Zipf sample, a={a}, size={n}')
>>> plt.show()

0 5 10 15 20 25 30

10 1

100

101

102

103

104

Zipf sample, a=4.0, size=20000

expected count
sample count

330 1. Python API

NumPy Reference, Release 2.2.0

Bit generators

The random values produced by Generator originate in a BitGenerator. The BitGenerators do not directly provide
random numbers and only contains methods used for seeding, getting or setting the state, jumping or advancing the state,
and for accessing low-level wrappers for consumption by code that can efficiently access the functions provided, e.g.,
numba.

Supported BitGenerators

The included BitGenerators are:
• PCG-64 - The default. A fast generator that can be advanced by an arbitrary amount. See the documentation for
advance. PCG-64 has a period of 2128. See the PCG author’s page for more details about this class of PRNG.

• PCG-64 DXSM - An upgraded version of PCG-64 with better statistical properties in parallel contexts. See Up-
grading PCG64 with PCG64DXSM for more information on these improvements.

• MT19937 - The standard Python BitGenerator. Adds a MT19937.jumped function that returns a new generator
with state as-if 2128 draws have been made.

• Philox - A counter-based generator capable of being advanced an arbitrary number of steps or generating inde-
pendent streams. See the Random123 page for more details about this class of bit generators.

• SFC64 - A fast generator based on random invertible mappings. Usually the fastest generator of the four. See the
SFC author’s page for (a little) more detail.

BitGenerator([seed]) Base Class for generic BitGenerators, which provide a
stream of random bits based on different algorithms.

class numpy.random.BitGenerator(seed=None)
Base Class for generic BitGenerators, which provide a stream of random bits based on different algorithms. Must
be overridden.

Parameters
seed

[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener-
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int
or array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial BitGenerator state. One may also pass in a SeedSequence instance. All integer
values must be non-negative.

See also:

SeedSequence

Attributes
lock

[threading.Lock] Lock instance that is shared so that the same BitGenerator can be used in
multiple Generators without corrupting the state. Code that generates values from a bit gener-
ator should hold the bit generator’s lock.

1.1. NumPy’s module structure 331

https://numba.pydata.org
https://www.pcg-random.org/
https://www.deshawresearch.com/resources_random123.html
https://pracrand.sourceforge.net/RNG_engines.txt

NumPy Reference, Release 2.2.0

Methods

random_raw(self[, size]) Return randoms as generated by the underlying Bit-
Generator

spawn(n_children) Create new independent child bit generators.

method
random.BitGenerator.random_raw(self, size=None)

Return randoms as generated by the underlying BitGenerator
Parameters

size
[int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. Default is None, in which case a single value is returned.

output
[bool, optional] Output values. Used for performance testing since the generated values are
not returned.

Returns
out
[uint or ndarray] Drawn samples.

Notes

This method directly exposes the raw underlying pseudo-random number generator. All values are returned
as unsigned 64-bit values irrespective of the number of bits produced by the PRNG.
See the class docstring for the number of bits returned.

method
random.BitGenerator.spawn(n_children)

Create new independent child bit generators.
See SeedSequence spawning for additional notes on spawning children. Some bit generators also implement
jumped as a different approach for creating independent streams.
New in version 1.25.0.

Parameters
n_children
[int]

Returns
child_bit_generators
[list of BitGenerators]

Raises
TypeError
When the underlying SeedSequence does not implement spawning.

See also:

332 1. Python API

NumPy Reference, Release 2.2.0

random.Generator.spawn, random.SeedSequence.spawn
Equivalent method on the generator and seed sequence.

Mersenne Twister (MT19937)

class numpy.random.MT19937(seed=None)
Container for the Mersenne Twister pseudo-random number generator.

Parameters
seed

[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener-
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial BitGenerator state. One may also pass in a SeedSequence instance.

Notes

MT19937 provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit
integers [1]. These are not directly consumable in Python and must be consumed by a Generator or similar
object that supports low-level access.
The Python stdlib module “random” also contains a Mersenne Twister pseudo-random number generator.
State and Seeding
The MT19937 state vector consists of a 624-element array of 32-bit unsigned integers plus a single integer value
between 0 and 624 that indexes the current position within the main array.
The input seed is processed by SeedSequence to fill the whole state. The first element is reset such that only its
most significant bit is set.
Parallel Features
The preferred way to use a BitGenerator in parallel applications is to use the SeedSequence.spawn method
to obtain entropy values, and to use these to generate new BitGenerators:

>>> from numpy.random import Generator, MT19937, SeedSequence
>>> sg = SeedSequence(1234)
>>> rg = [Generator(MT19937(s)) for s in sg.spawn(10)]

Another method is to use MT19937.jumped which advances the state as-if 2128 random numbers have been
generated ([1], [2]). This allows the original sequence to be split so that distinct segments can be used in each
worker process. All generators should be chained to ensure that the segments come from the same sequence.

>>> from numpy.random import Generator, MT19937, SeedSequence
>>> sg = SeedSequence(1234)
>>> bit_generator = MT19937(sg)
>>> rg = []
>>> for _ in range(10):
... rg.append(Generator(bit_generator))
... # Chain the BitGenerators
... bit_generator = bit_generator.jumped()

Compatibility Guarantee
MT19937 makes a guarantee that a fixed seed will always produce the same random integer stream.

1.1. NumPy’s module structure 333

NumPy Reference, Release 2.2.0

References

[1], [2]
Attributes

lock: threading.Lock
Lock instance that is shared so that the same bit git generator can be used inmultiple Generators
without corrupting the state. Code that generates values from a bit generator should hold the
bit generator’s lock.

State

state Get or set the PRNG state

attribute
random.MT19937.state

Get or set the PRNG state
Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Parallel generation

jumped([jumps]) Returns a new bit generator with the state jumped

method
random.MT19937.jumped(jumps=1)

Returns a new bit generator with the state jumped
The state of the returned bit generator is jumped as-if 2**(128 * jumps) random numbers have been generated.

Parameters
jumps

[integer, positive] Number of times to jump the state of the bit generator returned
Returns

bit_generator
[MT19937] New instance of generator jumped iter times

334 1. Python API

NumPy Reference, Release 2.2.0

Notes

The jump step is computed using a modified version of Matsumoto’s implementation of Horner’s method. The
step polynomial is precomputed to perform 2**128 steps. The jumped state has been verified to match the state
produced using Matsumoto’s original code.

References

[1], [2]

Extending

cffi CFFI interface
ctypes ctypes interface

attribute
random.MT19937.cffi

CFFI interface
Returns

interface
[namedtuple] Named tuple containing CFFI wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

attribute
random.MT19937.ctypes

ctypes interface
Returns

interface
[namedtuple] Named tuple containing ctypes wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

1.1. NumPy’s module structure 335

NumPy Reference, Release 2.2.0

Permuted congruential generator (64-bit, PCG64)

class numpy.random.PCG64(seed=None)
BitGenerator for the PCG-64 pseudo-random number generator.

Parameters
seed

[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener-
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial BitGenerator state. One may also pass in a SeedSequence instance.

Notes

PCG-64 is a 128-bit implementation of O’Neill’s permutation congruential generator ([1], [2]). PCG-64 has a
period of 2128 and supports advancing an arbitrary number of steps as well as 2127 streams. The specific member
of the PCG family that we use is PCG XSL RR 128/64 as described in the paper ([2]).
PCG64 provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit integers.
These are not directly consumable in Python and must be consumed by a Generator or similar object that
supports low-level access.
Supports the method advance to advance the RNG an arbitrary number of steps. The state of the PCG-64 RNG
is represented by 2 128-bit unsigned integers.
State and Seeding
The PCG64 state vector consists of 2 unsigned 128-bit values, which are represented externally as Python ints.
One is the state of the PRNG, which is advanced by a linear congruential generator (LCG). The second is a fixed
odd increment used in the LCG.
The input seed is processed by SeedSequence to generate both values. The increment is not independently
settable.
Parallel Features
The preferred way to use a BitGenerator in parallel applications is to use the SeedSequence.spawn method
to obtain entropy values, and to use these to generate new BitGenerators:

>>> from numpy.random import Generator, PCG64, SeedSequence
>>> sg = SeedSequence(1234)
>>> rg = [Generator(PCG64(s)) for s in sg.spawn(10)]

Compatibility Guarantee
PCG64 makes a guarantee that a fixed seed will always produce the same random integer stream.

336 1. Python API

NumPy Reference, Release 2.2.0

References

[1], [2]

State

state Get or set the PRNG state

attribute
random.PCG64.state

Get or set the PRNG state
Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Parallel generation

advance(delta) Advance the underlying RNG as-if delta draws have oc-
curred.

jumped([jumps]) Returns a new bit generator with the state jumped.

method
random.PCG64.advance(delta)

Advance the underlying RNG as-if delta draws have occurred.
Parameters

delta
[integer, positive] Number of draws to advance the RNG. Must be less than the size state
variable in the underlying RNG.

Returns
self

[PCG64] RNG advanced delta steps

Notes

Advancing a RNG updates the underlying RNG state as-if a given number of calls to the underlying RNG have
been made. In general there is not a one-to-one relationship between the number output random values from a
particular distribution and the number of draws from the core RNG. This occurs for two reasons:

• The random values are simulated using a rejection-based method and so, on average, more than one value
from the underlying RNG is required to generate an single draw.

• The number of bits required to generate a simulated value differs from the number of bits generated by the
underlying RNG. For example, two 16-bit integer values can be simulated from a single draw of a 32-bit
RNG.

1.1. NumPy’s module structure 337

NumPy Reference, Release 2.2.0

Advancing the RNG state resets any pre-computed random numbers. This is required to ensure exact reproducibil-
ity.

method
random.PCG64.jumped(jumps=1)

Returns a new bit generator with the state jumped.
Jumps the state as-if jumps * 210306068529402873165736369884012333109 random numbers have been gen-
erated.

Parameters
jumps

[integer, positive] Number of times to jump the state of the bit generator returned
Returns

bit_generator
[PCG64] New instance of generator jumped iter times

Notes

The step size is phi-1 when multiplied by 2**128 where phi is the golden ratio.

Extending

cffi CFFI interface
ctypes ctypes interface

attribute
random.PCG64.cffi

CFFI interface
Returns

interface
[namedtuple] Named tuple containing CFFI wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

attribute
random.PCG64.ctypes

ctypes interface
Returns

338 1. Python API

NumPy Reference, Release 2.2.0

interface
[namedtuple] Named tuple containing ctypes wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

Permuted congruential generator (64-bit, PCG64 DXSM)

class numpy.random.PCG64DXSM(seed=None)
BitGenerator for the PCG-64 DXSM pseudo-random number generator.

Parameters
seed

[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener-
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial BitGenerator state. One may also pass in a SeedSequence instance.

Notes

PCG-64 DXSM is a 128-bit implementation of O’Neill’s permutation congruential generator ([1], [2]). PCG-64
DXSM has a period of 2128 and supports advancing an arbitrary number of steps as well as 2127 streams. The
specific member of the PCG family that we use is PCG CM DXSM 128/64. It differs from PCG64 in that it uses
the stronger DXSM output function, a 64-bit “cheap multiplier” in the LCG, and outputs from the state before
advancing it rather than advance-then-output.
PCG64DXSM provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit
integers. These are not directly consumable in Python and must be consumed by a Generator or similar object
that supports low-level access.
Supports the method advance to advance the RNG an arbitrary number of steps. The state of the PCG-64 DXSM
RNG is represented by 2 128-bit unsigned integers.
State and Seeding
The PCG64DXSM state vector consists of 2 unsigned 128-bit values, which are represented externally as Python
ints. One is the state of the PRNG, which is advanced by a linear congruential generator (LCG). The second is a
fixed odd increment used in the LCG.
The input seed is processed by SeedSequence to generate both values. The increment is not independently
settable.
Parallel Features
The preferred way to use a BitGenerator in parallel applications is to use the SeedSequence.spawn method
to obtain entropy values, and to use these to generate new BitGenerators:

1.1. NumPy’s module structure 339

NumPy Reference, Release 2.2.0

>>> from numpy.random import Generator, PCG64DXSM, SeedSequence
>>> sg = SeedSequence(1234)
>>> rg = [Generator(PCG64DXSM(s)) for s in sg.spawn(10)]

Compatibility Guarantee
PCG64DXSM makes a guarantee that a fixed seed will always produce the same random integer stream.

References

[1], [2]

State

state Get or set the PRNG state

attribute
random.PCG64DXSM.state

Get or set the PRNG state
Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Parallel generation

advance(delta) Advance the underlying RNG as-if delta draws have oc-
curred.

jumped([jumps]) Returns a new bit generator with the state jumped.

method
random.PCG64DXSM.advance(delta)

Advance the underlying RNG as-if delta draws have occurred.
Parameters

delta
[integer, positive] Number of draws to advance the RNG. Must be less than the size state
variable in the underlying RNG.

Returns
self

[PCG64] RNG advanced delta steps

340 1. Python API

NumPy Reference, Release 2.2.0

Notes

Advancing a RNG updates the underlying RNG state as-if a given number of calls to the underlying RNG have
been made. In general there is not a one-to-one relationship between the number output random values from a
particular distribution and the number of draws from the core RNG. This occurs for two reasons:

• The random values are simulated using a rejection-based method and so, on average, more than one value
from the underlying RNG is required to generate an single draw.

• The number of bits required to generate a simulated value differs from the number of bits generated by the
underlying RNG. For example, two 16-bit integer values can be simulated from a single draw of a 32-bit
RNG.

Advancing the RNG state resets any pre-computed random numbers. This is required to ensure exact reproducibil-
ity.

method
random.PCG64DXSM.jumped(jumps=1)

Returns a new bit generator with the state jumped.
Jumps the state as-if jumps * 210306068529402873165736369884012333109 random numbers have been gen-
erated.

Parameters
jumps

[integer, positive] Number of times to jump the state of the bit generator returned
Returns

bit_generator
[PCG64DXSM] New instance of generator jumped iter times

Notes

The step size is phi-1 when multiplied by 2**128 where phi is the golden ratio.

Extending

cffi CFFI interface
ctypes ctypes interface

attribute
random.PCG64DXSM.cffi

CFFI interface
Returns

interface
[namedtuple] Named tuple containing CFFI wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers

1.1. NumPy’s module structure 341

NumPy Reference, Release 2.2.0

• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

attribute
random.PCG64DXSM.ctypes

ctypes interface
Returns

interface
[namedtuple] Named tuple containing ctypes wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

Philox counter-based RNG

class numpy.random.Philox(seed=None, counter=None, key=None)
Container for the Philox (4x64) pseudo-random number generator.

Parameters
seed

[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener-
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial BitGenerator state. One may also pass in a SeedSequence instance.

counter
[{None, int, array_like}, optional] Counter to use in the Philox state. Can be either a Python
int (long in 2.x) in [0, 2**256) or a 4-element uint64 array. If not provided, the RNG is
initialized at 0.

key
[{None, int, array_like}, optional] Key to use in the Philox state. Unlike seed, the value in
key is directly set. Can be either a Python int in [0, 2**128) or a 2-element uint64 array. key
and seed cannot both be used.

342 1. Python API

NumPy Reference, Release 2.2.0

Notes

Philox is a 64-bit PRNG that uses a counter-based design based on weaker (and faster) versions of cryptographic
functions [1]. Instances using different values of the key produce independent sequences. Philox has a period of
2256 − 1 and supports arbitrary advancing and jumping the sequence in increments of 2128. These features allow
multiple non-overlapping sequences to be generated.
Philox provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit integers.
These are not directly consumable in Python and must be consumed by a Generator or similar object that
supports low-level access.
State and Seeding
The Philox state vector consists of a 256-bit value encoded as a 4-element uint64 array and a 128-bit value
encoded as a 2-element uint64 array. The former is a counter which is incremented by 1 for every 4 64-bit ran-
doms produced. The second is a key which determined the sequence produced. Using different keys produces
independent sequences.
The input seed is processed by SeedSequence to generate the key. The counter is set to 0.
Alternately, one can omit the seed parameter and set the key and counter directly.
Parallel Features
The preferred way to use a BitGenerator in parallel applications is to use the SeedSequence.spawn method
to obtain entropy values, and to use these to generate new BitGenerators:

>>> from numpy.random import Generator, Philox, SeedSequence
>>> sg = SeedSequence(1234)
>>> rg = [Generator(Philox(s)) for s in sg.spawn(10)]

Philox can be used in parallel applications by calling the jumpedmethod to advance the state as-if 2128 random
numbers have been generated. Alternatively, advance can be used to advance the counter for any positive step
in [0, 2**256). When using jumped, all generators should be chained to ensure that the segments come from the
same sequence.

>>> from numpy.random import Generator, Philox
>>> bit_generator = Philox(1234)
>>> rg = []
>>> for _ in range(10):
... rg.append(Generator(bit_generator))
... bit_generator = bit_generator.jumped()

Alternatively, Philox can be used in parallel applications by using a sequence of distinct keys where each instance
uses different key.

>>> key = 2**96 + 2**33 + 2**17 + 2**9
>>> rg = [Generator(Philox(key=key+i)) for i in range(10)]

Compatibility Guarantee
Philox makes a guarantee that a fixed seed will always produce the same random integer stream.

1.1. NumPy’s module structure 343

NumPy Reference, Release 2.2.0

References

[1]

Examples

>>> from numpy.random import Generator, Philox
>>> rg = Generator(Philox(1234))
>>> rg.standard_normal()
0.123 # random

Attributes
lock: threading.Lock

Lock instance that is shared so that the same bit git generator can be used inmultiple Generators
without corrupting the state. Code that generates values from a bit generator should hold the
bit generator’s lock.

State

state Get or set the PRNG state

attribute
random.Philox.state

Get or set the PRNG state
Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Parallel generation

advance(delta) Advance the underlying RNG as-if delta draws have oc-
curred.

jumped([jumps]) Returns a new bit generator with the state jumped

method
random.Philox.advance(delta)

Advance the underlying RNG as-if delta draws have occurred.
Parameters

delta
[integer, positive] Number of draws to advance the RNG. Must be less than the size state
variable in the underlying RNG.

Returns

344 1. Python API

NumPy Reference, Release 2.2.0

self
[Philox] RNG advanced delta steps

Notes

Advancing a RNG updates the underlying RNG state as-if a given number of calls to the underlying RNG have
been made. In general there is not a one-to-one relationship between the number output random values from a
particular distribution and the number of draws from the core RNG. This occurs for two reasons:

• The random values are simulated using a rejection-based method and so, on average, more than one value
from the underlying RNG is required to generate an single draw.

• The number of bits required to generate a simulated value differs from the number of bits generated by the
underlying RNG. For example, two 16-bit integer values can be simulated from a single draw of a 32-bit
RNG.

Advancing the RNG state resets any pre-computed random numbers. This is required to ensure exact reproducibil-
ity.

method
random.Philox.jumped(jumps=1)

Returns a new bit generator with the state jumped
The state of the returned bit generator is jumped as-if (2**128) * jumps random numbers have been generated.

Parameters
jumps

[integer, positive] Number of times to jump the state of the bit generator returned
Returns

bit_generator
[Philox] New instance of generator jumped iter times

Extending

cffi CFFI interface
ctypes ctypes interface

attribute
random.Philox.cffi

CFFI interface
Returns

interface
[namedtuple] Named tuple containing CFFI wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers

1.1. NumPy’s module structure 345

NumPy Reference, Release 2.2.0

• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

attribute
random.Philox.ctypes

ctypes interface
Returns

interface
[namedtuple] Named tuple containing ctypes wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

SFC64 Small Fast Chaotic PRNG

class numpy.random.SFC64(seed=None)
BitGenerator for Chris Doty-Humphrey’s Small Fast Chaotic PRNG.

Parameters
seed

[{None, int, array_like[ints], SeedSequence}, optional] A seed to initialize the BitGener-
ator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or
array_like[ints] is passed, then it will be passed to SeedSequence to derive the
initial BitGenerator state. One may also pass in a SeedSequence instance.

Notes

SFC64 is a 256-bit implementation of Chris Doty-Humphrey’s Small Fast Chaotic PRNG ([1]). SFC64 has a few
different cycles that one might be on, depending on the seed; the expected period will be about 2255 ([2]). SFC64
incorporates a 64-bit counter which means that the absolute minimum cycle length is 264 and that distinct seeds
will not run into each other for at least 264 iterations.
SFC64 provides a capsule containing function pointers that produce doubles, and unsigned 32 and 64- bit integers.
These are not directly consumable in Python and must be consumed by a Generator or similar object that
supports low-level access.
State and Seeding
The SFC64 state vector consists of 4 unsigned 64-bit values. The last is a 64-bit counter that increments by 1 each
iteration.
The input seed is processed by SeedSequence to generate the first 3 values, then the SFC64 algorithm is iterated
a small number of times to mix.
Compatibility Guarantee
SFC64 makes a guarantee that a fixed seed will always produce the same random integer stream.

346 1. Python API

NumPy Reference, Release 2.2.0

References

[1], [2]

State

state Get or set the PRNG state

attribute
random.SFC64.state

Get or set the PRNG state
Returns

state
[dict] Dictionary containing the information required to describe the state of the PRNG

Extending

cffi CFFI interface
ctypes ctypes interface

attribute
random.SFC64.cffi

CFFI interface
Returns

interface
[namedtuple] Named tuple containing CFFI wrapper
• state_address - Memory address of the state struct
• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

attribute
random.SFC64.ctypes

ctypes interface
Returns

interface
[namedtuple] Named tuple containing ctypes wrapper
• state_address - Memory address of the state struct

1.1. NumPy’s module structure 347

NumPy Reference, Release 2.2.0

• state - pointer to the state struct
• next_uint64 - function pointer to produce 64 bit integers
• next_uint32 - function pointer to produce 32 bit integers
• next_double - function pointer to produce doubles
• bitgen - pointer to the bit generator struct

Seeding and entropy

A BitGenerator provides a stream of random values. In order to generate reproducible streams, BitGenerators support
setting their initial state via a seed. All of the provided BitGenerators will take an arbitrary-sized non-negative integer,
or a list of such integers, as a seed. BitGenerators need to take those inputs and process them into a high-quality internal
state for the BitGenerator. All of the BitGenerators in numpy delegate that task to SeedSequence, which uses hashing
techniques to ensure that even low-quality seeds generate high-quality initial states.

from numpy.random import PCG64

bg = PCG64(12345678903141592653589793)

SeedSequence is designed to be convenient for implementing best practices. We recommend that a stochastic pro-
gram defaults to using entropy from the OS so that each run is different. The program should print out or log that entropy.
In order to reproduce a past value, the program should allow the user to provide that value through some mechanism, a
command-line argument is common, so that the user can then re-enter that entropy to reproduce the result. SeedSe-
quence can take care of everything except for communicating with the user, which is up to you.

from numpy.random import PCG64, SeedSequence

Get the user's seed somehow, maybe through `argparse`.
If the user did not provide a seed, it should return `None`.
seed = get_user_seed()
ss = SeedSequence(seed)
print('seed = {}'.format(ss.entropy))
bg = PCG64(ss)

We default to using a 128-bit integer using entropy gathered from the OS. This is a good amount of entropy to initialize
all of the generators that we have in numpy. We do not recommend using small seeds below 32 bits for general use. Using
just a small set of seeds to instantiate larger state spaces means that there are some initial states that are impossible to
reach. This creates some biases if everyone uses such values.
There will not be anything wrong with the results, per se; even a seed of 0 is perfectly fine thanks to the processing that
SeedSequence does. If you just need some fixed value for unit tests or debugging, feel free to use whatever seed you
like. But if you want to make inferences from the results or publish them, drawing from a larger set of seeds is good
practice.
If you need to generate a good seed “offline”, then SeedSequence().entropy or using secrets.
randbits(128) from the standard library are both convenient ways.
If you need to run several stochastic simulations in parallel, best practice is to construct a random generator instance for
each simulation. To make sure that the random streams have distinct initial states, you can use the spawn method of
SeedSequence. For instance, here we construct a list of 12 instances:

from numpy.random import PCG64, SeedSequence

High quality initial entropy

(continues on next page)

348 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
entropy = 0x87351080e25cb0fad77a44a3be03b491
base_seq = SeedSequence(entropy)
child_seqs = base_seq.spawn(12) # a list of 12 SeedSequences
generators = [PCG64(seq) for seq in child_seqs]

If you already have an initial random generator instance, you can shorten the above by using the spawn method:

from numpy.random import PCG64, SeedSequence
High quality initial entropy
entropy = 0x87351080e25cb0fad77a44a3be03b491
base_bitgen = PCG64(entropy)
generators = base_bitgen.spawn(12)

An alternative way is to use the fact that a SeedSequence can be initialized by a tuple of elements. Here we use a base
entropy value and an integer worker_id

from numpy.random import PCG64, SeedSequence

High quality initial entropy
entropy = 0x87351080e25cb0fad77a44a3be03b491
sequences = [SeedSequence((entropy, worker_id)) for worker_id in range(12)]
generators = [PCG64(seq) for seq in sequences]

Note that the sequences produced by the latter method will be distinct from those constructed via spawn.

SeedSequence([entropy, spawn_key, pool_size]) SeedSequence mixes sources of entropy in a reproducible
way to set the initial state for independent and very prob-
ably non-overlapping BitGenerators.

class numpy.random.SeedSequence(entropy=None, *, spawn_key=(), pool_size=4)
SeedSequence mixes sources of entropy in a reproducible way to set the initial state for independent and very
probably non-overlapping BitGenerators.
Once the SeedSequence is instantiated, you can call the generate_statemethod to get an appropriately sized
seed. Calling spawn(n) will create n SeedSequences that can be used to seed independent BitGenerators, i.e.
for different threads.

Parameters
entropy

[{None, int, sequence[int]}, optional] The entropy for creating a SeedSequence. All inte-
ger values must be non-negative.

spawn_key
[{(), sequence[int]}, optional] An additional source of entropy based on the position of this
SeedSequence in the tree of such objects created with the SeedSequence.spawn
method. Typically, only SeedSequence.spawn will set this, and users will not.

pool_size
[{int}, optional] Size of the pooled entropy to store. Default is 4 to give a 128-bit entropy pool.
8 (for 256 bits) is another reasonable choice if working with larger PRNGs, but there is very
little to be gained by selecting another value.

n_children_spawned
[{int}, optional] The number of children already spawned. Only pass this if reconstructing a
SeedSequence from a serialized form.

1.1. NumPy’s module structure 349

NumPy Reference, Release 2.2.0

Notes

Best practice for achieving reproducible bit streams is to use the default None for the initial entropy, and then use
SeedSequence.entropy to log/pickle the entropy for reproducibility:

>>> sq1 = np.random.SeedSequence()
>>> sq1.entropy
243799254704924441050048792905230269161 # random
>>> sq2 = np.random.SeedSequence(sq1.entropy)
>>> np.all(sq1.generate_state(10) == sq2.generate_state(10))
True

Attributes
entropy
n_children_spawned
pool
pool_size
spawn_key
state

Methods

generate_state(n_words[, dtype]) Return the requested number of words for PRNG
seeding.

spawn(n_children) Spawn a number of child SeedSequence s by ex-
tending the spawn_key.

method
random.SeedSequence.generate_state(n_words, dtype=np.uint32)

Return the requested number of words for PRNG seeding.
A BitGenerator should call this method in its constructor with an appropriate n_words parameter to properly
seed itself.

Parameters
n_words
[int]

dtype
[np.uint32 or np.uint64, optional] The size of each word. This should only be either uint32
or uint64. Strings (‘uint32’, ‘uint64’) are fine. Note that requesting uint64 will draw
twice as many bits as uint32 for the same n_words. This is a convenience for BitGenerators
that express their states as uint64 arrays.

Returns
state
[uint32 or uint64 array, shape=(n_words,)]

method

350 1. Python API

NumPy Reference, Release 2.2.0

random.SeedSequence.spawn(n_children)
Spawn a number of child SeedSequence s by extending the spawn_key.
See SeedSequence spawning for additional notes on spawning children.

Parameters
n_children
[int]

Returns
seqs
[list of SeedSequence s]

See also:

random.Generator.spawn, random.BitGenerator.spawn
Equivalent method on the generator and bit generator.

Upgrading PCG64 with PCG64DXSM

Uses of the PCG64 BitGenerator in a massively-parallel context have been shown to have statistical weaknesses
that were not apparent at the first release in numpy 1.17. Most users will never observe this weakness and are safe to
continue to use PCG64. We have introduced a new PCG64DXSM BitGenerator that will eventually become the new
default BitGenerator implementation used by default_rng in future releases. PCG64DXSM solves the statistical
weakness while preserving the performance and the features of PCG64.

Does this affect me?

If you
1. only use a single Generator instance,
2. only use RandomState or the functions in numpy.random,
3. only use the PCG64.jumped method to generate parallel streams,
4. explicitly use a BitGenerator other than PCG64,

then this weakness does not affect you at all. Carry on.
If you use moderate numbers of parallel streams created with default_rng or SeedSequence.spawn, in the
1000s, then the chance of observing this weakness is negligibly small. You can continue to use PCG64 comfortably.
If you use very large numbers of parallel streams, in the millions, and draw large amounts of numbers from each, then
the chance of observing this weakness can become non-negligible, if still small. An example of such a use case would
be a very large distributed reinforcement learning problem with millions of long Monte Carlo playouts each generating
billions of random number draws. Such use cases should consider using PCG64DXSM explicitly or another modern
BitGenerator like SFC64 or Philox, but it is unlikely that any old results you may have calculated are invalid. In
any case, the weakness is a kind of Birthday Paradox collision. That is, a single pair of parallel streams out of the millions,
considered together, might fail a stringent set of statistical tests of randomness. The remaining millions of streams would
all be perfectly fine, and the effect of the bad pair in the whole calculation is very likely to be swamped by the remaining
streams in most applications.

1.1. NumPy’s module structure 351

https://en.wikipedia.org/wiki/Birthday_problem

NumPy Reference, Release 2.2.0

Technical details

Like many PRNG algorithms, PCG64 is constructed from a transition function, which advances a 128-bit state, and an
output function, that mixes the 128-bit state into a 64-bit integer to be output. One of the guiding design principles of
the PCG family of PRNGs is to balance the computational cost (and pseudorandomness strength) between the transition
function and the output function. The transition function is a 128-bit linear congruential generator (LCG), which consists
of multiplying the 128-bit state with a fixed multiplication constant and then adding a user-chosen increment, in 128-bit
modular arithmetic. LCGs are well-analyzed PRNGs with known weaknesses, though 128-bit LCGs are large enough
to pass stringent statistical tests on their own, with only the trivial output function. The output function of PCG64 is
intended to patch up some of those known weaknesses by doing “just enough” scrambling of the bits to assist in the
statistical properties without adding too much computational cost.
One of these known weaknesses is that advancing the state of the LCG by steps numbering a power of two (bg.
advance(2**N)) will leave the lower N bits identical to the state that was just left. For a single stream drawn from
sequentially, this is of little consequence. The remaining 128−N bits provide plenty of pseudorandomness that will be
mixed in for any practical N that can be observed in a single stream, which is why one does not need to worry about this if
you only use a single stream in your application. Similarly, the PCG64.jumped method uses a carefully chosen number
of steps to avoid creating these collisions. However, once you start creating “randomly-initialized” parallel streams, either
using OS entropy by calling default_rng repeatedly or using SeedSequence.spawn, then we need to consider
how many lower bits need to “collide” in order to create a bad pair of streams, and then evaluate the probability of cre-
ating such a collision. Empirically, it has been determined that if one shares the lower 58 bits of state and shares an
increment, then the pair of streams, when interleaved, will fail PractRand in a reasonable amount of time, after drawing
a few gigabytes of data. Following the standard Birthday Paradox calculations for a collision of 58 bits, we can see that
we can create 229, or about half a billion, streams which is when the probability of such a collision becomes high. Half a
billion streams is quite high, and the amount of data each stream needs to draw before the statistical correlations become
apparent to even the strict PractRand tests is in the gigabytes. But this is on the horizon for very large applications like
distributed reinforcement learning. There are reasons to expect that even in these applications a collision probably will
not have a practical effect in the total result, since the statistical problem is constrained to just the colliding pair.
Now, let us consider the case when the increment is not constrained to be the same. Our implementation of PCG64
seeds both the state and the increment; that is, two calls to default_rng (almost certainly) have different states and
increments. Upon our first release, we believed that having the seeded increment would provide a certain amount of extra
protection, that one would have to be “close” in both the state space and increment space in order to observe correlations
(PractRand failures) in a pair of streams. If that were true, then the “bottleneck” for collisions would be the 128-
bit entropy pool size inside of SeedSequence (and 128-bit collisions are in the “preposterously unlikely” category).
Unfortunately, this is not true.
One of the known properties of an LCG is that different increments create distinct streams, but with a known relationship.
Each LCG has an orbit that traverses all 2128 different 128-bit states. Two LCGs with different increments are related
in that one can “rotate” the orbit of the first LCG (advance it by a number of steps that we can compute from the two
increments) such that then both LCGs will always then have the same state, up to an additive constant and maybe an
inversion of the bits. If you then iterate both streams in lockstep, then the states will always remain related by that
same additive constant (and the inversion, if present). Recall that PCG64 is constructed from both a transition function
(the LCG) and an output function. It was expected that the scrambling effect of the output function would have been
strong enough to make the distinct streams practically independent (i.e. “passing the PractRand tests”) unless the two
increments were pathologically related to each other (e.g. 1 and 3). The output function XSL-RR of the then-standard
PCG algorithm that we implemented in PCG64 turns out to be too weak to cover up for the 58-bit collision of the
underlying LCG that we described above. For any given pair of increments, the size of the “colliding” space of states is
the same, so for this weakness, the extra distinctness provided by the increments does not translate into extra protection
from statistical correlations that PractRand can detect.
Fortunately, strengthening the output function is able to correct this weakness and does turn the extra distinctness provided
by differing increments into additional protection from these low-bit collisions. To the PCG author’s credit, she had
developed a stronger output function in response to related discussions during the long birth of the new BitGenerator
system. We NumPy developers chose to be “conservative” and use the XSL-RR variant that had undergone a longer
period of testing at that time. The DXSM output function adopts a “xorshift-multiply” construction used in strong integer

352 1. Python API

https://github.com/numpy/numpy/issues/16313
https://pracrand.sourceforge.net/
https://github.com/numpy/numpy/issues/13635#issuecomment-506088698

NumPy Reference, Release 2.2.0

hashes that has much better avalanche properties than the XSL-RR output function. While there are “pathological”
pairs of increments that induce “bad” additive constants that relate the two streams, the vast majority of pairs induce
“good” additive constants that make themerely-distinct streams of LCG states into practically-independent output streams.
Indeed, now the claim we once made about PCG64 is actually true of PCG64DXSM : collisions are possible, but both
streams have to simultaneously be both “close” in the 128 bit state space and “close” in the 127-bit increment space,
so that would be less likely than the negligible chance of colliding in the 128-bit internal SeedSequence pool. The
DXSM output function is more computationally intensive than XSL-RR, but some optimizations in the LCG more than
make up for the performance hit on most machines, so PCG64DXSM is a good, safe upgrade. There are, of course, an
infinite number of stronger output functions that one could consider, but most will have a greater computational cost, and
the DXSM output function has now received many CPU cycles of testing via PractRand at this time.

Compatibility policy

numpy.random has a somewhat stricter compatibility policy than the rest of NumPy. Users of pseudorandomness
often have use cases for being able to reproduce runs in fine detail given the same seed (so-called “stream compatibility”),
and so we try to balance those needs with the flexibility to enhance our algorithms. NEP 19 describes the evolution of
this policy.
The main kind of compatibility that we enforce is stream-compatibility from run to run under certain conditions. If you
create a Generator with the same BitGenerator, with the same seed, perform the same sequence of method calls
with the same arguments, on the same build of numpy, in the same environment, on the same machine, you should
get the same stream of numbers. Note that these conditions are very strict. There are a number of factors outside of
NumPy’s control that limit our ability to guarantee much more than this. For example, different CPUs implement floating
point arithmetic differently, and this can cause differences in certain edge cases that cascade to the rest of the stream.
Generator.multivariate_normal, for another example, uses a matrix decomposition from numpy.linalg.
Even on the same platform, a different build of numpymay use a different version of this matrix decomposition algorithm
from the LAPACK that it links to, causingGenerator.multivariate_normal to return completely different (but
equally valid!) results. We strive to prefer algorithms that are more resistant to these effects, but this is always imperfect.

Note: Most of the Generatormethods allow you to draw multiple values from a distribution as arrays. The requested
size of this array is a parameter, for the purposes of the above policy. Calling rng.random() 5 times is not guaranteed
to give the same numbers as rng.random(5). We reserve the ability to decide to use different algorithms for different-
sized blocks. In practice, this happens rarely.

Like the rest of NumPy, we generally maintain API source compatibility from version to version. If we must make an
API-breaking change, then we will only do so with an appropriate deprecation period and warnings, according to general
NumPy policy.
Breaking stream-compatibility in order to introduce new features or improve performance in Generator or de-
fault_rng will be allowed with caution. Such changes will be considered features, and as such will be no faster
than the standard release cadence of features (i.e. on X.Y releases, never X.Y.Z). Slowness will not be considered a
bug for this purpose. Correctness bug fixes that break stream-compatibility can happen on bugfix releases, per usual, but
developers should consider if they can wait until the next feature release. We encourage developers to strongly weight
user’s pain from the break in stream-compatibility against the improvements. One example of a worthwhile improvement
would be to change algorithms for a significant increase in performance, for example, moving from the Box-Muller trans-
form method of Gaussian variate generation to the faster Ziggurat algorithm. An example of a discouraged improvement
would be tweaking the Ziggurat tables just a little bit for a small performance improvement.

Note: In particular, default_rng is allowed to change the default BitGenerator that it uses (again, with caution
and plenty of advance warning).

In general, BitGenerator classes have stronger guarantees of version-to-version stream compatibility. This allows

1.1. NumPy’s module structure 353

https://numpy.org/neps/nep-0019-rng-policy.html#nep19
https://numpy.org/neps/nep-0023-backwards-compatibility.html#nep23
https://numpy.org/neps/nep-0023-backwards-compatibility.html#nep23
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://en.wikipedia.org/wiki/Ziggurat_algorithm

NumPy Reference, Release 2.2.0

them to be a firmer building block for downstream users that need it. Their limited API surface makes it easier for them to
maintain this compatibility from version to version. See the docstrings of each BitGenerator class for their individual
compatibility guarantees.
The legacy RandomState and the associated convenience functions have a stricter version-to-version compatibility
guarantee. For reasons outlined in NEP 19, we had made stronger promises about their version-to-version stability early
in NumPy’s development. There are still some limited use cases for this kind of compatibility (like generating data for
tests), so we maintain as much compatibility as we can. There will be no more modifications to RandomState, not
even to fix correctness bugs. There are a few gray areas where we can make minor fixes to keep RandomState working
without segfaulting as NumPy’s internals change, and some docstring fixes. However, the previously-mentioned caveats
about the variability from machine to machine and build to build still apply to RandomState just as much as it does to
Generator.

Features
Parallel random number generation

There are four main strategies implemented that can be used to produce repeatable pseudo-random numbers across
multiple processes (local or distributed).

SeedSequence spawning

NumPy allows you to spawn new (with very high probability) independent BitGenerator and Generator instances
via their spawn() method. This spawning is implemented by the SeedSequence used for initializing the bit gener-
ators random stream.
SeedSequence implements an algorithm to process a user-provided seed, typically as an integer of some size, and
to convert it into an initial state for a BitGenerator. It uses hashing techniques to ensure that low-quality seeds are
turned into high quality initial states (at least, with very high probability).
For example, MT19937 has a state consisting of 624 uint32 integers. A naive way to take a 32-bit integer seed would
be to just set the last element of the state to the 32-bit seed and leave the rest 0s. This is a valid state for MT19937, but
not a good one. The Mersenne Twister algorithm suffers if there are too many 0s. Similarly, two adjacent 32-bit integer
seeds (i.e. 12345 and 12346) would produce very similar streams.
SeedSequence avoids these problems by using successions of integer hashes with good avalanche properties to ensure
that flipping any bit in the input has about a 50% chance of flipping any bit in the output. Two input seeds that are very
close to each other will produce initial states that are very far from each other (with very high probability). It is also
constructed in such a way that you can provide arbitrary-sized integers or lists of integers. SeedSequence will take
all of the bits that you provide and mix them together to produce however many bits the consuming BitGenerator
needs to initialize itself.
These properties together mean that we can safely mix together the usual user-provided seed with simple incrementing
counters to get BitGenerator states that are (to very high probability) independent of each other. We can wrap this
together into an API that is easy to use and difficult to misuse. Note that while SeedSequence attempts to solve many
of the issues related to user-provided small seeds, we still recommend using secrets.randbits to generate seeds
with 128 bits of entropy to avoid the remaining biases introduced by human-chosen seeds.

from numpy.random import SeedSequence, default_rng

ss = SeedSequence(12345)

Spawn off 10 child SeedSequences to pass to child processes.
child_seeds = ss.spawn(10)
streams = [default_rng(s) for s in child_seeds]

354 1. Python API

https://numpy.org/neps/nep-0019-rng-policy.html#nep19
https://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/MT2002/emt19937ar.html
https://en.wikipedia.org/wiki/Avalanche_effect
https://docs.python.org/3/library/secrets.html#secrets.randbits

NumPy Reference, Release 2.2.0

For convenience the direct use of SeedSequence is not necessary. The above streams can be spawned directly from
a parent generator via spawn:

parent_rng = default_rng(12345)
streams = parent_rng.spawn(10)

Child objects can also spawn to make grandchildren, and so on. Each child has a SeedSequencewith its position in the
tree of spawned child objects mixed in with the user-provided seed to generate independent (with very high probability)
streams.

grandchildren = streams[0].spawn(4)

This feature lets you make local decisions about when and how to split up streams without coordination between processes.
You do not have to preallocate space to avoid overlapping or request streams from a common global service. This general
“tree-hashing” scheme is not unique to numpy but not yet widespread. Python has increasingly-flexible mechanisms for
parallelization available, and this scheme fits in very well with that kind of use.
Using this scheme, an upper bound on the probability of a collision can be estimated if one knows the number of streams
that you derive. SeedSequence hashes its inputs, both the seed and the spawn-tree-path, down to a 128-bit pool by
default. The probability that there is a collision in that pool, pessimistically-estimated (1), will be about n2 ∗ 2−128 where
n is the number of streams spawned. If a program uses an aggressive million streams, about 220, then the probability that
at least one pair of them are identical is about 2−88, which is in solidly-ignorable territory (2).

Sequence of integer seeds

As discussed in the previous section, SeedSequence can not only take an integer seed, it can also take an arbitrary-
length sequence of (non-negative) integers. If one exercises a little care, one can use this feature to design ad hoc schemes
for getting safe parallel PRNG streams with similar safety guarantees as spawning.
For example, one common use case is that a worker process is passed one root seed integer for the whole calculation and
also an integer worker ID (or something more granular like a job ID, batch ID, or something similar). If these IDs are
created deterministically and uniquely, then one can derive reproducible parallel PRNG streams by combining the ID and
the root seed integer in a list.

default_rng() and each of the BitGenerators use SeedSequence underneath, so
they all accept sequences of integers as seeds the same way.
from numpy.random import default_rng

def worker(root_seed, worker_id):
rng = default_rng([worker_id, root_seed])
Do work ...

root_seed = 0x8c3c010cb4754c905776bdac5ee7501
results = [worker(root_seed, worker_id) for worker_id in range(10)]

This can be used to replace a number of unsafe strategies that have been used in the past which try to combine the root
seed and the ID back into a single integer seed value. For example, it is common to see users add the worker ID to the
root seed, especially with the legacy RandomState code.

1 The algorithm is carefully designed to eliminate a number of possible ways to collide. For example, if one only does one level of spawning, it is
guaranteed that all states will be unique. But it’s easier to estimate the naive upper bound on a napkin and take comfort knowing that the probability is
actually lower.

2 In this calculation, we can mostly ignore the amount of numbers drawn from each stream. See Upgrading PCG64 with PCG64DXSM for the
technical details about PCG64. The other PRNGs we provide have some extra protection built in that avoids overlaps if the SeedSequence pools
differ in the slightest bit. PCG64DXSM has 2127 separate cycles determined by the seed in addition to the position in the 2128 long period for each
cycle, so one has to both get on or near the same cycle and seed a nearby position in the cycle. Philox has completely independent cycles determined
by the seed. SFC64 incorporates a 64-bit counter so every unique seed is at least 264 iterations away from any other seed. And finally, MT19937 has
just an unimaginably huge period. Getting a collision internal to SeedSequence is the way a failure would be observed.

1.1. NumPy’s module structure 355

https://www.iro.umontreal.ca/~lecuyer/myftp/papers/parallel-rng-imacs.pdf

NumPy Reference, Release 2.2.0

UNSAFE! Do not do this!
worker_seed = root_seed + worker_id
rng = np.random.RandomState(worker_seed)

It is true that for any one run of a parallel program constructed this way, each worker will have distinct streams. However,
it is quite likely that multiple invocations of the program with different seeds will get overlapping sets of worker seeds.
It is not uncommon (in the author’s self-experience) to change the root seed merely by an increment or two when doing
these repeat runs. If the worker seeds are also derived by small increments of the worker ID, then subsets of the workers
will return identical results, causing a bias in the overall ensemble of results.
Combining the worker ID and the root seed as a list of integers eliminates this risk. Lazy seeding practices will still be
fairly safe.
This scheme does require that the extra IDs be unique and deterministically created. This may require coordination
between the worker processes. It is recommended to place the varying IDs before the unvarying root seed. spawn
appends integers after the user-provided seed, so if you might be mixing both this ad hoc mechanism and spawning, or
passing your objects down to library code that might be spawning, then it is a little bit safer to prepend your worker IDs
rather than append them to avoid a collision.

Good.
worker_seed = [worker_id, root_seed]

Less good. It will *work*, but it's less flexible.
worker_seed = [root_seed, worker_id]

With those caveats in mind, the safety guarantees against collision are about the same as with spawning, discussed in the
previous section. The algorithmic mechanisms are the same.

Independent streams

Philox is a counter-based RNG based which generates values by encrypting an incrementing counter using weak cryp-
tographic primitives. The seed determines the key that is used for the encryption. Unique keys create unique, independent
streams. Philox lets you bypass the seeding algorithm to directly set the 128-bit key. Similar, but different, keys will
still create independent streams.

import secrets
from numpy.random import Philox

128-bit number as a seed
root_seed = secrets.getrandbits(128)
streams = [Philox(key=root_seed + stream_id) for stream_id in range(10)]

This scheme does require that you avoid reusing stream IDs. This may require coordination between the parallel processes.

Jumping the BitGenerator state

jumped advances the state of the BitGenerator as-if a large number of random numbers have been drawn, and returns
a new instance with this state. The specific number of draws varies by BitGenerator, and ranges from 264 to 2128.
Additionally, the as-if draws also depend on the size of the default random number produced by the specific BitGenerator.
The BitGenerators that support jumped, along with the period of the BitGenerator, the size of the jump and the bits in
the default unsigned random are listed below.

356 1. Python API

NumPy Reference, Release 2.2.0

BitGenerator Period Jump Size Bits per Draw
MT19937 219937 − 1 2128 32
PCG64 2128 2127 (3) 64
PCG64DXSM 2128 2127 (Page 357, 3) 64
Philox 2256 2128 64

jumped can be used to produce long blocks which should be long enough to not overlap.

import secrets
from numpy.random import PCG64

seed = secrets.getrandbits(128)
blocked_rng = []
rng = PCG64(seed)
for i in range(10):

blocked_rng.append(rng.jumped(i))

When using jumped, one does have to take care not to jump to a stream that was already used. In the above example,
one could not later use blocked_rng[0].jumped() as it would overlap with blocked_rng[1]. Like with the
independent streams, if the main process here wants to split off 10 more streams by jumping, then it needs to start with
range(10, 20), otherwise it would recreate the same streams. On the other hand, if you carefully construct the
streams, then you are guaranteed to have streams that do not overlap.

Multithreaded generation

The four core distributions (random, standard_normal, standard_exponential, andstandard_gamma)
all allow existing arrays to be filled using the out keyword argument. Existing arrays need to be contiguous and well-
behaved (writable and aligned). Under normal circumstances, arrays created using the common constructors such as
numpy.empty will satisfy these requirements.
This example makes use of Python 3 concurrent.futures to fill an array using multiple threads. Threads are
long-lived so that repeated calls do not require any additional overheads from thread creation.
The random numbers generated are reproducible in the sense that the same seed will produce the same outputs, given
that the number of threads does not change.

from numpy.random import default_rng, SeedSequence
import multiprocessing
import concurrent.futures
import numpy as np

class MultithreadedRNG:
def __init__(self, n, seed=None, threads=None):

if threads is None:
threads = multiprocessing.cpu_count()

self.threads = threads

seq = SeedSequence(seed)
self._random_generators = [default_rng(s)

(continues on next page)
3 The jump size is (ϕ − 1) ∗ 2128 where ϕ is the golden ratio. As the jumps wrap around the period, the actual distances between neighboring

streams will slowly grow smaller than the jump size, but using the golden ratio this way is a classic method of constructing a low-discrepancy sequence
that spreads out the states around the period optimally. You will not be able to jump enough to make those distances small enough to overlap in your
lifetime.

1.1. NumPy’s module structure 357

https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures

NumPy Reference, Release 2.2.0

(continued from previous page)
for s in seq.spawn(threads)]

self.n = n
self.executor = concurrent.futures.ThreadPoolExecutor(threads)
self.values = np.empty(n)
self.step = np.ceil(n / threads).astype(np.int_)

def fill(self):
def _fill(random_state, out, first, last):

random_state.standard_normal(out=out[first:last])

futures = {}
for i in range(self.threads):

args = (_fill,
self._random_generators[i],
self.values,
i * self.step,
(i + 1) * self.step)

futures[self.executor.submit(*args)] = i
concurrent.futures.wait(futures)

def __del__(self):
self.executor.shutdown(False)

The multithreaded random number generator can be used to fill an array. The values attributes shows the zero-value
before the fill and the random value after.

In [2]: mrng = MultithreadedRNG(10000000, seed=12345)
...: print(mrng.values[-1])

Out[2]: 0.0

In [3]: mrng.fill()
...: print(mrng.values[-1])

Out[3]: 2.4545724517479104

The time required to produce using multiple threads can be compared to the time required to generate using a single
thread.

In [4]: print(mrng.threads)
...: %timeit mrng.fill()

Out[4]: 4
...: 32.8 ms ± 2.71 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The single threaded call directly uses the BitGenerator.

In [5]: values = np.empty(10000000)
...: rg = default_rng()
...: %timeit rg.standard_normal(out=values)

Out[5]: 99.6 ms ± 222 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

The gains are substantial and the scaling is reasonable even for arrays that are only moderately large. The gains are even
larger when compared to a call that does not use an existing array due to array creation overhead.

358 1. Python API

NumPy Reference, Release 2.2.0

In [6]: rg = default_rng()
...: %timeit rg.standard_normal(10000000)

Out[6]: 125 ms ± 309 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Note that if threads is not set by the user, it will be determined by multiprocessing.cpu_count().

In [7]: # simulate the behavior for `threads=None`, if the machine had only one thread
...: mrng = MultithreadedRNG(10000000, seed=12345, threads=1)
...: print(mrng.values[-1])

Out[7]: 1.1800150052158556

What’s new or different

NumPy 1.17.0 introduced Generator as an improved replacement for the legacy RandomState. Here is a quick
comparison of the two implementations.

Fea-
ture

Older
Equivalent

Notes

Gen-
er-
a-
tor

Random-
State

Generator requires a stream source, called a BitGenerator A number of these are
provided. RandomState uses the Mersenne Twister MT19937 by default, but can also be
instantiated with any BitGenerator.

ran-
dom

ran-
dom_sample,
rand

Access the values in a BitGenerator, convert them to float64 in the interval [0.0., 1.
0). In addition to the size kwarg, now supports dtype='d' or dtype='f', and an out
kwarg to fill a user-supplied array.
Many other distributions are also supported.

in-
te-
gers

randint,
ran-
dom_integers

Use the endpoint kwarg to adjust the inclusion or exclusion of the high interval endpoint.

• The normal, exponential and gamma generators use 256-step Ziggurat methods which are 2-10 times faster
than NumPy’s default implementation in standard_normal, standard_exponential or stan-
dard_gamma. Because of the change in algorithms, it is not possible to reproduce the exact random values
using Generator for these distributions or any distribution method that relies on them.

In [1]: import numpy.random

In [2]: rng = np.random.default_rng()

In [3]: %timeit -n 1 rng.standard_normal(100000)
...: %timeit -n 1 numpy.random.standard_normal(100000)
...:

1.07 ms +- 55.2 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
2.24 ms +- 51.1 us per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [4]: %timeit -n 1 rng.standard_exponential(100000)
...: %timeit -n 1 numpy.random.standard_exponential(100000)
...:

582 us +- 14.3 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
1.56 ms +- 48.8 us per loop (mean +- std. dev. of 7 runs, 1 loop each)

1.1. NumPy’s module structure 359

NumPy Reference, Release 2.2.0

In [5]: %timeit -n 1 rng.standard_gamma(3.0, 100000)
...: %timeit -n 1 numpy.random.standard_gamma(3.0, 100000)
...:

2.22 ms +- 225 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
4.7 ms +- 926 us per loop (mean +- std. dev. of 7 runs, 1 loop each)

• integers is now the canonical way to generate integer random numbers from a discrete uniform distribution.
This replaces both randint and the deprecated random_integers.

• The rand and randn methods are only available through the legacy RandomState.
• Generator.random is now the canonical way to generate floating-point random numbers, which replaces
RandomState.random_sample, sample, and ranf, all of which were aliases. This is consistent with
Python’s random.random.

• All bit generators can produce doubles, uint64s and uint32s via CTypes (ctypes) and CFFI (cffi). This allows
these bit generators to be used in numba.

• The bit generators can be used in downstream projects via Cython.
• All bit generators use SeedSequence to convert seed integers to initialized states.
• Optional dtype argument that accepts np.float32 or np.float64 to produce either single or double pre-
cision uniform random variables for select distributions. integers accepts a dtype argument with any signed
or unsigned integer dtype.

– Uniforms (random and integers)
– Normals (standard_normal)
– Standard Gammas (standard_gamma)
– Standard Exponentials (standard_exponential)

In [6]: rng = np.random.default_rng()

In [7]: rng.random(3, dtype=np.float64)
Out[7]: array([0.21714837, 0.68260615, 0.02907321])

In [8]: rng.random(3, dtype=np.float32)
Out[8]: array([0.8543214 , 0.9473313 , 0.30972785], dtype=float32)

In [9]: rng.integers(0, 256, size=3, dtype=np.uint8)
Out[9]: array([111, 5, 86], dtype=uint8)

• Optional out argument that allows existing arrays to be filled for select distributions
– Uniforms (random)
– Normals (standard_normal)
– Standard Gammas (standard_gamma)
– Standard Exponentials (standard_exponential)

This allows multithreading to fill large arrays in chunks using suitable BitGenerators in parallel.

In [10]: rng = np.random.default_rng()

In [11]: existing = np.zeros(4)

In [12]: rng.random(out=existing[:2])

(continues on next page)

360 1. Python API

https://docs.python.org/3/library/random.html#random.random

NumPy Reference, Release 2.2.0

(continued from previous page)
Out[12]: array([0.00142669, 0.5702797])

In [13]: print(existing)
[0.00142669 0.5702797 0. 0.]

• Optional axis argument for methods like choice, permutation and shuffle that controls which axis an
operation is performed over for multi-dimensional arrays.

In [14]: rng = np.random.default_rng()

In [15]: a = np.arange(12).reshape((3, 4))

In [16]: a
Out[16]:
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

In [17]: rng.choice(a, axis=1, size=5)
Out[17]:
array([[3, 2, 1, 1, 3],

[7, 6, 5, 5, 7],
[11, 10, 9, 9, 11]])

In [18]: rng.shuffle(a, axis=1) # Shuffle in-place

In [19]: a
Out[19]:
array([[1, 2, 3, 0],

[5, 6, 7, 4],
[9, 10, 11, 8]])

• Added a method to sample from the complex normal distribution (complex_normal)

Performance

Recommendation

The recommended generator for general use is PCG64 or its upgraded variant PCG64DXSM for heavily-parallel use
cases. They are statistically high quality, full-featured, and fast on most platforms, but somewhat slow when compiled for
32-bit processes. See Upgrading PCG64 with PCG64DXSM for details on when heavy parallelism would indicate using
PCG64DXSM .
Philox is fairly slow, but its statistical properties have very high quality, and it is easy to get an assuredly-independent
stream by using unique keys. If that is the style you wish to use for parallel streams, or you are porting from another
system that uses that style, then Philox is your choice.
SFC64 is statistically high quality and very fast. However, it lacks jumpability. If you are not using that capability and
want lots of speed, even on 32-bit processes, this is your choice.
MT19937 fails some statistical tests and is not especially fast compared to modern PRNGs. For these reasons, we mostly
do not recommend using it on its own, only through the legacy RandomState for reproducing old results. That said, it
has a very long history as a default in many systems.

1.1. NumPy’s module structure 361

https://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf

NumPy Reference, Release 2.2.0

Timings

The timings below are the time in ns to produce 1 random value from a specific distribution. The original MT19937
generator is much slower since it requires 2 32-bit values to equal the output of the faster generators.
Integer performance has a similar ordering.
The pattern is similar for other, more complex generators. The normal performance of the legacy RandomState
generator is much lower than the other since it uses the Box-Muller transform rather than the Ziggurat method. The
performance gap for Exponentials is also large due to the cost of computing the log function to invert the CDF. The column
labeled MT19973 uses the same 32-bit generator as RandomState but produces random variates using Generator.

MT19937 PCG64 PCG64DXSM Philox SFC64 Random-
State

32-bit Un-
signed Ints

3.3 1.9 2.0 3.3 1.8 3.1

64-bit Un-
signed Ints

5.6 3.2 2.9 4.9 2.5 5.5

Uniforms 5.9 3.1 2.9 5.0 2.6 6.0
Normals 13.9 10.8 10.5 12.0 8.3 56.8
Exponentials 9.1 6.0 5.8 8.1 5.4 63.9
Gammas 37.2 30.8 28.9 34.0 27.5 77.0
Binomials 21.3 17.4 17.6 19.3 15.6 21.4
Laplaces 73.2 72.3 76.1 73.0 72.3 82.5
Poissons 111.7 103.4 100.5 109.4 90.7 115.2

The next table presents the performance in percentage relative to values generated by the legacy generator, Random-
State(MT19937()). The overall performance was computed using a geometric mean.

MT19937 PCG64 PCG64DXSM Philox SFC64
32-bit Unsigned
Ints

96 162 160 96 175

64-bit Unsigned
Ints

97 171 188 113 218

Uniforms 102 192 206 121 233
Normals 409 526 541 471 684
Exponentials 701 1071 1101 784 1179
Gammas 207 250 266 227 281
Binomials 100 123 122 111 138
Laplaces 113 114 108 113 114
Poissons 103 111 115 105 127
Overall 159 219 225 174 251

Note: All timings were taken using Linux on an AMD Ryzen 9 3900X processor.

362 1. Python API

NumPy Reference, Release 2.2.0

Performance on different operating systems

Performance differs across platforms due to compiler and hardware availability (e.g., register width) differences. The
default bit generator has been chosen to perform well on 64-bit platforms. Performance on 32-bit operating systems is
very different.
The values reported are normalized relative to the speed of MT19937 in each table. A value of 100 indicates that the
performance matches the MT19937. Higher values indicate improved performance. These values cannot be compared
across tables.

64-bit Linux

Distribution MT19937 PCG64 PCG64DXSM Philox SFC64
32-bit Unsigned Ints 100 168 166 100 182
64-bit Unsigned Ints 100 176 193 116 224
Uniforms 100 188 202 118 228
Normals 100 128 132 115 167
Exponentials 100 152 157 111 168
Overall 100 161 168 112 192

64-bit Windows

The relative performance on 64-bit Linux and 64-bit Windows is broadly similar with the notable exception of the Philox
generator.

Distribution MT19937 PCG64 PCG64DXSM Philox SFC64
32-bit Unsigned Ints 100 155 131 29 150
64-bit Unsigned Ints 100 157 143 25 154
Uniforms 100 151 144 24 155
Normals 100 129 128 37 150
Exponentials 100 150 145 28 159
Overall 100 148 138 28 154

32-bit Windows

The performance of 64-bit generators on 32-bit Windows is much lower than on 64-bit operating systems due to register
width. MT19937, the generator that has been in NumPy since 2005, operates on 32-bit integers.

Distribution MT19937 PCG64 PCG64DXSM Philox SFC64
32-bit Unsigned Ints 100 24 34 14 57
64-bit Unsigned Ints 100 21 32 14 74
Uniforms 100 21 34 16 73
Normals 100 36 57 28 101
Exponentials 100 28 44 20 88
Overall 100 25 39 18 77

1.1. NumPy’s module structure 363

NumPy Reference, Release 2.2.0

Note: Linux timings used Ubuntu 20.04 and GCC 9.3.0. Windows timings were made on Windows 10 using Microsoft
C/C++ Optimizing Compiler Version 19 (Visual Studio 2019). All timings were produced on an AMD Ryzen 9 3900X
processor.

C API for random

Access to various distributions below is available via Cython or C-wrapper libraries like CFFI. All the functions accept
a bitgen_t as their first argument. To access these from Cython or C, you must link with the npyrandom static
library which is part of the NumPy distribution, located in numpy/random/lib. Note that you must also link with
npymath, see Linking against the core math library in an extension.
type bitgen_t

The bitgen_t holds the current state of the BitGenerator and pointers to functions that return standard C types
while advancing the state.

struct bitgen:
void *state
npy_uint64 (*next_uint64)(void *st) nogil
uint32_t (*next_uint32)(void *st) nogil
double (*next_double)(void *st) nogil
npy_uint64 (*next_raw)(void *st) nogil

ctypedef bitgen bitgen_t

See Extending for examples of using these functions.
The functions are named with the following conventions:

• “standard” refers to the reference values for any parameters. For instance “standard_uniform” means a uniform
distribution on the interval 0.0 to 1.0

• “fill” functions will fill the provided out with cnt values.
• The functions without “standard” in their name require additional parameters to describe the distributions.
• Functions with inv in their name are based on the slower inverse method instead of a ziggurat lookup algorithm,
which is significantly faster. The non-ziggurat variants are used in corner cases and for legacy compatibility.

double random_standard_uniform(bitgen_t *bitgen_state)

void random_standard_uniform_fill(bitgen_t *bitgen_state, npy_intp cnt, double *out)

double random_standard_exponential(bitgen_t *bitgen_state)

void random_standard_exponential_fill(bitgen_t *bitgen_state, npy_intp cnt, double *out)

void random_standard_exponential_inv_fill(bitgen_t *bitgen_state, npy_intp cnt, double *out)

double random_standard_normal(bitgen_t *bitgen_state)

void random_standard_normal_fill(bitgen_t *bitgen_state, npy_intp count, double *out)

void random_standard_normal_fill_f(bitgen_t *bitgen_state, npy_intp count, float *out)

double random_standard_gamma(bitgen_t *bitgen_state, double shape)

364 1. Python API

NumPy Reference, Release 2.2.0

float random_standard_uniform_f(bitgen_t *bitgen_state)

void random_standard_uniform_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out)

float random_standard_exponential_f(bitgen_t *bitgen_state)

void random_standard_exponential_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out)

void random_standard_exponential_inv_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out)

float random_standard_normal_f(bitgen_t *bitgen_state)

float random_standard_gamma_f(bitgen_t *bitgen_state, float shape)

double random_normal(bitgen_t *bitgen_state, double loc, double scale)

double random_gamma(bitgen_t *bitgen_state, double shape, double scale)

float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale)

double random_exponential(bitgen_t *bitgen_state, double scale)

double random_uniform(bitgen_t *bitgen_state, double lower, double range)

double random_beta(bitgen_t *bitgen_state, double a, double b)

double random_chisquare(bitgen_t *bitgen_state, double df)

double random_f(bitgen_t *bitgen_state, double dfnum, double dfden)

double random_standard_cauchy(bitgen_t *bitgen_state)

double random_pareto(bitgen_t *bitgen_state, double a)

double random_weibull(bitgen_t *bitgen_state, double a)

double random_power(bitgen_t *bitgen_state, double a)

double random_laplace(bitgen_t *bitgen_state, double loc, double scale)

double random_gumbel(bitgen_t *bitgen_state, double loc, double scale)

double random_logistic(bitgen_t *bitgen_state, double loc, double scale)

double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma)

double random_rayleigh(bitgen_t *bitgen_state, double mode)

double random_standard_t(bitgen_t *bitgen_state, double df)

double random_noncentral_chisquare(bitgen_t *bitgen_state, double df, double nonc)

double random_noncentral_f(bitgen_t *bitgen_state, double dfnum, double dfden, double nonc)

double random_wald(bitgen_t *bitgen_state, double mean, double scale)

double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa)

double random_triangular(bitgen_t *bitgen_state, double left, double mode, double right)

npy_int64 random_poisson(bitgen_t *bitgen_state, double lam)

1.1. NumPy’s module structure 365

NumPy Reference, Release 2.2.0

npy_int64 random_negative_binomial(bitgen_t *bitgen_state, double n, double p)

type binomial_t

typedef struct s_binomial_t {
int has_binomial; /* !=0: following parameters initialized for binomial */
double psave;
RAND_INT_TYPE nsave;
double r;
double q;
double fm;
RAND_INT_TYPE m;
double p1;
double xm;
double xl;
double xr;
double c;
double laml;
double lamr;
double p2;
double p3;
double p4;

} binomial_t;

npy_int64 random_binomial(bitgen_t *bitgen_state, double p, npy_int64 n, binomial_t *binomial)

npy_int64 random_logseries(bitgen_t *bitgen_state, double p)

npy_int64 random_geometric_search(bitgen_t *bitgen_state, double p)

npy_int64 random_geometric_inversion(bitgen_t *bitgen_state, double p)

npy_int64 random_geometric(bitgen_t *bitgen_state, double p)

npy_int64 random_zipf(bitgen_t *bitgen_state, double a)

npy_int64 random_hypergeometric(bitgen_t *bitgen_state, npy_int64 good, npy_int64 bad, npy_int64 sample)

npy_uint64 random_interval(bitgen_t *bitgen_state, npy_uint64 max)

void random_multinomial(bitgen_t *bitgen_state, npy_int64 n, npy_int64 *mnix, double *pix, npy_intp d,
binomial_t *binomial)

int random_multivariate_hypergeometric_count(bitgen_t *bitgen_state, npy_int64 total, size_t
num_colors, npy_int64 *colors, npy_int64 nsample,
size_t num_variates, npy_int64 *variates)

void random_multivariate_hypergeometric_marginals(bitgen_t *bitgen_state, npy_int64 total, size_t
num_colors, npy_int64 *colors, npy_int64
nsample, size_t num_variates, npy_int64
*variates)

Generate a single integer
npy_int64 random_positive_int64(bitgen_t *bitgen_state)

npy_int32 random_positive_int32(bitgen_t *bitgen_state)

npy_int64 random_positive_int(bitgen_t *bitgen_state)

366 1. Python API

NumPy Reference, Release 2.2.0

npy_uint64 random_uint(bitgen_t *bitgen_state)

Generate random uint64 numbers in closed interval [off, off + rng].
npy_uint64 random_bounded_uint64(bitgen_t *bitgen_state, npy_uint64 off, npy_uint64 rng, npy_uint64 mask,

bool use_masked)

Extending

The BitGenerators have been designed to be extendable using standard tools for high-performance Python – numba
and Cython. The Generator object can also be used with user-provided BitGenerators as long as these export a
small set of required functions.

Numba

Numba can be used with either CTypes or CFFI. The current iteration of the BitGenerators all export a small set of
functions through both interfaces.
This example shows how numba can be used to produce gaussian samples using a pure Python implementation which is
then compiled. The random numbers are provided by ctypes.next_double.

import numpy as np
import numba as nb

from numpy.random import PCG64
from timeit import timeit

bit_gen = PCG64()
next_d = bit_gen.cffi.next_double
state_addr = bit_gen.cffi.state_address

def normals(n, state):
out = np.empty(n)
for i in range((n + 1) // 2):

x1 = 2.0 * next_d(state) - 1.0
x2 = 2.0 * next_d(state) - 1.0
r2 = x1 * x1 + x2 * x2
while r2 >= 1.0 or r2 == 0.0:

x1 = 2.0 * next_d(state) - 1.0
x2 = 2.0 * next_d(state) - 1.0
r2 = x1 * x1 + x2 * x2

f = np.sqrt(-2.0 * np.log(r2) / r2)
out[2 * i] = f * x1
if 2 * i + 1 < n:

out[2 * i + 1] = f * x2
return out

Compile using Numba
normalsj = nb.jit(normals, nopython=True)
Must use state address not state with numba
n = 10000

def numbacall():
return normalsj(n, state_addr)

(continues on next page)

1.1. NumPy’s module structure 367

NumPy Reference, Release 2.2.0

(continued from previous page)
rg = np.random.Generator(PCG64())

def numpycall():
return rg.normal(size=n)

Check that the functions work
r1 = numbacall()
r2 = numpycall()
assert r1.shape == (n,)
assert r1.shape == r2.shape

t1 = timeit(numbacall, number=1000)
print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms')
t2 = timeit(numpycall, number=1000)
print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms')

Both CTypes and CFFI allow the more complicated distributions to be used directly in Numba after compiling the file
distributions.c into a DLL or so. An example showing the use of a more complicated distribution is in the Examples
section below.

Cython

Cython can be used to unpack the PyCapsule provided by a BitGenerator. This example uses PCG64 and the
example from above. The usual caveats for writing high-performance code using Cython – removing bounds checks and
wrap around, providing array alignment information – still apply.

#cython: language_level=3
"""
This file shows how the to use a BitGenerator to create a distribution.
"""
import numpy as np
cimport numpy as np
cimport cython
from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
from libc.stdint cimport uint16_t, uint64_t
from numpy.random cimport bitgen_t
from numpy.random import PCG64
from numpy.random.c_distributions cimport (

random_standard_uniform_fill, random_standard_uniform_fill_f)

@cython.boundscheck(False)
@cython.wraparound(False)
def uniforms(Py_ssize_t n):

"""
Create an array of `n` uniformly distributed doubles.
A 'real' distribution would want to process the values into
some non-uniform distribution
"""
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
cdef double[::1] random_values

(continues on next page)

368 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
x = PCG64()
capsule = x.capsule
Optional check that the capsule if from a BitGenerator
if not PyCapsule_IsValid(capsule, capsule_name):

raise ValueError("Invalid pointer to anon_func_state")
Cast the pointer
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
random_values = np.empty(n, dtype='float64')
with x.lock, nogil:

for i in range(n):
Call the function
random_values[i] = rng.next_double(rng.state)

randoms = np.asarray(random_values)

return randoms

The BitGenerator can also be directly accessed using the members of the bitgen_t struct.

@cython.boundscheck(False)
@cython.wraparound(False)
def uint10_uniforms(Py_ssize_t n):

"""Uniform 10 bit integers stored as 16-bit unsigned integers"""
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
cdef uint16_t[::1] random_values
cdef int bits_remaining
cdef int width = 10
cdef uint64_t buff, mask = 0x3FF

x = PCG64()
capsule = x.capsule
if not PyCapsule_IsValid(capsule, capsule_name):

raise ValueError("Invalid pointer to anon_func_state")
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
random_values = np.empty(n, dtype='uint16')
Best practice is to release GIL and acquire the lock
bits_remaining = 0
with x.lock, nogil:

for i in range(n):
if bits_remaining < width:

buff = rng.next_uint64(rng.state)
random_values[i] = buff & mask
buff >>= width

randoms = np.asarray(random_values)
return randoms

Cython can be used to directly access the functions in numpy/random/c_distributions.pxd. This requires
linking with the npyrandom library located in numpy/random/lib.

def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64):
"""
Create an array of `n` uniformly distributed doubles via a "fill" function.

A 'real' distribution would want to process the values into
some non-uniform distribution

(continues on next page)

1.1. NumPy’s module structure 369

NumPy Reference, Release 2.2.0

(continued from previous page)

Parameters

bit_generator: BitGenerator instance
n: int

Output vector length
dtype: {str, dtype}, optional

Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The
default dtype value is 'd'

"""
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
cdef np.ndarray randoms

capsule = bit_generator.capsule
Optional check that the capsule if from a BitGenerator
if not PyCapsule_IsValid(capsule, capsule_name):

raise ValueError("Invalid pointer to anon_func_state")
Cast the pointer
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)

_dtype = np.dtype(dtype)
randoms = np.empty(n, dtype=_dtype)
if _dtype == np.float32:

with bit_generator.lock:
random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms))

elif _dtype == np.float64:
with bit_generator.lock:

random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms))
else:

raise TypeError('Unsupported dtype %r for random' % _dtype)
return randoms

See Extending numpy.random via Cython for the complete listings of these examples and a minimal setup.py to build
the c-extension modules.

CFFI

CFFI can be used to directly access the functions in include/numpy/random/distributions.h. Some “mas-
saging” of the header file is required:

"""
Use cffi to access any of the underlying C functions from distributions.h
"""
import os
import numpy as np
import cffi
from .parse import parse_distributions_h
ffi = cffi.FFI()

inc_dir = os.path.join(np.get_include(), 'numpy')

Basic numpy types
ffi.cdef('''

(continues on next page)

370 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
typedef intptr_t npy_intp;
typedef unsigned char npy_bool;

''')

parse_distributions_h(ffi, inc_dir)

Once the header is parsed by ffi.cdef, the functions can be accessed directly from the _generator shared object,
using the BitGenerator.cffi interface.

Compare the distributions.h random_standard_normal_fill to
Generator.standard_random
bit_gen = np.random.PCG64()
rng = np.random.Generator(bit_gen)
state = bit_gen.state

interface = rng.bit_generator.cffi
n = 100
vals_cffi = ffi.new('double[%d]' % n)
lib.random_standard_normal_fill(interface.bit_generator, n, vals_cffi)

reset the state
bit_gen.state = state

vals = rng.standard_normal(n)

for i in range(n):
assert vals[i] == vals_cffi[i]

New BitGenerators

Generator can be used with user-provided BitGenerators. The simplest way to write a new BitGenerator
is to examine the pyx file of one of the existing BitGenerators. The key structure that must be provided is the
capsule which contains a PyCapsule to a struct pointer of type bitgen_t,

typedef struct bitgen {
void *state;
uint64_t (*next_uint64)(void *st);
uint32_t (*next_uint32)(void *st);
double (*next_double)(void *st);
uint64_t (*next_raw)(void *st);

} bitgen_t;

which provides 5 pointers. The first is an opaque pointer to the data structure used by the BitGenerators. The next
three are function pointers which return the next 64- and 32-bit unsigned integers, the next random double and the next
raw value. This final function is used for testing and so can be set to the next 64-bit unsigned integer function if not
needed. Functions inside Generator use this structure as in

bitgen_state->next_uint64(bitgen_state->state)

1.1. NumPy’s module structure 371

NumPy Reference, Release 2.2.0

Examples

Extending via Numba

import numpy as np
import numba as nb

from numpy.random import PCG64
from timeit import timeit

bit_gen = PCG64()
next_d = bit_gen.cffi.next_double
state_addr = bit_gen.cffi.state_address

def normals(n, state):
out = np.empty(n)
for i in range((n + 1) // 2):

x1 = 2.0 * next_d(state) - 1.0
x2 = 2.0 * next_d(state) - 1.0
r2 = x1 * x1 + x2 * x2
while r2 >= 1.0 or r2 == 0.0:

x1 = 2.0 * next_d(state) - 1.0
x2 = 2.0 * next_d(state) - 1.0
r2 = x1 * x1 + x2 * x2

f = np.sqrt(-2.0 * np.log(r2) / r2)
out[2 * i] = f * x1
if 2 * i + 1 < n:

out[2 * i + 1] = f * x2
return out

Compile using Numba
normalsj = nb.jit(normals, nopython=True)
Must use state address not state with numba
n = 10000

def numbacall():
return normalsj(n, state_addr)

rg = np.random.Generator(PCG64())

def numpycall():
return rg.normal(size=n)

Check that the functions work
r1 = numbacall()
r2 = numpycall()
assert r1.shape == (n,)
assert r1.shape == r2.shape

t1 = timeit(numbacall, number=1000)
print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms')
t2 = timeit(numpycall, number=1000)
print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms')

example 2

next_u32 = bit_gen.ctypes.next_uint32
(continues on next page)

372 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
ctypes_state = bit_gen.ctypes.state

@nb.jit(nopython=True)
def bounded_uint(lb, ub, state):

mask = delta = ub - lb
mask |= mask >> 1
mask |= mask >> 2
mask |= mask >> 4
mask |= mask >> 8
mask |= mask >> 16

val = next_u32(state) & mask
while val > delta:

val = next_u32(state) & mask

return lb + val

print(bounded_uint(323, 2394691, ctypes_state.value))

@nb.jit(nopython=True)
def bounded_uints(lb, ub, n, state):

out = np.empty(n, dtype=np.uint32)
for i in range(n):

out[i] = bounded_uint(lb, ub, state)

bounded_uints(323, 2394691, 10000000, ctypes_state.value)

Extending via Numba and CFFI

r"""
Building the required library in this example requires a source distribution
of NumPy or clone of the NumPy git repository since distributions.c is not
included in binary distributions.

On *nix, execute in numpy/random/src/distributions

export ${PYTHON_VERSION}=3.8 # Python version
export PYTHON_INCLUDE=#path to Python's include folder, usually \

${PYTHON_HOME}/include/python${PYTHON_VERSION}m
export NUMPY_INCLUDE=#path to numpy's include folder, usually \

${PYTHON_HOME}/lib/python${PYTHON_VERSION}/site-packages/numpy/_core/include
gcc -shared -o libdistributions.so -fPIC distributions.c \

-I${NUMPY_INCLUDE} -I${PYTHON_INCLUDE}
mv libdistributions.so ../../_examples/numba/

On Windows

rem PYTHON_HOME and PYTHON_VERSION are setup dependent, this is an example
set PYTHON_HOME=c:\Anaconda

(continues on next page)

1.1. NumPy’s module structure 373

NumPy Reference, Release 2.2.0

(continued from previous page)
set PYTHON_VERSION=38
cl.exe /LD .\distributions.c -DDLL_EXPORT \

-I%PYTHON_HOME%\lib\site-packages\numpy_core\include \
-I%PYTHON_HOME%\include %PYTHON_HOME%\libs\python%PYTHON_VERSION%.lib

move distributions.dll ../../_examples/numba/
"""
import os

import numba as nb
import numpy as np
from cffi import FFI

from numpy.random import PCG64

ffi = FFI()
if os.path.exists('./distributions.dll'):

lib = ffi.dlopen('./distributions.dll')
elif os.path.exists('./libdistributions.so'):

lib = ffi.dlopen('./libdistributions.so')
else:

raise RuntimeError('Required DLL/so file was not found.')

ffi.cdef("""
double random_standard_normal(void *bitgen_state);
""")
x = PCG64()
xffi = x.cffi
bit_generator = xffi.bit_generator

random_standard_normal = lib.random_standard_normal

def normals(n, bit_generator):
out = np.empty(n)
for i in range(n):

out[i] = random_standard_normal(bit_generator)
return out

normalsj = nb.jit(normals, nopython=True)

Numba requires a memory address for void *
Can also get address from x.ctypes.bit_generator.value
bit_generator_address = int(ffi.cast('uintptr_t', bit_generator))

norm = normalsj(1000, bit_generator_address)
print(norm[:12])

374 1. Python API

NumPy Reference, Release 2.2.0

Extending numpy.random via Cython

Starting with NumPy 1.26.0, Meson is the default build system for NumPy. See Status of numpy.distutils and migration
advice.

meson.build

project('random-build-examples', 'c', 'cpp', 'cython')

py_mod = import('python')
py3 = py_mod.find_installation(pure: false)

cc = meson.get_compiler('c')
cy = meson.get_compiler('cython')

Keep synced with pyproject.toml
if not cy.version().version_compare('>=3.0.6')
error('tests requires Cython >= 3.0.6')

endif

base_cython_args = []
if cy.version().version_compare('>=3.1.0')
base_cython_args += ['-Xfreethreading_compatible=True']

endif

_numpy_abs = run_command(py3, ['-c',
'import os; os.chdir(".."); import numpy; print(os.path.abspath(numpy.

↪→get_include() + "../../.."))'],
check: true).stdout().strip()

npymath_path = _numpy_abs / '_core' / 'lib'
npy_include_path = _numpy_abs / '_core' / 'include'
npyrandom_path = _numpy_abs / 'random' / 'lib'
npymath_lib = cc.find_library('npymath', dirs: npymath_path)
npyrandom_lib = cc.find_library('npyrandom', dirs: npyrandom_path)

py3.extension_module(
'extending_distributions',
'extending_distributions.pyx',
install: false,
include_directories: [npy_include_path],
dependencies: [npyrandom_lib, npymath_lib],
cython_args: base_cython_args,

)
py3.extension_module(

'extending',
'extending.pyx',
install: false,
include_directories: [npy_include_path],
dependencies: [npyrandom_lib, npymath_lib],
cython_args: base_cython_args,

)
py3.extension_module(

'extending_cpp',
'extending_distributions.pyx',
install: false,

(continues on next page)

1.1. NumPy’s module structure 375

NumPy Reference, Release 2.2.0

(continued from previous page)
override_options : ['cython_language=cpp'],
cython_args: base_cython_args + ['--module-name', 'extending_cpp'],
include_directories: [npy_include_path],
dependencies: [npyrandom_lib, npymath_lib],

)

extending.pyx

#cython: language_level=3

from libc.stdint cimport uint32_t
from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer

import numpy as np
cimport numpy as np
cimport cython

from numpy.random cimport bitgen_t
from numpy.random import PCG64

np.import_array()

@cython.boundscheck(False)
@cython.wraparound(False)
def uniform_mean(Py_ssize_t n):

cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
cdef double[::1] random_values
cdef np.ndarray randoms

x = PCG64()
capsule = x.capsule
if not PyCapsule_IsValid(capsule, capsule_name):

raise ValueError("Invalid pointer to anon_func_state")
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
random_values = np.empty(n)
Best practice is to acquire the lock whenever generating random values.
This prevents other threads from modifying the state. Acquiring the lock
is only necessary if the GIL is also released, as in this example.
with x.lock, nogil:

for i in range(n):
random_values[i] = rng.next_double(rng.state)

randoms = np.asarray(random_values)
return randoms.mean()

This function is declared nogil so it can be used without the GIL below
cdef uint32_t bounded_uint(uint32_t lb, uint32_t ub, bitgen_t *rng) nogil:

cdef uint32_t mask, delta, val
mask = delta = ub - lb
mask |= mask >> 1
mask |= mask >> 2

(continues on next page)

376 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
mask |= mask >> 4
mask |= mask >> 8
mask |= mask >> 16

val = rng.next_uint32(rng.state) & mask
while val > delta:

val = rng.next_uint32(rng.state) & mask

return lb + val

@cython.boundscheck(False)
@cython.wraparound(False)
def bounded_uints(uint32_t lb, uint32_t ub, Py_ssize_t n):

cdef Py_ssize_t i
cdef bitgen_t *rng
cdef uint32_t[::1] out
cdef const char *capsule_name = "BitGenerator"

x = PCG64()
out = np.empty(n, dtype=np.uint32)
capsule = x.capsule

if not PyCapsule_IsValid(capsule, capsule_name):
raise ValueError("Invalid pointer to anon_func_state")

rng = <bitgen_t *>PyCapsule_GetPointer(capsule, capsule_name)

with x.lock, nogil:
for i in range(n):

out[i] = bounded_uint(lb, ub, rng)
return np.asarray(out)

extending_distributions.pyx

#cython: language_level=3
"""
This file shows how the to use a BitGenerator to create a distribution.
"""
import numpy as np
cimport numpy as np
cimport cython
from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
from libc.stdint cimport uint16_t, uint64_t
from numpy.random cimport bitgen_t
from numpy.random import PCG64
from numpy.random.c_distributions cimport (

random_standard_uniform_fill, random_standard_uniform_fill_f)

@cython.boundscheck(False)
@cython.wraparound(False)
def uniforms(Py_ssize_t n):

"""
Create an array of `n` uniformly distributed doubles.

(continues on next page)

1.1. NumPy’s module structure 377

NumPy Reference, Release 2.2.0

(continued from previous page)
A 'real' distribution would want to process the values into
some non-uniform distribution
"""
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
cdef double[::1] random_values

x = PCG64()
capsule = x.capsule
Optional check that the capsule if from a BitGenerator
if not PyCapsule_IsValid(capsule, capsule_name):

raise ValueError("Invalid pointer to anon_func_state")
Cast the pointer
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
random_values = np.empty(n, dtype='float64')
with x.lock, nogil:

for i in range(n):
Call the function
random_values[i] = rng.next_double(rng.state)

randoms = np.asarray(random_values)

return randoms

cython example 2
@cython.boundscheck(False)
@cython.wraparound(False)
def uint10_uniforms(Py_ssize_t n):

"""Uniform 10 bit integers stored as 16-bit unsigned integers"""
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
cdef uint16_t[::1] random_values
cdef int bits_remaining
cdef int width = 10
cdef uint64_t buff, mask = 0x3FF

x = PCG64()
capsule = x.capsule
if not PyCapsule_IsValid(capsule, capsule_name):

raise ValueError("Invalid pointer to anon_func_state")
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
random_values = np.empty(n, dtype='uint16')
Best practice is to release GIL and acquire the lock
bits_remaining = 0
with x.lock, nogil:

for i in range(n):
if bits_remaining < width:

buff = rng.next_uint64(rng.state)
random_values[i] = buff & mask
buff >>= width

randoms = np.asarray(random_values)
return randoms

cython example 3
def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64):

(continues on next page)

378 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
"""
Create an array of `n` uniformly distributed doubles via a "fill" function.

A 'real' distribution would want to process the values into
some non-uniform distribution

Parameters

bit_generator: BitGenerator instance
n: int

Output vector length
dtype: {str, dtype}, optional

Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The
default dtype value is 'd'

"""
cdef Py_ssize_t i
cdef bitgen_t *rng
cdef const char *capsule_name = "BitGenerator"
cdef np.ndarray randoms

capsule = bit_generator.capsule
Optional check that the capsule if from a BitGenerator
if not PyCapsule_IsValid(capsule, capsule_name):

raise ValueError("Invalid pointer to anon_func_state")
Cast the pointer
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)

_dtype = np.dtype(dtype)
randoms = np.empty(n, dtype=_dtype)
if _dtype == np.float32:

with bit_generator.lock:
random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms))

elif _dtype == np.float64:
with bit_generator.lock:

random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms))
else:

raise TypeError('Unsupported dtype %r for random' % _dtype)
return randoms

Extending via CFFI

"""
Use cffi to access any of the underlying C functions from distributions.h
"""
import os
import numpy as np
import cffi
from .parse import parse_distributions_h
ffi = cffi.FFI()

inc_dir = os.path.join(np.get_include(), 'numpy')

Basic numpy types
ffi.cdef('''

(continues on next page)

1.1. NumPy’s module structure 379

NumPy Reference, Release 2.2.0

(continued from previous page)
typedef intptr_t npy_intp;
typedef unsigned char npy_bool;

''')

parse_distributions_h(ffi, inc_dir)

lib = ffi.dlopen(np.random._generator.__file__)

Compare the distributions.h random_standard_normal_fill to
Generator.standard_random
bit_gen = np.random.PCG64()
rng = np.random.Generator(bit_gen)
state = bit_gen.state

interface = rng.bit_generator.cffi
n = 100
vals_cffi = ffi.new('double[%d]' % n)
lib.random_standard_normal_fill(interface.bit_generator, n, vals_cffi)

reset the state
bit_gen.state = state

vals = rng.standard_normal(n)

for i in range(n):
assert vals[i] == vals_cffi[i]

Original Source of the Generator and BitGenerators

This package was developed independently of NumPy and was integrated in version 1.17.0. The original repo is at
https://github.com/bashtage/randomgen.

String functionality

The numpy.strings module provides a set of universal functions operating on arrays of type numpy.str_ or
numpy.bytes_. For example

>>> np.strings.add(["num", "doc"], ["py", "umentation"])
array(['numpy', 'documentation'], dtype='<U13')

These universal functions are also used in numpy.char, which provides the numpy.char.chararray array sub-
class, in order for those routines to get the performance benefits as well.

Note: Prior to NumPy 2.0, all string functionality was in numpy.char, which only operated on fixed-width strings.
That module will not be getting updates and will be deprecated at some point in the future.

380 1. Python API

https://github.com/bashtage/randomgen

NumPy Reference, Release 2.2.0

String operations

add(x1, x2, /[, out, where, casting, order, ...]) Add arguments element-wise.
center(a, width[, fillchar]) Return a copy of a with its elements centered in a string

of length width.
capitalize(a) Return a copy of a with only the first character of each

element capitalized.
decode(a[, encoding, errors]) Calls bytes.decode element-wise.
encode(a[, encoding, errors]) Calls str.encode element-wise.
expandtabs(a[, tabsize]) Return a copy of each string element where all tab char-

acters are replaced by one or more spaces.
ljust(a, width[, fillchar]) Return an array with the elements of a left-justified in a

string of length width.
lower(a) Return an array with the elements converted to lowercase.
lstrip(a[, chars]) For each element in a, return a copy with the leading char-

acters removed.
mod(a, values) Return (a % i), that is pre-Python 2.6 string formatting

(interpolation), element-wise for a pair of array_likes of
str or unicode.

multiply(a, i) Return (a * i), that is string multiple concatenation,
element-wise.

partition(a, sep) Partition each element in a around sep.
replace(a, old, new[, count]) For each element in a, return a copy of the string with

occurrences of substring old replaced by new.
rjust(a, width[, fillchar]) Return an array with the elements of a right-justified in a

string of length width.
rpartition(a, sep) Partition (split) each element around the right-most sepa-

rator.
rstrip(a[, chars]) For each element in a, return a copy with the trailing char-

acters removed.
strip(a[, chars]) For each element in a, return a copy with the leading and

trailing characters removed.
swapcase(a) Return element-wise a copy of the string with uppercase

characters converted to lowercase and vice versa.
title(a) Return element-wise title cased version of string or uni-

code.
translate(a, table[, deletechars]) For each element in a, return a copy of the string where all

characters occurring in the optional argument deletechars
are removed, and the remaining characters have been
mapped through the given translation table.

upper(a) Return an array with the elements converted to uppercase.
zfill(a, width) Return the numeric string left-filled with zeros.

strings.add(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'add'>

Add arguments element-wise.
Parameters

x1, x2
[array_like] The arrays to be added. If x1.shape != x2.shape, they must be broad-
castable to a common shape (which becomes the shape of the output).

out

1.1. NumPy’s module structure 381

https://docs.python.org/3/library/stdtypes.html#bytes.decode
https://docs.python.org/3/library/stdtypes.html#str.encode

NumPy Reference, Release 2.2.0

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
add

[ndarray or scalar] The sum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are
scalars.

Notes

Equivalent to x1 + x2 in terms of array broadcasting.

Examples

>>> import numpy as np
>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[0., 2., 4.],

[3., 5., 7.],
[6., 8., 10.]])

The + operator can be used as a shorthand for np.add on ndarrays.

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 + x2
array([[0., 2., 4.],

[3., 5., 7.],
[6., 8., 10.]])

strings.center(a, width, fillchar=' ')
Return a copy of a with its elements centered in a string of length width.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
width

[array_like, with any integer dtype] The length of the resulting strings, unless width <
str_len(a).

382 1. Python API

NumPy Reference, Release 2.2.0

fillchar
[array-like, with StringDType, bytes_, or str_ dtype] Optional padding character to
use (default is space).

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.center

Notes

While it is possible for a and fillchar to have different dtypes, passing a non-ASCII character in fillchar
when a is of dtype “S” is not allowed, and a ValueError is raised.

Examples

>>> import numpy as np
>>> c = np.array(['a1b2','1b2a','b2a1','2a1b']); c
array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='<U4')
>>> np.strings.center(c, width=9)
array([' a1b2 ', ' 1b2a ', ' b2a1 ', ' 2a1b '], dtype='<U9')
>>> np.strings.center(c, width=9, fillchar='*')
array(['***a1b2**', '***1b2a**', '***b2a1**', '***2a1b**'], dtype='<U9')
>>> np.strings.center(c, width=1)
array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='<U4')

strings.capitalize(a)
Return a copy of a with only the first character of each element capitalized.
Calls str.capitalize element-wise.
For byte strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array of strings to capital-
ize.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.capitalize

1.1. NumPy’s module structure 383

https://docs.python.org/3/library/stdtypes.html#str.center
https://docs.python.org/3/library/stdtypes.html#str.capitalize
https://docs.python.org/3/library/stdtypes.html#str.capitalize

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
array(['a1b2', '1b2a', 'b2a1', '2a1b'],

dtype='|S4')
>>> np.strings.capitalize(c)
array(['A1b2', '1b2a', 'B2a1', '2a1b'],

dtype='|S4')

strings.decode(a, encoding=None, errors=None)
Calls bytes.decode element-wise.
The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters
a

[array_like, with bytes_ dtype]
encoding

[str, optional] The name of an encoding
errors

[str, optional] Specifies how to handle encoding errors
Returns

out
[ndarray]

See also:

bytes.decode

Notes

The type of the result will depend on the encoding specified.

Examples

>>> import numpy as np
>>> c = np.array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
... b'\x81\x82\xc2\xc1\xc2\x82\x81'])
>>> c
array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',

b'\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7')
>>> np.strings.decode(c, encoding='cp037')
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')

strings.encode(a, encoding=None, errors=None)
Calls str.encode element-wise.
The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters

384 1. Python API

https://docs.python.org/3/library/stdtypes.html#bytes.decode
https://docs.python.org/3/library/codecs.html#module-codecs
https://docs.python.org/3/library/stdtypes.html#bytes.decode
https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/codecs.html#module-codecs

NumPy Reference, Release 2.2.0

a
[array_like, with StringDType or str_ dtype]

encoding
[str, optional] The name of an encoding

errors
[str, optional] Specifies how to handle encoding errors

Returns
out

[ndarray]
See also:

str.encode

Notes

The type of the result will depend on the encoding specified.

Examples

>>> import numpy as np
>>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> np.strings.encode(a, encoding='cp037')
array([b'�Á�Á�Á', b'@@�Á@@',

b'��ÂÁÂ��'], dtype='|S7')

strings.expandtabs(a, tabsize=8)
Return a copy of each string element where all tab characters are replaced by one or more spaces.
Calls str.expandtabs element-wise.
Return a copy of each string element where all tab characters are replaced by one or more spaces, depending on
the current column and the given tabsize. The column number is reset to zero after each newline occurring in the
string. This doesn’t understand other non-printing characters or escape sequences.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array
tabsize

[int, optional] Replace tabs with tabsize number of spaces. If not given defaults to 8 spaces.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input type

See also:

str.expandtabs

1.1. NumPy’s module structure 385

https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/stdtypes.html#str.expandtabs
https://docs.python.org/3/library/stdtypes.html#str.expandtabs

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([' Hello world'])
>>> np.strings.expandtabs(a, tabsize=4)
array([' Hello world'], dtype='<U21')

strings.ljust(a, width, fillchar=' ')
Return an array with the elements of a left-justified in a string of length width.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
width

[array_like, with any integer dtype] The length of the resulting strings, unless width <
str_len(a).

fillchar
[array-like, with StringDType, bytes_, or str_ dtype] Optional character to use for
padding (default is space).

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.ljust

Notes

While it is possible for a and fillchar to have different dtypes, passing a non-ASCII character in fillchar
when a is of dtype “S” is not allowed, and a ValueError is raised.

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> np.strings.ljust(c, width=3)
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.strings.ljust(c, width=9)
array(['aAaAaA ', ' aA ', 'abBABba '], dtype='<U9')

strings.lower(a)
Return an array with the elements converted to lowercase.
Call str.lower element-wise.
For 8-bit strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array.

386 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.ljust
https://docs.python.org/3/library/stdtypes.html#str.lower

NumPy Reference, Release 2.2.0

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.lower

Examples

>>> import numpy as np
>>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
>>> np.strings.lower(c)
array(['a1b c', '1bca', 'bca1'], dtype='<U5')

strings.lstrip(a, chars=None)
For each element in a, return a copy with the leading characters removed.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
chars

[scalar with the same dtype as a, optional] The chars argument is a string specifying the set
of characters to be removed. If None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.lstrip

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
The 'a' variable is unstripped from c[1] because of leading whitespace.
>>> np.strings.lstrip(c, 'a')
array(['AaAaA', ' aA ', 'bBABba'], dtype='<U7')
>>> np.strings.lstrip(c, 'A') # leaves c unchanged
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> (np.strings.lstrip(c, ' ') == np.strings.lstrip(c, '')).all()
np.False_
>>> (np.strings.lstrip(c, ' ') == np.strings.lstrip(c)).all()
np.True_

1.1. NumPy’s module structure 387

https://docs.python.org/3/library/stdtypes.html#str.lower
https://docs.python.org/3/library/stdtypes.html#str.lstrip

NumPy Reference, Release 2.2.0

strings.mod(a, values)
Return (a % i), that is pre-Python 2.6 string formatting (interpolation), element-wise for a pair of array_likes of str
or unicode.

Parameters
a

[array_like, with np.bytes_ or np.str_ dtype]
values

[array_like of values] These values will be element-wise interpolated into the string.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

Examples

>>> import numpy as np
>>> a = np.array(["NumPy is a %s library"])
>>> np.strings.mod(a, values=["Python"])
array(['NumPy is a Python library'], dtype='<U25')

>>> a = np.array([b'%d bytes', b'%d bits'])
>>> values = np.array([8, 64])
>>> np.strings.mod(a, values)
array([b'8 bytes', b'64 bits'], dtype='|S7')

strings.multiply(a, i)
Return (a * i), that is string multiple concatenation, element-wise.
Values in i of less than 0 are treated as 0 (which yields an empty string).

Parameters
a

[array_like, with StringDType, bytes_ or str_ dtype]
i

[array_like, with any integer dtype]
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

388 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array(["a", "b", "c"])
>>> np.strings.multiply(a, 3)
array(['aaa', 'bbb', 'ccc'], dtype='<U3')
>>> i = np.array([1, 2, 3])
>>> np.strings.multiply(a, i)
array(['a', 'bb', 'ccc'], dtype='<U3')
>>> np.strings.multiply(np.array(['a']), i)
array(['a', 'aa', 'aaa'], dtype='<U3')
>>> a = np.array(['a', 'b', 'c', 'd', 'e', 'f']).reshape((2, 3))
>>> np.strings.multiply(a, 3)
array([['aaa', 'bbb', 'ccc'],

['ddd', 'eee', 'fff']], dtype='<U3')
>>> np.strings.multiply(a, i)
array([['a', 'bb', 'ccc'],

['d', 'ee', 'fff']], dtype='<U3')

strings.partition(a, sep)
Partition each element in a around sep.
For each element in a, split the element at the first occurrence of sep, and return a 3-tuple containing the part
before the separator, the separator itself, and the part after the separator. If the separator is not found, the first item
of the tuple will contain the whole string, and the second and third ones will be the empty string.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array
sep

[array-like, with StringDType, bytes_, or str_ dtype] Separator to split each string
element in a.

Returns
out

[3-tuple:]
• array with StringDType, bytes_ or str_ dtype with the part before the separator
• array with StringDType, bytes_ or str_ dtype with the separator
• array with StringDType, bytes_ or str_ dtype with the part after the separator

See also:

str.partition

1.1. NumPy’s module structure 389

https://docs.python.org/3/library/stdtypes.html#str.partition

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array(["Numpy is nice!"])
>>> np.strings.partition(x, " ")
(array(['Numpy'], dtype='<U5'),
array([' '], dtype='<U1'),
array(['is nice!'], dtype='<U8'))

strings.replace(a, old, new, count=-1)
For each element in a, return a copy of the string with occurrences of substring old replaced by new.

Parameters
a

[array_like, with bytes_ or str_ dtype]
old, new

[array_like, with bytes_ or str_ dtype]
count

[array_like, with int_ dtype] If the optional argument count is given, only the first count
occurrences are replaced.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.replace

Examples

>>> import numpy as np
>>> a = np.array(["That is a mango", "Monkeys eat mangos"])
>>> np.strings.replace(a, 'mango', 'banana')
array(['That is a banana', 'Monkeys eat bananas'], dtype='<U19')

>>> a = np.array(["The dish is fresh", "This is it"])
>>> np.strings.replace(a, 'is', 'was')
array(['The dwash was fresh', 'Thwas was it'], dtype='<U19')

strings.rjust(a, width, fillchar=' ')
Return an array with the elements of a right-justified in a string of length width.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
width

[array_like, with any integer dtype] The length of the resulting strings, unless width <
str_len(a).

390 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.replace

NumPy Reference, Release 2.2.0

fillchar
[array-like, with StringDType, bytes_, or str_ dtype] Optional padding character to
use (default is space).

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.rjust

Notes

While it is possible for a and fillchar to have different dtypes, passing a non-ASCII character in fillchar
when a is of dtype “S” is not allowed, and a ValueError is raised.

Examples

>>> import numpy as np
>>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> np.strings.rjust(a, width=3)
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.strings.rjust(a, width=9)
array([' aAaAaA', ' aA ', ' abBABba'], dtype='<U9')

strings.rpartition(a, sep)
Partition (split) each element around the right-most separator.
For each element in a, split the element at the last occurrence of sep, and return a 3-tuple containing the part
before the separator, the separator itself, and the part after the separator. If the separator is not found, the third
item of the tuple will contain the whole string, and the first and second ones will be the empty string.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array
sep

[array-like, with StringDType, bytes_, or str_ dtype] Separator to split each string
element in a.

Returns
out

[3-tuple:]
• array with StringDType, bytes_ or str_ dtype with the part before the separator
• array with StringDType, bytes_ or str_ dtype with the separator
• array with StringDType, bytes_ or str_ dtype with the part after the separator

See also:

str.rpartition

1.1. NumPy’s module structure 391

https://docs.python.org/3/library/stdtypes.html#str.rjust
https://docs.python.org/3/library/stdtypes.html#str.rpartition

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> np.strings.rpartition(a, 'A')
(array(['aAaAa', ' a', 'abB'], dtype='<U5'),
array(['A', 'A', 'A'], dtype='<U1'),
array(['', ' ', 'Bba'], dtype='<U3'))

strings.rstrip(a, chars=None)
For each element in a, return a copy with the trailing characters removed.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
chars

[scalar with the same dtype as a, optional] The chars argument is a string specifying the set
of characters to be removed. If None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.rstrip

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', 'abBABba'])
>>> c
array(['aAaAaA', 'abBABba'], dtype='<U7')
>>> np.strings.rstrip(c, 'a')
array(['aAaAaA', 'abBABb'], dtype='<U7')
>>> np.strings.rstrip(c, 'A')
array(['aAaAa', 'abBABba'], dtype='<U7')

strings.strip(a, chars=None)
For each element in a, return a copy with the leading and trailing characters removed.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
chars

[scalar with the same dtype as a, optional] The chars argument is a string specifying the set
of characters to be removed. If None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped.

Returns

392 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.rstrip

NumPy Reference, Release 2.2.0

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.strip

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.strings.strip(c)
array(['aAaAaA', 'aA', 'abBABba'], dtype='<U7')
'a' unstripped from c[1] because of leading whitespace.
>>> np.strings.strip(c, 'a')
array(['AaAaA', ' aA ', 'bBABb'], dtype='<U7')
'A' unstripped from c[1] because of trailing whitespace.
>>> np.strings.strip(c, 'A')
array(['aAaAa', ' aA ', 'abBABba'], dtype='<U7')

strings.swapcase(a)
Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa.
Calls str.swapcase element-wise.
For 8-bit strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.swapcase

Examples

>>> import numpy as np
>>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],

dtype='|S5')
>>> np.strings.swapcase(c)
array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],

dtype='|S5')

1.1. NumPy’s module structure 393

https://docs.python.org/3/library/stdtypes.html#str.strip
https://docs.python.org/3/library/stdtypes.html#str.swapcase
https://docs.python.org/3/library/stdtypes.html#str.swapcase

NumPy Reference, Release 2.2.0

strings.title(a)
Return element-wise title cased version of string or unicode.
Title case words start with uppercase characters, all remaining cased characters are lowercase.
Calls str.title element-wise.
For 8-bit strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.title

Examples

>>> import numpy as np
>>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
array(['a1b c', '1b ca', 'b ca1', 'ca1b'],

dtype='|S5')
>>> np.strings.title(c)
array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],

dtype='|S5')

strings.translate(a, table, deletechars=None)
For each element in a, return a copy of the string where all characters occurring in the optional argument deletechars
are removed, and the remaining characters have been mapped through the given translation table.
Calls str.translate element-wise.

Parameters
a

[array-like, with np.bytes_ or np.str_ dtype]
table

[str of length 256]
deletechars

[str]
Returns

out
[ndarray] Output array of str or unicode, depending on input type

See also:

str.translate

394 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.title
https://docs.python.org/3/library/stdtypes.html#str.title
https://docs.python.org/3/library/stdtypes.html#str.translate
https://docs.python.org/3/library/stdtypes.html#str.translate

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array(['a1b c', '1bca', 'bca1'])
>>> table = a[0].maketrans('abc', '123')
>>> deletechars = ' '
>>> np.char.translate(a, table, deletechars)
array(['112 3', '1231', '2311'], dtype='<U5')

strings.upper(a)
Return an array with the elements converted to uppercase.
Calls str.upper element-wise.
For 8-bit strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.upper

Examples

>>> import numpy as np
>>> c = np.array(['a1b c', '1bca', 'bca1']); c
array(['a1b c', '1bca', 'bca1'], dtype='<U5')
>>> np.strings.upper(c)
array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')

strings.zfill(a, width)
Return the numeric string left-filled with zeros. A leading sign prefix (+/-) is handled by inserting the padding
after the sign character rather than before.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
width

[array_like, with any integer dtype] Width of string to left-fill elements in a.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input type

See also:

str.zfill

1.1. NumPy’s module structure 395

https://docs.python.org/3/library/stdtypes.html#str.upper
https://docs.python.org/3/library/stdtypes.html#str.upper
https://docs.python.org/3/library/stdtypes.html#str.zfill

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.strings.zfill(['1', '-1', '+1'], 3)
array(['001', '-01', '+01'], dtype='<U3')

Comparison
The numpy.stringsmodule also exports the comparison universal functions that can now operate on string arrays as
well.

equal(x1, x2, /[, out, where, casting, ...]) Return (x1 == x2) element-wise.
not_equal(x1, x2, /[, out, where, casting, ...]) Return (x1 != x2) element-wise.
greater_equal(x1, x2, /[, out, where, ...]) Return the truth value of (x1 >= x2) element-wise.
less_equal(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 <= x2) element-wise.
greater(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 > x2) element-wise.
less(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 < x2) element-wise.

strings.equal(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'equal'>

Return (x1 == x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

not_equal, greater_equal, less_equal, greater, less

396 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.equal([0, 1, 3], np.arange(3))
array([True, True, False])

What is compared are values, not types. So an int (1) and an array of length one can evaluate as True:

>>> np.equal(1, np.ones(1))
array([True])

The == operator can be used as a shorthand for np.equal on ndarrays.

>>> a = np.array([2, 4, 6])
>>> b = np.array([2, 4, 2])
>>> a == b
array([True, True, False])

strings.not_equal(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'not_equal'>

Return (x1 != x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

equal, greater, greater_equal, less, less_equal

1.1. NumPy’s module structure 397

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.not_equal([1.,2.], [1., 3.])
array([False, True])
>>> np.not_equal([1, 2], [[1, 3],[1, 4]])
array([[False, True],

[False, True]])

The != operator can be used as a shorthand for np.not_equal on ndarrays.

>>> a = np.array([1., 2.])
>>> b = np.array([1., 3.])
>>> a != b
array([False, True])

strings.greater_equal(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'greater_equal'>

Return the truth value of (x1 >= x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[bool or ndarray of bool] Output array, element-wise comparison of x1 and x2. Typically of
type bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater, less, less_equal, equal, not_equal

398 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.greater_equal([4, 2, 1], [2, 2, 2])
array([True, True, False])

The >= operator can be used as a shorthand for np.greater_equal on ndarrays.

>>> a = np.array([4, 2, 1])
>>> b = np.array([2, 2, 2])
>>> a >= b
array([True, True, False])

strings.less_equal(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'less_equal'>

Return the truth value of (x1 <= x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater, less, greater_equal, equal, not_equal

1.1. NumPy’s module structure 399

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.less_equal([4, 2, 1], [2, 2, 2])
array([False, True, True])

The <= operator can be used as a shorthand for np.less_equal on ndarrays.

>>> a = np.array([4, 2, 1])
>>> b = np.array([2, 2, 2])
>>> a <= b
array([False, True, True])

strings.greater(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'greater'>

Return the truth value of (x1 > x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater_equal, less, less_equal, equal, not_equal

400 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.greater([4,2],[2,2])
array([True, False])

The > operator can be used as a shorthand for np.greater on ndarrays.

>>> a = np.array([4, 2])
>>> b = np.array([2, 2])
>>> a > b
array([True, False])

strings.less(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'less'>

Return the truth value of (x1 < x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater, less_equal, greater_equal, equal, not_equal

1.1. NumPy’s module structure 401

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.less([1, 2], [2, 2])
array([True, False])

The < operator can be used as a shorthand for np.less on ndarrays.

>>> a = np.array([1, 2])
>>> b = np.array([2, 2])
>>> a < b
array([True, False])

402 1. Python API

NumPy Reference, Release 2.2.0

String information

count(a, sub[, start, end]) Returns an array with the number of non-overlapping oc-
currences of substring sub in the range [start, end).

endswith(a, suffix[, start, end]) Returns a boolean array which is True where the string
element in a ends with suffix, otherwise False.

find(a, sub[, start, end]) For each element, return the lowest index in the string
where substring sub is found, such that sub is contained
in the range [start, end).

index(a, sub[, start, end]) Like find, but raises ValueError when the substring
is not found.

isalnum(x, /[, out, where, casting, order, ...]) Returns true for each element if all characters in the string
are alphanumeric and there is at least one character, false
otherwise.

isalpha(x, /[, out, where, casting, order, ...]) Returns true for each element if all characters in the data
interpreted as a string are alphabetic and there is at least
one character, false otherwise.

isdecimal(x, /[, out, where, casting, ...]) For each element, return True if there are only decimal
characters in the element.

isdigit(x, /[, out, where, casting, order, ...]) Returns true for each element if all characters in the string
are digits and there is at least one character, false other-
wise.

islower(x, /[, out, where, casting, order, ...]) Returns true for each element if all cased characters in
the string are lowercase and there is at least one cased
character, false otherwise.

isnumeric(x, /[, out, where, casting, ...]) For each element, return True if there are only numeric
characters in the element.

isspace(x, /[, out, where, casting, order, ...]) Returns true for each element if there are only whitespace
characters in the string and there is at least one character,
false otherwise.

istitle(x, /[, out, where, casting, order, ...]) Returns true for each element if the element is a titlecased
string and there is at least one character, false otherwise.

isupper(x, /[, out, where, casting, order, ...]) Return true for each element if all cased characters in the
string are uppercase and there is at least one character,
false otherwise.

rfind(a, sub[, start, end]) For each element, return the highest index in the string
where substring sub is found, such that sub is contained
in the range [start, end).

rindex(a, sub[, start, end]) Like rfind, but raises ValueError when the sub-
string sub is not found.

startswith(a, prefix[, start, end]) Returns a boolean array which is True where the string
element in a starts with prefix, otherwise False.

str_len(x, /[, out, where, casting, order, ...]) Returns the length of each element.

strings.count(a, sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end).

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
sub

[array-like, with StringDType, bytes_, or str_ dtype] The substring to search for.

1.1. NumPy’s module structure 403

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

start, end
[array_like, with any integer dtype] The range to look in, interpreted as in slice notation.

Returns
y

[ndarray] Output array of ints
See also:

str.count

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.strings.count(c, 'A')
array([3, 1, 1])
>>> np.strings.count(c, 'aA')
array([3, 1, 0])
>>> np.strings.count(c, 'A', start=1, end=4)
array([2, 1, 1])
>>> np.strings.count(c, 'A', start=1, end=3)
array([1, 0, 0])

strings.endswith(a, suffix, start=0, end=None)
Returns a boolean array which is True where the string element in a ends with suffix, otherwise False.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
suffix

[array-like, with StringDType, bytes_, or str_ dtype]
start, end

[array_like, with any integer dtype] With start, test beginning at that position. With end,
stop comparing at that position.

Returns
out

[ndarray] Output array of bools
See also:

str.endswith

404 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.count
https://docs.python.org/3/library/stdtypes.html#str.endswith

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> s = np.array(['foo', 'bar'])
>>> s
array(['foo', 'bar'], dtype='<U3')
>>> np.strings.endswith(s, 'ar')
array([False, True])
>>> np.strings.endswith(s, 'a', start=1, end=2)
array([False, True])

strings.find(a, sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found, such that sub is contained
in the range [start, end).

Parameters
a

[array_like, with StringDType, bytes_ or str_ dtype]
sub

[array_like, with np.bytes_ or np.str_ dtype] The substring to search for.
start, end

[array_like, with any integer dtype] The range to look in, interpreted as in slice notation.
Returns

y
[ndarray] Output array of ints

See also:

str.find

Examples

>>> import numpy as np
>>> a = np.array(["NumPy is a Python library"])
>>> np.strings.find(a, "Python")
array([11])

strings.index(a, sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
sub

[array-like, with StringDType, bytes_, or str_ dtype]
start, end

[array_like, with any integer dtype, optional]
Returns

out
[ndarray] Output array of ints.

1.1. NumPy’s module structure 405

https://docs.python.org/3/library/stdtypes.html#str.find
https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

See also:

find, str.index

Examples

>>> import numpy as np
>>> a = np.array(["Computer Science"])
>>> np.strings.index(a, "Science", start=0, end=None)
array([9])

strings.isalnum(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isalnum'>

Returns true for each element if all characters in the string are alphanumeric and there is at least one character,
false otherwise.

Parameters
x

[array_like, with StringDType, bytes_ or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray] Output array of bool This is a scalar if x is a scalar.
See also:

str.isalnum

Examples

>>> import numpy as np
>>> a = np.array(['a', '1', 'a1', '(', ''])
>>> np.strings.isalnum(a)
array([True, True, True, False, False])

strings.isalpha(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isalpha'>

Returns true for each element if all characters in the data interpreted as a string are alphabetic and there is at least
one character, false otherwise.

406 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.index
https://docs.python.org/3/library/stdtypes.html#str.isalnum

NumPy Reference, Release 2.2.0

For byte strings (i.e. bytes), alphabetic characters are those byte values in the sequence
b’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’. For Unicode strings, alphabetic
characters are those characters defined in the Unicode character database as “Letter”.

Parameters
x

[array_like, with StringDType, bytes_, or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isalpha

Examples

>>> import numpy as np
>>> a = np.array(['a', 'b', '0'])
>>> np.strings.isalpha(a)
array([True, True, False])

>>> a = np.array([['a', 'b', '0'], ['c', '1', '2']])
>>> np.strings.isalpha(a)
array([[True, True, False], [True, False, False]])

strings.isdecimal(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isdecimal'>

For each element, return True if there are only decimal characters in the element.
Decimal characters include digit characters, and all characters that can be used to form decimal-radix numbers,
e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

Parameters
x

[array_like, with StringDType or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,

1.1. NumPy’s module structure 407

https://docs.python.org/3/library/stdtypes.html#str.isalpha

NumPy Reference, Release 2.2.0

a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isdecimal

Examples

>>> import numpy as np
>>> np.strings.isdecimal(['12345', '4.99', '123ABC', ''])
array([True, False, False, False])

strings.isdigit(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isdigit'>

Returns true for each element if all characters in the string are digits and there is at least one character, false
otherwise.
For byte strings, digits are the byte values in the sequence b’0123456789’. For Unicode strings, digits include
decimal characters and digits that need special handling, such as the compatibility superscript digits. This also
covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers.

Parameters
x

[array_like, with StringDType, bytes_, or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns

408 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.isdecimal

NumPy Reference, Release 2.2.0

y
[ndarray] Output array of bools This is a scalar if x is a scalar.

See also:

str.isdigit

Examples

>>> import numpy as np
>>> a = np.array(['a', 'b', '0'])
>>> np.strings.isdigit(a)
array([False, False, True])
>>> a = np.array([['a', 'b', '0'], ['c', '1', '2']])
>>> np.strings.isdigit(a)
array([[False, False, True], [False, True, True]])

strings.islower(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'islower'>

Returns true for each element if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

Parameters
x

[array_like, with StringDType, bytes_ or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.islower

1.1. NumPy’s module structure 409

https://docs.python.org/3/library/stdtypes.html#str.isdigit
https://docs.python.org/3/library/stdtypes.html#str.islower

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.strings.islower("GHC")
array(False)
>>> np.strings.islower("ghc")
array(True)

strings.isnumeric(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isnumeric'>

For each element, return True if there are only numeric characters in the element.
Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e.g.
U+2155, VULGAR FRACTION ONE FIFTH.

Parameters
x

[array_like, with StringDType or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isnumeric

Examples

>>> import numpy as np
>>> np.strings.isnumeric(['123', '123abc', '9.0', '1/4', 'VIII'])
array([True, False, False, False, False])

strings.isspace(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isspace'>

Returns true for each element if there are only whitespace characters in the string and there is at least one character,
false otherwise.
For byte strings, whitespace characters are the ones in the sequence b’ tnrx0bf’. For Unicode strings, a character is
whitespace, if, in the Unicode character database, its general category is Zs (“Separator, space”), or its bidirectional
class is one of WS, B, or S.

410 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.isnumeric

NumPy Reference, Release 2.2.0

Parameters
x

[array_like, with StringDType, bytes_, or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isspace

Examples

>>> np.char.isspace(list("a b c"))
array([False, True, False, True, False])
>>> np.char.isspace(b'\x0a \x0b \x0c')
np.True_
>>> np.char.isspace(b'\x0a \x0b \x0c N')
np.False_

strings.istitle(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'istitle'>

Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise.
Parameters

x
[array_like, with StringDType, bytes_ or str_ dtype]

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1.1. NumPy’s module structure 411

https://docs.python.org/3/library/stdtypes.html#str.isspace

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.istitle

Examples

>>> import numpy as np
>>> np.strings.istitle("Numpy Is Great")
array(True)

>>> np.strings.istitle("Numpy is great")
array(False)

strings.isupper(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isupper'>

Return true for each element if all cased characters in the string are uppercase and there is at least one character,
false otherwise.

Parameters
x

[array_like, with StringDType, bytes_ or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isupper

412 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.istitle
https://docs.python.org/3/library/stdtypes.html#str.isupper

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.strings.isupper("GHC")
array(True)
>>> a = np.array(["hello", "HELLO", "Hello"])
>>> np.strings.isupper(a)
array([False, True, False])

strings.rfind(a, sub, start=0, end=None)
For each element, return the highest index in the string where substring sub is found, such that sub is contained
in the range [start, end).

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
sub

[array-like, with StringDType, bytes_, or str_ dtype] The substring to search for.
start, end

[array_like, with any integer dtype] The range to look in, interpreted as in slice notation.
Returns

y
[ndarray] Output array of ints

See also:

str.rfind

Examples

>>> import numpy as np
>>> a = np.array(["Computer Science"])
>>> np.strings.rfind(a, "Science", start=0, end=None)
array([9])
>>> np.strings.rfind(a, "Science", start=0, end=8)
array([-1])
>>> b = np.array(["Computer Science", "Science"])
>>> np.strings.rfind(b, "Science", start=0, end=None)
array([9, 0])

strings.rindex(a, sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

Parameters
a

[array-like, with np.bytes_ or np.str_ dtype]
sub

[array-like, with np.bytes_ or np.str_ dtype]
start, end

[array-like, with any integer dtype, optional]

1.1. NumPy’s module structure 413

https://docs.python.org/3/library/stdtypes.html#str.rfind
https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

Returns
out

[ndarray] Output array of ints.
See also:

rfind, str.rindex

Examples

>>> a = np.array(["Computer Science"])
>>> np.strings.rindex(a, "Science", start=0, end=None)
array([9])

strings.startswith(a, prefix, start=0, end=None)
Returns a boolean array which is True where the string element in a starts with prefix, otherwise False.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
prefix

[array-like, with StringDType, bytes_, or str_ dtype]
start, end

[array_like, with any integer dtype] With start, test beginning at that position. With end,
stop comparing at that position.

Returns
out

[ndarray] Output array of bools
See also:

str.startswith

Examples

>>> import numpy as np
>>> s = np.array(['foo', 'bar'])
>>> s
array(['foo', 'bar'], dtype='<U3')
>>> np.strings.startswith(s, 'fo')
array([True, False])
>>> np.strings.startswith(s, 'o', start=1, end=2)
array([True, False])

strings.str_len(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'str_len'>

Returns the length of each element. For byte strings, this is the number of bytes, while, for Unicode strings, it is
the number of Unicode code points.

Parameters

414 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.rindex
https://docs.python.org/3/library/stdtypes.html#str.startswith

NumPy Reference, Release 2.2.0

x
[array_like, with StringDType, bytes_, or str_ dtype]

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of ints This is a scalar if x is a scalar.
See also:

len

Examples

>>> import numpy as np
>>> a = np.array(['Grace Hopper Conference', 'Open Source Day'])
>>> np.strings.str_len(a)
array([23, 15])
>>> a = np.array(['Р', 'о'])
>>> np.strings.str_len(a)
array([1, 1])
>>> a = np.array([['hello', 'world'], ['Р', 'о']])
>>> np.strings.str_len(a)
array([[5, 5], [1, 1]])

Test support (numpy.testing)

Common test support for all numpy test scripts.
This single module should provide all the common functionality for numpy tests in a single location, so that test scripts
can just import it and work right away. For background, see the Testing guidelines

1.1. NumPy’s module structure 415

https://docs.python.org/3/library/functions.html#len

NumPy Reference, Release 2.2.0

Asserts

assert_allclose(actual, desired[, rtol, ...]) Raises an AssertionError if two objects are not equal up
to desired tolerance.

assert_array_almost_equal_nulp(x, y[,
nulp])

Compare two arrays relatively to their spacing.

assert_array_max_ulp(a, b[, maxulp, dtype]) Check that all items of arrays differ in at most N Units in
the Last Place.

assert_array_equal(actual, desired[, ...]) Raises an AssertionError if two array_like objects are not
equal.

assert_array_less(x, y[, err_msg, verbose, ...]) Raises an AssertionError if two array_like objects are not
ordered by less than.

assert_equal(actual, desired[, err_msg, ...]) Raises an AssertionError if two objects are not equal.
assert_raises(assert_raises) Fail unless an exception of class exception_class is thrown

by callable when invoked with arguments args and key-
word arguments kwargs.

assert_raises_regex(exception_class, ...) Fail unless an exception of class exception_class and
with message that matches expected_regexp is thrown by
callable when invoked with arguments args and keyword
arguments kwargs.

assert_warns(warning_class, *args, **kwargs) Fail unless the given callable throws the specified warning.
assert_no_warnings(*args, **kwargs) Fail if the given callable produces any warnings.
assert_no_gc_cycles(*args, **kwargs) Fail if the given callable produces any reference cycles.
assert_string_equal(actual, desired) Test if two strings are equal.

testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, equal_nan=True, err_msg='', verbose=True, *,
strict=False)

Raises an AssertionError if two objects are not equal up to desired tolerance.
Given two array_like objects, check that their shapes and all elements are equal (but see the Notes for the special
handling of a scalar). An exception is raised if the shapes mismatch or any values conflict. In contrast to the
standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the
same positions.
The test is equivalent toallclose(actual, desired, rtol, atol) (note thatallclose has different
default values). It compares the difference between actual and desired to atol + rtol * abs(desired).

Parameters
actual

[array_like] Array obtained.
desired

[array_like] Array desired.
rtol

[float, optional] Relative tolerance.
atol

[float, optional] Absolute tolerance.
equal_nan

[bool, optional.] If True, NaNs will compare equal.
err_msg

[str, optional] The error message to be printed in case of failure.

416 1. Python API

NumPy Reference, Release 2.2.0

verbose
[bool, optional] If True, the conflicting values are appended to the error message.

strict
[bool, optional] If True, raise an AssertionError when either the shape or the data type
of the arguments does not match. The special handling of scalars mentioned in the Notes
section is disabled.
New in version 2.0.0.

Raises
AssertionError

If actual and desired are not equal up to specified precision.
See also:

assert_array_almost_equal_nulp, assert_array_max_ulp

Notes

When one of actual and desired is a scalar and the other is array_like, the function performs the comparison as if
the scalar were broadcasted to the shape of the array. This behaviour can be disabled with the strict parameter.

Examples

>>> x = [1e-5, 1e-3, 1e-1]
>>> y = np.arccos(np.cos(x))
>>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0)

As mentioned in the Notes section, assert_allclose has special handling for scalars. Here, the test checks
that the value of numpy.sin is nearly zero at integer multiples of π.

>>> x = np.arange(3) * np.pi
>>> np.testing.assert_allclose(np.sin(x), 0, atol=1e-15)

Use strict to raise an AssertionError when comparing an array with one or more dimensions against a scalar.

>>> np.testing.assert_allclose(np.sin(x), 0, atol=1e-15, strict=True)
Traceback (most recent call last):

...
AssertionError:
Not equal to tolerance rtol=1e-07, atol=1e-15

(shapes (3,), () mismatch)
ACTUAL: array([0.000000e+00, 1.224647e-16, -2.449294e-16])
DESIRED: array(0)

The strict parameter also ensures that the array data types match:

>>> y = np.zeros(3, dtype=np.float32)
>>> np.testing.assert_allclose(np.sin(x), y, atol=1e-15, strict=True)
Traceback (most recent call last):

...
AssertionError:
Not equal to tolerance rtol=1e-07, atol=1e-15

(continues on next page)

1.1. NumPy’s module structure 417

NumPy Reference, Release 2.2.0

(continued from previous page)

(dtypes float64, float32 mismatch)
ACTUAL: array([0.000000e+00, 1.224647e-16, -2.449294e-16])
DESIRED: array([0., 0., 0.], dtype=float32)

testing.assert_array_almost_equal_nulp(x, y, nulp=1)
Compare two arrays relatively to their spacing.
This is a relatively robust method to compare two arrays whose amplitude is variable.

Parameters
x, y

[array_like] Input arrays.
nulp

[int, optional] The maximum number of unit in the last place for tolerance (see Notes). Default
is 1.

Returns
None

Raises
AssertionError

If the spacing between x and y for one or more elements is larger than nulp.
See also:

assert_array_max_ulp
Check that all items of arrays differ in at most N Units in the Last Place.

spacing
Return the distance between x and the nearest adjacent number.

Notes

An assertion is raised if the following condition is not met:

abs(x - y) <= nulp * spacing(maximum(abs(x), abs(y)))

Examples

>>> x = np.array([1., 1e-10, 1e-20])
>>> eps = np.finfo(x.dtype).eps
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)

>>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
Traceback (most recent call last):
...

AssertionError: Arrays are not equal to 1 ULP (max is 2)

testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)
Check that all items of arrays differ in at most N Units in the Last Place.

418 1. Python API

NumPy Reference, Release 2.2.0

Parameters
a, b

[array_like] Input arrays to be compared.
maxulp

[int, optional] The maximum number of units in the last place that elements of a and b can
differ. Default is 1.

dtype
[dtype, optional] Data-type to convert a and b to if given. Default is None.

Returns
ret

[ndarray] Array containing number of representable floating point numbers between items in
a and b.

Raises
AssertionError

If one or more elements differ by more than maxulp.
See also:

assert_array_almost_equal_nulp
Compare two arrays relatively to their spacing.

Notes

For computing the ULP difference, this API does not differentiate between various representations of NAN (ULP
difference between 0x7fc00000 and 0xffc00000 is zero).

Examples

>>> a = np.linspace(0., 1., 100)
>>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))

testing.assert_array_equal(actual, desired, err_msg='', verbose=True, *, strict=False)
Raises an AssertionError if two array_like objects are not equal.
Given two array_like objects, check that the shape is equal and all elements of these objects are equal (but see
the Notes for the special handling of a scalar). An exception is raised at shape mismatch or conflicting values. In
contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects
have NaNs in the same positions.
The usual caution for verifying equality with floating point numbers is advised.

Note: When either actual or desired is already an instance of numpy.ndarray and desired is not a dict, the
behavior of assert_equal(actual, desired) is identical to the behavior of this function. Otherwise,
this function performs np.asanyarray on the inputs before comparison, whereas assert_equal defines special
comparison rules for common Python types. For example, only assert_equal can be used to compare nested
Python lists. In new code, consider using only assert_equal, explicitly converting either actual or desired to
arrays if the behavior of assert_array_equal is desired.

Parameters

1.1. NumPy’s module structure 419

NumPy Reference, Release 2.2.0

actual
[array_like] The actual object to check.

desired
[array_like] The desired, expected object.

err_msg
[str, optional] The error message to be printed in case of failure.

verbose
[bool, optional] If True, the conflicting values are appended to the error message.

strict
[bool, optional] If True, raise an AssertionError when either the shape or the data type of the
array_like objects does not match. The special handling for scalars mentioned in the Notes
section is disabled.
New in version 1.24.0.

Raises
AssertionError

If actual and desired objects are not equal.

See also:

assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Notes

When one of actual and desired is a scalar and the other is array_like, the function checks that each element of the
array_like object is equal to the scalar. This behaviour can be disabled with the strict parameter.

Examples

The first assert does not raise an exception:

>>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
... [np.exp(0),2.33333, np.nan])

Assert fails with numerical imprecision with floats:

>>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan])
Traceback (most recent call last):

...
AssertionError:
Arrays are not equal

Mismatched elements: 1 / 3 (33.3%)
Max absolute difference among violations: 4.4408921e-16
Max relative difference among violations: 1.41357986e-16
ACTUAL: array([1. , 3.141593, nan])
DESIRED: array([1. , 3.141593, nan])

420 1. Python API

NumPy Reference, Release 2.2.0

Use assert_allclose or one of the nulp (number of floating point values) functions for these cases instead:

>>> np.testing.assert_allclose([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan],
... rtol=1e-10, atol=0)

As mentioned in the Notes section, assert_array_equal has special handling for scalars. Here the test
checks that each value in x is 3:

>>> x = np.full((2, 5), fill_value=3)
>>> np.testing.assert_array_equal(x, 3)

Use strict to raise an AssertionError when comparing a scalar with an array:

>>> np.testing.assert_array_equal(x, 3, strict=True)
Traceback (most recent call last):

...
AssertionError:
Arrays are not equal

(shapes (2, 5), () mismatch)
ACTUAL: array([[3, 3, 3, 3, 3],

[3, 3, 3, 3, 3]])
DESIRED: array(3)

The strict parameter also ensures that the array data types match:

>>> x = np.array([2, 2, 2])
>>> y = np.array([2., 2., 2.], dtype=np.float32)
>>> np.testing.assert_array_equal(x, y, strict=True)
Traceback (most recent call last):

...
AssertionError:
Arrays are not equal

(dtypes int64, float32 mismatch)
ACTUAL: array([2, 2, 2])
DESIRED: array([2., 2., 2.], dtype=float32)

testing.assert_array_less(x, y, err_msg='', verbose=True, *, strict=False)
Raises an AssertionError if two array_like objects are not ordered by less than.
Given two array_like objects x and y, check that the shape is equal and all elements of x are strictly less than the
corresponding elements of y (but see the Notes for the special handling of a scalar). An exception is raised at shape
mismatch or values that are not correctly ordered. In contrast to the standard usage in NumPy, no assertion is raised
if both objects have NaNs in the same positions.

Parameters
x

[array_like] The smaller object to check.
y

[array_like] The larger object to compare.
err_msg

[string] The error message to be printed in case of failure.
verbose

[bool] If True, the conflicting values are appended to the error message.

1.1. NumPy’s module structure 421

NumPy Reference, Release 2.2.0

strict
[bool, optional] If True, raise an AssertionError when either the shape or the data type of the
array_like objects does not match. The special handling for scalars mentioned in the Notes
section is disabled.
New in version 2.0.0.

Raises
AssertionError

If x is not strictly smaller than y, element-wise.
See also:

assert_array_equal
tests objects for equality

assert_array_almost_equal
test objects for equality up to precision

Notes

When one of x and y is a scalar and the other is array_like, the function performs the comparison as though the
scalar were broadcasted to the shape of the array. This behaviour can be disabled with the strict parameter.

Examples

The following assertion passes because each finite element of x is strictly less than the corresponding element of y,
and the NaNs are in corresponding locations.

>>> x = [1.0, 1.0, np.nan]
>>> y = [1.1, 2.0, np.nan]
>>> np.testing.assert_array_less(x, y)

The following assertion fails because the zeroth element of x is no longer strictly less than the zeroth element of y.

>>> y[0] = 1
>>> np.testing.assert_array_less(x, y)
Traceback (most recent call last):

...
AssertionError:
Arrays are not strictly ordered `x < y`

Mismatched elements: 1 / 3 (33.3%)
Max absolute difference among violations: 0.
Max relative difference among violations: 0.
x: array([1., 1., nan])
y: array([1., 2., nan])

Here, y is a scalar, so each element of x is compared to y, and the assertion passes.

>>> x = [1.0, 4.0]
>>> y = 5.0
>>> np.testing.assert_array_less(x, y)

However, with strict=True, the assertion will fail because the shapes do not match.

422 1. Python API

NumPy Reference, Release 2.2.0

>>> np.testing.assert_array_less(x, y, strict=True)
Traceback (most recent call last):

...
AssertionError:
Arrays are not strictly ordered `x < y`

(shapes (2,), () mismatch)
x: array([1., 4.])
y: array(5.)

With strict=True, the assertion also fails if the dtypes of the two arrays do not match.

>>> y = [5, 5]
>>> np.testing.assert_array_less(x, y, strict=True)
Traceback (most recent call last):

...
AssertionError:
Arrays are not strictly ordered `x < y`

(dtypes float64, int64 mismatch)
x: array([1., 4.])
y: array([5, 5])

testing.assert_equal(actual, desired, err_msg='', verbose=True, *, strict=False)
Raises an AssertionError if two objects are not equal.
Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), check that all elements of these objects are
equal. An exception is raised at the first conflicting values.
This function handles NaN comparisons as if NaN was a “normal” number. That is, AssertionError is not raised if
both objects have NaNs in the same positions. This is in contrast to the IEEE standard on NaNs, which says that
NaN compared to anything must return False.

Parameters
actual

[array_like] The object to check.
desired

[array_like] The expected object.
err_msg

[str, optional] The error message to be printed in case of failure.
verbose

[bool, optional] If True, the conflicting values are appended to the error message.
strict

[bool, optional] If True and either of the actual and desired arguments is an array, raise an
AssertionError when either the shape or the data type of the arguments does not match.
If neither argument is an array, this parameter has no effect.
New in version 2.0.0.

Raises
AssertionError

If actual and desired are not equal.
See also:

1.1. NumPy’s module structure 423

NumPy Reference, Release 2.2.0

assert_allclose
assert_array_almost_equal_nulp
assert_array_max_ulp

Notes

By default, when one of actual and desired is a scalar and the other is an array, the function checks that each element
of the array is equal to the scalar. This behaviour can be disabled by setting strict==True.

Examples

>>> np.testing.assert_equal([4, 5], [4, 6])
Traceback (most recent call last):

...
AssertionError:
Items are not equal:
item=1
ACTUAL: 5
DESIRED: 6

The following comparison does not raise an exception. There are NaNs in the inputs, but they are in the same
positions.

>>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan])

As mentioned in the Notes section, assert_equal has special handling for scalars when one of the arguments
is an array. Here, the test checks that each value in x is 3:

>>> x = np.full((2, 5), fill_value=3)
>>> np.testing.assert_equal(x, 3)

Use strict to raise an AssertionError when comparing a scalar with an array of a different shape:

>>> np.testing.assert_equal(x, 3, strict=True)
Traceback (most recent call last):

...
AssertionError:
Arrays are not equal

(shapes (2, 5), () mismatch)
ACTUAL: array([[3, 3, 3, 3, 3],

[3, 3, 3, 3, 3]])
DESIRED: array(3)

The strict parameter also ensures that the array data types match:

>>> x = np.array([2, 2, 2])
>>> y = np.array([2., 2., 2.], dtype=np.float32)
>>> np.testing.assert_equal(x, y, strict=True)
Traceback (most recent call last):

...
AssertionError:
Arrays are not equal

(continues on next page)

424 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
(dtypes int64, float32 mismatch)
ACTUAL: array([2, 2, 2])
DESIRED: array([2., 2., 2.], dtype=float32)

testing.assert_raises(exception_class, callable, *args, **kwargs) assert_raises(exception_class)
testing.assert_raises(exception_class)→ None

Fail unless an exception of class exception_class is thrown by callable when invoked with arguments args and
keyword arguments kwargs. If a different type of exception is thrown, it will not be caught, and the test case will
be deemed to have suffered an error, exactly as for an unexpected exception.
Alternatively, assert_raises can be used as a context manager:

>>> from numpy.testing import assert_raises
>>> with assert_raises(ZeroDivisionError):
... 1 / 0

is equivalent to

>>> def div(x, y):
... return x / y
>>> assert_raises(ZeroDivisionError, div, 1, 0)

testing.assert_raises_regex(exception_class, expected_regexp, callable, *args, **kwargs)
assert_raises_regex(exception_class, expected_regexp)

Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by
callable when invoked with arguments args and keyword arguments kwargs.
Alternatively, can be used as a context manager like assert_raises.

testing.assert_warns(warning_class, *args, **kwargs)
Fail unless the given callable throws the specified warning.
A warning of class warning_class should be thrown by the callable when invoked with arguments args and keyword
arguments kwargs. If a different type of warning is thrown, it will not be caught.
If called with all arguments other than the warning class omitted, may be used as a context manager:

with assert_warns(SomeWarning):
do_something()

The ability to be used as a context manager is new in NumPy v1.11.0.
Parameters

warning_class
[class] The class defining the warning that func is expected to throw.

func
[callable, optional] Callable to test

*args
[Arguments] Arguments for func.

**kwargs
[Kwargs] Keyword arguments for func.

Returns
The value returned by func.

1.1. NumPy’s module structure 425

https://docs.python.org/3/library/constants.html#None

NumPy Reference, Release 2.2.0

Examples

>>> import warnings
>>> def deprecated_func(num):
... warnings.warn("Please upgrade", DeprecationWarning)
... return num*num
>>> with np.testing.assert_warns(DeprecationWarning):
... assert deprecated_func(4) == 16
>>> # or passing a func
>>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4)
>>> assert ret == 16

testing.assert_no_warnings(*args, **kwargs)
Fail if the given callable produces any warnings.
If called with all arguments omitted, may be used as a context manager:

with assert_no_warnings():
do_something()

The ability to be used as a context manager is new in NumPy v1.11.0.
Parameters

func
[callable] The callable to test.

*args
[Arguments] Arguments passed to func.

**kwargs
[Kwargs] Keyword arguments passed to func.

Returns
The value returned by func.

testing.assert_no_gc_cycles(*args, **kwargs)
Fail if the given callable produces any reference cycles.
If called with all arguments omitted, may be used as a context manager:

with assert_no_gc_cycles():
do_something()

Parameters
func

[callable] The callable to test.
*args

[Arguments] Arguments passed to func.
**kwargs

[Kwargs] Keyword arguments passed to func.
Returns

Nothing. The result is deliberately discarded to ensure that all cycles
are found.

426 1. Python API

NumPy Reference, Release 2.2.0

testing.assert_string_equal(actual, desired)
Test if two strings are equal.
If the given strings are equal, assert_string_equal does nothing. If they are not equal, an AssertionError
is raised, and the diff between the strings is shown.

Parameters
actual

[str] The string to test for equality against the expected string.
desired

[str] The expected string.

Examples

>>> np.testing.assert_string_equal('abc', 'abc')
>>> np.testing.assert_string_equal('abc', 'abcd')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

...
AssertionError: Differences in strings:
- abc+ abcd? +

Asserts (not recommended)
It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or as-
sert_array_max_ulp instead of these functions for more consistent floating point comparisons.

assert_(val[, msg]) Assert that works in release mode.
assert_almost_equal(actual, desired[, ...]) Raises an AssertionError if two items are not equal up to

desired precision.
assert_approx_equal(actual, desired[, ...]) Raises an AssertionError if two items are not equal up to

significant digits.
assert_array_almost_equal(actual, desired[,
...])

Raises an AssertionError if two objects are not equal up
to desired precision.

print_assert_equal(test_string, actual, desired) Test if two objects are equal, and print an error message
if test fails.

testing.assert_(val, msg='')
Assert that works in release mode. Accepts callable msg to allow deferring evaluation until failure.
The Python built-in assert does not work when executing code in optimized mode (the -O flag) - no byte-code
is generated for it.
For documentation on usage, refer to the Python documentation.

testing.assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True)
Raises an AssertionError if two items are not equal up to desired precision.

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

The test verifies that the elements of actual and desired satisfy:

1.1. NumPy’s module structure 427

NumPy Reference, Release 2.2.0

abs(desired-actual) < float64(1.5 * 10**(-decimal))

That is a looser test than originally documented, but agrees with what the actual implementation in as-
sert_array_almost_equal did up to rounding vagaries. An exception is raised at conflicting values. For
ndarrays this delegates to assert_array_almost_equal

Parameters
actual

[array_like] The object to check.
desired

[array_like] The expected object.
decimal

[int, optional] Desired precision, default is 7.
err_msg

[str, optional] The error message to be printed in case of failure.
verbose

[bool, optional] If True, the conflicting values are appended to the error message.
Raises

AssertionError
If actual and desired are not equal up to specified precision.

See also:

assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

>>> from numpy.testing import assert_almost_equal
>>> assert_almost_equal(2.3333333333333, 2.33333334)
>>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
Traceback (most recent call last):

...
AssertionError:
Arrays are not almost equal to 10 decimals
ACTUAL: 2.3333333333333
DESIRED: 2.33333334

>>> assert_almost_equal(np.array([1.0,2.3333333333333]),
... np.array([1.0,2.33333334]), decimal=9)
Traceback (most recent call last):

...
AssertionError:
Arrays are not almost equal to 9 decimals

Mismatched elements: 1 / 2 (50%)
Max absolute difference among violations: 6.66669964e-09
Max relative difference among violations: 2.85715698e-09

(continues on next page)

428 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
ACTUAL: array([1. , 2.333333333])
DESIRED: array([1. , 2.33333334])

testing.assert_approx_equal(actual, desired, significant=7, err_msg='', verbose=True)
Raises an AssertionError if two items are not equal up to significant digits.

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

Given two numbers, check that they are approximately equal. Approximately equal is defined as the number of
significant digits that agree.

Parameters
actual

[scalar] The object to check.
desired

[scalar] The expected object.
significant

[int, optional] Desired precision, default is 7.
err_msg

[str, optional] The error message to be printed in case of failure.
verbose

[bool, optional] If True, the conflicting values are appended to the error message.
Raises

AssertionError
If actual and desired are not equal up to specified precision.

See also:

assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,
... significant=8)
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,
... significant=8)
Traceback (most recent call last):

...
AssertionError:
Items are not equal to 8 significant digits:
ACTUAL: 1.234567e-21
DESIRED: 1.2345672e-21

the evaluated condition that raises the exception is

1.1. NumPy’s module structure 429

NumPy Reference, Release 2.2.0

>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
True

testing.assert_array_almost_equal(actual, desired, decimal=6, err_msg='', verbose=True)
Raises an AssertionError if two objects are not equal up to desired precision.

Note: It is recommended to use one of assert_allclose, assert_array_almost_equal_nulp or
assert_array_max_ulp instead of this function for more consistent floating point comparisons.

The test verifies identical shapes and that the elements of actual and desired satisfy:

abs(desired-actual) < 1.5 * 10**(-decimal)

That is a looser test than originally documented, but agrees with what the actual implementation did up to rounding
vagaries. An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy,
NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions.

Parameters
actual

[array_like] The actual object to check.
desired

[array_like] The desired, expected object.
decimal

[int, optional] Desired precision, default is 6.
err_msg

[str, optional] The error message to be printed in case of failure.
verbose

[bool, optional] If True, the conflicting values are appended to the error message.
Raises

AssertionError
If actual and desired are not equal up to specified precision.

See also:

assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.

assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal

Examples

the first assert does not raise an exception

>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
... [1.0,2.333,np.nan])

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33339,np.nan], decimal=5)
Traceback (most recent call last):

(continues on next page)

430 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
...

AssertionError:
Arrays are not almost equal to 5 decimals

Mismatched elements: 1 / 3 (33.3%)
Max absolute difference among violations: 6.e-05
Max relative difference among violations: 2.57136612e-05
ACTUAL: array([1. , 2.33333, nan])
DESIRED: array([1. , 2.33339, nan])

>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
... [1.0,2.33333, 5], decimal=5)
Traceback (most recent call last):

...
AssertionError:
Arrays are not almost equal to 5 decimals

nan location mismatch:
ACTUAL: array([1. , 2.33333, nan])
DESIRED: array([1. , 2.33333, 5.])

testing.print_assert_equal(test_string, actual, desired)
Test if two objects are equal, and print an error message if test fails.
The test is performed with actual == desired.

Parameters
test_string

[str] The message supplied to AssertionError.
actual

[object] The object to test for equality against desired.
desired

[object] The expected result.

Examples

>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1])
>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2])
Traceback (most recent call last):
...
AssertionError: Test XYZ of func xyz failed
ACTUAL:
[0, 1]
DESIRED:
[0, 2]

1.1. NumPy’s module structure 431

NumPy Reference, Release 2.2.0

Decorators

decorate_methods(cls, decorator[, testmatch]) Apply a decorator to all methods in a class matching a
regular expression.

testing.decorate_methods(cls, decorator, testmatch=None)
Apply a decorator to all methods in a class matching a regular expression.
The given decorator is applied to all public methods of cls that are matched by the regular expression testmatch
(testmatch.search(methodname)). Methods that are private, i.e. start with an underscore, are ignored.

Parameters
cls

[class] Class whose methods to decorate.
decorator

[function] Decorator to apply to methods
testmatch

[compiled regexp or str, optional] The regular expression. Default value is None, in which case
the nose default (re.compile(r'(?:^|[\b_\.%s-])[Tt]est' % os.sep)) is
used. If testmatch is a string, it is compiled to a regular expression first.

Test running

clear_and_catch_warnings([record, modules]) Context manager that resets warning registry for catching
warnings

measure(code_str[, times, label]) Return elapsed time for executing code in the namespace
of the caller.

rundocs([filename, raise_on_error]) Run doctests found in the given file.
suppress_warnings([forwarding_rule]) Context manager and decorator doing much the same as

warnings.catch_warnings.

class numpy.testing.clear_and_catch_warnings(record=False, modules=())
Context manager that resets warning registry for catching warnings
Warnings can be slippery, because, whenever a warning is triggered, Python adds a __warningregistry__
member to the callingmodule. This makes it impossible to retrigger the warning in this module, whatever you put in
the warnings filters. This context manager accepts a sequence of modules as a keyword argument to its constructor
and:

• stores and removes any __warningregistry__ entries in given modules on entry;
• resets __warningregistry__ to its previous state on exit.

This makes it possible to trigger any warning afresh inside the context manager without disturbing the state of
warnings outside.
For compatibility with Python 3.0, please consider all arguments to be keyword-only.

Parameters
record

[bool, optional] Specifies whether warnings should be captured by a custom implementation of
warnings.showwarning() and be appended to a list returned by the context manager.
Otherwise None is returned by the context manager. The objects appended to the list are
arguments whose attributes mirror the arguments to showwarning().

432 1. Python API

NumPy Reference, Release 2.2.0

modules
[sequence, optional] Sequence of modules for which to reset warnings registry on entry and
restore on exit. To work correctly, all ‘ignore’ filters should filter by one of these modules.

Examples

>>> import warnings
>>> with np.testing.clear_and_catch_warnings(
... modules=[np._core.fromnumeric]):
... warnings.simplefilter('always')
... warnings.filterwarnings('ignore', module='np._core.fromnumeric')
... # do something that raises a warning but ignore those in
... # np._core.fromnumeric

testing.measure(code_str, times=1, label=None)
Return elapsed time for executing code in the namespace of the caller.
The supplied code string is compiled with the Python builtin compile. The precision of the timing is 10 milli-
seconds. If the code will execute fast on this timescale, it can be executed many times to get reasonable timing
accuracy.

Parameters
code_str

[str] The code to be timed.
times

[int, optional] The number of times the code is executed. Default is 1. The code is only
compiled once.

label
[str, optional] A label to identify code_str with. This is passed into compile as the second
argument (for run-time error messages).

Returns
elapsed

[float] Total elapsed time in seconds for executing code_str times times.

Examples

>>> times = 10
>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times)
>>> print("Time for a single execution : ", etime / times, "s")
Time for a single execution : 0.005 s

testing.rundocs(filename=None, raise_on_error=True)
Run doctests found in the given file.
By default rundocs raises an AssertionError on failure.

Parameters
filename

[str] The path to the file for which the doctests are run.
raise_on_error

[bool] Whether to raise an AssertionError when a doctest fails. Default is True.

1.1. NumPy’s module structure 433

NumPy Reference, Release 2.2.0

Notes

The doctests can be run by the user/developer by adding the doctests argument to the test() call. For
example, to run all tests (including doctests) for numpy.lib:

>>> np.lib.test(doctests=True)

class numpy.testing.suppress_warnings(forwarding_rule='always')
Context manager and decorator doing much the same as warnings.catch_warnings.
However, it also provides a filter mechanism to work around https://bugs.python.org/issue4180.
This bug causes Python before 3.4 to not reliably show warnings again after they have been ignored once (even
within catch_warnings). It means that no “ignore” filter can be used easily, since following tests might need to see
the warning. Additionally it allows easier specificity for testing warnings and can be nested.

Parameters
forwarding_rule

[str, optional] One of “always”, “once”, “module”, or “location”. Analogous to the usual warn-
ings module filter mode, it is useful to reduce noise mostly on the outmost level. Unsuppressed
and unrecorded warnings will be forwarded based on this rule. Defaults to “always”. “location”
is equivalent to the warnings “default”, match by exact location the warning warning originated
from.

Notes

Filters added inside the context manager will be discarded again when leaving it. Upon entering all filters defined
outside a context will be applied automatically.
When a recording filter is added, matching warnings are stored in the log attribute as well as in the list returned
by record.
If filters are added and the module keyword is given, the warning registry of this module will additionally be
cleared when applying it, entering the context, or exiting it. This could cause warnings to appear a second time
after leaving the context if they were configured to be printed once (default) and were already printed before the
context was entered.
Nesting this context manager will work as expected when the forwarding rule is “always” (default). Unfiltered and
unrecorded warnings will be passed out and be matched by the outer level. On the outmost level they will be printed
(or caught by another warnings context). The forwarding rule argument can modify this behaviour.
Like catch_warnings this context manager is not threadsafe.

Examples

With a context manager:

with np.testing.suppress_warnings() as sup:
sup.filter(DeprecationWarning, "Some text")
sup.filter(module=np.ma.core)
log = sup.record(FutureWarning, "Does this occur?")
command_giving_warnings()
The FutureWarning was given once, the filtered warnings were
ignored. All other warnings abide outside settings (may be
printed/error)

(continues on next page)

434 1. Python API

https://bugs.python.org/issue4180

NumPy Reference, Release 2.2.0

(continued from previous page)
assert_(len(log) == 1)
assert_(len(sup.log) == 1) # also stored in log attribute

Or as a decorator:

sup = np.testing.suppress_warnings()
sup.filter(module=np.ma.core) # module must match exactly
@sup
def some_function():

do something which causes a warning in np.ma.core
pass

Methods

__call__(func) Function decorator to apply certain suppressions to a
whole function.

filter([category, message, module]) Add a new suppressing filter or apply it if the state is
entered.

record([category, message, module]) Append a new recording filter or apply it if the state is
entered.

method
testing.suppress_warnings.__call__(func)

Function decorator to apply certain suppressions to a whole function.
method
testing.suppress_warnings.filter(category=<class 'Warning'>, message='', module=None)

Add a new suppressing filter or apply it if the state is entered.
Parameters

category
[class, optional] Warning class to filter

message
[string, optional] Regular expression matching the warning message.

module
[module, optional] Module to filter for. Note that the module (and its file) must match exactly
and cannot be a submodule. This may make it unreliable for external modules.

Notes

When added within a context, filters are only added inside the context and will be forgotten when the context
is exited.

method
testing.suppress_warnings.record(category=<class 'Warning'>, message='', module=None)

Append a new recording filter or apply it if the state is entered.
All warnings matching will be appended to the log attribute.

1.1. NumPy’s module structure 435

NumPy Reference, Release 2.2.0

Parameters
category
[class, optional] Warning class to filter

message
[string, optional] Regular expression matching the warning message.

module
[module, optional] Module to filter for. Note that the module (and its file) must match exactly
and cannot be a submodule. This may make it unreliable for external modules.

Returns
log
[list] A list which will be filled with all matched warnings.

Notes

When added within a context, filters are only added inside the context and will be forgotten when the context
is exited.

Testing custom array containers (numpy.testing.overrides)
These functions can be useful when testing custom array container implementations which make use of __ar-
ray_ufunc__/__array_function__.

allows_array_function_override(func) Determine if a Numpy function can be overridden via
__array_function__

allows_array_ufunc_override(func) Determine if a function can be overridden via __ar-
ray_ufunc__

get_overridable_numpy_ufuncs() List all numpy ufuncs overridable via __array_ufunc__
get_overridable_numpy_array_functions() List all numpy functions overridable via __ar-

ray_function__

testing.overrides.allows_array_function_override(func)
Determine if a Numpy function can be overridden via __array_function__

Parameters
func

[callable] Function that may be overridable via __array_function__
Returns

bool
True if func is a function in the Numpy API that is overridable via __array_function__ and
False otherwise.

testing.overrides.allows_array_ufunc_override(func)
Determine if a function can be overridden via __array_ufunc__

Parameters
func

[callable] Function that may be overridable via __array_ufunc__
Returns

436 1. Python API

NumPy Reference, Release 2.2.0

bool
True if func is overridable via __array_ufunc__ and False otherwise.

Notes

This function is equivalent to isinstance(func, np.ufunc) and will work correctly for ufuncs defined
outside of Numpy.

testing.overrides.get_overridable_numpy_ufuncs()

List all numpy ufuncs overridable via __array_ufunc__
Parameters

None
Returns

set
A set containing all overridable ufuncs in the public numpy API.

testing.overrides.get_overridable_numpy_array_functions()

List all numpy functions overridable via __array_function__
Parameters

None
Returns

set
A set containing all functions in the public numpy API that are overridable via __ar-
ray_function__.

Guidelines
Testing guidelines

Introduction

Until the 1.15 release, NumPy used the nose testing framework, it now uses the pytest framework. The older framework
is still maintained in order to support downstream projects that use the old numpy framework, but all tests for NumPy
should use pytest.
Our goal is that every module and package in NumPy should have a thorough set of unit tests. These tests should exercise
the full functionality of a given routine as well as its robustness to erroneous or unexpected input arguments. Well-
designed tests with good coverage make an enormous difference to the ease of refactoring. Whenever a new bug is found
in a routine, you should write a new test for that specific case and add it to the test suite to prevent that bug from creeping
back in unnoticed.

Note: SciPy uses the testing framework from numpy.testing, so all of the NumPy examples shown below are also
applicable to SciPy

1.1. NumPy’s module structure 437

https://nose.readthedocs.io/en/latest/
https://pytest.readthedocs.io

NumPy Reference, Release 2.2.0

Testing NumPy

NumPy can be tested in a number of ways, choose any way you feel comfortable.

Running tests from inside Python

You can test an installed NumPy by numpy.test, for example, To run NumPy’s full test suite, use the following:

>>> import numpy
>>> numpy.test(label='slow')

The test method may take two or more arguments; the first label is a string specifying what should be tested and the
second verbose is an integer giving the level of output verbosity. See the docstring numpy.test for details. The
default value for label is ‘fast’ - which will run the standard tests. The string ‘full’ will run the full battery of tests,
including those identified as being slow to run. If verbose is 1 or less, the tests will just show information messages
about the tests that are run; but if it is greater than 1, then the tests will also provide warnings on missing tests. So if you
want to run every test and get messages about which modules don’t have tests:

>>> numpy.test(label='full', verbose=2) # or numpy.test('full', 2)

Finally, if you are only interested in testing a subset of NumPy, for example, the _core module, use the following:

>>> numpy._core.test()

Running tests from the command line

If you want to build NumPy in order to work on NumPy itself, use the spin utility. To run NumPy’s full test suite:

$ spin test -m full

Testing a subset of NumPy:

$ spin test -t numpy/_core/tests

For detailed info on testing, see testing-builds

Running doctests

NumPy documentation contains code examples, “doctests”. To check that the examples are correct, install the
scipy-doctest package:

$ pip install scipy-doctest

and run one of:

$ spin check-docs -v
$ spin check-docs numpy/linalg
$ spin check-docs -- -k 'det and not slogdet'

Note that the doctests are not run when you use spin test.

438 1. Python API

NumPy Reference, Release 2.2.0

Other methods of running tests

Run tests using your favourite IDE such as vscode or pycharm

Writing your own tests

If you are writing code that you’d like to become part of NumPy, please write the tests as you develop your code.
Every Python module, extension module, or subpackage in the NumPy package directory should have a corresponding
test_<name>.py file. Pytest examines these files for test methods (named test*) and test classes (named Test*).
Suppose you have a NumPy module numpy/xxx/yyy.py containing a function zzz(). To test this function you
would create a test module called test_yyy.py. If you only need to test one aspect of zzz, you can simply add a test
function:

def test_zzz():
assert zzz() == 'Hello from zzz'

More often, we need to group a number of tests together, so we create a test class:

import pytest

import xxx symbols
from numpy.xxx.yyy import zzz
import pytest

class TestZzz:
def test_simple(self):

assert zzz() == 'Hello from zzz'

def test_invalid_parameter(self):
with pytest.raises(ValueError, match='.*some matching regex.*'):

...

Within these test methods, the assert statement or a specialized assertion function is used to test whether a certain
assumption is valid. If the assertion fails, the test fails. Common assertion functions include:

• numpy.testing.assert_equal for testing exact elementwise equality between a result array and a refer-
ence,

• numpy.testing.assert_allclose for testing near elementwise equality between a result array and a
reference (i.e. with specified relative and absolute tolerances), and

• numpy.testing.assert_array_less for testing (strict) elementwise ordering between a result array and
a reference.

By default, these assertion functions only compare the numerical values in the arrays. Consider using the strict=True
option to check the array dtype and shape, too.
When you need custom assertions, use the Python assert statement. Note that pytest internally rewrites assert
statements to give informative output when it fails, so it should be preferred over the legacy variant numpy.testing.
assert_. Whereas plain assert statements are ignored when running Python in optimized mode with -O, this is not
an issue when running tests with pytest.
Similarly, the pytest functions pytest.raises and pytest.warns should be preferred over their legacy coun-
terparts numpy.testing.assert_raises and numpy.testing.assert_warns, which are more broadly
used. These versions also accept a match parameter, which should always be used to precisely target the intended
warning or error.

1.1. NumPy’s module structure 439

https://code.visualstudio.com/docs/python/testing#_enable-a-test-framework
https://www.jetbrains.com/help/pycharm/testing-your-first-python-application.html
https://docs.pytest.org/en/stable/reference/reference.html#pytest.raises
https://docs.pytest.org/en/stable/reference/reference.html#pytest.warns

NumPy Reference, Release 2.2.0

Note that test_ functions or methods should not have a docstring, because that makes it hard to identify the test from
the output of running the test suite with verbose=2 (or similar verbosity setting). Use plain comments (#) to describe
the intent of the test and help the unfamiliar reader to interpret the code.
Also, since much of NumPy is legacy code that was originally written without unit tests, there are still several modules
that don’t have tests yet. Please feel free to choose one of these modules and develop tests for it.

Using C code in tests

NumPy exposes a rich C-API . These are tested using c-extension modules written “as-if” they know nothing about the
internals of NumPy, rather using the official C-API interfaces only. Examples of such modules are tests for a user-defined
rational dtype in _rational_tests or the ufunc machinery tests in _umath_tests which are part of the
binary distribution. Starting from version 1.21, you can also write snippets of C code in tests that will be compiled locally
into c-extension modules and loaded into python.
numpy.testing.extbuild.build_and_import_extension(modname, functions, *, prologue='',

build_dir=None, include_dirs=[],
more_init='')

Build and imports a c-extension module modname from a list of function fragments functions.
Parameters

functions
[list of fragments] Each fragment is a sequence of func_name, calling convention, snippet.

prologue
[string] Code to precede the rest, usually extra #include or #define macros.

build_dir
[pathlib.Path] Where to build the module, usually a temporary directory

include_dirs
[list] Extra directories to find include files when compiling

more_init
[string] Code to appear in the module PyMODINIT_FUNC

Returns
out: module

The module will have been loaded and is ready for use

Examples

>>> functions = [("test_bytes", "METH_O", """
if (!PyBytesCheck(args)) {

Py_RETURN_FALSE;
}
Py_RETURN_TRUE;

""")]
>>> mod = build_and_import_extension("testme", functions)
>>> assert not mod.test_bytes('abc')
>>> assert mod.test_bytes(b'abc')

440 1. Python API

NumPy Reference, Release 2.2.0

Labeling tests

Unlabeled tests like the ones above are run in the default numpy.test() run. If you want to label your test as slow -
and therefore reserved for a full numpy.test(label='full') run, you can label it with pytest.mark.slow:

import pytest

@pytest.mark.slow
def test_big(self):

print('Big, slow test')

Similarly for methods:

class test_zzz:
@pytest.mark.slow
def test_simple(self):

assert_(zzz() == 'Hello from zzz')

Easier setup and teardown functions / methods

Testing looks for module-level or class method-level setup and teardown functions by name; thus:

def setup_module():
"""Module-level setup"""
print('doing setup')

def teardown_module():
"""Module-level teardown"""
print('doing teardown')

class TestMe:
def setup_method(self):

"""Class-level setup"""
print('doing setup')

def teardown_method():
"""Class-level teardown"""
print('doing teardown')

Setup and teardown functions to functions and methods are known as “fixtures”, and they should be used sparingly.
pytest supports more general fixture at various scopes which may be used automatically via special arguments. For
example, the special argument name tmpdir is used in test to create a temporary directory.

Parametric tests

One very nice feature of pytest is the ease of testing across a range of parameter values using the pytest.mark.
parametrize decorator. For example, suppose you wish to test linalg.solve for all combinations of three array
sizes and two data types:

@pytest.mark.parametrize('dimensionality', [3, 10, 25])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
def test_solve(dimensionality, dtype):

np.random.seed(842523)

(continues on next page)

1.1. NumPy’s module structure 441

NumPy Reference, Release 2.2.0

(continued from previous page)
A = np.random.random(size=(dimensionality, dimensionality)).astype(dtype)
b = np.random.random(size=dimensionality).astype(dtype)
x = np.linalg.solve(A, b)
eps = np.finfo(dtype).eps
assert_allclose(A @ x, b, rtol=eps*1e2, atol=0)
assert x.dtype == np.dtype(dtype)

Doctests

Doctests are a convenient way of documenting the behavior of a function and allowing that behavior to be tested at the
same time. The output of an interactive Python session can be included in the docstring of a function, and the test
framework can run the example and compare the actual output to the expected output.
The doctests can be run by adding the doctests argument to the test() call; for example, to run all tests (including
doctests) for numpy.lib:

>>> import numpy as np
>>> np.lib.test(doctests=True)

The doctests are run as if they are in a fresh Python instance which has executed import numpy as np. Tests that are
part of a NumPy subpackage will have that subpackage already imported. E.g. for a test in numpy/linalg/tests/,
the namespace will be created such that from numpy import linalg has already executed.

tests/

Rather than keeping the code and the tests in the same directory, we put all the tests for a given subpackage in a tests/
subdirectory. For our example, if it doesn’t already exist you will need to create a tests/ directory in numpy/xxx/.
So the path for test_yyy.py is numpy/xxx/tests/test_yyy.py.
Once the numpy/xxx/tests/test_yyy.py is written, its possible to run the tests by going to the tests/ direc-
tory and typing:

python test_yyy.py

Or if you add numpy/xxx/tests/ to the Python path, you could run the tests interactively in the interpreter like this:

>>> import test_yyy
>>> test_yyy.test()

__init__.py and setup.py

Usually, however, adding the tests/ directory to the python path isn’t desirable. Instead it would better to invoke the test
straight from the module xxx. To this end, simply place the following lines at the end of your package’s __init__.py
file:

...
def test(level=1, verbosity=1):

from numpy.testing import Tester
return Tester().test(level, verbosity)

You will also need to add the tests directory in the configuration section of your setup.py:

442 1. Python API

NumPy Reference, Release 2.2.0

...
def configuration(parent_package='', top_path=None):

...
config.add_subpackage('tests')
return config

...

Now you can do the following to test your module:

>>> import numpy
>>> numpy.xxx.test()

Also, when invoking the entire NumPy test suite, your tests will be found and run:

>>> import numpy
>>> numpy.test()
your tests are included and run automatically!

Tips & Tricks

Known failures & skipping tests

Sometimes you might want to skip a test or mark it as a known failure, such as when the test suite is being written before
the code it’s meant to test, or if a test only fails on a particular architecture.
To skip a test, simply use skipif:

import pytest

@pytest.mark.skipif(SkipMyTest, reason="Skipping this test because...")
def test_something(foo):

...

The test is marked as skipped if SkipMyTest evaluates to nonzero, and the message in verbose test output is the second
argument given to skipif. Similarly, a test can be marked as a known failure by using xfail:

import pytest

@pytest.mark.xfail(MyTestFails, reason="This test is known to fail because...")
def test_something_else(foo):

...

Of course, a test can be unconditionally skipped ormarked as a known failure by usingskip orxfailwithout argument,
respectively.
A total of the number of skipped and known failing tests is displayed at the end of the test run. Skipped tests are marked as
'S' in the test results (or 'SKIPPED' for verbose > 1), and known failing tests are marked as 'x' (or 'XFAIL'
if verbose > 1).

1.1. NumPy’s module structure 443

NumPy Reference, Release 2.2.0

Tests on random data

Tests on random data are good, but since test failures are meant to expose new bugs or regressions, a test that passes most
of the time but fails occasionally with no code changes is not helpful. Make the random data deterministic by setting
the random number seed before generating it. Use either Python’s random.seed(some_number) or NumPy’s
numpy.random.seed(some_number), depending on the source of random numbers.
Alternatively, you can use Hypothesis to generate arbitrary data. Hypothesis manages both Python’s and Numpy’s random
seeds for you, and provides a very concise and powerful way to describe data (including hypothesis.extra.numpy,
e.g. for a set of mutually-broadcastable shapes).
The advantages over random generation include tools to replay and share failures without requiring a fixed seed, reporting
minimal examples for each failure, and better-than-naive-random techniques for triggering bugs.

Documentation for numpy.test

numpy.test(label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, durations=-1, tests=None)
Pytest test runner.
A test function is typically added to a package’s __init__.py like so:

from numpy._pytesttester import PytestTester
test = PytestTester(__name__).test
del PytestTester

Calling this test function finds and runs all tests associated with the module and all its sub-modules.
Parameters

module_name
[module name] The name of the module to test.

Notes

Unlike the previous nose-based implementation, this class is not publicly exposed as it performs some numpy-
specific warning suppression.

Attributes
module_name

[str] Full path to the package to test.

Typing (numpy.typing)

New in version 1.20.
Large parts of the NumPy API have PEP 484-style type annotations. In addition a number of type aliases are available
to users, most prominently the two below:

• ArrayLike: objects that can be converted to arrays
• DTypeLike: objects that can be converted to dtypes

444 1. Python API

https://hypothesis.readthedocs.io/en/latest/
https://peps.python.org/pep-0484/

NumPy Reference, Release 2.2.0

Mypy plugin
New in version 1.21. A mypy plugin for managing a number of platform-specific annotations. Its functionality can be
split into three distinct parts:

• Assigning the (platform-dependent) precisions of certain number subclasses, including the likes of int_, intp
and longlong. See the documentation on scalar types for a comprehensive overview of the affected classes.
Without the plugin the precision of all relevant classes will be inferred as Any.

• Removing all extended-precisionnumber subclasses that are unavailable for the platform in question. Most notably
this includes the likes of float128 and complex256. Without the plugin all extended-precision types will, as
far as mypy is concerned, be available to all platforms.

• Assigning the (platform-dependent) precision of c_intp. Without the plugin the type will default to ctypes.
c_int64.
New in version 1.22.

Examples

To enable the plugin, one must add it to their mypy configuration file:

[mypy]
plugins = numpy.typing.mypy_plugin

Differences from the runtime NumPy API
NumPy is very flexible. Trying to describe the full range of possibilities statically would result in types that are not very
helpful. For that reason, the typed NumPy API is often stricter than the runtime NumPy API. This section describes
some notable differences.

ArrayLike

The ArrayLike type tries to avoid creating object arrays. For example,

>>> np.array(x**2 for x in range(10))
array(<generator object <genexpr> at ...>, dtype=object)

is valid NumPy code which will create a 0-dimensional object array. Type checkers will complain about the above
example when using the NumPy types however. If you really intended to do the above, then you can either use a #
type: ignore comment:

>>> np.array(x**2 for x in range(10)) # type: ignore

or explicitly type the array like object as Any:

>>> from typing import Any
>>> array_like: Any = (x**2 for x in range(10))
>>> np.array(array_like)
array(<generator object <genexpr> at ...>, dtype=object)

1.1. NumPy’s module structure 445

https://mypy-lang.org/
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/ctypes.html#ctypes.c_int64
https://docs.python.org/3/library/ctypes.html#ctypes.c_int64
https://mypy.readthedocs.io/en/stable/config_file.html
https://docs.python.org/3/library/typing.html#typing.Any

NumPy Reference, Release 2.2.0

ndarray

It’s possible to mutate the dtype of an array at runtime. For example, the following code is valid:

>>> x = np.array([1, 2])
>>> x.dtype = np.bool

This sort of mutation is not allowed by the types. Users who want to write statically typed code should instead use the
numpy.ndarray.view method to create a view of the array with a different dtype.

DTypeLike

The DTypeLike type tries to avoid creation of dtype objects using dictionary of fields like below:

>>> x = np.dtype({"field1": (float, 1), "field2": (int, 3)})

Although this is valid NumPy code, the type checker will complain about it, since its usage is discouraged. Please see :
Data type objects

Number precision

The precision of numpy.number subclasses is treated as a invariant generic parameter (see NBitBase), simplifying
the annotating of processes involving precision-based casting.

>>> from typing import TypeVar
>>> import numpy as np
>>> import numpy.typing as npt

>>> T = TypeVar("T", bound=npt.NBitBase)
>>> def func(a: "np.floating[T]", b: "np.floating[T]") -> "np.floating[T]":
... ...

Consequently, the likes of float16, float32 and float64 are still sub-types of floating, but, contrary to
runtime, they’re not necessarily considered as sub-classes.

Timedelta64

The timedelta64 class is not considered a subclass of signedinteger, the former only inheriting from generic
while static type checking.

0D arrays

During runtime numpy aggressively casts any passed 0D arrays into their corresponding generic instance. Until the
introduction of shape typing (see PEP 646) it is unfortunately not possible to make the necessary distinction between 0D
and >0D arrays. While thus not strictly correct, all operations are that can potentially perform a 0D-array -> scalar cast
are currently annotated as exclusively returning an ndarray.
If it is known in advance that an operation will perform a 0D-array -> scalar cast, then one can consider manually reme-
dying the situation with either typing.cast or a # type: ignore comment.

446 1. Python API

https://peps.python.org/pep-0646/
https://docs.python.org/3/library/typing.html#typing.cast

NumPy Reference, Release 2.2.0

Record array dtypes

The dtype of numpy.recarray, and the Creating record arrays functions in general, can be specified in one of two
ways:

• Directly via the dtype argument.
• With up to five helper arguments that operate via numpy.rec.format_parser: formats, names, ti-
tles, aligned and byteorder.

These two approaches are currently typed as being mutually exclusive, i.e. if dtype is specified than one may not specify
formats. While this mutual exclusivity is not (strictly) enforced during runtime, combining both dtype specifiers can
lead to unexpected or even downright buggy behavior.

API
numpy.typing.ArrayLike = typing.Union[...]

A Union representing objects that can be coerced into an ndarray.
Among others this includes the likes of:

• Scalars.
• (Nested) sequences.
• Objects implementing the __array__ protocol.

New in version 1.20.

See Also
array_like:

Any scalar or sequence that can be interpreted as an ndarray.

Examples

>>> import numpy as np
>>> import numpy.typing as npt

>>> def as_array(a: npt.ArrayLike) -> np.ndarray:
... return np.array(a)

numpy.typing.DTypeLike = typing.Union[...]

A Union representing objects that can be coerced into a dtype.
Among others this includes the likes of:

• type objects.
• Character codes or the names of type objects.
• Objects with the .dtype attribute.

New in version 1.20.

See Also
Specifying and constructing data types

A comprehensive overview of all objects that can be coerced into data types.

1.1. NumPy’s module structure 447

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> import numpy.typing as npt

>>> def as_dtype(d: npt.DTypeLike) -> np.dtype:
... return np.dtype(d)

numpy.typing.NDArray = numpy.ndarray[tuple[int, ...],
numpy.dtype[+_ScalarType_co]]

A np.ndarray[tuple[int, ...], np.dtype[+ScalarType]] type alias generic w.r.t. its
dtype.type.
Can be used during runtime for typing arrays with a given dtype and unspecified shape.
New in version 1.21.

Examples

>>> import numpy as np
>>> import numpy.typing as npt

>>> print(npt.NDArray)
numpy.ndarray[tuple[int, ...], numpy.dtype[+_ScalarType_co]]

>>> print(npt.NDArray[np.float64])
numpy.ndarray[tuple[int, ...], numpy.dtype[numpy.float64]]

>>> NDArrayInt = npt.NDArray[np.int_]
>>> a: NDArrayInt = np.arange(10)

>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
... return np.array(a)

class numpy.typing.NBitBase

A type representing numpy.number precision during static type checking.
Used exclusively for the purpose static type checking, NBitBase represents the base of a hierarchical set of
subclasses. Each subsequent subclass is herein used for representing a lower level of precision, e.g. 64Bit >
32Bit > 16Bit.
New in version 1.20.

448 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Examples

Below is a typical usage example: NBitBase is herein used for annotating a function that takes a float and integer
of arbitrary precision as arguments and returns a new float of whichever precision is largest (e.g. np.float16
+ np.int64 -> np.float64).

>>> from __future__ import annotations
>>> from typing import TypeVar, TYPE_CHECKING
>>> import numpy as np
>>> import numpy.typing as npt

>>> S = TypeVar("S", bound=npt.NBitBase)
>>> T = TypeVar("T", bound=npt.NBitBase)

>>> def add(a: np.floating[S], b: np.integer[T]) -> np.floating[S | T]:
... return a + b

>>> a = np.float16()
>>> b = np.int64()
>>> out = add(a, b)

>>> if TYPE_CHECKING:
... reveal_locals()
... # note: Revealed local types are:
... # note: a: numpy.floating[numpy.typing._16Bit*]
... # note: b: numpy.signedinteger[numpy.typing._64Bit*]
... # note: out: numpy.floating[numpy.typing._64Bit*]

ctypes foreign function interface (numpy.ctypeslib)

numpy.ctypeslib.as_array(obj, shape=None)
Create a numpy array from a ctypes array or POINTER.
The numpy array shares the memory with the ctypes object.
The shape parameter must be given if converting from a ctypes POINTER. The shape parameter is ignored if
converting from a ctypes array

Examples

Converting a ctypes integer array:

>>> import ctypes
>>> ctypes_array = (ctypes.c_int * 5)(0, 1, 2, 3, 4)
>>> np_array = np.ctypeslib.as_array(ctypes_array)
>>> np_array
array([0, 1, 2, 3, 4], dtype=int32)

Converting a ctypes POINTER:

>>> import ctypes
>>> buffer = (ctypes.c_int * 5)(0, 1, 2, 3, 4)
>>> pointer = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_int))
>>> np_array = np.ctypeslib.as_array(pointer, (5,))
>>> np_array
array([0, 1, 2, 3, 4], dtype=int32)

1.1. NumPy’s module structure 449

NumPy Reference, Release 2.2.0

numpy.ctypeslib.as_ctypes(obj)
Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__ is
accepted.

Examples

Create ctypes object from inferred int np.array:

>>> inferred_int_array = np.array([1, 2, 3])
>>> c_int_array = np.ctypeslib.as_ctypes(inferred_int_array)
>>> type(c_int_array)
<class 'c_long_Array_3'>
>>> c_int_array[:]
[1, 2, 3]

Create ctypes object from explicit 8 bit unsigned int np.array :

>>> exp_int_array = np.array([1, 2, 3], dtype=np.uint8)
>>> c_int_array = np.ctypeslib.as_ctypes(exp_int_array)
>>> type(c_int_array)
<class 'c_ubyte_Array_3'>
>>> c_int_array[:]
[1, 2, 3]

numpy.ctypeslib.as_ctypes_type(dtype)
Convert a dtype into a ctypes type.

Parameters
dtype

[dtype] The dtype to convert
Returns

ctype
A ctype scalar, union, array, or struct

Raises
NotImplementedError

If the conversion is not possible

Notes

This function does not losslessly round-trip in either direction.
np.dtype(as_ctypes_type(dt)) will:

• insert padding fields
• reorder fields to be sorted by offset
• discard field titles

as_ctypes_type(np.dtype(ctype)) will:
• discard the class names of ctypes.Structures and ctypes.Unions
• convert single-element ctypes.Unions into single-element ctypes.Structures

450 1. Python API

https://docs.python.org/3/library/ctypes.html#ctypes.Structure
https://docs.python.org/3/library/ctypes.html#ctypes.Union
https://docs.python.org/3/library/ctypes.html#ctypes.Union
https://docs.python.org/3/library/ctypes.html#ctypes.Structure

NumPy Reference, Release 2.2.0

• insert padding fields

Examples

Converting a simple dtype:

>>> dt = np.dtype('int8')
>>> ctype = np.ctypeslib.as_ctypes_type(dt)
>>> ctype
<class 'ctypes.c_byte'>

Converting a structured dtype:

>>> dt = np.dtype([('x', 'i4'), ('y', 'f4')])
>>> ctype = np.ctypeslib.as_ctypes_type(dt)
>>> ctype
<class 'struct'>

numpy.ctypeslib.load_library(libname, loader_path)
It is possible to load a library using

>>> lib = ctypes.cdll[<full_path_name>]

But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load the
first library it finds with that name. NumPy supplies the load_library function as a convenience.
Changed in version 1.20.0: Allow libname and loader_path to take any path-like object.

Parameters
libname

[path-like] Name of the library, which can have ‘lib’ as a prefix, but without an extension.
loader_path

[path-like] Where the library can be found.
Returns

ctypes.cdll[libpath]
[library object] A ctypes library object

Raises
OSError

If there is no library with the expected extension, or the library is defective and cannot be
loaded.

numpy.ctypeslib.ndpointer(dtype=None, ndim=None, shape=None, flags=None)
Array-checking restype/argtypes.
An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach is more
flexible than using, for example, POINTER(c_double), since several restrictions can be specified, which are
verified upon calling the ctypes function. These include data type, number of dimensions, shape and flags. If a
given array does not satisfy the specified restrictions, a TypeError is raised.

Parameters
dtype

[data-type, optional] Array data-type.

1.1. NumPy’s module structure 451

https://docs.python.org/3/glossary.html#term-path-like-object

NumPy Reference, Release 2.2.0

ndim
[int, optional] Number of array dimensions.

shape
[tuple of ints, optional] Array shape.

flags
[str or tuple of str] Array flags; may be one or more of:
• C_CONTIGUOUS / C / CONTIGUOUS
• F_CONTIGUOUS / F / FORTRAN
• OWNDATA / O
• WRITEABLE / W
• ALIGNED / A
• WRITEBACKIFCOPY / X

Returns
klass

[ndpointer type object] A type object, which is an _ndtpr instance containing dtype, ndim,
shape and flags information.

Raises
TypeError

If a given array does not satisfy the specified restrictions.

Examples

>>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64,
... ndim=1,
... flags='C_CONTIGUOUS')]
...
>>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
...

class numpy.ctypeslib.c_intp

A ctypes signed integer type of the same size as numpy.intp.
Depending on the platform, it can be an alias for either c_int, c_long or c_longlong.

Data type classes (numpy.dtypes)

This module is home to specific dtypes related functionality and their classes. For more general information about dtypes,
also see numpy.dtype and Data type objects (dtype).
Similar to the builtin types module, this submodule defines types (classes) that are not widely used directly.
New in version NumPy: 1.25
The dtypes module is new in NumPy 1.25. Previously DType classes were only accessible indirectly.

452 1. Python API

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_longlong

NumPy Reference, Release 2.2.0

DType classes
The following are the classes of the corresponding NumPy dtype instances and NumPy scalar types. The classes can be
used in isinstance checks and can also be instantiated or used directly. Direct use of these classes is not typical,
since their scalar counterparts (e.g. np.float64) or strings like "float64" can be used.

Boolean
numpy.dtypes.BoolDType

Bit-sized integers
numpy.dtypes.Int8DType

numpy.dtypes.UInt8DType

numpy.dtypes.Int16DType

numpy.dtypes.UInt16DType

numpy.dtypes.Int32DType

numpy.dtypes.UInt32DType

numpy.dtypes.Int64DType

numpy.dtypes.UInt64DType

C-named integers (may be aliases)
numpy.dtypes.ByteDType

numpy.dtypes.UByteDType

numpy.dtypes.ShortDType

numpy.dtypes.UShortDType

numpy.dtypes.IntDType

numpy.dtypes.UIntDType

numpy.dtypes.LongDType

numpy.dtypes.ULongDType

numpy.dtypes.LongLongDType

numpy.dtypes.ULongLongDType

Floating point
numpy.dtypes.Float16DType

numpy.dtypes.Float32DType

numpy.dtypes.Float64DType

numpy.dtypes.LongDoubleDType

Complex
numpy.dtypes.Complex64DType

numpy.dtypes.Complex128DType

numpy.dtypes.CLongDoubleDType

1.1. NumPy’s module structure 453

NumPy Reference, Release 2.2.0

Strings and Bytestrings
numpy.dtypes.StrDType

numpy.dtypes.BytesDType

numpy.dtypes.StringDType

Times
numpy.dtypes.DateTime64DType

numpy.dtypes.TimeDelta64DType

Others
numpy.dtypes.ObjectDType

numpy.dtypes.VoidDType

Mathematical functions with automatic domain

Note: numpy.emath is a preferred alias for numpy.lib.scimath, available after numpy is imported.

Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the
input data-type in certain domains of the input.
For example, for functions like log with branch cuts, the versions in this module provide themathematically valid answers
in the complex plane:

>>> import math
>>> np.emath.log(-math.exp(1)) == (1+1j*math.pi)
True

Similarly, sqrt, other base logarithms, power and trig functions are correctly handled. See their respective docstrings
for specific examples.

Functions

arccos(x) Compute the inverse cosine of x.
arcsin(x) Compute the inverse sine of x.
arctanh(x) Compute the inverse hyperbolic tangent of x.
log(x) Compute the natural logarithm of x.
log2(x) Compute the logarithm base 2 of x.
logn(n, x) Take log base n of x.
log10(x) Compute the logarithm base 10 of x.
power(x, p) Return x to the power p, (x**p).
sqrt(x) Compute the square root of x.

emath.arccos(x)
Compute the inverse cosine of x.
Return the “principal value” (for a description of this, see numpy.arccos) of the inverse cosine of x. For real
x such that abs(x) <= 1, this is a real number in the closed interval [0, π]. Otherwise, the complex principle value
is returned.

Parameters

454 1. Python API

NumPy Reference, Release 2.2.0

x
[array_like or scalar] The value(s) whose arccos is (are) required.

Returns
out

[ndarray or scalar] The inverse cosine(s) of the x value(s). If x was a scalar, so is out, otherwise
an array object is returned.

See also:

numpy.arccos

Notes

For an arccos() that returns NAN when real x is not in the interval [-1,1], use numpy.arccos.

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.arccos(1) # a scalar is returned
0.0

>>> np.emath.arccos([1,2])
array([0.-0.j , 0.-1.317j])

emath.arcsin(x)
Compute the inverse sine of x.
Return the “principal value” (for a description of this, see numpy.arcsin) of the inverse sine of x. For real x
such that abs(x) <= 1, this is a real number in the closed interval [−π/2, π/2]. Otherwise, the complex principle
value is returned.

Parameters
x

[array_like or scalar] The value(s) whose arcsin is (are) required.
Returns

out
[ndarray or scalar] The inverse sine(s) of the x value(s). If x was a scalar, so is out, otherwise
an array object is returned.

See also:

numpy.arcsin

1.1. NumPy’s module structure 455

NumPy Reference, Release 2.2.0

Notes

For an arcsin() that returns NAN when real x is not in the interval [-1,1], use numpy.arcsin.

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.arcsin(0)
0.0

>>> np.emath.arcsin([0,1])
array([0. , 1.5708])

emath.arctanh(x)
Compute the inverse hyperbolic tangent of x.
Return the “principal value” (for a description of this, see numpy.arctanh) of arctanh(x). For real x such
that abs(x) < 1, this is a real number. If abs(x) > 1, or if x is complex, the result is complex. Finally, x = 1
returns``inf`` and x=-1 returns -inf.

Parameters
x

[array_like] The value(s) whose arctanh is (are) required.
Returns

out
[ndarray or scalar] The inverse hyperbolic tangent(s) of the x value(s). If x was a scalar so is
out, otherwise an array is returned.

See also:

numpy.arctanh

Notes

For an arctanh() that returns NAN when real x is not in the interval (-1,1), use numpy.arctanh (this latter,
however, does return +/-inf for x = +/-1).

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.arctanh(0.5)
0.5493061443340549

456 1. Python API

NumPy Reference, Release 2.2.0

>>> from numpy.testing import suppress_warnings
>>> with suppress_warnings() as sup:
... sup.filter(RuntimeWarning)
... np.emath.arctanh(np.eye(2))
array([[inf, 0.],

[0., inf]])
>>> np.emath.arctanh([1j])
array([0.+0.7854j])

emath.log(x)
Compute the natural logarithm of x.
Return the “principal value” (for a description of this, see numpy.log) of loge(x). For real x > 0, this is a real
number (log(0) returns -inf and log(np.inf) returns inf). Otherwise, the complex principle value is
returned.

Parameters
x

[array_like] The value(s) whose log is (are) required.
Returns

out
[ndarray or scalar] The log of the x value(s). If x was a scalar, so is out, otherwise an array is
returned.

See also:

numpy.log

Notes

For a log() that returns NAN when real x < 0, use numpy.log (note, however, that otherwise numpy.log and
this log are identical, i.e., both return -inf for x = 0, inf for x = inf, and, notably, the complex principle value
if x.imag != 0).

Examples

>>> import numpy as np
>>> np.emath.log(np.exp(1))
1.0

Negative arguments are handled “correctly” (recall that exp(log(x)) == x does not hold for real x < 0):

>>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j)
True

emath.log2(x)
Compute the logarithm base 2 of x.
Return the “principal value” (for a description of this, see numpy.log2) of log2(x). For real x > 0, this is a real
number (log2(0) returns -inf and log2(np.inf) returns inf). Otherwise, the complex principle value is
returned.

Parameters

1.1. NumPy’s module structure 457

NumPy Reference, Release 2.2.0

x
[array_like] The value(s) whose log base 2 is (are) required.

Returns
out

[ndarray or scalar] The log base 2 of the x value(s). If x was a scalar, so is out, otherwise an
array is returned.

See also:

numpy.log2

Notes

For a log2() that returns NAN when real x < 0, use numpy.log2 (note, however, that otherwise numpy.log2
and this log2 are identical, i.e., both return -inf for x = 0, inf for x = inf, and, notably, the complex principle
value if x.imag != 0).

Examples

We set the printing precision so the example can be auto-tested:

>>> np.set_printoptions(precision=4)

>>> np.emath.log2(8)
3.0
>>> np.emath.log2([-4, -8, 8])
array([2.+4.5324j, 3.+4.5324j, 3.+0.j])

emath.logn(n, x)
Take log base n of x.
If x contains negative inputs, the answer is computed and returned in the complex domain.

Parameters
n

[array_like] The integer base(s) in which the log is taken.
x

[array_like] The value(s) whose log base n is (are) required.
Returns

out
[ndarray or scalar] The log base n of the x value(s). If x was a scalar, so is out, otherwise an
array is returned.

458 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.logn(2, [4, 8])
array([2., 3.])
>>> np.emath.logn(2, [-4, -8, 8])
array([2.+4.5324j, 3.+4.5324j, 3.+0.j])

emath.log10(x)
Compute the logarithm base 10 of x.
Return the “principal value” (for a description of this, see numpy.log10) of log10(x). For real x > 0, this is a
real number (log10(0) returns -inf and log10(np.inf) returns inf). Otherwise, the complex principle
value is returned.

Parameters
x

[array_like or scalar] The value(s) whose log base 10 is (are) required.
Returns

out
[ndarray or scalar] The log base 10 of the x value(s). If x was a scalar, so is out, otherwise an
array object is returned.

See also:

numpy.log10

Notes

For a log10() that returns NAN when real x < 0, use numpy.log10 (note, however, that otherwise numpy.
log10 and this log10 are identical, i.e., both return -inf for x = 0, inf for x = inf, and, notably, the complex
principle value if x.imag != 0).

Examples

>>> import numpy as np

(We set the printing precision so the example can be auto-tested)

>>> np.set_printoptions(precision=4)

>>> np.emath.log10(10**1)
1.0

>>> np.emath.log10([-10**1, -10**2, 10**2])
array([1.+1.3644j, 2.+1.3644j, 2.+0.j])

1.1. NumPy’s module structure 459

NumPy Reference, Release 2.2.0

emath.power(x, p)
Return x to the power p, (x**p).
If x contains negative values, the output is converted to the complex domain.

Parameters
x

[array_like] The input value(s).
p

[array_like of ints] The power(s) to which x is raised. If x contains multiple values, p has to
either be a scalar, or contain the same number of values as x. In the latter case, the result is
x[0]**p[0], x[1]**p[1],

Returns
out

[ndarray or scalar] The result of x**p. If x and p are scalars, so is out, otherwise an array is
returned.

See also:

numpy.power

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.power(2, 2)
4

>>> np.emath.power([2, 4], 2)
array([4, 16])

>>> np.emath.power([2, 4], -2)
array([0.25 , 0.0625])

>>> np.emath.power([-2, 4], 2)
array([4.-0.j, 16.+0.j])

>>> np.emath.power([2, 4], [2, 4])
array([4, 256])

emath.sqrt(x)
Compute the square root of x.
For negative input elements, a complex value is returned (unlike numpy.sqrt which returns NaN).

Parameters
x

[array_like] The input value(s).
Returns

460 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray or scalar] The square root of x. If x was a scalar, so is out, otherwise an array is
returned.

See also:

numpy.sqrt

Examples

For real, non-negative inputs this works just like numpy.sqrt:

>>> import numpy as np

>>> np.emath.sqrt(1)
1.0
>>> np.emath.sqrt([1, 4])
array([1., 2.])

But it automatically handles negative inputs:

>>> np.emath.sqrt(-1)
1j
>>> np.emath.sqrt([-1,4])
array([0.+1.j, 2.+0.j])

Different results are expected because: floating point 0.0 and -0.0 are distinct.
For more control, explicitly use complex() as follows:

>>> np.emath.sqrt(complex(-4.0, 0.0))
2j
>>> np.emath.sqrt(complex(-4.0, -0.0))
-2j

Lib module (numpy.lib)

Functions & other objects

add_docstring(obj, docstring) Add a docstring to a built-in obj if possible.
add_newdoc(place, obj, doc[, warn_on_python]) Add documentation to an existing object, typically one

defined in C
Arrayterator(var[, buf_size]) Buffered iterator for big arrays.
NumpyVersion(vstring) Parse and compare numpy version strings.

lib.add_docstring(obj, docstring)
Add a docstring to a built-in obj if possible. If the obj already has a docstring raise a RuntimeError If this routine
does not know how to add a docstring to the object raise a TypeError

lib.add_newdoc(place, obj, doc, warn_on_python=True)
Add documentation to an existing object, typically one defined in C
The purpose is to allow easier editing of the docstrings without requiring a re-compile. This exists primarily for
internal use within numpy itself.

1.1. NumPy’s module structure 461

NumPy Reference, Release 2.2.0

Parameters
place

[str] The absolute name of the module to import from
obj

[str or None] The name of the object to add documentation to, typically a class or function
name.

doc
[{str, Tuple[str, str], List[Tuple[str, str]]}] If a string, the documentation to apply to obj

If a tuple, then the first element is interpreted as an attribute of obj and the second as the
docstring to apply - (method, docstring)

If a list, then each element of the list should be a tuple of length two - [(method1,
docstring1), (method2, docstring2), ...]

warn_on_python
[bool] If True, the default, emit UserWarning if this is used to attach documentation to a pure-
python object.

Notes

This routine never raises an error if the docstring can’t be written, but will raise an error if the object being docu-
mented does not exist.
This routine cannot modify read-only docstrings, as appear in new-style classes or built-in functions. Because this
routine never raises an error the caller must check manually that the docstrings were changed.
Since this function grabs the char * from a c-level str object and puts it into the tp_doc slot of the type of obj,
it violates a number of C-API best-practices, by:

• modifying a PyTypeObject after calling PyType_Ready

• calling Py_INCREF on the str and losing the reference, so the str will never be released
If possible it should be avoided.

class numpy.lib.Arrayterator(var, buf_size=None)
Buffered iterator for big arrays.
Arrayterator creates a buffered iterator for reading big arrays in small contiguous blocks. The class is useful
for objects stored in the file system. It allows iteration over the object without reading everything in memory;
instead, small blocks are read and iterated over.
Arrayterator can be used with any object that supports multidimensional slices. This includes NumPy arrays,
but also variables from Scientific.IO.NetCDF or pynetcdf for example.

Parameters
var

[array_like] The object to iterate over.
buf_size

[int, optional] The buffer size. If buf_size is supplied, the maximum amount of data that will
be read into memory is buf_size elements. Default is None, which will read as many element
as possible into memory.

See also:

462 1. Python API

NumPy Reference, Release 2.2.0

numpy.ndenumerate
Multidimensional array iterator.

numpy.flatiter
Flat array iterator.

numpy.memmap
Create a memory-map to an array stored in a binary file on disk.

Notes

The algorithm works by first finding a “running dimension”, along which the blocks will be extracted. Given an
array of dimensions (d1, d2, ..., dn), e.g. if buf_size is smaller than d1, the first dimension will be used.
If, on the other hand, d1 < buf_size < d1*d2 the second dimension will be used, and so on. Blocks are
extracted along this dimension, and when the last block is returned the process continues from the next dimension,
until all elements have been read.

Examples

>>> import numpy as np
>>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
>>> a_itor = np.lib.Arrayterator(a, 2)
>>> a_itor.shape
(3, 4, 5, 6)

Now we can iterate over a_itor, and it will return arrays of size two. Since buf_size was smaller than any
dimension, the first dimension will be iterated over first:

>>> for subarr in a_itor:
... if not subarr.all():
... print(subarr, subarr.shape)
>>> # [[[[0 1]]]] (1, 1, 1, 2)

Attributes
var
buf_size
start
stop
step
shape

The shape of the array to be iterated over.
flat

A 1-D flat iterator for Arrayterator objects.

class numpy.lib.NumpyVersion(vstring)
Parse and compare numpy version strings.
NumPy has the following versioning scheme (numbers given are examples; they can be > 9 in principle):

• Released version: ‘1.8.0’, ‘1.8.1’, etc.
• Alpha: ‘1.8.0a1’, ‘1.8.0a2’, etc.
• Beta: ‘1.8.0b1’, ‘1.8.0b2’, etc.

1.1. NumPy’s module structure 463

NumPy Reference, Release 2.2.0

• Release candidates: ‘1.8.0rc1’, ‘1.8.0rc2’, etc.
• Development versions: ‘1.8.0.dev-f1234afa’ (git commit hash appended)
• Development versions after a1: ‘1.8.0a1.dev-f1234afa’,

‘1.8.0b2.dev-f1234afa’, ‘1.8.1rc1.dev-f1234afa’, etc.
• Development versions (no git hash available): ‘1.8.0.dev-Unknown’

Comparing needs to be done against a valid version string or other NumpyVersion instance. Note that all
development versions of the same (pre-)release compare equal.

Parameters
vstring

[str] NumPy version string (np.__version__).

Examples

>>> from numpy.lib import NumpyVersion
>>> if NumpyVersion(np.__version__) < '1.7.0':
... print('skip')
>>> # skip

>>> NumpyVersion('1.7') # raises ValueError, add ".0"
Traceback (most recent call last):

...
ValueError: Not a valid numpy version string

Submodules

array_utils Miscellaneous utils.
format Binary serialization
introspect Introspection helper functions.
mixins Mixin classes for custom array types that don't inherit

from ndarray.
npyio IO related functions.
scimath Wrapper functions to more user-friendly calling of certain

math functions whose output data-type is different than
the input data-type in certain domains of the input.

stride_tricks Utilities that manipulate strides to achieve desirable ef-
fects.

Miscellaneous utils.

464 1. Python API

NumPy Reference, Release 2.2.0

Functions

byte_bounds(a) Returns pointers to the end-points of an array.
normalize_axis_index(axis, ndim[, msg_prefix]) Normalizes an axis index, axis, such that is a valid positive

index into the shape of array with ndim dimensions.
normalize_axis_tuple(axis, ndim[, argname,
...])

Normalizes an axis argument into a tuple of non-negative
integer axes.

lib.array_utils.byte_bounds(a)
Returns pointers to the end-points of an array.

Parameters
a

[ndarray] Input array. It must conform to the Python-side of the array interface.
Returns

(low, high)
[tuple of 2 integers] The first integer is the first byte of the array, the second integer is just past
the last byte of the array. If a is not contiguous it will not use every byte between the (low,
high) values.

Examples

>>> import numpy as np
>>> I = np.eye(2, dtype='f'); I.dtype
dtype('float32')
>>> low, high = np.lib.array_utils.byte_bounds(I)
>>> high - low == I.size*I.itemsize
True
>>> I = np.eye(2); I.dtype
dtype('float64')
>>> low, high = np.lib.array_utils.byte_bounds(I)
>>> high - low == I.size*I.itemsize
True

lib.array_utils.normalize_axis_index(axis, ndim, msg_prefix=None)
Normalizes an axis index, axis, such that is a valid positive index into the shape of array with ndim dimensions.
Raises an AxisError with an appropriate message if this is not possible.
Used internally by all axis-checking logic.

Parameters
axis

[int] The un-normalized index of the axis. Can be negative
ndim

[int] The number of dimensions of the array that axis should be normalized against
msg_prefix

[str] A prefix to put before the message, typically the name of the argument
Returns

1.1. NumPy’s module structure 465

NumPy Reference, Release 2.2.0

normalized_axis
[int] The normalized axis index, such that 0 <= normalized_axis < ndim

Raises
AxisError

If the axis index is invalid, when -ndim <= axis < ndim is false.

Examples

>>> import numpy as np
>>> from numpy.lib.array_utils import normalize_axis_index
>>> normalize_axis_index(0, ndim=3)
0
>>> normalize_axis_index(1, ndim=3)
1
>>> normalize_axis_index(-1, ndim=3)
2

>>> normalize_axis_index(3, ndim=3)
Traceback (most recent call last):
...
numpy.exceptions.AxisError: axis 3 is out of bounds for array ...
>>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg')
Traceback (most recent call last):
...
numpy.exceptions.AxisError: axes_arg: axis -4 is out of bounds ...

lib.array_utils.normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False)
Normalizes an axis argument into a tuple of non-negative integer axes.
This handles shorthands such as 1 and converts them to (1,), as well as performing the handling of negative
indices covered by normalize_axis_index.
By default, this forbids axes from being specified multiple times.
Used internally by multi-axis-checking logic.

Parameters
axis

[int, iterable of int] The un-normalized index or indices of the axis.
ndim

[int] The number of dimensions of the array that axis should be normalized against.
argname

[str, optional] A prefix to put before the error message, typically the name of the argument.
allow_duplicate

[bool, optional] If False, the default, disallow an axis from being specified twice.
Returns

normalized_axes
[tuple of int] The normalized axis index, such that 0 <= normalized_axis < ndim

Raises
AxisError

If any axis provided is out of range

466 1. Python API

NumPy Reference, Release 2.2.0

ValueError
If an axis is repeated

See also:

normalize_axis_index
normalizing a single scalar axis

Binary serialization

NPY format

A simple format for saving numpy arrays to disk with the full information about them.
The .npy format is the standard binary file format in NumPy for persisting a single arbitrary NumPy array on disk. The
format stores all of the shape and dtype information necessary to reconstruct the array correctly even on another machine
with a different architecture. The format is designed to be as simple as possible while achieving its limited goals.
The .npz format is the standard format for persistingmultipleNumPy arrays on disk. A .npz file is a zip file containing
multiple .npy files, one for each array.

Capabilities

• Can represent all NumPy arrays including nested record arrays and object arrays.
• Represents the data in its native binary form.
• Supports Fortran-contiguous arrays directly.
• Stores all of the necessary information to reconstruct the array including shape and dtype on a machine of a different
architecture. Both little-endian and big-endian arrays are supported, and a file with little-endian numbers will yield
a little-endian array on any machine reading the file. The types are described in terms of their actual sizes. For
example, if a machine with a 64-bit C “long int” writes out an array with “long ints”, a reading machine with 32-bit
C “long ints” will yield an array with 64-bit integers.

• Is straightforward to reverse engineer. Datasets often live longer than the programs that created them. A competent
developer should be able to create a solution in their preferred programming language to read most .npy files that
they have been given without much documentation.

• Allows memory-mapping of the data. See open_memmap.
• Can be read from a filelike stream object instead of an actual file.
• Stores object arrays, i.e. arrays containing elements that are arbitrary Python objects. Files with object arrays are
not to be mmapable, but can be read and written to disk.

Limitations

• Arbitrary subclasses of numpy.ndarray are not completely preserved. Subclasses will be accepted for writing, but
only the array data will be written out. A regular numpy.ndarray object will be created upon reading the file.

Warning: Due to limitations in the interpretation of structured dtypes, dtypes with fields with empty names will
have the names replaced by ‘f0’, ‘f1’, etc. Such arrays will not round-trip through the format entirely accurately. The
data is intact; only the field names will differ. We are working on a fix for this. This fix will not require a change in

1.1. NumPy’s module structure 467

NumPy Reference, Release 2.2.0

the file format. The arrays with such structures can still be saved and restored, and the correct dtype may be restored
by using the loadedarray.view(correct_dtype) method.

File extensions

We recommend using the .npy and .npz extensions for files saved in this format. This is by no means a requirement;
applications may wish to use these file formats but use an extension specific to the application. In the absence of an
obvious alternative, however, we suggest using .npy and .npz.

Version numbering

The version numbering of these formats is independent of NumPy version numbering. If the format is upgraded, the code
in numpy.io will still be able to read and write Version 1.0 files.

Format Version 1.0

The first 6 bytes are a magic string: exactly \x93NUMPY.
The next 1 byte is an unsigned byte: the major version number of the file format, e.g. \x01.
The next 1 byte is an unsigned byte: the minor version number of the file format, e.g. \x00. Note: the version of the file
format is not tied to the version of the numpy package.
The next 2 bytes form a little-endian unsigned short int: the length of the header data HEADER_LEN.
The next HEADER_LEN bytes form the header data describing the array’s format. It is an ASCII string which contains a
Python literal expression of a dictionary. It is terminated by a newline (\n) and padded with spaces (\x20) to make the
total of len(magic string) + 2 + len(length) + HEADER_LEN be evenly divisible by 64 for alignment
purposes.
The dictionary contains three keys:

“descr”
[dtype.descr] An object that can be passed as an argument to the numpy.dtype constructor to create
the array’s dtype.

“fortran_order”
[bool] Whether the array data is Fortran-contiguous or not. Since Fortran-contiguous arrays are a
common form of non-C-contiguity, we allow them to be written directly to disk for efficiency.

“shape”
[tuple of int] The shape of the array.

For repeatability and readability, the dictionary keys are sorted in alphabetic order. This is for convenience only. A writer
SHOULD implement this if possible. A reader MUST NOT depend on this.
Following the header comes the array data. If the dtype contains Python objects (i.e. dtype.hasobject is True),
then the data is a Python pickle of the array. Otherwise the data is the contiguous (either C- or Fortran-, depending on
fortran_order) bytes of the array. Consumers can figure out the number of bytes by multiplying the number of
elements given by the shape (noting that shape=() means there is 1 element) by dtype.itemsize.

468 1. Python API

NumPy Reference, Release 2.2.0

Format Version 2.0

The version 1.0 format only allowed the array header to have a total size of 65535 bytes. This can be exceeded by structured
arrays with a large number of columns. The version 2.0 format extends the header size to 4 GiB. numpy.save will
automatically save in 2.0 format if the data requires it, else it will always use the more compatible 1.0 format.
The description of the fourth element of the header therefore has become: “The next 4 bytes form a little-endian unsigned
int: the length of the header data HEADER_LEN.”

Format Version 3.0

This version replaces the ASCII string (which in practice was latin1) with a utf8-encoded string, so supports structured
types with any unicode field names.

Notes

The .npy format, including motivation for creating it and a comparison of alternatives, is described in the “npy-format”
NEP, however details have evolved with time and this document is more current.

Functions

descr_to_dtype(descr) Returns a dtype based off the given description.
drop_metadata(dtype, /) Returns the dtype unchanged if it contained no metadata

or a copy of the dtype if it (or any of its structure dtypes)
contained metadata.

dtype_to_descr(dtype) Get a serializable descriptor from the dtype.
header_data_from_array_1_0(array) Get the dictionary of header metadata from a

numpy.ndarray.
isfileobj(f)

magic(major, minor) Return the magic string for the given file format version.
open_memmap(filename[, mode, dtype, shape, ...]) Open a .npy file as a memory-mapped array.
read_array(fp[, allow_pickle, ...]) Read an array from an NPY file.
read_array_header_1_0(fp[, max_header_size]) Read an array header from a filelike object using the 1.0

file format version.
read_array_header_2_0(fp[, max_header_size]) Read an array header from a filelike object using the 2.0

file format version.
read_magic(fp) Read the magic string to get the version of the file format.
write_array(fp, array[, version, ...]) Write an array to an NPY file, including a header.
write_array_header_1_0(fp, d) Write the header for an array using the 1.0 format.
write_array_header_2_0(fp, d) Write the header for an array using the 2.0 format.

lib.format.descr_to_dtype(descr)
Returns a dtype based off the given description.
This is essentially the reverse of dtype_to_descr. It will remove the valueless padding fields created by, i.e.
simple fields like dtype(‘float32’), and then convert the description to its corresponding dtype.

Parameters

1.1. NumPy’s module structure 469

https://numpy.org/neps/nep-0001-npy-format.html
https://numpy.org/neps/nep-0001-npy-format.html

NumPy Reference, Release 2.2.0

descr
[object] The object retrieved by dtype.descr. Can be passed to numpy.dtype in order to
replicate the input dtype.

Returns
dtype

[dtype] The dtype constructed by the description.
lib.format.drop_metadata(dtype, /)

Returns the dtype unchanged if it contained no metadata or a copy of the dtype if it (or any of its structure dtypes)
contained metadata.
This utility is used by np.save and np.savez to drop metadata before saving.

Note: Due to its limitation this function may move to a more appropriate home or change in the future and is
considered semi-public API only.

Warning: This function does not preserve more strange things like record dtypes and user dtypes may
simply return the wrong thing. If you need to be sure about the latter, check the result with: np.
can_cast(new_dtype, dtype, casting="no").

lib.format.dtype_to_descr(dtype)
Get a serializable descriptor from the dtype.
The .descr attribute of a dtype object cannot be round-tripped through the dtype() constructor. Simple types, like
dtype(‘float32’), have a descr which looks like a record array with one field with ‘’ as a name. The dtype() constructor
interprets this as a request to give a default name. Instead, we construct descriptor that can be passed to dtype().

Parameters
dtype

[dtype] The dtype of the array that will be written to disk.
Returns

descr
[object] An object that can be passed to numpy.dtype() in order to replicate the input dtype.

lib.format.header_data_from_array_1_0(array)
Get the dictionary of header metadata from a numpy.ndarray.

Parameters
array

[numpy.ndarray]
Returns

d
[dict] This has the appropriate entries for writing its string representation to the header of the
file.

lib.format.isfileobj(f)

lib.format.magic(major, minor)
Return the magic string for the given file format version.

470 1. Python API

NumPy Reference, Release 2.2.0

Parameters
major

[int in [0, 255]]
minor

[int in [0, 255]]
Returns

magic
[str]

Raises
ValueError if the version cannot be formatted.

lib.format.open_memmap(filename, mode='r+', dtype=None, shape=None, fortran_order=False,
version=None, *, max_header_size=10000)

Open a .npy file as a memory-mapped array.
This may be used to read an existing file or create a new one.

Parameters
filename

[str or path-like] The name of the file on disk. This may not be a file-like object.
mode

[str, optional] The mode in which to open the file; the default is ‘r+’. In addition to the standard
file modes, ‘c’ is also accepted to mean “copy on write.” See memmap for the available mode
strings.

dtype
[data-type, optional] The data type of the array if we are creating a new file in “write” mode, if
not, dtype is ignored. The default value is None, which results in a data-type of float64.

shape
[tuple of int] The shape of the array if we are creating a new file in “write” mode, in which
case this parameter is required. Otherwise, this parameter is ignored and is thus optional.

fortran_order
[bool, optional]Whether the array should be Fortran-contiguous (True) or C-contiguous (False,
the default) if we are creating a new file in “write” mode.

version
[tuple of int (major, minor) or None] If the mode is a “write” mode, then this is the version of
the file format used to create the file. None means use the oldest supported version that is able
to store the data. Default: None

max_header_size
[int, optional] Maximum allowed size of the header. Large headers may not be safe to load
securely and thus require explicitly passing a larger value. See ast.literal_eval for
details.

Returns
marray

[memmap] The memory-mapped array.
Raises

ValueError
If the data or the mode is invalid.

1.1. NumPy’s module structure 471

https://docs.python.org/3/library/ast.html#ast.literal_eval

NumPy Reference, Release 2.2.0

OSError
If the file is not found or cannot be opened correctly.

See also:

numpy.memmap

lib.format.read_array(fp, allow_pickle=False, pickle_kwargs=None, *, max_header_size=10000)
Read an array from an NPY file.

Parameters
fp

[file_like object] If this is not a real file object, then this may take extra memory and time.
allow_pickle

[bool, optional] Whether to allow writing pickled data. Default: False
pickle_kwargs

[dict] Additional keyword arguments to pass to pickle.load. These are only useful when loading
object arrays saved on Python 2 when using Python 3.

max_header_size
[int, optional] Maximum allowed size of the header. Large headers may not be safe to load
securely and thus require explicitly passing a larger value. See ast.literal_eval for
details. This option is ignored when allow_pickle is passed. In that case the file is by definition
trusted and the limit is unnecessary.

Returns
array

[ndarray] The array from the data on disk.
Raises

ValueError
If the data is invalid, or allow_pickle=False and the file contains an object array.

lib.format.read_array_header_1_0(fp, max_header_size=10000)
Read an array header from a filelike object using the 1.0 file format version.
This will leave the file object located just after the header.

Parameters
fp

[filelike object] A file object or something with a read() method like a file.
Returns

shape
[tuple of int] The shape of the array.

fortran_order
[bool] The array data will be written out directly if it is either C-contiguous or Fortran-
contiguous. Otherwise, it will be made contiguous before writing it out.

dtype
[dtype] The dtype of the file’s data.

max_header_size
[int, optional] Maximum allowed size of the header. Large headers may not be safe to load

472 1. Python API

https://docs.python.org/3/library/ast.html#ast.literal_eval

NumPy Reference, Release 2.2.0

securely and thus require explicitly passing a larger value. See ast.literal_eval for
details.

Raises
ValueError

If the data is invalid.
lib.format.read_array_header_2_0(fp, max_header_size=10000)

Read an array header from a filelike object using the 2.0 file format version.
This will leave the file object located just after the header.

Parameters
fp

[filelike object] A file object or something with a read() method like a file.
max_header_size

[int, optional] Maximum allowed size of the header. Large headers may not be safe to load
securely and thus require explicitly passing a larger value. See ast.literal_eval for
details.

Returns
shape

[tuple of int] The shape of the array.
fortran_order

[bool] The array data will be written out directly if it is either C-contiguous or Fortran-
contiguous. Otherwise, it will be made contiguous before writing it out.

dtype
[dtype] The dtype of the file’s data.

Raises
ValueError

If the data is invalid.
lib.format.read_magic(fp)

Read the magic string to get the version of the file format.
Parameters

fp
[filelike object]

Returns
major

[int]
minor

[int]
lib.format.write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None)

Write an array to an NPY file, including a header.
If the array is neither C-contiguous nor Fortran-contiguous AND the file_like object is not a real file object, this
function will have to copy data in memory.

Parameters

1.1. NumPy’s module structure 473

https://docs.python.org/3/library/ast.html#ast.literal_eval
https://docs.python.org/3/library/ast.html#ast.literal_eval

NumPy Reference, Release 2.2.0

fp
[file_like object] An open, writable file object, or similar object with a .write() method.

array
[ndarray] The array to write to disk.

version
[(int, int) or None, optional] The version number of the format. None means use the oldest
supported version that is able to store the data. Default: None

allow_pickle
[bool, optional] Whether to allow writing pickled data. Default: True

pickle_kwargs
[dict, optional] Additional keyword arguments to pass to pickle.dump, excluding ‘protocol’.
These are only useful when pickling objects in object arrays on Python 3 to Python 2 compatible
format.

Raises
ValueError

If the array cannot be persisted. This includes the case of allow_pickle=False and array being
an object array.

Various other errors
If the array contains Python objects as part of its dtype, the process of pickling them may raise
various errors if the objects are not picklable.

lib.format.write_array_header_1_0(fp, d)
Write the header for an array using the 1.0 format.

Parameters
fp

[filelike object]
d

[dict] This has the appropriate entries for writing its string representation to the header of the
file.

lib.format.write_array_header_2_0(fp, d)

Write the header for an array using the 2.0 format.
The 2.0 format allows storing very large structured arrays.

Parameters
fp

[filelike object]
d

[dict] This has the appropriate entries for writing its string representation to the header of the
file.

Introspection helper functions.

474 1. Python API

NumPy Reference, Release 2.2.0

Functions

opt_func_info([func_name, signature]) Returns a dictionary containing the currently supported
CPU dispatched features for all optimized functions.

lib.introspect.opt_func_info(func_name=None, signature=None)
Returns a dictionary containing the currently supported CPU dispatched features for all optimized functions.

Parameters
func_name

[str (optional)] Regular expression to filter by function name.
signature

[str (optional)] Regular expression to filter by data type.
Returns

dict
A dictionary where keys are optimized function names and values are nested dictionaries in-
dicating supported targets based on data types.

Examples

Retrieve dispatch information for functions named ‘add’ or ‘sub’ and data types ‘float64’ or ‘float32’:

>>> import numpy as np
>>> dict = np.lib.introspect.opt_func_info(
... func_name="add|abs", signature="float64|complex64"
...)
>>> import json
>>> print(json.dumps(dict, indent=2))

{
"absolute": {
"dd": {
"current": "SSE41",
"available": "SSE41 baseline(SSE SSE2 SSE3)"

},
"Ff": {
"current": "FMA3__AVX2",
"available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)"

},
"Dd": {
"current": "FMA3__AVX2",
"available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)"

}
},
"add": {
"ddd": {
"current": "FMA3__AVX2",
"available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)"

},
"FFF": {
"current": "FMA3__AVX2",
"available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)"

}

(continues on next page)

1.1. NumPy’s module structure 475

NumPy Reference, Release 2.2.0

(continued from previous page)
}

}

Mixin classes for custom array types that don’t inherit from ndarray.

Classes

NDArrayOperatorsMixin() Mixin defining all operator special methods using __ar-
ray_ufunc__.

class numpy.lib.mixins.NDArrayOperatorsMixin

Mixin defining all operator special methods using __array_ufunc__.
This class implements the special methods for almost all of Python’s builtin operators defined in the opera-
tor module, including comparisons (==, >, etc.) and arithmetic (+, *, -, etc.), by deferring to the __ar-
ray_ufunc__ method, which subclasses must implement.
It is useful for writing classes that do not inherit from numpy.ndarray, but that should support arithmetic and
numpy universal functions like arrays as described in A Mechanism for Overriding Ufuncs.
As an trivial example, consider this implementation of an ArrayLike class that simply wraps a NumPy array
and ensures that the result of any arithmetic operation is also an ArrayLike object:

>>> import numbers
>>> class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
... def __init__(self, value):
... self.value = np.asarray(value)
...
... # One might also consider adding the built-in list type to this
... # list, to support operations like np.add(array_like, list)
... _HANDLED_TYPES = (np.ndarray, numbers.Number)
...
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
... out = kwargs.get('out', ())
... for x in inputs + out:
... # Only support operations with instances of
... # _HANDLED_TYPES. Use ArrayLike instead of type(self)
... # for isinstance to allow subclasses that don't
... # override __array_ufunc__ to handle ArrayLike objects.
... if not isinstance(
... x, self._HANDLED_TYPES + (ArrayLike,)
...):
... return NotImplemented
...
... # Defer to the implementation of the ufunc
... # on unwrapped values.
... inputs = tuple(x.value if isinstance(x, ArrayLike) else x
... for x in inputs)
... if out:
... kwargs['out'] = tuple(
... x.value if isinstance(x, ArrayLike) else x
... for x in out)
... result = getattr(ufunc, method)(*inputs, **kwargs)
...

(continues on next page)

476 1. Python API

https://docs.python.org/3/library/operator.html#module-operator
https://docs.python.org/3/library/operator.html#module-operator
https://numpy.org/neps/nep-0013-ufunc-overrides.html

NumPy Reference, Release 2.2.0

(continued from previous page)
... if type(result) is tuple:
... # multiple return values
... return tuple(type(self)(x) for x in result)
... elif method == 'at':
... # no return value
... return None
... else:
... # one return value
... return type(self)(result)
...
... def __repr__(self):
... return '%s(%r)' % (type(self).__name__, self.value)

In interactions between ArrayLike objects and numbers or numpy arrays, the result is always another Array-
Like:

>>> x = ArrayLike([1, 2, 3])
>>> x - 1
ArrayLike(array([0, 1, 2]))
>>> 1 - x
ArrayLike(array([0, -1, -2]))
>>> np.arange(3) - x
ArrayLike(array([-1, -1, -1]))
>>> x - np.arange(3)
ArrayLike(array([1, 1, 1]))

Note that unlike numpy.ndarray, ArrayLike does not allow operations with arbitrary, unrecognized types.
This ensures that interactions with ArrayLike preserve a well-defined casting hierarchy.

IO related functions.

Classes

DataSource([destpath]) A generic data source file (file, http, ftp, ...).
NpzFile(fid) A dictionary-like object with lazy-loading of files in the

zipped archive provided on construction.

class numpy.lib.npyio.DataSource(destpath='.')
A generic data source file (file, http, ftp, …).
DataSources can be local files or remote files/URLs. The files may also be compressed or uncompressed. Data-
Source hides some of the low-level details of downloading the file, allowing you to simply pass in a valid file path
(or URL) and obtain a file object.

Parameters
destpath

[str or None, optional] Path to the directory where the source file gets downloaded to for use.
If destpath is None, a temporary directory will be created. The default path is the current
directory.

1.1. NumPy’s module structure 477

NumPy Reference, Release 2.2.0

Notes

URLs require a scheme string (http://) to be used, without it they will fail:

>>> repos = np.lib.npyio.DataSource()
>>> repos.exists('www.google.com/index.html')
False
>>> repos.exists('http://www.google.com/index.html')
True

Temporary directories are deleted when the DataSource is deleted.

Examples

>>> ds = np.lib.npyio.DataSource('/home/guido')
>>> urlname = 'http://www.google.com/'
>>> gfile = ds.open('http://www.google.com/')
>>> ds.abspath(urlname)
'/home/guido/www.google.com/index.html'

>>> ds = np.lib.npyio.DataSource(None) # use with temporary file
>>> ds.open('/home/guido/foobar.txt')
<open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430>
>>> ds.abspath('/home/guido/foobar.txt')
'/tmp/.../home/guido/foobar.txt'

Methods

abspath(path) Return absolute path of file in the DataSource direc-
tory.

exists(path) Test if path exists.
open(path[, mode, encoding, newline]) Open and return file-like object.

method
lib.npyio.DataSource.abspath(path)

Return absolute path of file in the DataSource directory.
If path is an URL, then abspath will return either the location the file exists locally or the location it would
exist when opened using the open method.

Parameters
path
[str or pathlib.Path] Can be a local file or a remote URL.

Returns
out
[str] Complete path, including the DataSource destination directory.

478 1. Python API

NumPy Reference, Release 2.2.0

Notes

The functionality is based on os.path.abspath.
method
lib.npyio.DataSource.exists(path)

Test if path exists.
Test if path exists as (and in this order):
• a local file.
• a remote URL that has been downloaded and stored locally in the DataSource directory.
• a remote URL that has not been downloaded, but is valid and accessible.

Parameters
path
[str or pathlib.Path] Can be a local file or a remote URL.

Returns
out
[bool] True if path exists.

Notes

When path is an URL, exists will return True if it’s either stored locally in the DataSource directory, or
is a valid remote URL. DataSource does not discriminate between the two, the file is accessible if it exists in
either location.

method
lib.npyio.DataSource.open(path, mode='r', encoding=None, newline=None)

Open and return file-like object.
If path is an URL, it will be downloaded, stored in the DataSource directory and opened from there.

Parameters
path
[str or pathlib.Path] Local file path or URL to open.

mode
[{‘r’, ‘w’, ‘a’}, optional] Mode to open path. Mode ‘r’ for reading, ‘w’ for writing, ‘a’ to append.
Available modes depend on the type of object specified by path. Default is ‘r’.

encoding
[{None, str}, optional] Open text file with given encoding. The default encoding will be what
open uses.

newline
[{None, str}, optional] Newline to use when reading text file.

Returns
out
[file object] File object.

1.1. NumPy’s module structure 479

https://docs.python.org/3/library/os.path.html#os.path.abspath

NumPy Reference, Release 2.2.0

class numpy.lib.npyio.NpzFile(fid)
A dictionary-like object with lazy-loading of files in the zipped archive provided on construction.
NpzFile is used to load files in the NumPy .npz data archive format. It assumes that files in the archive have a
.npy extension, other files are ignored.
The arrays and file strings are lazily loaded on either getitem access using obj['key'] or attribute lookup using
obj.f.key. A list of all files (without .npy extensions) can be obtained with obj.files and the ZipFile
object itself using obj.zip.

Parameters
fid

[file, str, or pathlib.Path] The zipped archive to open. This is either a file-like object or a string
containing the path to the archive.

own_fid
[bool, optional] Whether NpzFile should close the file handle. Requires that fid is a file-like
object.

Examples

>>> import numpy as np
>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()
>>> x = np.arange(10)
>>> y = np.sin(x)
>>> np.savez(outfile, x=x, y=y)
>>> _ = outfile.seek(0)

>>> npz = np.load(outfile)
>>> isinstance(npz, np.lib.npyio.NpzFile)
True
>>> npz
NpzFile 'object' with keys: x, y
>>> sorted(npz.files)
['x', 'y']
>>> npz['x'] # getitem access
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> npz.f.x # attribute lookup
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Attributes
files

[list of str] List of all files in the archive with a .npy extension.
zip

[ZipFile instance] The ZipFile object initialized with the zipped archive.
f

[BagObj instance] An object on which attribute can be performed as an alternative to getitem
access on the NpzFile instance itself.

allow_pickle
[bool, optional] Allow loading pickled data. Default: False

480 1. Python API

NumPy Reference, Release 2.2.0

pickle_kwargs
[dict, optional] Additional keyword arguments to pass on to pickle.load. These are only useful
when loading object arrays saved on Python 2 when using Python 3.

max_header_size
[int, optional] Maximum allowed size of the header. Large headers may not be safe to load
securely and thus require explicitly passing a larger value. See ast.literal_eval for
details. This option is ignored when allow_pickle is passed. In that case the file is by definition
trusted and the limit is unnecessary.

Methods

close() Close the file.
get(key[, default]) D.get(k,[,d]) returns D[k] if k in D, else d.
items() D.items() returns a set-like object providing a view on

the items
keys() D.keys() returns a set-like object providing a view on

the keys
values() D.values() returns a set-like object providing a view on

the values

method
lib.npyio.NpzFile.close()

Close the file.
method
lib.npyio.NpzFile.get(key, default=None, /)

D.get(k,[,d]) returns D[k] if k in D, else d. d defaults to None.
method
lib.npyio.NpzFile.items()

D.items() returns a set-like object providing a view on the items
method
lib.npyio.NpzFile.keys()

D.keys() returns a set-like object providing a view on the keys
method
lib.npyio.NpzFile.values()

D.values() returns a set-like object providing a view on the values
Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the
input data-type in certain domains of the input.
For example, for functions like log with branch cuts, the versions in this module provide themathematically valid answers
in the complex plane:

>>> import math
>>> np.emath.log(-math.exp(1)) == (1+1j*math.pi)
True

1.1. NumPy’s module structure 481

https://docs.python.org/3/library/ast.html#ast.literal_eval

NumPy Reference, Release 2.2.0

Similarly, sqrt, other base logarithms, power and trig functions are correctly handled. See their respective docstrings
for specific examples.

Functions

arccos(x) Compute the inverse cosine of x.
arcsin(x) Compute the inverse sine of x.
arctanh(x) Compute the inverse hyperbolic tangent of x.
log(x) Compute the natural logarithm of x.
log10(x) Compute the logarithm base 10 of x.
log2(x) Compute the logarithm base 2 of x.
logn(n, x) Take log base n of x.
power(x, p) Return x to the power p, (x**p).
sqrt(x) Compute the square root of x.

lib.scimath.arccos(x)
Compute the inverse cosine of x.
Return the “principal value” (for a description of this, see numpy.arccos) of the inverse cosine of x. For real
x such that abs(x) <= 1, this is a real number in the closed interval [0, π]. Otherwise, the complex principle value
is returned.

Parameters
x

[array_like or scalar] The value(s) whose arccos is (are) required.
Returns

out
[ndarray or scalar] The inverse cosine(s) of the x value(s). If x was a scalar, so is out, otherwise
an array object is returned.

See also:

numpy.arccos

Notes

For an arccos() that returns NAN when real x is not in the interval [-1,1], use numpy.arccos.

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.arccos(1) # a scalar is returned
0.0

>>> np.emath.arccos([1,2])
array([0.-0.j , 0.-1.317j])

482 1. Python API

NumPy Reference, Release 2.2.0

lib.scimath.arcsin(x)
Compute the inverse sine of x.
Return the “principal value” (for a description of this, see numpy.arcsin) of the inverse sine of x. For real x
such that abs(x) <= 1, this is a real number in the closed interval [−π/2, π/2]. Otherwise, the complex principle
value is returned.

Parameters
x

[array_like or scalar] The value(s) whose arcsin is (are) required.
Returns

out
[ndarray or scalar] The inverse sine(s) of the x value(s). If x was a scalar, so is out, otherwise
an array object is returned.

See also:

numpy.arcsin

Notes

For an arcsin() that returns NAN when real x is not in the interval [-1,1], use numpy.arcsin.

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.arcsin(0)
0.0

>>> np.emath.arcsin([0,1])
array([0. , 1.5708])

lib.scimath.arctanh(x)
Compute the inverse hyperbolic tangent of x.
Return the “principal value” (for a description of this, see numpy.arctanh) of arctanh(x). For real x such
that abs(x) < 1, this is a real number. If abs(x) > 1, or if x is complex, the result is complex. Finally, x = 1
returns``inf`` and x=-1 returns -inf.

Parameters
x

[array_like] The value(s) whose arctanh is (are) required.
Returns

out
[ndarray or scalar] The inverse hyperbolic tangent(s) of the x value(s). If x was a scalar so is
out, otherwise an array is returned.

See also:

numpy.arctanh

1.1. NumPy’s module structure 483

NumPy Reference, Release 2.2.0

Notes

For an arctanh() that returns NAN when real x is not in the interval (-1,1), use numpy.arctanh (this latter,
however, does return +/-inf for x = +/-1).

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.arctanh(0.5)
0.5493061443340549

>>> from numpy.testing import suppress_warnings
>>> with suppress_warnings() as sup:
... sup.filter(RuntimeWarning)
... np.emath.arctanh(np.eye(2))
array([[inf, 0.],

[0., inf]])
>>> np.emath.arctanh([1j])
array([0.+0.7854j])

lib.scimath.log(x)
Compute the natural logarithm of x.
Return the “principal value” (for a description of this, see numpy.log) of loge(x). For real x > 0, this is a real
number (log(0) returns -inf and log(np.inf) returns inf). Otherwise, the complex principle value is
returned.

Parameters
x

[array_like] The value(s) whose log is (are) required.
Returns

out
[ndarray or scalar] The log of the x value(s). If x was a scalar, so is out, otherwise an array is
returned.

See also:

numpy.log

Notes

For a log() that returns NAN when real x < 0, use numpy.log (note, however, that otherwise numpy.log and
this log are identical, i.e., both return -inf for x = 0, inf for x = inf, and, notably, the complex principle value
if x.imag != 0).

484 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.emath.log(np.exp(1))
1.0

Negative arguments are handled “correctly” (recall that exp(log(x)) == x does not hold for real x < 0):

>>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j)
True

lib.scimath.log10(x)
Compute the logarithm base 10 of x.
Return the “principal value” (for a description of this, see numpy.log10) of log10(x). For real x > 0, this is a
real number (log10(0) returns -inf and log10(np.inf) returns inf). Otherwise, the complex principle
value is returned.

Parameters
x

[array_like or scalar] The value(s) whose log base 10 is (are) required.
Returns

out
[ndarray or scalar] The log base 10 of the x value(s). If x was a scalar, so is out, otherwise an
array object is returned.

See also:

numpy.log10

Notes

For a log10() that returns NAN when real x < 0, use numpy.log10 (note, however, that otherwise numpy.
log10 and this log10 are identical, i.e., both return -inf for x = 0, inf for x = inf, and, notably, the complex
principle value if x.imag != 0).

Examples

>>> import numpy as np

(We set the printing precision so the example can be auto-tested)

>>> np.set_printoptions(precision=4)

>>> np.emath.log10(10**1)
1.0

>>> np.emath.log10([-10**1, -10**2, 10**2])
array([1.+1.3644j, 2.+1.3644j, 2.+0.j])

1.1. NumPy’s module structure 485

NumPy Reference, Release 2.2.0

lib.scimath.log2(x)
Compute the logarithm base 2 of x.
Return the “principal value” (for a description of this, see numpy.log2) of log2(x). For real x > 0, this is a real
number (log2(0) returns -inf and log2(np.inf) returns inf). Otherwise, the complex principle value is
returned.

Parameters
x

[array_like] The value(s) whose log base 2 is (are) required.
Returns

out
[ndarray or scalar] The log base 2 of the x value(s). If x was a scalar, so is out, otherwise an
array is returned.

See also:

numpy.log2

Notes

For a log2() that returns NAN when real x < 0, use numpy.log2 (note, however, that otherwise numpy.log2
and this log2 are identical, i.e., both return -inf for x = 0, inf for x = inf, and, notably, the complex principle
value if x.imag != 0).

Examples

We set the printing precision so the example can be auto-tested:

>>> np.set_printoptions(precision=4)

>>> np.emath.log2(8)
3.0
>>> np.emath.log2([-4, -8, 8])
array([2.+4.5324j, 3.+4.5324j, 3.+0.j])

lib.scimath.logn(n, x)
Take log base n of x.
If x contains negative inputs, the answer is computed and returned in the complex domain.

Parameters
n

[array_like] The integer base(s) in which the log is taken.
x

[array_like] The value(s) whose log base n is (are) required.
Returns

out
[ndarray or scalar] The log base n of the x value(s). If x was a scalar, so is out, otherwise an
array is returned.

486 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.logn(2, [4, 8])
array([2., 3.])
>>> np.emath.logn(2, [-4, -8, 8])
array([2.+4.5324j, 3.+4.5324j, 3.+0.j])

lib.scimath.power(x, p)
Return x to the power p, (x**p).
If x contains negative values, the output is converted to the complex domain.

Parameters
x

[array_like] The input value(s).
p

[array_like of ints] The power(s) to which x is raised. If x contains multiple values, p has to
either be a scalar, or contain the same number of values as x. In the latter case, the result is
x[0]**p[0], x[1]**p[1],

Returns
out

[ndarray or scalar] The result of x**p. If x and p are scalars, so is out, otherwise an array is
returned.

See also:

numpy.power

Examples

>>> import numpy as np
>>> np.set_printoptions(precision=4)

>>> np.emath.power(2, 2)
4

>>> np.emath.power([2, 4], 2)
array([4, 16])

>>> np.emath.power([2, 4], -2)
array([0.25 , 0.0625])

>>> np.emath.power([-2, 4], 2)
array([4.-0.j, 16.+0.j])

>>> np.emath.power([2, 4], [2, 4])
array([4, 256])

1.1. NumPy’s module structure 487

NumPy Reference, Release 2.2.0

lib.scimath.sqrt(x)
Compute the square root of x.
For negative input elements, a complex value is returned (unlike numpy.sqrt which returns NaN).

Parameters
x

[array_like] The input value(s).
Returns

out
[ndarray or scalar] The square root of x. If x was a scalar, so is out, otherwise an array is
returned.

See also:

numpy.sqrt

Examples

For real, non-negative inputs this works just like numpy.sqrt:

>>> import numpy as np

>>> np.emath.sqrt(1)
1.0
>>> np.emath.sqrt([1, 4])
array([1., 2.])

But it automatically handles negative inputs:

>>> np.emath.sqrt(-1)
1j
>>> np.emath.sqrt([-1,4])
array([0.+1.j, 2.+0.j])

Different results are expected because: floating point 0.0 and -0.0 are distinct.
For more control, explicitly use complex() as follows:

>>> np.emath.sqrt(complex(-4.0, 0.0))
2j
>>> np.emath.sqrt(complex(-4.0, -0.0))
-2j

Utilities that manipulate strides to achieve desirable effects.
An explanation of strides can be found in the The N-dimensional array (ndarray).

488 1. Python API

NumPy Reference, Release 2.2.0

Functions

as_strided(x[, shape, strides, subok, writeable]) Create a view into the array with the given shape and
strides.

sliding_window_view(x, window_shape[, axis,
...])

Create a sliding window view into the array with the given
window shape.

lib.stride_tricks.as_strided(x, shape=None, strides=None, subok=False, writeable=True)
Create a view into the array with the given shape and strides.

Warning: This function has to be used with extreme care, see notes.

Parameters
x

[ndarray] Array to create a new.
shape

[sequence of int, optional] The shape of the new array. Defaults to x.shape.
strides

[sequence of int, optional] The strides of the new array. Defaults to x.strides.
subok

[bool, optional] If True, subclasses are preserved.
writeable

[bool, optional] If set to False, the returned array will always be readonly. Otherwise it will be
writable if the original array was. It is advisable to set this to False if possible (see Notes).

Returns
view

[ndarray]

See also:

broadcast_to
broadcast an array to a given shape.

reshape
reshape an array.

lib.stride_tricks.sliding_window_view
userfriendly and safe function for a creation of sliding window views.

1.1. NumPy’s module structure 489

NumPy Reference, Release 2.2.0

Notes

as_strided creates a view into the array given the exact strides and shape. This means it manipulates the internal
data structure of ndarray and, if done incorrectly, the array elements can point to invalid memory and can corrupt
results or crash your program. It is advisable to always use the original x.strides when calculating new strides
to avoid reliance on a contiguous memory layout.
Furthermore, arrays created with this function often contain self overlapping memory, so that two elements are
identical. Vectorized write operations on such arrays will typically be unpredictable. They may even give different
results for small, large, or transposed arrays.
Since writing to these arrays has to be tested and done with great care, you may want to use writeable=False
to avoid accidental write operations.
For these reasons it is advisable to avoid as_strided when possible.

lib.stride_tricks.sliding_window_view(x, window_shape, axis=None, *, subok=False,
writeable=False)

Create a sliding window view into the array with the given window shape.
Also known as rolling or moving window, the window slides across all dimensions of the array and extracts subsets
of the array at all window positions.
New in version 1.20.0.

Parameters
x

[array_like] Array to create the sliding window view from.
window_shape

[int or tuple of int] Size of window over each axis that takes part in the sliding window. If axis
is not present, must have same length as the number of input array dimensions. Single integers
i are treated as if they were the tuple (i,).

axis
[int or tuple of int, optional] Axis or axes along which the sliding window is applied. By default,
the sliding window is applied to all axes and window_shape[i] will refer to axis i of x. If axis
is given as a tuple of int, window_shape[i] will refer to the axis axis[i] of x. Single integers i
are treated as if they were the tuple (i,).

subok
[bool, optional] If True, sub-classes will be passed-through, otherwise the returned array will
be forced to be a base-class array (default).

writeable
[bool, optional] When true, allow writing to the returned view. The default is false, as this
should be used with caution: the returned view contains the same memory location multiple
times, so writing to one location will cause others to change.

Returns
view

[ndarray] Sliding window view of the array. The sliding window dimensions are inserted
at the end, and the original dimensions are trimmed as required by the size of the sliding
window. That is, view.shape = x_shape_trimmed + window_shape, where
x_shape_trimmed is x.shapewith every entry reduced by one less than the correspond-
ing window size.

See also:

490 1. Python API

NumPy Reference, Release 2.2.0

lib.stride_tricks.as_strided
A lower-level and less safe routine for creating arbitrary views from custom shape and strides.

broadcast_to
broadcast an array to a given shape.

Notes

For many applications using a sliding window view can be convenient, but potentially very slow. Often specialized
solutions exist, for example:

• scipy.signal.fftconvolve

• filtering functions in scipy.ndimage
• moving window functions provided by bottleneck.

As a rough estimate, a sliding window approach with an input size of N and a window size of W will scale as
O(N*W) where frequently a special algorithm can achieve O(N). That means that the sliding window variant for a
window size of 100 can be a 100 times slower than a more specialized version.
Nevertheless, for small window sizes, when no custom algorithm exists, or as a prototyping and developing tool,
this function can be a good solution.

Examples

>>> import numpy as np
>>> from numpy.lib.stride_tricks import sliding_window_view
>>> x = np.arange(6)
>>> x.shape
(6,)
>>> v = sliding_window_view(x, 3)
>>> v.shape
(4, 3)
>>> v
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4],
[3, 4, 5]])

This also works in more dimensions, e.g.

>>> i, j = np.ogrid[:3, :4]
>>> x = 10*i + j
>>> x.shape
(3, 4)
>>> x
array([[0, 1, 2, 3],

[10, 11, 12, 13],
[20, 21, 22, 23]])

>>> shape = (2,2)
>>> v = sliding_window_view(x, shape)
>>> v.shape
(2, 3, 2, 2)
>>> v
array([[[[0, 1],

[10, 11]],

(continues on next page)

1.1. NumPy’s module structure 491

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve
https://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage
https://github.com/pydata/bottleneck

NumPy Reference, Release 2.2.0

(continued from previous page)
[[1, 2],
[11, 12]],
[[2, 3],
[12, 13]]],

[[[10, 11],
[20, 21]],
[[11, 12],
[21, 22]],
[[12, 13],
[22, 23]]]])

The axis can be specified explicitly:

>>> v = sliding_window_view(x, 3, 0)
>>> v.shape
(1, 4, 3)
>>> v
array([[[0, 10, 20],

[1, 11, 21],
[2, 12, 22],
[3, 13, 23]]])

The same axis can be used several times. In that case, every use reduces the corresponding original dimension:

>>> v = sliding_window_view(x, (2, 3), (1, 1))
>>> v.shape
(3, 1, 2, 3)
>>> v
array([[[[0, 1, 2],

[1, 2, 3]]],
[[[10, 11, 12],
[11, 12, 13]]],

[[[20, 21, 22],
[21, 22, 23]]]])

Combining with stepped slicing (::step), this can be used to take sliding views which skip elements:

>>> x = np.arange(7)
>>> sliding_window_view(x, 5)[:, ::2]
array([[0, 2, 4],

[1, 3, 5],
[2, 4, 6]])

or views which move by multiple elements

>>> x = np.arange(7)
>>> sliding_window_view(x, 3)[::2, :]
array([[0, 1, 2],

[2, 3, 4],
[4, 5, 6]])

A common application of sliding_window_view is the calculation of running statistics. The simplest exam-
ple is the moving average:

>>> x = np.arange(6)
>>> x.shape

(continues on next page)

492 1. Python API

https://en.wikipedia.org/wiki/Moving_average

NumPy Reference, Release 2.2.0

(continued from previous page)
(6,)
>>> v = sliding_window_view(x, 3)
>>> v.shape
(4, 3)
>>> v
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4],
[3, 4, 5]])

>>> moving_average = v.mean(axis=-1)
>>> moving_average
array([1., 2., 3., 4.])

Note that a sliding window approach is often not optimal (see Notes).

Record Arrays (numpy.rec)

Record arrays expose the fields of structured arrays as properties.
Most commonly, ndarrays contain elements of a single type, e.g. floats, integers, bools etc. However, it is possible for
elements to be combinations of these using structured types, such as:

>>> import numpy as np
>>> a = np.array([(1, 2.0), (1, 2.0)],
... dtype=[('x', np.int64), ('y', np.float64)])
>>> a
array([(1, 2.), (1, 2.)], dtype=[('x', '<i8'), ('y', '<f8')])

Here, each element consists of two fields: x (and int), and y (a float). This is known as a structured array.
The different fields are analogous to columns in a spread-sheet. The different fields can be accessed as one
would a dictionary:

>>> a['x']
array([1, 1])

>>> a['y']
array([2., 2.])

Record arrays allow us to access fields as properties:

>>> ar = np.rec.array(a)
>>> ar.x
array([1, 1])
>>> ar.y
array([2., 2.])

1.1. NumPy’s module structure 493

NumPy Reference, Release 2.2.0

Functions

array(obj[, dtype, shape, offset, strides, ...]) Construct a record array from a wide-variety of objects.
find_duplicate(list) Find duplication in a list, return a list of duplicated ele-

ments
format_parser(formats, names, titles[, ...]) Class to convert formats, names, titles description to a

dtype.
fromarrays(arrayList[, dtype, shape, ...]) Create a record array from a (flat) list of arrays
fromfile(fd[, dtype, shape, offset, ...]) Create an array from binary file data
fromrecords(recList[, dtype, shape, ...]) Create a recarray from a list of records in text form.
fromstring(datastring[, dtype, shape, ...]) Create a record array from binary data

rec.array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None, names=None, titles=None,
aligned=False, byteorder=None, copy=True)

Construct a record array from a wide-variety of objects.
A general-purpose record array constructor that dispatches to the appropriate recarray creation function based
on the inputs (see Notes).

Parameters
obj

[any] Input object. See Notes for details on how various input types are treated.
dtype

[data-type, optional] Valid dtype for array.
shape

[int or tuple of ints, optional] Shape of each array.
offset

[int, optional] Position in the file or buffer to start reading from.
strides

[tuple of ints, optional] Buffer (buf) is interpreted according to these strides (strides define
how many bytes each array element, row, column, etc. occupy in memory).

formats, names, titles, aligned, byteorder
If dtype is None, these arguments are passed to numpy.format_parser to construct a dtype.
See that function for detailed documentation.

copy
[bool, optional] Whether to copy the input object (True), or to use a reference instead. This
option only applies when the input is an ndarray or recarray. Defaults to True.

Returns
np.recarray

Record array created from the specified object.

494 1. Python API

NumPy Reference, Release 2.2.0

Notes

If obj is None, then call the recarray constructor. If obj is a string, then call the fromstring constructor.
If obj is a list or a tuple, then if the first object is an ndarray, call fromarrays, otherwise call from-
records. If obj is a recarray, then make a copy of the data in the recarray (if copy=True) and use the
new formats, names, and titles. If obj is a file, then call fromfile. Finally, if obj is an ndarray, then return
obj.view(recarray), making a copy of the data if copy=True.

Examples

>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> a
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

>>> np.rec.array(a)
rec.array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]],
dtype=int64)

>>> b = [(1, 1), (2, 4), (3, 9)]
>>> c = np.rec.array(b, formats = ['i2', 'f2'], names = ('x', 'y'))
>>> c
rec.array([(1, 1.), (2, 4.), (3, 9.)],

dtype=[('x', '<i2'), ('y', '<f2')])

>>> c.x
array([1, 2, 3], dtype=int16)

>>> c.y
array([1., 4., 9.], dtype=float16)

>>> r = np.rec.array(['abc','def'], names=['col1','col2'])
>>> print(r.col1)
abc

>>> r.col1
array('abc', dtype='<U3')

>>> r.col2
array('def', dtype='<U3')

rec.find_duplicate(list)
Find duplication in a list, return a list of duplicated elements

class numpy.rec.format_parser(formats, names, titles, aligned=False, byteorder=None)
Class to convert formats, names, titles description to a dtype.
After constructing the format_parser object, the dtype attribute is the converted data-type: dtype =
format_parser(formats, names, titles).dtype

Parameters

1.1. NumPy’s module structure 495

NumPy Reference, Release 2.2.0

formats
[str or list of str] The format description, either specified as a string with comma-separated
format descriptions in the form 'f8, i4, S5', or a list of format description strings in the
form ['f8', 'i4', 'S5'].

names
[str or list/tuple of str] The field names, either specified as a comma-separated string in the form
'col1, col2, col3', or as a list or tuple of strings in the form ['col1', 'col2',
'col3']. An empty list can be used, in that case default field names (‘f0’, ‘f1’, …) are used.

titles
[sequence] Sequence of title strings. An empty list can be used to leave titles out.

aligned
[bool, optional] If True, align the fields by padding as the C-compiler would. Default is False.

byteorder
[str, optional] If specified, all the fields will be changed to the provided byte-order. Otherwise,
the default byte-order is used. For all available string specifiers, see dtype.newbyteorder.

See also:

numpy.dtype, numpy.typename

Examples

>>> import numpy as np
>>> np.rec.format_parser(['<f8', '<i4'], ['col1', 'col2'],
... ['T1', 'T2']).dtype
dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4')])

names and/or titles can be empty lists. If titles is an empty list, titles will simply not appear. If names is empty,
default field names will be used.

>>> np.rec.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... []).dtype
dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '<S5')])
>>> np.rec.format_parser(['<f8', '<i4', '<a5'], [], []).dtype
dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', 'S5')])

Attributes
dtype

[dtype] The converted data-type.

rec.fromarrays(arrayList, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False,
byteorder=None)

Create a record array from a (flat) list of arrays
Parameters

arrayList
[list or tuple] List of array-like objects (such as lists, tuples, and ndarrays).

dtype
[data-type, optional] valid dtype for all arrays

496 1. Python API

NumPy Reference, Release 2.2.0

shape
[int or tuple of ints, optional] Shape of the resulting array. If not provided, inferred from
arrayList[0].

formats, names, titles, aligned, byteorder
If dtype is None, these arguments are passed to numpy.rec.format_parser to con-
struct a dtype. See that function for detailed documentation.

Returns
np.recarray

Record array consisting of given arrayList columns.

Examples

>>> x1=np.array([1,2,3,4])
>>> x2=np.array(['a','dd','xyz','12'])
>>> x3=np.array([1.1,2,3,4])
>>> r = np.rec.fromarrays([x1,x2,x3],names='a,b,c')
>>> print(r[1])
(2, 'dd', 2.0) # may vary
>>> x1[1]=34
>>> r.a
array([1, 2, 3, 4])

>>> x1 = np.array([1, 2, 3, 4])
>>> x2 = np.array(['a', 'dd', 'xyz', '12'])
>>> x3 = np.array([1.1, 2, 3,4])
>>> r = np.rec.fromarrays(
... [x1, x2, x3],
... dtype=np.dtype([('a', np.int32), ('b', 'S3'), ('c', np.float32)]))
>>> r
rec.array([(1, b'a', 1.1), (2, b'dd', 2.), (3, b'xyz', 3.),

(4, b'12', 4.)],
dtype=[('a', '<i4'), ('b', 'S3'), ('c', '<f4')])

rec.fromfile(fd, dtype=None, shape=None, offset=0, formats=None, names=None, titles=None, aligned=False,
byteorder=None)

Create an array from binary file data
Parameters

fd
[str or file type] If file is a string or a path-like object then that file is opened, else it is assumed
to be a file object. The file object must support random access (i.e. it must have tell and seek
methods).

dtype
[data-type, optional] valid dtype for all arrays

shape
[int or tuple of ints, optional] shape of each array.

offset
[int, optional] Position in the file to start reading from.

formats, names, titles, aligned, byteorder
If dtype is None, these arguments are passed to numpy.format_parser to construct a dtype.
See that function for detailed documentation

1.1. NumPy’s module structure 497

NumPy Reference, Release 2.2.0

Returns
np.recarray

record array consisting of data enclosed in file.

Examples

>>> from tempfile import TemporaryFile
>>> a = np.empty(10,dtype='f8,i4,a5')
>>> a[5] = (0.5,10,'abcde')
>>>
>>> fd=TemporaryFile()
>>> a = a.view(a.dtype.newbyteorder('<'))
>>> a.tofile(fd)
>>>
>>> _ = fd.seek(0)
>>> r=np.rec.fromfile(fd, formats='f8,i4,a5', shape=10,
... byteorder='<')
>>> print(r[5])
(0.5, 10, b'abcde')
>>> r.shape
(10,)

rec.fromrecords(recList, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False,
byteorder=None)

Create a recarray from a list of records in text form.
Parameters

recList
[sequence] data in the same field may be heterogeneous - they will be promoted to the highest
data type.

dtype
[data-type, optional] valid dtype for all arrays

shape
[int or tuple of ints, optional] shape of each array.

formats, names, titles, aligned, byteorder
If dtype is None, these arguments are passed to numpy.format_parser to construct a dtype.
See that function for detailed documentation.
If both formats and dtype are None, then this will auto-detect formats. Use list of tuples
rather than list of lists for faster processing.

Returns
np.recarray

record array consisting of given recList rows.

498 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> r=np.rec.fromrecords([(456,'dbe',1.2),(2,'de',1.3)],
... names='col1,col2,col3')
>>> print(r[0])
(456, 'dbe', 1.2)
>>> r.col1
array([456, 2])
>>> r.col2
array(['dbe', 'de'], dtype='<U3')
>>> import pickle
>>> pickle.loads(pickle.dumps(r))
rec.array([(456, 'dbe', 1.2), (2, 'de', 1.3)],

dtype=[('col1', '<i8'), ('col2', '<U3'), ('col3', '<f8')])

rec.fromstring(datastring, dtype=None, shape=None, offset=0, formats=None, names=None, titles=None,
aligned=False, byteorder=None)

Create a record array from binary data
Note that despite the name of this function it does not accept str instances.

Parameters
datastring

[bytes-like] Buffer of binary data
dtype

[data-type, optional] Valid dtype for all arrays
shape

[int or tuple of ints, optional] Shape of each array.
offset

[int, optional] Position in the buffer to start reading from.
formats, names, titles, aligned, byteorder

If dtype is None, these arguments are passed to numpy.format_parser to construct a dtype.
See that function for detailed documentation.

Returns
np.recarray

Record array view into the data in datastring. This will be readonly if datastring is readonly.
See also:

numpy.frombuffer

Examples

>>> a = b'\x01\x02\x03abc'
>>> np.rec.fromstring(a, dtype='u1,u1,u1,S3')
rec.array([(1, 2, 3, b'abc')],

dtype=[('f0', 'u1'), ('f1', 'u1'), ('f2', 'u1'), ('f3', 'S3')])

>>> grades_dtype = [('Name', (np.str_, 10)), ('Marks', np.float64),
... ('GradeLevel', np.int32)]
>>> grades_array = np.array([('Sam', 33.3, 3), ('Mike', 44.4, 5),

(continues on next page)

1.1. NumPy’s module structure 499

NumPy Reference, Release 2.2.0

(continued from previous page)
... ('Aadi', 66.6, 6)], dtype=grades_dtype)
>>> np.rec.fromstring(grades_array.tobytes(), dtype=grades_dtype)
rec.array([('Sam', 33.3, 3), ('Mike', 44.4, 5), ('Aadi', 66.6, 6)],

dtype=[('Name', '<U10'), ('Marks', '<f8'), ('GradeLevel', '<i4')])

>>> s = '\x01\x02\x03abc'
>>> np.rec.fromstring(s, dtype='u1,u1,u1,S3')
Traceback (most recent call last):

...
TypeError: a bytes-like object is required, not 'str'

Also, the numpy.recarray class and the numpy.record scalar dtype are present in this namespace.

Version information

The numpy.version submodule includes several constants that expose more detailed information about the exact
version of the installed numpy package:
numpy.version.version

Version string for the installed package - matches numpy.__version__.
numpy.version.full_version

Version string - the same as numpy.version.version.
numpy.version.short_version

Version string without any local build identifiers.

Examples

>>> np.__version__
'2.1.0.dev0+git20240319.2ea7ce0' # may vary
>>> np.version.short_version
'2.1.0.dev0' # may vary

numpy.version.git_revision

String containing the git hash of the commit from which numpy was built.
numpy.version.release

True if this version is a numpy release, False if a dev version.

Legacy fixed-width string functionality

Legacy
This submodule is considered legacy and will no longer receive updates. This could also mean it will be removed in future
NumPy versions. The string operations in this module, as well as the numpy.char.chararray class, are planned to
be deprecated in the future. Use numpy.strings instead.

The numpy.char module provides a set of vectorized string operations for arrays of type numpy.str_ or numpy.
bytes_. For example

500 1. Python API

NumPy Reference, Release 2.2.0

>>> import numpy as np
>>> np.char.capitalize(["python", "numpy"])
array(['Python', 'Numpy'], dtype='<U6')
>>> np.char.add(["num", "doc"], ["py", "umentation"])
array(['numpy', 'documentation'], dtype='<U13')

The methods in this module are based on the methods in string

1.1. NumPy’s module structure 501

https://docs.python.org/3/library/string.html#module-string

NumPy Reference, Release 2.2.0

String operations

add(x1, x2, /[, out, where, casting, order, ...]) Add arguments element-wise.
multiply(a, i) Return (a * i), that is string multiple concatenation,

element-wise.
mod(a, values) Return (a % i), that is pre-Python 2.6 string formatting

(interpolation), element-wise for a pair of array_likes of
str or unicode.

capitalize(a) Return a copy of a with only the first character of each
element capitalized.

center(a, width[, fillchar]) Return a copy of a with its elements centered in a string
of length width.

decode(a[, encoding, errors]) Calls bytes.decode element-wise.
encode(a[, encoding, errors]) Calls str.encode element-wise.
expandtabs(a[, tabsize]) Return a copy of each string element where all tab char-

acters are replaced by one or more spaces.
join(sep, seq) Return a string which is the concatenation of the strings

in the sequence seq.
ljust(a, width[, fillchar]) Return an array with the elements of a left-justified in a

string of length width.
lower(a) Return an array with the elements converted to lowercase.
lstrip(a[, chars]) For each element in a, return a copy with the leading char-

acters removed.
partition(a, sep) Partition each element in a around sep.
replace(a, old, new[, count]) For each element in a, return a copy of the string with

occurrences of substring old replaced by new.
rjust(a, width[, fillchar]) Return an array with the elements of a right-justified in a

string of length width.
rpartition(a, sep) Partition (split) each element around the right-most sepa-

rator.
rsplit(a[, sep, maxsplit]) For each element in a, return a list of the words in the

string, using sep as the delimiter string.
rstrip(a[, chars]) For each element in a, return a copy with the trailing char-

acters removed.
split(a[, sep, maxsplit]) For each element in a, return a list of the words in the

string, using sep as the delimiter string.
splitlines(a[, keepends]) For each element in a, return a list of the lines in the ele-

ment, breaking at line boundaries.
strip(a[, chars]) For each element in a, return a copy with the leading and

trailing characters removed.
swapcase(a) Return element-wise a copy of the string with uppercase

characters converted to lowercase and vice versa.
title(a) Return element-wise title cased version of string or uni-

code.
translate(a, table[, deletechars]) For each element in a, return a copy of the string where all

characters occurring in the optional argument deletechars
are removed, and the remaining characters have been
mapped through the given translation table.

upper(a) Return an array with the elements converted to uppercase.
zfill(a, width) Return the numeric string left-filled with zeros.

char.add(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'add'>

502 1. Python API

https://docs.python.org/3/library/stdtypes.html#bytes.decode
https://docs.python.org/3/library/stdtypes.html#str.encode

NumPy Reference, Release 2.2.0

Add arguments element-wise.
Parameters

x1, x2
[array_like] The arrays to be added. If x1.shape != x2.shape, they must be broad-
castable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
add

[ndarray or scalar] The sum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are
scalars.

Notes

Equivalent to x1 + x2 in terms of array broadcasting.

Examples

>>> import numpy as np
>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[0., 2., 4.],

[3., 5., 7.],
[6., 8., 10.]])

The + operator can be used as a shorthand for np.add on ndarrays.

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 + x2
array([[0., 2., 4.],

[3., 5., 7.],
[6., 8., 10.]])

char.multiply(a, i)
Return (a * i), that is string multiple concatenation, element-wise.
Values in i of less than 0 are treated as 0 (which yields an empty string).

1.1. NumPy’s module structure 503

NumPy Reference, Release 2.2.0

Parameters
a

[array_like, with np.bytes_ or np.str_ dtype]
i

[array_like, with any integer dtype]
Returns

out
[ndarray] Output array of str or unicode, depending on input types

Notes

This is a thin wrapper around np.strings.multiply that raises ValueError when i is not an integer. It only exists for
backwards-compatibility.

Examples

>>> import numpy as np
>>> a = np.array(["a", "b", "c"])
>>> np.strings.multiply(a, 3)
array(['aaa', 'bbb', 'ccc'], dtype='<U3')
>>> i = np.array([1, 2, 3])
>>> np.strings.multiply(a, i)
array(['a', 'bb', 'ccc'], dtype='<U3')
>>> np.strings.multiply(np.array(['a']), i)
array(['a', 'aa', 'aaa'], dtype='<U3')
>>> a = np.array(['a', 'b', 'c', 'd', 'e', 'f']).reshape((2, 3))
>>> np.strings.multiply(a, 3)
array([['aaa', 'bbb', 'ccc'],

['ddd', 'eee', 'fff']], dtype='<U3')
>>> np.strings.multiply(a, i)
array([['a', 'bb', 'ccc'],

['d', 'ee', 'fff']], dtype='<U3')

char.mod(a, values)
Return (a % i), that is pre-Python 2.6 string formatting (interpolation), element-wise for a pair of array_likes of str
or unicode.

Parameters
a

[array_like, with np.bytes_ or np.str_ dtype]
values

[array_like of values] These values will be element-wise interpolated into the string.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

504 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array(["NumPy is a %s library"])
>>> np.strings.mod(a, values=["Python"])
array(['NumPy is a Python library'], dtype='<U25')

>>> a = np.array([b'%d bytes', b'%d bits'])
>>> values = np.array([8, 64])
>>> np.strings.mod(a, values)
array([b'8 bytes', b'64 bits'], dtype='|S7')

char.capitalize(a)
Return a copy of a with only the first character of each element capitalized.
Calls str.capitalize element-wise.
For byte strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array of strings to capital-
ize.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.capitalize

Examples

>>> import numpy as np
>>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
array(['a1b2', '1b2a', 'b2a1', '2a1b'],

dtype='|S4')
>>> np.strings.capitalize(c)
array(['A1b2', '1b2a', 'B2a1', '2a1b'],

dtype='|S4')

char.center(a, width, fillchar=' ')
Return a copy of a with its elements centered in a string of length width.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
width

[array_like, with any integer dtype] The length of the resulting strings, unless width <
str_len(a).

1.1. NumPy’s module structure 505

https://docs.python.org/3/library/stdtypes.html#str.capitalize
https://docs.python.org/3/library/stdtypes.html#str.capitalize

NumPy Reference, Release 2.2.0

fillchar
[array-like, with StringDType, bytes_, or str_ dtype] Optional padding character to
use (default is space).

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.center

Notes

While it is possible for a and fillchar to have different dtypes, passing a non-ASCII character in fillchar
when a is of dtype “S” is not allowed, and a ValueError is raised.

Examples

>>> import numpy as np
>>> c = np.array(['a1b2','1b2a','b2a1','2a1b']); c
array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='<U4')
>>> np.strings.center(c, width=9)
array([' a1b2 ', ' 1b2a ', ' b2a1 ', ' 2a1b '], dtype='<U9')
>>> np.strings.center(c, width=9, fillchar='*')
array(['***a1b2**', '***1b2a**', '***b2a1**', '***2a1b**'], dtype='<U9')
>>> np.strings.center(c, width=1)
array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='<U4')

char.decode(a, encoding=None, errors=None)
Calls bytes.decode element-wise.
The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters
a

[array_like, with bytes_ dtype]
encoding

[str, optional] The name of an encoding
errors

[str, optional] Specifies how to handle encoding errors
Returns

out
[ndarray]

See also:

bytes.decode

506 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.center
https://docs.python.org/3/library/stdtypes.html#bytes.decode
https://docs.python.org/3/library/codecs.html#module-codecs
https://docs.python.org/3/library/stdtypes.html#bytes.decode

NumPy Reference, Release 2.2.0

Notes

The type of the result will depend on the encoding specified.

Examples

>>> import numpy as np
>>> c = np.array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
... b'\x81\x82\xc2\xc1\xc2\x82\x81'])
>>> c
array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',

b'\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7')
>>> np.strings.decode(c, encoding='cp037')
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')

char.encode(a, encoding=None, errors=None)
Calls str.encode element-wise.
The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters
a

[array_like, with StringDType or str_ dtype]
encoding

[str, optional] The name of an encoding
errors

[str, optional] Specifies how to handle encoding errors
Returns

out
[ndarray]

See also:

str.encode

Notes

The type of the result will depend on the encoding specified.

Examples

>>> import numpy as np
>>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> np.strings.encode(a, encoding='cp037')
array([b'�Á�Á�Á', b'@@�Á@@',

b'��ÂÁÂ��'], dtype='|S7')

1.1. NumPy’s module structure 507

https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/codecs.html#module-codecs
https://docs.python.org/3/library/stdtypes.html#str.encode

NumPy Reference, Release 2.2.0

char.expandtabs(a, tabsize=8)
Return a copy of each string element where all tab characters are replaced by one or more spaces.
Calls str.expandtabs element-wise.
Return a copy of each string element where all tab characters are replaced by one or more spaces, depending on
the current column and the given tabsize. The column number is reset to zero after each newline occurring in the
string. This doesn’t understand other non-printing characters or escape sequences.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array
tabsize

[int, optional] Replace tabs with tabsize number of spaces. If not given defaults to 8 spaces.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input type

See also:

str.expandtabs

Examples

>>> import numpy as np
>>> a = np.array([' Hello world'])
>>> np.strings.expandtabs(a, tabsize=4)
array([' Hello world'], dtype='<U21')

char.join(sep, seq)
Return a string which is the concatenation of the strings in the sequence seq.
Calls str.join element-wise.

Parameters
sep

[array-like, with StringDType, bytes_, or str_ dtype]
seq

[array-like, with StringDType, bytes_, or str_ dtype]
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.join

508 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.expandtabs
https://docs.python.org/3/library/stdtypes.html#str.expandtabs
https://docs.python.org/3/library/stdtypes.html#str.join
https://docs.python.org/3/library/stdtypes.html#str.join

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.strings.join('-', 'osd')
array('o-s-d', dtype='<U5')

>>> np.strings.join(['-', '.'], ['ghc', 'osd'])
array(['g-h-c', 'o.s.d'], dtype='<U5')

char.ljust(a, width, fillchar=' ')
Return an array with the elements of a left-justified in a string of length width.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
width

[array_like, with any integer dtype] The length of the resulting strings, unless width <
str_len(a).

fillchar
[array-like, with StringDType, bytes_, or str_ dtype] Optional character to use for
padding (default is space).

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.ljust

Notes

While it is possible for a and fillchar to have different dtypes, passing a non-ASCII character in fillchar
when a is of dtype “S” is not allowed, and a ValueError is raised.

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> np.strings.ljust(c, width=3)
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.strings.ljust(c, width=9)
array(['aAaAaA ', ' aA ', 'abBABba '], dtype='<U9')

char.lower(a)
Return an array with the elements converted to lowercase.
Call str.lower element-wise.
For 8-bit strings, this method is locale-dependent.

Parameters

1.1. NumPy’s module structure 509

https://docs.python.org/3/library/stdtypes.html#str.ljust
https://docs.python.org/3/library/stdtypes.html#str.lower

NumPy Reference, Release 2.2.0

a
[array-like, with StringDType, bytes_, or str_ dtype] Input array.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.lower

Examples

>>> import numpy as np
>>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
>>> np.strings.lower(c)
array(['a1b c', '1bca', 'bca1'], dtype='<U5')

char.lstrip(a, chars=None)
For each element in a, return a copy with the leading characters removed.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
chars

[scalar with the same dtype as a, optional] The chars argument is a string specifying the set
of characters to be removed. If None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.lstrip

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
The 'a' variable is unstripped from c[1] because of leading whitespace.
>>> np.strings.lstrip(c, 'a')
array(['AaAaA', ' aA ', 'bBABba'], dtype='<U7')
>>> np.strings.lstrip(c, 'A') # leaves c unchanged
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> (np.strings.lstrip(c, ' ') == np.strings.lstrip(c, '')).all()
np.False_

(continues on next page)

510 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.lower
https://docs.python.org/3/library/stdtypes.html#str.lstrip

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> (np.strings.lstrip(c, ' ') == np.strings.lstrip(c)).all()
np.True_

char.partition(a, sep)
Partition each element in a around sep.
Calls str.partition element-wise.
For each element in a, split the element as the first occurrence of sep, and return 3 strings containing the part before
the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 strings
containing the string itself, followed by two empty strings.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array
sep

[{str, unicode}] Separator to split each string element in a.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types. The output array will have an extra dimension with 3 elements per input element.

See also:

str.partition

Examples

>>> import numpy as np
>>> x = np.array(["Numpy is nice!"])
>>> np.char.partition(x, " ")
array([['Numpy', ' ', 'is nice!']], dtype='<U8')

char.replace(a, old, new, count=-1)
For each element in a, return a copy of the string with occurrences of substring old replaced by new.

Parameters
a

[array_like, with bytes_ or str_ dtype]
old, new

[array_like, with bytes_ or str_ dtype]
count

[array_like, with int_ dtype] If the optional argument count is given, only the first count
occurrences are replaced.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

1.1. NumPy’s module structure 511

https://docs.python.org/3/library/stdtypes.html#str.partition
https://docs.python.org/3/library/stdtypes.html#str.partition

NumPy Reference, Release 2.2.0

str.replace

Examples

>>> import numpy as np
>>> a = np.array(["That is a mango", "Monkeys eat mangos"])
>>> np.strings.replace(a, 'mango', 'banana')
array(['That is a banana', 'Monkeys eat bananas'], dtype='<U19')

>>> a = np.array(["The dish is fresh", "This is it"])
>>> np.strings.replace(a, 'is', 'was')
array(['The dwash was fresh', 'Thwas was it'], dtype='<U19')

char.rjust(a, width, fillchar=' ')
Return an array with the elements of a right-justified in a string of length width.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
width

[array_like, with any integer dtype] The length of the resulting strings, unless width <
str_len(a).

fillchar
[array-like, with StringDType, bytes_, or str_ dtype] Optional padding character to
use (default is space).

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.rjust

Notes

While it is possible for a and fillchar to have different dtypes, passing a non-ASCII character in fillchar
when a is of dtype “S” is not allowed, and a ValueError is raised.

Examples

>>> import numpy as np
>>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> np.strings.rjust(a, width=3)
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.strings.rjust(a, width=9)
array([' aAaAaA', ' aA ', ' abBABba'], dtype='<U9')

512 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.replace
https://docs.python.org/3/library/stdtypes.html#str.rjust

NumPy Reference, Release 2.2.0

char.rpartition(a, sep)
Partition (split) each element around the right-most separator.
Calls str.rpartition element-wise.
For each element in a, split the element as the last occurrence of sep, and return 3 strings containing the part before
the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 strings
containing the string itself, followed by two empty strings.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array
sep

[str or unicode] Right-most separator to split each element in array.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types. The output array will have an extra dimension with 3 elements per input element.

See also:

str.rpartition

Examples

>>> import numpy as np
>>> a = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> np.char.rpartition(a, 'A')
array([['aAaAa', 'A', ''],

[' a', 'A', ' '],
['abB', 'A', 'Bba']], dtype='<U5')

char.rsplit(a, sep=None, maxsplit=None)
For each element in a, return a list of the words in the string, using sep as the delimiter string.
Calls str.rsplit element-wise.
Except for splitting from the right, rsplit behaves like split.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
sep

[str or unicode, optional] If sep is not specified or None, any whitespace string is a separator.
maxsplit

[int, optional] If maxsplit is given, at most maxsplit splits are done, the rightmost ones.
Returns

out
[ndarray] Array of list objects

See also:

str.rsplit, split

1.1. NumPy’s module structure 513

https://docs.python.org/3/library/stdtypes.html#str.rpartition
https://docs.python.org/3/library/stdtypes.html#str.rpartition
https://docs.python.org/3/library/stdtypes.html#str.rsplit
https://docs.python.org/3/library/stdtypes.html#str.rsplit

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array(['aAaAaA', 'abBABba'])
>>> np.strings.rsplit(a, 'A')
array([list(['a', 'a', 'a', '']),

list(['abB', 'Bba'])], dtype=object)

char.rstrip(a, chars=None)
For each element in a, return a copy with the trailing characters removed.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
chars

[scalar with the same dtype as a, optional] The chars argument is a string specifying the set
of characters to be removed. If None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.rstrip

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', 'abBABba'])
>>> c
array(['aAaAaA', 'abBABba'], dtype='<U7')
>>> np.strings.rstrip(c, 'a')
array(['aAaAaA', 'abBABb'], dtype='<U7')
>>> np.strings.rstrip(c, 'A')
array(['aAaAa', 'abBABba'], dtype='<U7')

char.split(a, sep=None, maxsplit=None)
For each element in a, return a list of the words in the string, using sep as the delimiter string.
Calls str.split element-wise.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
sep

[str or unicode, optional] If sep is not specified or None, any whitespace string is a separator.
maxsplit

[int, optional] If maxsplit is given, at most maxsplit splits are done.
Returns

514 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.rstrip
https://docs.python.org/3/library/stdtypes.html#str.split

NumPy Reference, Release 2.2.0

out
[ndarray] Array of list objects

See also:

str.split, rsplit

Examples

>>> import numpy as np
>>> x = np.array("Numpy is nice!")
>>> np.strings.split(x, " ")
array(list(['Numpy', 'is', 'nice!']), dtype=object)

>>> np.strings.split(x, " ", 1)
array(list(['Numpy', 'is nice!']), dtype=object)

char.splitlines(a, keepends=None)
For each element in a, return a list of the lines in the element, breaking at line boundaries.
Calls str.splitlines element-wise.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
keepends

[bool, optional] Line breaks are not included in the resulting list unless keepends is given and
true.

Returns
out

[ndarray] Array of list objects
See also:

str.splitlines

Examples

>>> np.char.splitlines("first line\nsecond line")
array(list(['first line', 'second line']), dtype=object)
>>> a = np.array(["first\nsecond", "third\nfourth"])
>>> np.char.splitlines(a)
array([list(['first', 'second']), list(['third', 'fourth'])], dtype=object)

char.strip(a, chars=None)
For each element in a, return a copy with the leading and trailing characters removed.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]

1.1. NumPy’s module structure 515

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/stdtypes.html#str.splitlines
https://docs.python.org/3/library/stdtypes.html#str.splitlines

NumPy Reference, Release 2.2.0

chars
[scalar with the same dtype as a, optional] The chars argument is a string specifying the set
of characters to be removed. If None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.strip

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.strings.strip(c)
array(['aAaAaA', 'aA', 'abBABba'], dtype='<U7')
'a' unstripped from c[1] because of leading whitespace.
>>> np.strings.strip(c, 'a')
array(['AaAaA', ' aA ', 'bBABb'], dtype='<U7')
'A' unstripped from c[1] because of trailing whitespace.
>>> np.strings.strip(c, 'A')
array(['aAaAa', ' aA ', 'abBABba'], dtype='<U7')

char.swapcase(a)
Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa.
Calls str.swapcase element-wise.
For 8-bit strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.swapcase

516 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.strip
https://docs.python.org/3/library/stdtypes.html#str.swapcase
https://docs.python.org/3/library/stdtypes.html#str.swapcase

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],

dtype='|S5')
>>> np.strings.swapcase(c)
array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],

dtype='|S5')

char.title(a)
Return element-wise title cased version of string or unicode.
Title case words start with uppercase characters, all remaining cased characters are lowercase.
Calls str.title element-wise.
For 8-bit strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.title

Examples

>>> import numpy as np
>>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
array(['a1b c', '1b ca', 'b ca1', 'ca1b'],

dtype='|S5')
>>> np.strings.title(c)
array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],

dtype='|S5')

char.translate(a, table, deletechars=None)
For each element in a, return a copy of the string where all characters occurring in the optional argument deletechars
are removed, and the remaining characters have been mapped through the given translation table.
Calls str.translate element-wise.

Parameters
a

[array-like, with np.bytes_ or np.str_ dtype]
table

[str of length 256]
deletechars

[str]

1.1. NumPy’s module structure 517

https://docs.python.org/3/library/stdtypes.html#str.title
https://docs.python.org/3/library/stdtypes.html#str.title
https://docs.python.org/3/library/stdtypes.html#str.translate

NumPy Reference, Release 2.2.0

Returns
out

[ndarray] Output array of str or unicode, depending on input type
See also:

str.translate

Examples

>>> import numpy as np
>>> a = np.array(['a1b c', '1bca', 'bca1'])
>>> table = a[0].maketrans('abc', '123')
>>> deletechars = ' '
>>> np.char.translate(a, table, deletechars)
array(['112 3', '1231', '2311'], dtype='<U5')

char.upper(a)
Return an array with the elements converted to uppercase.
Calls str.upper element-wise.
For 8-bit strings, this method is locale-dependent.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype] Input array.
Returns

out
[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input
types

See also:

str.upper

Examples

>>> import numpy as np
>>> c = np.array(['a1b c', '1bca', 'bca1']); c
array(['a1b c', '1bca', 'bca1'], dtype='<U5')
>>> np.strings.upper(c)
array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')

char.zfill(a, width)
Return the numeric string left-filled with zeros. A leading sign prefix (+/-) is handled by inserting the padding
after the sign character rather than before.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]

518 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.translate
https://docs.python.org/3/library/stdtypes.html#str.upper
https://docs.python.org/3/library/stdtypes.html#str.upper

NumPy Reference, Release 2.2.0

width
[array_like, with any integer dtype] Width of string to left-fill elements in a.

Returns
out

[ndarray] Output array of StringDType, bytes_ or str_ dtype, depending on input type
See also:

str.zfill

Examples

>>> import numpy as np
>>> np.strings.zfill(['1', '-1', '+1'], 3)
array(['001', '-01', '+01'], dtype='<U3')

Comparison
Unlike the standard numpy comparison operators, the ones in the char module strip trailing whitespace characters before
performing the comparison.

equal(x1, x2) Return (x1 == x2) element-wise.
not_equal(x1, x2) Return (x1 != x2) element-wise.
greater_equal(x1, x2) Return (x1 >= x2) element-wise.
less_equal(x1, x2) Return (x1 <= x2) element-wise.
greater(x1, x2) Return (x1 > x2) element-wise.
less(x1, x2) Return (x1 < x2) element-wise.
compare_chararrays(a1, a2, cmp, rstrip) Performs element-wise comparison of two string arrays

using the comparison operator specified by cmp.

char.equal(x1, x2)
Return (x1 == x2) element-wise.
Unlike numpy.equal, this comparison is performed by first stripping whitespace characters from the end of the
string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2

[array_like of str or unicode] Input arrays of the same shape.
Returns

out
[ndarray] Output array of bools.

See also:

not_equal, greater_equal, less_equal, greater, less

1.1. NumPy’s module structure 519

https://docs.python.org/3/library/stdtypes.html#str.zfill

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> y = "aa "
>>> x = "aa"
>>> np.char.equal(x, y)
array(True)

char.not_equal(x1, x2)
Return (x1 != x2) element-wise.
Unlike numpy.not_equal, this comparison is performed by first stripping whitespace characters from the end
of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2

[array_like of str or unicode] Input arrays of the same shape.
Returns

out
[ndarray] Output array of bools.

See also:

equal, greater_equal, less_equal, greater, less

Examples

>>> import numpy as np
>>> x1 = np.array(['a', 'b', 'c'])
>>> np.char.not_equal(x1, 'b')
array([True, False, True])

char.greater_equal(x1, x2)
Return (x1 >= x2) element-wise.
Unlike numpy.greater_equal, this comparison is performed by first stripping whitespace characters from
the end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2

[array_like of str or unicode] Input arrays of the same shape.
Returns

out
[ndarray] Output array of bools.

See also:

equal, not_equal, less_equal, greater, less

520 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x1 = np.array(['a', 'b', 'c'])
>>> np.char.greater_equal(x1, 'b')
array([False, True, True])

char.less_equal(x1, x2)
Return (x1 <= x2) element-wise.
Unlike numpy.less_equal, this comparison is performed by first stripping whitespace characters from the
end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2

[array_like of str or unicode] Input arrays of the same shape.
Returns

out
[ndarray] Output array of bools.

See also:

equal, not_equal, greater_equal, greater, less

Examples

>>> import numpy as np
>>> x1 = np.array(['a', 'b', 'c'])
>>> np.char.less_equal(x1, 'b')
array([True, True, False])

char.greater(x1, x2)
Return (x1 > x2) element-wise.
Unlike numpy.greater, this comparison is performed by first stripping whitespace characters from the end of
the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2

[array_like of str or unicode] Input arrays of the same shape.
Returns

out
[ndarray] Output array of bools.

See also:

equal, not_equal, greater_equal, less_equal, less

1.1. NumPy’s module structure 521

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x1 = np.array(['a', 'b', 'c'])
>>> np.char.greater(x1, 'b')
array([False, False, True])

char.less(x1, x2)
Return (x1 < x2) element-wise.
Unlike numpy.greater, this comparison is performed by first stripping whitespace characters from the end of
the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2

[array_like of str or unicode] Input arrays of the same shape.
Returns

out
[ndarray] Output array of bools.

See also:

equal, not_equal, greater_equal, less_equal, greater

Examples

>>> import numpy as np
>>> x1 = np.array(['a', 'b', 'c'])
>>> np.char.less(x1, 'b')
array([True, False, False])

char.compare_chararrays(a1, a2, cmp, rstrip)
Performs element-wise comparison of two string arrays using the comparison operator specified by cmp.

Parameters
a1, a2

[array_like] Arrays to be compared.
cmp

[{“<”, “<=”, “==”, “>=”, “>”, “!=”}] Type of comparison.
rstrip

[Boolean] If True, the spaces at the end of Strings are removed before the comparison.
Returns

out
[ndarray] The output array of type Boolean with the same shape as a and b.

Raises
ValueError

If cmp is not valid.
TypeError

If at least one of a or b is a non-string array

522 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array(["a", "b", "cde"])
>>> b = np.array(["a", "a", "dec"])
>>> np.char.compare_chararrays(a, b, ">", True)
array([False, True, False])

String information

count(a, sub[, start, end]) Returns an array with the number of non-overlapping oc-
currences of substring sub in the range [start, end).

endswith(a, suffix[, start, end]) Returns a boolean array which is True where the string
element in a ends with suffix, otherwise False.

find(a, sub[, start, end]) For each element, return the lowest index in the string
where substring sub is found, such that sub is contained
in the range [start, end).

index(a, sub[, start, end]) Like find, but raises ValueError when the substring
is not found.

isalpha(x, /[, out, where, casting, order, ...]) Returns true for each element if all characters in the data
interpreted as a string are alphabetic and there is at least
one character, false otherwise.

isalnum(x, /[, out, where, casting, order, ...]) Returns true for each element if all characters in the string
are alphanumeric and there is at least one character, false
otherwise.

isdecimal(x, /[, out, where, casting, ...]) For each element, return True if there are only decimal
characters in the element.

isdigit(x, /[, out, where, casting, order, ...]) Returns true for each element if all characters in the string
are digits and there is at least one character, false other-
wise.

islower(x, /[, out, where, casting, order, ...]) Returns true for each element if all cased characters in
the string are lowercase and there is at least one cased
character, false otherwise.

isnumeric(x, /[, out, where, casting, ...]) For each element, return True if there are only numeric
characters in the element.

isspace(x, /[, out, where, casting, order, ...]) Returns true for each element if there are only whitespace
characters in the string and there is at least one character,
false otherwise.

istitle(x, /[, out, where, casting, order, ...]) Returns true for each element if the element is a titlecased
string and there is at least one character, false otherwise.

isupper(x, /[, out, where, casting, order, ...]) Return true for each element if all cased characters in the
string are uppercase and there is at least one character,
false otherwise.

rfind(a, sub[, start, end]) For each element, return the highest index in the string
where substring sub is found, such that sub is contained
in the range [start, end).

rindex(a, sub[, start, end]) Like rfind, but raises ValueError when the sub-
string sub is not found.

startswith(a, prefix[, start, end]) Returns a boolean array which is True where the string
element in a starts with prefix, otherwise False.

str_len(x, /[, out, where, casting, order, ...]) Returns the length of each element.

char.count(a, sub, start=0, end=None)

1.1. NumPy’s module structure 523

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end).
Parameters

a
[array-like, with StringDType, bytes_, or str_ dtype]

sub
[array-like, with StringDType, bytes_, or str_ dtype] The substring to search for.

start, end
[array_like, with any integer dtype] The range to look in, interpreted as in slice notation.

Returns
y

[ndarray] Output array of ints
See also:

str.count

Examples

>>> import numpy as np
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.strings.count(c, 'A')
array([3, 1, 1])
>>> np.strings.count(c, 'aA')
array([3, 1, 0])
>>> np.strings.count(c, 'A', start=1, end=4)
array([2, 1, 1])
>>> np.strings.count(c, 'A', start=1, end=3)
array([1, 0, 0])

char.endswith(a, suffix, start=0, end=None)
Returns a boolean array which is True where the string element in a ends with suffix, otherwise False.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
suffix

[array-like, with StringDType, bytes_, or str_ dtype]
start, end

[array_like, with any integer dtype] With start, test beginning at that position. With end,
stop comparing at that position.

Returns
out

[ndarray] Output array of bools
See also:

str.endswith

524 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.count
https://docs.python.org/3/library/stdtypes.html#str.endswith

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> s = np.array(['foo', 'bar'])
>>> s
array(['foo', 'bar'], dtype='<U3')
>>> np.strings.endswith(s, 'ar')
array([False, True])
>>> np.strings.endswith(s, 'a', start=1, end=2)
array([False, True])

char.find(a, sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found, such that sub is contained
in the range [start, end).

Parameters
a

[array_like, with StringDType, bytes_ or str_ dtype]
sub

[array_like, with np.bytes_ or np.str_ dtype] The substring to search for.
start, end

[array_like, with any integer dtype] The range to look in, interpreted as in slice notation.
Returns

y
[ndarray] Output array of ints

See also:

str.find

Examples

>>> import numpy as np
>>> a = np.array(["NumPy is a Python library"])
>>> np.strings.find(a, "Python")
array([11])

char.index(a, sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
sub

[array-like, with StringDType, bytes_, or str_ dtype]
start, end

[array_like, with any integer dtype, optional]
Returns

out
[ndarray] Output array of ints.

1.1. NumPy’s module structure 525

https://docs.python.org/3/library/stdtypes.html#str.find
https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

See also:

find, str.index

Examples

>>> import numpy as np
>>> a = np.array(["Computer Science"])
>>> np.strings.index(a, "Science", start=0, end=None)
array([9])

char.isalpha(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isalpha'>

Returns true for each element if all characters in the data interpreted as a string are alphabetic and there is at least
one character, false otherwise.
For byte strings (i.e. bytes), alphabetic characters are those byte values in the sequence
b’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’. For Unicode strings, alphabetic
characters are those characters defined in the Unicode character database as “Letter”.

Parameters
x

[array_like, with StringDType, bytes_, or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isalpha

526 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.index
https://docs.python.org/3/library/stdtypes.html#str.isalpha

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array(['a', 'b', '0'])
>>> np.strings.isalpha(a)
array([True, True, False])

>>> a = np.array([['a', 'b', '0'], ['c', '1', '2']])
>>> np.strings.isalpha(a)
array([[True, True, False], [True, False, False]])

char.isalnum(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isalnum'>

Returns true for each element if all characters in the string are alphanumeric and there is at least one character,
false otherwise.

Parameters
x

[array_like, with StringDType, bytes_ or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray] Output array of bool This is a scalar if x is a scalar.
See also:

str.isalnum

Examples

>>> import numpy as np
>>> a = np.array(['a', '1', 'a1', '(', ''])
>>> np.strings.isalnum(a)
array([True, True, True, False, False])

char.isdecimal(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isdecimal'>

For each element, return True if there are only decimal characters in the element.

1.1. NumPy’s module structure 527

https://docs.python.org/3/library/stdtypes.html#str.isalnum

NumPy Reference, Release 2.2.0

Decimal characters include digit characters, and all characters that can be used to form decimal-radix numbers,
e.g. U+0660, ARABIC-INDIC DIGIT ZERO.

Parameters
x

[array_like, with StringDType or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isdecimal

Examples

>>> import numpy as np
>>> np.strings.isdecimal(['12345', '4.99', '123ABC', ''])
array([True, False, False, False])

char.isdigit(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isdigit'>

Returns true for each element if all characters in the string are digits and there is at least one character, false
otherwise.
For byte strings, digits are the byte values in the sequence b’0123456789’. For Unicode strings, digits include
decimal characters and digits that need special handling, such as the compatibility superscript digits. This also
covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers.

Parameters
x

[array_like, with StringDType, bytes_, or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

528 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.isdecimal

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isdigit

Examples

>>> import numpy as np
>>> a = np.array(['a', 'b', '0'])
>>> np.strings.isdigit(a)
array([False, False, True])
>>> a = np.array([['a', 'b', '0'], ['c', '1', '2']])
>>> np.strings.isdigit(a)
array([[False, False, True], [False, True, True]])

char.islower(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'islower'>

Returns true for each element if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

Parameters
x

[array_like, with StringDType, bytes_ or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

1.1. NumPy’s module structure 529

https://docs.python.org/3/library/stdtypes.html#str.isdigit

NumPy Reference, Release 2.2.0

str.islower

Examples

>>> import numpy as np
>>> np.strings.islower("GHC")
array(False)
>>> np.strings.islower("ghc")
array(True)

char.isnumeric(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isnumeric'>

For each element, return True if there are only numeric characters in the element.
Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e.g.
U+2155, VULGAR FRACTION ONE FIFTH.

Parameters
x

[array_like, with StringDType or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isnumeric

Examples

>>> import numpy as np
>>> np.strings.isnumeric(['123', '123abc', '9.0', '1/4', 'VIII'])
array([True, False, False, False, False])

char.isspace(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isspace'>

Returns true for each element if there are only whitespace characters in the string and there is at least one character,
false otherwise.

530 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.islower
https://docs.python.org/3/library/stdtypes.html#str.isnumeric

NumPy Reference, Release 2.2.0

For byte strings, whitespace characters are the ones in the sequence b’ tnrx0bf’. For Unicode strings, a character is
whitespace, if, in the Unicode character database, its general category is Zs (“Separator, space”), or its bidirectional
class is one of WS, B, or S.

Parameters
x

[array_like, with StringDType, bytes_, or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.isspace

Examples

>>> np.char.isspace(list("a b c"))
array([False, True, False, True, False])
>>> np.char.isspace(b'\x0a \x0b \x0c')
np.True_
>>> np.char.isspace(b'\x0a \x0b \x0c N')
np.False_

char.istitle(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'istitle'>

Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise.
Parameters

x
[array_like, with StringDType, bytes_ or str_ dtype]

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1.1. NumPy’s module structure 531

https://docs.python.org/3/library/stdtypes.html#str.isspace

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

str.istitle

Examples

>>> import numpy as np
>>> np.strings.istitle("Numpy Is Great")
array(True)

>>> np.strings.istitle("Numpy is great")
array(False)

char.isupper(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isupper'>

Return true for each element if all cased characters in the string are uppercase and there is at least one character,
false otherwise.

Parameters
x

[array_like, with StringDType, bytes_ or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray] Output array of bools This is a scalar if x is a scalar.
See also:

532 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.istitle

NumPy Reference, Release 2.2.0

str.isupper

Examples

>>> import numpy as np
>>> np.strings.isupper("GHC")
array(True)
>>> a = np.array(["hello", "HELLO", "Hello"])
>>> np.strings.isupper(a)
array([False, True, False])

char.rfind(a, sub, start=0, end=None)
For each element, return the highest index in the string where substring sub is found, such that sub is contained
in the range [start, end).

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
sub

[array-like, with StringDType, bytes_, or str_ dtype] The substring to search for.
start, end

[array_like, with any integer dtype] The range to look in, interpreted as in slice notation.
Returns

y
[ndarray] Output array of ints

See also:

str.rfind

Examples

>>> import numpy as np
>>> a = np.array(["Computer Science"])
>>> np.strings.rfind(a, "Science", start=0, end=None)
array([9])
>>> np.strings.rfind(a, "Science", start=0, end=8)
array([-1])
>>> b = np.array(["Computer Science", "Science"])
>>> np.strings.rfind(b, "Science", start=0, end=None)
array([9, 0])

char.rindex(a, sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

Parameters
a

[array-like, with np.bytes_ or np.str_ dtype]
sub

[array-like, with np.bytes_ or np.str_ dtype]

1.1. NumPy’s module structure 533

https://docs.python.org/3/library/stdtypes.html#str.isupper
https://docs.python.org/3/library/stdtypes.html#str.rfind
https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

start, end
[array-like, with any integer dtype, optional]

Returns
out

[ndarray] Output array of ints.
See also:

rfind, str.rindex

Examples

>>> a = np.array(["Computer Science"])
>>> np.strings.rindex(a, "Science", start=0, end=None)
array([9])

char.startswith(a, prefix, start=0, end=None)
Returns a boolean array which is True where the string element in a starts with prefix, otherwise False.

Parameters
a

[array-like, with StringDType, bytes_, or str_ dtype]
prefix

[array-like, with StringDType, bytes_, or str_ dtype]
start, end

[array_like, with any integer dtype] With start, test beginning at that position. With end,
stop comparing at that position.

Returns
out

[ndarray] Output array of bools
See also:

str.startswith

Examples

>>> import numpy as np
>>> s = np.array(['foo', 'bar'])
>>> s
array(['foo', 'bar'], dtype='<U3')
>>> np.strings.startswith(s, 'fo')
array([True, False])
>>> np.strings.startswith(s, 'o', start=1, end=2)
array([True, False])

char.str_len(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'str_len'>

Returns the length of each element. For byte strings, this is the number of bytes, while, for Unicode strings, it is
the number of Unicode code points.

534 1. Python API

https://docs.python.org/3/library/stdtypes.html#str.rindex
https://docs.python.org/3/library/stdtypes.html#str.startswith

NumPy Reference, Release 2.2.0

Parameters
x

[array_like, with StringDType, bytes_, or str_ dtype]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Output array of ints This is a scalar if x is a scalar.
See also:

len

Examples

>>> import numpy as np
>>> a = np.array(['Grace Hopper Conference', 'Open Source Day'])
>>> np.strings.str_len(a)
array([23, 15])
>>> a = np.array(['Р', 'о'])
>>> np.strings.str_len(a)
array([1, 1])
>>> a = np.array([['hello', 'world'], ['Р', 'о']])
>>> np.strings.str_len(a)
array([[5, 5], [1, 1]])

Convenience class

array(obj[, itemsize, copy, unicode, order]) Create a chararray.
asarray(obj[, itemsize, unicode, order]) Convert the input to a chararray, copying the data

only if necessary.
chararray(shape[, itemsize, unicode, ...]) Provides a convenient view on arrays of string and unicode

values.

char.array(obj, itemsize=None, copy=True, unicode=None, order=None)
Create a chararray.

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray
compatibility) should use arrays of type bytes_ or str_ and use the free functions in numpy.char for fast

1.1. NumPy’s module structure 535

https://docs.python.org/3/library/functions.html#len

NumPy Reference, Release 2.2.0

vectorized string operations instead.

Versus a NumPy array of dtype bytes_ or str_, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values
3) vectorized string operations are provided as methods (e.g. chararray.endswith) and infix operators

(e.g. +, *, %)

Parameters
obj

[array of str or unicode-like]
itemsize

[int, optional] itemsize is the number of characters per scalar in the resulting array. If itemsize is
None, and obj is an object array or a Python list, the itemsize will be automatically determined.
If itemsize is provided and obj is of type str or unicode, then the obj string will be chunked into
itemsize pieces.

copy
[bool, optional] If true (default), then the object is copied. Otherwise, a copy will only be made
if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy
any of the other requirements (itemsize, unicode, order, etc.).

unicode
[bool, optional] When true, the resulting chararray can contain Unicode characters, when
false only 8-bit characters. If unicode is None and obj is one of the following:
• a chararray,
• an ndarray of type str_ or bytes_
• a Python str or bytes object,
then the unicode setting of the output array will be automatically determined.

order
[{‘C’, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’ (default), then the array
will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned
array will be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’, then
the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous).

Examples

>>> import numpy as np
>>> char_array = np.char.array(['hello', 'world', 'numpy','array'])
>>> char_array
chararray(['hello', 'world', 'numpy', 'array'], dtype='<U5')

char.asarray(obj, itemsize=None, unicode=None, order=None)
Convert the input to a chararray, copying the data only if necessary.
Versus a NumPy array of dtype bytes_ or str_, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values

536 1. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

NumPy Reference, Release 2.2.0

3) vectorized string operations are provided as methods (e.g. chararray.endswith) and infix operators
(e.g. +, *, %)

Parameters
obj

[array of str or unicode-like]
itemsize

[int, optional] itemsize is the number of characters per scalar in the resulting array. If itemsize is
None, and obj is an object array or a Python list, the itemsize will be automatically determined.
If itemsize is provided and obj is of type str or unicode, then the obj string will be chunked into
itemsize pieces.

unicode
[bool, optional] When true, the resulting chararray can contain Unicode characters, when
false only 8-bit characters. If unicode is None and obj is one of the following:
• a chararray,
• an ndarray of type str_ or unicode_
• a Python str or unicode object,
then the unicode setting of the output array will be automatically determined.

order
[{‘C’, ‘F’}, optional] Specify the order of the array. If order is ‘C’ (default), then the array will
be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array
will be in Fortran-contiguous order (first-index varies the fastest).

Examples

>>> import numpy as np
>>> np.char.asarray(['hello', 'world'])
chararray(['hello', 'world'], dtype='<U5')

class numpy.char.chararray(shape, itemsize=1, unicode=False, buffer=None, offset=0, strides=None,
order=None)

Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new
development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dtype
object_, bytes_ or str_, and use the free functions in the numpy.char module for fast vectorized string
operations.

Versus a NumPy array of dtype bytes_ or str_, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values
3) vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",

"*", "%")
chararrays should be created using numpy.char.array or numpy.char.asarray, rather than this con-
structor directly.

1.1. NumPy’s module structure 537

NumPy Reference, Release 2.2.0

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer is None,
then constructs a new array with strides in “C order”, unless both len(shape) >= 2 and order='F', in
which case strides is in “Fortran order”.

Parameters
shape

[tuple] Shape of the array.
itemsize

[int, optional] Length of each array element, in number of characters. Default is 1.
unicode

[bool, optional] Are the array elements of type unicode (True) or string (False). Default is
False.

buffer
[object exposing the buffer interface or str, optional] Memory address of the start of the array
data. Default is None, in which case a new array is created.

offset
[int, optional] Fixed stride displacement from the beginning of an axis? Default is 0. Needs to
be >=0.

strides
[array_like of ints, optional] Strides for the array (see strides for full description). Default
is None.

order
[{‘C’, ‘F’}, optional] The order in which the array data is stored in memory: ‘C’ -> “row major”
order (the default), ‘F’ -> “column major” (Fortran) order.

Examples

>>> import numpy as np
>>> charar = np.char.chararray((3, 3))
>>> charar[:] = 'a'
>>> charar
chararray([[b'a', b'a', b'a'],

[b'a', b'a', b'a'],
[b'a', b'a', b'a']], dtype='|S1')

>>> charar = np.char.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray([[b'abc', b'abc', b'abc'],

[b'abc', b'abc', b'abc'],
[b'abc', b'abc', b'abc']], dtype='|S5')

Attributes
T

View of the transposed array.
base

Base object if memory is from some other object.
ctypes

An object to simplify the interaction of the array with the ctypes module.

538 1. Python API

NumPy Reference, Release 2.2.0

data
Python buffer object pointing to the start of the array’s data.

device
dtype

Data-type of the array’s elements.
flags

Information about the memory layout of the array.
flat

A 1-D iterator over the array.
imag

The imaginary part of the array.
itemset
itemsize

Length of one array element in bytes.
mT

View of the matrix transposed array.
nbytes

Total bytes consumed by the elements of the array.
ndim

Number of array dimensions.
newbyteorder
ptp
real

The real part of the array.
shape

Tuple of array dimensions.
size

Number of elements in the array.
strides

Tuple of bytes to step in each dimension when traversing an array.

Methods

astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
argsort([axis, kind, order]) Returns the indices that would sort this array.
copy([order]) Return a copy of the array.
count(sub[, start, end]) Returns an array with the number of non-overlapping

occurrences of substring sub in the range [start, end].
decode([encoding, errors]) Calls bytes.decode element-wise.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
encode([encoding, errors]) Calls str.encode element-wise.
endswith(suffix[, start, end]) Returns a boolean array which is Truewhere the string

element in self ends with suffix, otherwise False.
continues on next page

1.1. NumPy’s module structure 539

https://docs.python.org/3/library/stdtypes.html#str.encode

NumPy Reference, Release 2.2.0

Table 4 – continued from previous page
expandtabs([tabsize]) Return a copy of each string element where all tab

characters are replaced by one or more spaces.
fill(value) Fill the array with a scalar value.
find(sub[, start, end]) For each element, return the lowest index in the string

where substring sub is found.
flatten([order]) Return a copy of the array collapsed into one dimen-

sion.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
index(sub[, start, end]) Like find, but raises ValueError when the sub-

string is not found.
isalnum() Returns true for each element if all characters in the

string are alphanumeric and there is at least one char-
acter, false otherwise.

isalpha() Returns true for each element if all characters in the
string are alphabetic and there is at least one character,
false otherwise.

isdecimal() For each element in self, return True if there are only
decimal characters in the element.

isdigit() Returns true for each element if all characters in the
string are digits and there is at least one character, false
otherwise.

islower() Returns true for each element if all cased characters in
the string are lowercase and there is at least one cased
character, false otherwise.

isnumeric() For each element in self, return True if there are only
numeric characters in the element.

isspace() Returns true for each element if there are only whites-
pace characters in the string and there is at least one
character, false otherwise.

istitle() Returns true for each element if the element is a title-
cased string and there is at least one character, false
otherwise.

isupper() Returns true for each element if all cased characters in
the string are uppercase and there is at least one char-
acter, false otherwise.

item(*args) Copy an element of an array to a standard Python
scalar and return it.

join(seq) Return a string which is the concatenation of the
strings in the sequence seq.

ljust(width[, fillchar]) Return an array with the elements of self left-justified
in a string of length width.

lower() Return an array with the elements of self converted to
lowercase.

lstrip([chars]) For each element in self, return a copy with the leading
characters removed.

nonzero() Return the indices of the elements that are non-zero.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
replace(old, new[, count]) For each element in self, return a copy of the string

with all occurrences of substring old replaced by new.
continues on next page

540 1. Python API

https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

Table 4 – continued from previous page
reshape(shape, /, *[, order, copy]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
rfind(sub[, start, end]) For each element in self, return the highest index in

the string where substring sub is found, such that sub
is contained within [start, end].

rindex(sub[, start, end]) Like rfind, but raises ValueError when the sub-
string sub is not found.

rjust(width[, fillchar]) Return an array with the elements of self right-justified
in a string of length width.

rsplit([sep, maxsplit]) For each element in self, return a list of the words in
the string, using sep as the delimiter string.

rstrip([chars]) For each element in self, return a copy with the trailing
characters removed.

searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in
a to maintain order.

setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by
a data-type.

setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, WRITE-
BACKIFCOPY, respectively.

sort([axis, kind, order]) Sort an array in-place.
split([sep, maxsplit]) For each element in self, return a list of the words in

the string, using sep as the delimiter string.
splitlines([keepends]) For each element in self, return a list of the lines in the

element, breaking at line boundaries.
squeeze([axis]) Remove axes of length one from a.
startswith(prefix[, start, end]) Returns a boolean array which is Truewhere the string

element in self starts with prefix, otherwise False.
strip([chars]) For each element in self, return a copy with the leading

and trailing characters removed.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
swapcase() For each element in self, return a copy of the string

with uppercase characters converted to lowercase and
vice versa.

take(indices[, axis, out, mode]) Return an array formed from the elements of a at the
given indices.

title() For each element in self, return a titlecased version of
the string: words start with uppercase characters, all
remaining cased characters are lowercase.

tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as an a.ndim-levels deep nested list

of Python scalars.
tostring([order]) A compatibility alias for tobytes, with exactly the same

behavior.
translate(table[, deletechars]) For each element in self, return a copy of the string

where all characters occurring in the optional argu-
ment deletechars are removed, and the remaining char-
acters have been mapped through the given translation
table.

transpose(*axes) Returns a view of the array with axes transposed.
continues on next page

1.1. NumPy’s module structure 541

https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

Table 4 – continued from previous page
upper() Return an array with the elements of self converted to

uppercase.
view([dtype][, type]) New view of array with the same data.
zfill(width) Return the numeric string left-filled with zeros in a

string of length width.

method
char.chararray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.
Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. Default is ‘K’.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.
• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.

subok
[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

copy
[bool, optional] By default, astype always returns a newly allocated array. If this is set to
false, and the dtype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

Returns
arr_t
[ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning
When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

542 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

method
char.chararray.argsort(axis=-1, kind=None, order=None)

Returns the indices that would sort this array.
Refer to numpy.argsort for full documentation.
See also:

numpy.argsort
equivalent function

method
char.chararray.copy(order='C')

Return a copy of the array.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match
the layout of a as closely as possible. (Note that this function and numpy.copy are very
similar but have different default values for their order= arguments, and this function always
passes sub-classes through.)

See also:

numpy.copy
Similar function with different default behavior

numpy.copyto

Notes

This function is the preferred method for creating an array copy. The function numpy.copy is similar, but
it defaults to using order ‘K’, and will not pass sub-classes through by default.

1.1. NumPy’s module structure 543

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

For arrays containing Python objects (e.g. dtype=object), the copy is a shallow one. The new array will
contain the same object which may lead to surprises if that object can be modified (is mutable):

>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> b = a.copy()
>>> b[2][0] = 10
>>> a
array([1, 'm', list([10, 3, 4])], dtype=object)

To ensure all elements within an object array are copied, use copy.deepcopy:

>>> import copy
>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> c = copy.deepcopy(a)
>>> c[2][0] = 10
>>> c
array([1, 'm', list([10, 3, 4])], dtype=object)
>>> a
array([1, 'm', list([2, 3, 4])], dtype=object)

method
char.chararray.count(sub, start=0, end=None)

Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].
See also:

char.count

method
char.chararray.decode(encoding=None, errors=None)

Calls bytes.decode element-wise.
See also:

544 1. Python API

https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

char.decode

method
char.chararray.dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.
Parameters

file
[str or Path] A string naming the dump file.

method
char.chararray.dumps()

Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.
Parameters

None
method
char.chararray.encode(encoding=None, errors=None)

Calls str.encode element-wise.
See also:

char.encode

method
char.chararray.endswith(suffix, start=0, end=None)

Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.
See also:

char.endswith

method
char.chararray.expandtabs(tabsize=8)

Return a copy of each string element where all tab characters are replaced by one or more spaces.
See also:

char.expandtabs

method
char.chararray.fill(value)

Fill the array with a scalar value.
Parameters

value
[scalar] All elements of a will be assigned this value.

1.1. NumPy’s module structure 545

https://docs.python.org/3/library/stdtypes.html#str.encode

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

Fill expects a scalar value and always behaves the same as assigning to a single array element. The following
is a rare example where this distinction is important:

>>> a = np.array([None, None], dtype=object)
>>> a[0] = np.array(3)
>>> a
array([array(3), None], dtype=object)
>>> a.fill(np.array(3))
>>> a
array([array(3), array(3)], dtype=object)

Where other forms of assignments will unpack the array being assigned:

>>> a[...] = np.array(3)
>>> a
array([3, 3], dtype=object)

method
char.chararray.find(sub, start=0, end=None)

For each element, return the lowest index in the string where substring sub is found.
See also:

char.find

method
char.chararray.flatten(order='C')

Return a copy of the array collapsed into one dimension.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if
a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the
order the elements occur in memory. The default is ‘C’.

Returns
y
[ndarray] A copy of the input array, flattened to one dimension.

See also:

546 1. Python API

NumPy Reference, Release 2.2.0

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> import numpy as np
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

method
char.chararray.getfield(dtype, offset=0)

Returns a field of the given array as a certain type.
A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit
integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype
[str or dtype] The data type of the view. The dtype size of the view can not be larger than
that of the array itself.

offset
[int] Number of bytes to skip before beginning the element view.

Examples

>>> import numpy as np
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

method

1.1. NumPy’s module structure 547

NumPy Reference, Release 2.2.0

char.chararray.index(sub, start=0, end=None)
Like find, but raises ValueError when the substring is not found.
See also:

char.index

method
char.chararray.isalnum()

Returns true for each element if all characters in the string are alphanumeric and there is at least one character,
false otherwise.
See also:

char.isalnum

method
char.chararray.isalpha()

Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.
See also:

char.isalpha

method
char.chararray.isdecimal()

For each element in self, return True if there are only decimal characters in the element.
See also:

char.isdecimal

method
char.chararray.isdigit()

Returns true for each element if all characters in the string are digits and there is at least one character, false
otherwise.
See also:

char.isdigit

method
char.chararray.islower()

Returns true for each element if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.
See also:

char.islower

method

548 1. Python API

https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

char.chararray.isnumeric()

For each element in self, return True if there are only numeric characters in the element.
See also:

char.isnumeric

method
char.chararray.isspace()

Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.
See also:

char.isspace

method
char.chararray.istitle()

Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.
See also:

char.istitle

method
char.chararray.isupper()

Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.
See also:

char.isupper

method
char.chararray.item(*args)

Copy an element of an array to a standard Python scalar and return it.
Parameters

*args
[Arguments (variable number and type)]
• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns

1.1. NumPy’s module structure 549

NumPy Reference, Release 2.2.0

z
[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.
item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples

>>> import numpy as np
>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

For an array with object dtype, elements are returned as-is.

>>> a = np.array([np.int64(1)], dtype=object)
>>> a.item() #return np.int64
np.int64(1)

method
char.chararray.join(seq)

Return a string which is the concatenation of the strings in the sequence seq.
See also:

char.join

method
char.chararray.ljust(width, fillchar=' ')

Return an array with the elements of self left-justified in a string of length width.
See also:

char.ljust

550 1. Python API

NumPy Reference, Release 2.2.0

method
char.chararray.lower()

Return an array with the elements of self converted to lowercase.
See also:

char.lower

method
char.chararray.lstrip(chars=None)

For each element in self, return a copy with the leading characters removed.
See also:

char.lstrip

method
char.chararray.nonzero()

Return the indices of the elements that are non-zero.
Refer to numpy.nonzero for full documentation.
See also:

numpy.nonzero
equivalent function

method
char.chararray.put(indices, values, mode='raise')

Set a.flat[n] = values[n] for all n in indices.
Refer to numpy.put for full documentation.
See also:

numpy.put
equivalent function

method
char.chararray.ravel([order])

Return a flattened array.
Refer to numpy.ravel for full documentation.
See also:

numpy.ravel
equivalent function

ndarray.flat
a flat iterator on the array.

method

1.1. NumPy’s module structure 551

NumPy Reference, Release 2.2.0

char.chararray.repeat(repeats, axis=None)
Repeat elements of an array.
Refer to numpy.repeat for full documentation.
See also:

numpy.repeat
equivalent function

method
char.chararray.replace(old, new, count=None)

For each element in self, return a copy of the string with all occurrences of substring old replaced by new.
See also:

char.replace

method
char.chararray.reshape(shape, / , *, order='C', copy=None)

Returns an array containing the same data with a new shape.
Refer to numpy.reshape for full documentation.
See also:

numpy.reshape
equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

method
char.chararray.resize(new_shape, refcheck=True)

Change shape and size of array in-place.
Parameters

new_shape
[tuple of ints, or n ints] Shape of resized array.

refcheck
[bool, optional] If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError
If a does not own its own data or references or views to it exist, and the data memory must
be changed. PyPy only: will always raise if the data memory must be changed, since there
is no reliable way to determine if references or views to it exist.

552 1. Python API

NumPy Reference, Release 2.2.0

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.
The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> import numpy as np

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

1.1. NumPy’s module structure 553

NumPy Reference, Release 2.2.0

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

method
char.chararray.rfind(sub, start=0, end=None)

For each element in self, return the highest index in the string where substring sub is found, such that sub is
contained within [start, end].
See also:

char.rfind

method
char.chararray.rindex(sub, start=0, end=None)

Like rfind, but raises ValueError when the substring sub is not found.
See also:

char.rindex

method
char.chararray.rjust(width, fillchar=' ')

Return an array with the elements of self right-justified in a string of length width.
See also:

char.rjust

method
char.chararray.rsplit(sep=None, maxsplit=None)

For each element in self, return a list of the words in the string, using sep as the delimiter string.
See also:

char.rsplit

method
char.chararray.rstrip(chars=None)

For each element in self, return a copy with the trailing characters removed.
See also:

char.rstrip

method

554 1. Python API

https://docs.python.org/3/library/exceptions.html#ValueError

NumPy Reference, Release 2.2.0

char.chararray.searchsorted(v, side='left', sorter=None)
Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy.searchsorted
See also:

numpy.searchsorted
equivalent function

method
char.chararray.setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.
Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters
val
[object] Value to be placed in field.

dtype
[dtype object] Data-type of the field in which to place val.

offset
[int, optional] The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

Examples

>>> import numpy as np
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]], dtype=int32)

>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],

[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

method

1.1. NumPy’s module structure 555

NumPy Reference, Release 2.2.0

char.chararray.setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.
These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string.
(The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write
[bool, optional] Describes whether or not a can be written to.

align
[bool, optional] Describes whether or not a is aligned properly for its type.

uic
[bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7
Boolean flags in use, only three of which can be changed by the user: WRITEBACKIFCOPY,WRITEABLE,
and ALIGNED.
WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);
WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this
array.
All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> import numpy as np
>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False

(continues on next page)

556 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

method
char.chararray.sort(axis=-1, kind=None, order=None)

Sort an array in-place. Refer to numpy.sort for full documentation.
Parameters

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is
‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with datatype. The ‘mergesort’ option is retained
for backwards compatibility.

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

See also:

numpy.sort
Return a sorted copy of an array.

numpy.argsort
Indirect sort.

numpy.lexsort
Indirect stable sort on multiple keys.

numpy.searchsorted
Find elements in sorted array.

numpy.partition
Partial sort.

1.1. NumPy’s module structure 557

NumPy Reference, Release 2.2.0

Notes

See numpy.sort for notes on the different sorting algorithms.

Examples

>>> import numpy as np
>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],

dtype=[('x', 'S1'), ('y', '<i8')])

method
char.chararray.split(sep=None, maxsplit=None)

For each element in self, return a list of the words in the string, using sep as the delimiter string.
See also:

char.split

method
char.chararray.splitlines(keepends=None)

For each element in self, return a list of the lines in the element, breaking at line boundaries.
See also:

char.splitlines

method
char.chararray.squeeze(axis=None)

Remove axes of length one from a.
Refer to numpy.squeeze for full documentation.
See also:

numpy.squeeze
equivalent function

method

558 1. Python API

NumPy Reference, Release 2.2.0

char.chararray.startswith(prefix, start=0, end=None)
Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.
See also:

char.startswith

method
char.chararray.strip(chars=None)

For each element in self, return a copy with the leading and trailing characters removed.
See also:

char.strip

method
char.chararray.swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See also:

numpy.swapaxes
equivalent function

method
char.chararray.swapcase()

For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.
See also:

char.swapcase

method
char.chararray.take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of a at the given indices.
Refer to numpy.take for full documentation.
See also:

numpy.take
equivalent function

method
char.chararray.title()

For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.
See also:

char.title

1.1. NumPy’s module structure 559

NumPy Reference, Release 2.2.0

method
char.chararray.tofile(fid, sep='', format='%s')

Write array to a file as text or binary (default).
Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters
fid
[file or str or Path] An open file object, or a string containing a filename.

sep
[str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format
[str] Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at the
expense of speed and file size.
When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-
like objects that do not support fileno() (e.g., BytesIO).

method
char.chararray.tolist()

Return the array as an a.ndim-levels deep nested list of Python scalars.
Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the item function.
If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none

Returns
y
[object, or list of object, or list of list of object, or …] The possibly nested list of array
elements.

560 1. Python API

NumPy Reference, Release 2.2.0

Notes

The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose
precision.

Examples

For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars
to Python scalars:

>>> import numpy as np
>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[np.uint32(1), np.uint32(2)]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
...

TypeError: iteration over a 0-d array
>>> a.tolist()
1

method
char.chararray.tostring(order='C')

A compatibility alias for tobytes, with exactly the same behavior.
Despite its name, it returns bytes not strs.
Deprecated since version 1.19.0.

method
char.chararray.translate(table, deletechars=None)

For each element in self, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation table.
See also:

1.1. NumPy’s module structure 561

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 2.2.0

char.translate

method
char.chararray.transpose(*axes)

Returns a view of the array with axes transposed.
Refer to numpy.transpose for full documentation.

Parameters
axes
[None, tuple of ints, or n ints]
• None or no argument: reverses the order of the axes.
• tuple of ints: i in the j-th place in the tuple means that the array’s i-th axis becomes the
transposed array’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form).

Returns
p
[ndarray] View of the array with its axes suitably permuted.

See also:

transpose
Equivalent function.

ndarray.T
Array property returning the array transposed.

ndarray.reshape
Give a new shape to an array without changing its data.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.transpose()
array([1, 2, 3, 4])

562 1. Python API

NumPy Reference, Release 2.2.0

method
char.chararray.upper()

Return an array with the elements of self converted to uppercase.
See also:

char.upper

method
char.chararray.view([dtype][, type])

New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype(None) which is an alias for dtype('float64').

Parameters
dtype
[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. Omitting it results in the view having the same data-type as a. This argument
can also be specified as an ndarray sub-class, which then specifies the type of the returned
object (this is equivalent to setting the type parameter).

type
[Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view() is used two different ways:
a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.
a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpre-
tation of the memory.
For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis ofamust be contiguous.
This axis will be resized in the result.
Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

1.1. NumPy’s module structure 563

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([(-1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> nonneg = np.dtype([("a", np.uint8), ("b", np.uint8)])
>>> y = x.view(dtype=nonneg, type=np.recarray)
>>> x["a"]
array([-1], dtype=int8)
>>> y.a
array([255], dtype=uint8)

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
np.record((9, 10), dtype=[('a', 'i1'), ('b', 'i1')])

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
>>> y = x[:, ::2]
>>> y
array([[1, 3],

[4, 6]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):

...
ValueError: To change to a dtype of a different size, the last axis must be␣
↪→contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])

(continues on next page)

564 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
array([[(1, 3)],

[(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the
axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
>>> x.transpose(1, 0, 2).view(np.int16)
array([[[256, 770],

[3340, 3854]],

[[1284, 1798],
[4368, 4882]],

[[2312, 2826],
[5396, 5910]]], dtype=int16)

method
char.chararray.zfill(width)

Return the numeric string left-filled with zeros in a string of length width.
See also:

char.zfill

Packaging (numpy.distutils)

Warning: numpy.distutils is deprecated, and will be removed for Python >= 3.12. For more details, see
Status of numpy.distutils and migration advice

Warning: Note that setuptools does major releases often and those may contain changes that break numpy.
distutils, which will not be updated anymore for new setuptools versions. It is therefore recommended to
set an upper version bound in your build configuration for the last known version of setuptools that works with
your build.

NumPy provides enhanced distutils functionality to make it easier to build and install sub-packages, auto-generate code,
and extensionmodules that use Fortran-compiled libraries. A usefulConfiguration class is also provided innumpy.
distutils.misc_util that can make it easier to construct keyword arguments to pass to the setup function (by
passing the dictionary obtained from the todict() method of the class). More information is available in the numpy.distutils
user guide.
The choice and location of linked libraries such as BLAS and LAPACK as well as include paths and other such build
options can be specified in a site.cfg file located in the NumPy root repository or a .numpy-site.cfg file
in your home directory. See the site.cfg.example example file included in the NumPy repository or sdist for
documentation.

1.1. NumPy’s module structure 565

NumPy Reference, Release 2.2.0

Modules in numpy.distutils
distutils.misc_util

numpy.distutils.misc_util.all_strings(lst)
Return True if all items in lst are string objects.

numpy.distutils.misc_util.allpath(name)
Convert a /-separated pathname to one using the OS’s path separator.

numpy.distutils.misc_util.appendpath(prefix, path)

numpy.distutils.misc_util.as_list(seq)

numpy.distutils.misc_util.blue_text(s)

numpy.distutils.misc_util.cyan_text(s)

numpy.distutils.misc_util.cyg2win32(path: str)→ str
Convert a path from Cygwin-native to Windows-native.
Uses the cygpath utility (part of the Base install) to do the actual conversion. Falls back to returning the original
path if this fails.
Handles the default /cygdrivemount prefix as well as the /proc/cygdrive portable prefix, custom cygdrive
prefixes such as / or /mnt, and absolute paths such as /usr/src/ or /home/username

Parameters
path

[str] The path to convert
Returns

converted_path
[str] The converted path

Notes

Documentation for cygpath utility: https://cygwin.com/cygwin-ug-net/cygpath.html Documentation for the C
function it wraps: https://cygwin.com/cygwin-api/func-cygwin-conv-path.html

numpy.distutils.misc_util.default_config_dict(name=None, parent_name=None,
local_path=None)

Return a configuration dictionary for usage in configuration() function defined in file setup_<name>.py.
numpy.distutils.misc_util.dict_append(d, **kws)

numpy.distutils.misc_util.dot_join(*args)

numpy.distutils.misc_util.exec_mod_from_location(modname, modfile)
Use importlib machinery to import a module modname from the file modfile. Depending on the spec.loader, the
module may not be registered in sys.modules.

numpy.distutils.misc_util.filter_sources(sources)
Return four lists of filenames containing C, C++, Fortran, and Fortran 90 module sources, respectively.

566 1. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cygwin.com/cygwin-ug-net/cygpath.html
https://cygwin.com/cygwin-api/func-cygwin-conv-path.html

NumPy Reference, Release 2.2.0

numpy.distutils.misc_util.generate_config_py(target)
Generate config.py file containing system_info information used during building the package.
Usage:

config[‘py_modules’].append((packagename, ‘__config__’,generate_config_py))
numpy.distutils.misc_util.get_build_architecture()

numpy.distutils.misc_util.get_cmd(cmdname, _cache={})

numpy.distutils.misc_util.get_data_files(data)

numpy.distutils.misc_util.get_dependencies(sources)

numpy.distutils.misc_util.get_ext_source_files(ext)

numpy.distutils.misc_util.get_frame(level=0)
Return frame object from call stack with given level.

numpy.distutils.misc_util.get_info(pkgname, dirs=None)
Return an info dict for a given C library.
The info dict contains the necessary options to use the C library.

Parameters
pkgname

[str] Name of the package (should match the name of the .ini file, without the extension, e.g.
foo for the file foo.ini).

dirs
[sequence, optional] If given, should be a sequence of additional directories where to look for
npy-pkg-config files. Those directories are searched prior to the NumPy directory.

Returns
info

[dict] The dictionary with build information.
Raises

PkgNotFound
If the package is not found.

See also:

Configuration.add_npy_pkg_config, Configuration.add_installed_library
get_pkg_info

Examples

To get the necessary information for the npymath library from NumPy:

>>> npymath_info = np.distutils.misc_util.get_info('npymath')
>>> npymath_info
{'define_macros': [], 'libraries': ['npymath'], 'library_dirs':
['.../numpy/_core/lib'], 'include_dirs': ['.../numpy/_core/include']}

This info dict can then be used as input to a Configuration instance:

1.1. NumPy’s module structure 567

NumPy Reference, Release 2.2.0

config.add_extension('foo', sources=['foo.c'], extra_info=npymath_info)

numpy.distutils.misc_util.get_language(sources)
Determine language value (c,f77,f90) from sources

numpy.distutils.misc_util.get_lib_source_files(lib)

numpy.distutils.misc_util.get_mathlibs(path=None)
Return the MATHLIB line from numpyconfig.h

numpy.distutils.misc_util.get_num_build_jobs()

Get number of parallel build jobs set by the –parallel command line argument of setup.py If the command did
not receive a setting the environment variable NPY_NUM_BUILD_JOBS is checked. If that is unset, return the
number of processors on the system, with a maximum of 8 (to prevent overloading the system if there a lot of
CPUs).

Returns
out

[int] number of parallel jobs that can be run
numpy.distutils.misc_util.get_numpy_include_dirs()

numpy.distutils.misc_util.get_pkg_info(pkgname, dirs=None)
Return library info for the given package.

Parameters
pkgname

[str] Name of the package (should match the name of the .ini file, without the extension, e.g.
foo for the file foo.ini).

dirs
[sequence, optional] If given, should be a sequence of additional directories where to look for
npy-pkg-config files. Those directories are searched prior to the NumPy directory.

Returns
pkginfo

[class instance] The LibraryInfo instance containing the build information.
Raises

PkgNotFound
If the package is not found.

See also:

Configuration.add_npy_pkg_config, Configuration.add_installed_library
get_info

numpy.distutils.misc_util.get_script_files(scripts)

numpy.distutils.misc_util.gpaths(paths, local_path='', include_non_existing=True)
Apply glob to paths and prepend local_path if needed.

numpy.distutils.misc_util.green_text(s)

numpy.distutils.misc_util.has_cxx_sources(sources)
Return True if sources contains C++ files

568 1. Python API

NumPy Reference, Release 2.2.0

numpy.distutils.misc_util.has_f_sources(sources)
Return True if sources contains Fortran files

numpy.distutils.misc_util.is_local_src_dir(directory)
Return true if directory is local directory.

numpy.distutils.misc_util.is_sequence(seq)

numpy.distutils.misc_util.is_string(s)

numpy.distutils.misc_util.mingw32()

Return true when using mingw32 environment.
numpy.distutils.misc_util.minrelpath(path)

Resolve and ‘.’ from path.
numpy.distutils.misc_util.njoin(*path)

Join two or more pathname components + - convert a /-separated pathname to one using the OS’s path separator.
- resolve and from path.
Either passing n arguments as in njoin(‘a’,’b’), or a sequence of n names as in njoin([‘a’,’b’]) is handled, or a mixture
of such arguments.

numpy.distutils.misc_util.red_text(s)

numpy.distutils.misc_util.sanitize_cxx_flags(cxxflags)
Some flags are valid for C but not C++. Prune them.

numpy.distutils.misc_util.terminal_has_colors()

numpy.distutils.misc_util.yellow_text(s)

ccompiler

ccompiler_opt Provides the CCompilerOpt class, used for handling the
CPU/hardware optimization, starting from parsing the
command arguments, to managing the relation between
the CPU baseline and dispatch-able features, also gener-
ating the required C headers and ending with compiling
the sources with proper compiler's flags.

cpuinfo.cpu

core.Extension(name, sources[, ...])
Parameters

exec_command exec_command
log.set_verbosity(v[, force])

system_info.get_info(name[, notfound_action]) notfound_action:
system_info.get_standard_file(fname) Returns a list of files named 'fname' from 1) System-wide

directory (directory-location of this module) 2) Users
HOME directory (os.environ['HOME']) 3) Local direc-
tory

1.1. NumPy’s module structure 569

NumPy Reference, Release 2.2.0

Functions

CCompiler_compile(self, sources[, ...]) Compile one or more source files.
CCompiler_customize(self, dist[, need_cxx]) Do any platform-specific customization of a compiler in-

stance.
CCompiler_customize_cmd(self, cmd[, ignore]) Customize compiler using distutils command.
CCompiler_cxx_compiler(self) Return the C++ compiler.
CCompiler_find_executables(self) Does nothing here, but is called by the get_versionmethod

and can be overridden by subclasses.
CCompiler_get_version(self[, force, ok_status]) Return compiler version, or None if compiler is not avail-

able.
CCompiler_object_filenames(self, ...[, ...]) Return the name of the object files for the given source

files.
CCompiler_show_customization(self) Print the compiler customizations to stdout.
CCompiler_spawn(self, cmd[, display, env]) Execute a command in a sub-process.
gen_lib_options(compiler, library_dirs, ...)

new_compiler([plat, compiler, verbose, ...])

replace_method(klass, method_name, func)

simple_version_match([pat, ignore, start]) Simple matching of version numbers, for use in CCom-
piler and FCompiler.

distutils.ccompiler.CCompiler_compile(self, sources, output_dir=None, macros=None,
include_dirs=None, debug=0, extra_preargs=None,
extra_postargs=None, depends=None)

Compile one or more source files.
Please refer to the Python distutils API reference for more details.

Parameters
sources

[list of str] A list of filenames
output_dir

[str, optional] Path to the output directory.
macros

[list of tuples] A list of macro definitions.
include_dirs

[list of str, optional] The directories to add to the default include file search path for this com-
pilation only.

debug
[bool, optional] Whether or not to output debug symbols in or alongside the object file(s).

extra_preargs, extra_postargs
[?] Extra pre- and post-arguments.

depends
[list of str, optional] A list of file names that all targets depend on.

Returns

570 1. Python API

NumPy Reference, Release 2.2.0

objects
[list of str] A list of object file names, one per source file sources.

Raises
CompileError

If compilation fails.
distutils.ccompiler.CCompiler_customize(self, dist, need_cxx=0)

Do any platform-specific customization of a compiler instance.
This method calls distutils.sysconfig.customize_compiler for platform-specific customization,
as well as optionally remove a flag to suppress spurious warnings in case C++ code is being compiled.

Parameters
dist

[object] This parameter is not used for anything.
need_cxx

[bool, optional] Whether or not C++ has to be compiled. If so (True), the
"-Wstrict-prototypes" option is removed to prevent spurious warnings. Default is
False.

Returns
None

Notes

All the default options used by distutils can be extracted with:

from distutils import sysconfig
sysconfig.get_config_vars('CC', 'CXX', 'OPT', 'BASECFLAGS',

'CCSHARED', 'LDSHARED', 'SO')

distutils.ccompiler.CCompiler_customize_cmd(self, cmd, ignore=())
Customize compiler using distutils command.

Parameters
cmd

[class instance] An instance inheriting from distutils.cmd.Command.
ignore

[sequence of str, optional] List of distutils.ccompiler.CCompiler commands
(without 'set_') that should not be altered. Strings that are checked for are: ('in-
clude_dirs', 'define', 'undef', 'libraries', 'library_dirs',
'rpath', 'link_objects').

Returns
None

distutils.ccompiler.CCompiler_cxx_compiler(self)
Return the C++ compiler.

Parameters
None

Returns

1.1. NumPy’s module structure 571

NumPy Reference, Release 2.2.0

cxx
[class instance] The C++ compiler, as a distutils.ccompiler.CCompiler instance.

distutils.ccompiler.CCompiler_find_executables(self)
Does nothing here, but is called by the get_version method and can be overridden by subclasses. In particular it is
redefined in the FCompiler class where more documentation can be found.

distutils.ccompiler.CCompiler_get_version(self, force=False, ok_status=[0])
Return compiler version, or None if compiler is not available.

Parameters
force

[bool, optional] If True, force a new determination of the version, even if the compiler already
has a version attribute. Default is False.

ok_status
[list of int, optional] The list of status values returned by the version look-up process for which
a version string is returned. If the status value is not in ok_status, None is returned. Default is
[0].

Returns
version

[str or None] Version string, in the format of distutils.version.LooseVersion.
distutils.ccompiler.CCompiler_object_filenames(self, source_filenames, strip_dir=0,

output_dir='')

Return the name of the object files for the given source files.
Parameters

source_filenames
[list of str] The list of paths to source files. Paths can be either relative or absolute, this is
handled transparently.

strip_dir
[bool, optional] Whether to strip the directory from the returned paths. If True, the file name
prepended by output_dir is returned. Default is False.

output_dir
[str, optional] If given, this path is prepended to the returned paths to the object files.

Returns
obj_names

[list of str] The list of paths to the object files corresponding to the source files in
source_filenames.

distutils.ccompiler.CCompiler_show_customization(self)
Print the compiler customizations to stdout.

Parameters
None

Returns
None

572 1. Python API

NumPy Reference, Release 2.2.0

Notes

Printing is only done if the distutils log threshold is < 2.
distutils.ccompiler.CCompiler_spawn(self, cmd, display=None, env=None)

Execute a command in a sub-process.
Parameters

cmd
[str] The command to execute.

display
[str or sequence of str, optional] The text to add to the log file kept by numpy.distutils.
If not given, display is equal to cmd.

env
[a dictionary for environment variables, optional]

Returns
None

Raises
DistutilsExecError

If the command failed, i.e. the exit status was not 0.
distutils.ccompiler.gen_lib_options(compiler, library_dirs, runtime_library_dirs, libraries)

distutils.ccompiler.new_compiler(plat=None, compiler=None, verbose=None, dry_run=0, force=0)

distutils.ccompiler.replace_method(klass, method_name, func)

distutils.ccompiler.simple_version_match(pat='[-.\\d]+', ignore='', start='')
Simple matching of version numbers, for use in CCompiler and FCompiler.

Parameters
pat

[str, optional] A regular expression matching version numbers. Default is r'[-.\d]+'.
ignore

[str, optional] A regular expression matching patterns to skip. Default is '', in which case
nothing is skipped.

start
[str, optional] A regular expression matching the start of where to start looking for version
numbers. Default is '', in which case searching is started at the beginning of the version
string given to matcher.

Returns
matcher

[callable] A function that is appropriate to use as the .version_match attribute of a
distutils.ccompiler.CCompiler class. matcher takes a single parameter, a ver-
sion string.

Provides the CCompilerOpt class, used for handling the CPU/hardware optimization, starting from parsing the com-
mand arguments, to managing the relation between the CPU baseline and dispatch-able features, also generating the
required C headers and ending with compiling the sources with proper compiler’s flags.

1.1. NumPy’s module structure 573

https://docs.python.org/3/library/cmd.html#module-cmd

NumPy Reference, Release 2.2.0

CCompilerOpt doesn’t provide runtime detection for the CPU features, instead only focuses on the compiler side, but
it creates abstract C headers that can be used later for the final runtime dispatching process.

Functions

new_ccompiler_opt(compiler, dispatch_hpath, ...) Create a new instance of 'CCompilerOpt' and generate
the dispatch header which contains the #definitions and
headers of platform-specific instruction-sets for the en-
abled CPU baseline and dispatch-able features.

distutils.ccompiler_opt.new_ccompiler_opt(compiler, dispatch_hpath, **kwargs)
Create a new instance of ‘CCompilerOpt’ and generate the dispatch header which contains the #definitions and
headers of platform-specific instruction-sets for the enabled CPU baseline and dispatch-able features.

Parameters
compiler

[CCompiler instance]
dispatch_hpath

[str] path of the dispatch header
**kwargs: passed as-is to `CCompilerOpt(…)`
Returns
——-
new instance of CCompilerOpt

Classes

CCompilerOpt(ccompiler[, cpu_baseline, ...]) A helper class for CCompiler aims to provide extra build
options to effectively control of compiler optimizations
that are directly related to CPU features.

class numpy.distutils.ccompiler_opt.CCompilerOpt(ccompiler, cpu_baseline='min',
cpu_dispatch='max', cache_path=None)

A helper class for CCompiler aims to provide extra build options to effectively control of compiler optimizations
that are directly related to CPU features.

Attributes
conf_cache_factors
conf_tmp_path

574 1. Python API

NumPy Reference, Release 2.2.0

1.1. NumPy’s module structure 575

NumPy Reference, Release 2.2.0

Methods

cache_flush() Force update the cache.
cc_normalize_flags(flags) Remove the conflicts that caused due gathering im-

plied features flags.
conf_features_partial() Return a dictionary of supported CPU features by

the platform, and accumulate the rest of unde-
fined options in conf_features, the returned
dict has same rules and notes in class attribute
conf_features, also its override any options that
been set in 'conf_features'.

cpu_baseline_flags() Returns a list of final CPU baseline compiler flags
cpu_baseline_names() return a list of final CPU baseline feature names
cpu_dispatch_names() return a list of final CPU dispatch feature names
dist_compile(sources, flags[, ccompiler]) Wrap CCompiler.compile()
dist_error(*args) Raise a compiler error
dist_fatal(*args) Raise a distutils error
dist_info() Return a tuple containing info about (platform, com-

piler, extra_args), required by the abstract class
'_CCompiler' for discovering the platform environ-
ment.

dist_load_module(name, path) Load a module from file, required by the abstract class
'_Cache'.

dist_log(*args[, stderr]) Print a console message
dist_test(source, flags[, macros]) Return True if 'CCompiler.compile()' able to compile

a source file with certain flags.
feature_ahead(names) Return list of features in 'names' after remove any im-

plied features and keep the origins.
feature_c_preprocessor(feature_name[,
tabs])

Generate C preprocessor definitions and include head-
ers of a CPU feature.

feature_detect(names) Return a list of CPU features that required to be de-
tected sorted from the lowest to highest interest.

feature_get_til(names, keyisfalse) same as feature_implies_c() but stop collecting implied
features when feature's option that provided through
parameter 'keyisfalse' is False, also sorting the returned
features.

feature_implies(names[, keep_origins]) Return a set of CPU features that implied by 'names'
feature_implies_c(names) same as feature_implies() but combining 'names'
feature_is_exist(name) Returns True if a certain feature is exist and covered

within _Config.conf_features.
feature_names([names, force_flags, macros]) Returns a set of CPU feature names that supported by

platform and the C compiler.
feature_sorted(names[, reverse]) Sort a list of CPU features ordered by the lowest inter-

est.
feature_untied(names) same as 'feature_ahead()' but if both features implied

each other and keep the highest interest.
generate_dispatch_header(header_path) Generate the dispatch header which contains the #def-

initions and headers for platform-specific instruction-
sets for the enabled CPU baseline and dispatch-able
features.

is_cached() Returns True if the class loaded from the cache file
me(cb) A static method that can be treated as a decorator to

dynamically cache certain methods.
parse_targets(source) Fetch and parse configuration statements that required

for defining the targeted CPU features, statements
should be declared in the top of source in between C
comment and start with a special mark@targets.

try_dispatch(sources[, src_dir, ccompiler]) Compile one or more dispatch-able sources and gener-
ates object files, also generates abstract C config head-
ers and macros that used later for the final runtime dis-
patching process.

576 1. Python API

NumPy Reference, Release 2.2.0

method
distutils.ccompiler_opt.CCompilerOpt.cache_flush()

Force update the cache.
method
distutils.ccompiler_opt.CCompilerOpt.cc_normalize_flags(flags)

Remove the conflicts that caused due gathering implied features flags.
Parameters

‘flags’ list, compiler flags
flags should be sorted from the lowest to the highest interest.

Returns
list, filtered from any conflicts.

Examples

>>> self.cc_normalize_flags(['-march=armv8.2-a+fp16', '-march=armv8.2-
↪→a+dotprod'])
['armv8.2-a+fp16+dotprod']

>>> self.cc_normalize_flags(
['-msse', '-msse2', '-msse3', '-mssse3', '-msse4.1', '-msse4.2', '-mavx',

↪→'-march=core-avx2']
)
['-march=core-avx2']

method
distutils.ccompiler_opt.CCompilerOpt.conf_features_partial()

Return a dictionary of supported CPU features by the platform, and accumulate the rest of undefined options
in conf_features, the returned dict has same rules and notes in class attribute conf_features, also
its override any options that been set in ‘conf_features’.

method
distutils.ccompiler_opt.CCompilerOpt.cpu_baseline_flags()

Returns a list of final CPU baseline compiler flags
method
distutils.ccompiler_opt.CCompilerOpt.cpu_baseline_names()

return a list of final CPU baseline feature names
method
distutils.ccompiler_opt.CCompilerOpt.cpu_dispatch_names()

return a list of final CPU dispatch feature names
method
distutils.ccompiler_opt.CCompilerOpt.dist_compile(sources, flags, ccompiler=None,

**kwargs)

Wrap CCompiler.compile()
method

1.1. NumPy’s module structure 577

NumPy Reference, Release 2.2.0

static distutils.ccompiler_opt.CCompilerOpt.dist_error(*args)
Raise a compiler error

method
static distutils.ccompiler_opt.CCompilerOpt.dist_fatal(*args)

Raise a distutils error
method
distutils.ccompiler_opt.CCompilerOpt.dist_info()

Return a tuple containing info about (platform, compiler, extra_args), required by the abstract class ‘_CCom-
piler’ for discovering the platform environment. This is also used as a cache factor in order to detect any
changes happening from outside.

method
static distutils.ccompiler_opt.CCompilerOpt.dist_load_module(name, path)

Load a module from file, required by the abstract class ‘_Cache’.
method
static distutils.ccompiler_opt.CCompilerOpt.dist_log(*args, stderr=False)

Print a console message
method
distutils.ccompiler_opt.CCompilerOpt.dist_test(source, flags, macros=[])

Return True if ‘CCompiler.compile()’ able to compile a source file with certain flags.
method
distutils.ccompiler_opt.CCompilerOpt.feature_ahead(names)

Return list of features in ‘names’ after remove any implied features and keep the origins.
Parameters

‘names’: sequence
sequence of CPU feature names in uppercase.

Returns
list of CPU features sorted as-is ‘names’

Examples

>>> self.feature_ahead(["SSE2", "SSE3", "SSE41"])
["SSE41"]
assume AVX2 and FMA3 implies each other and AVX2
is the highest interest
>>> self.feature_ahead(["SSE2", "SSE3", "SSE41", "AVX2", "FMA3"])
["AVX2"]
assume AVX2 and FMA3 don't implies each other
>>> self.feature_ahead(["SSE2", "SSE3", "SSE41", "AVX2", "FMA3"])
["AVX2", "FMA3"]

method

578 1. Python API

NumPy Reference, Release 2.2.0

distutils.ccompiler_opt.CCompilerOpt.feature_c_preprocessor(feature_name,
tabs=0)

Generate C preprocessor definitions and include headers of a CPU feature.
Parameters

‘feature_name’: str
CPU feature name in uppercase.

‘tabs’: int
if > 0, align the generated strings to the right depend on number of tabs.

Returns
str, generated C preprocessor

Examples

>>> self.feature_c_preprocessor("SSE3")
/** SSE3 **/
#define NPY_HAVE_SSE3 1
#include <pmmintrin.h>

method
distutils.ccompiler_opt.CCompilerOpt.feature_detect(names)

Return a list of CPU features that required to be detected sorted from the lowest to highest interest.
method
distutils.ccompiler_opt.CCompilerOpt.feature_get_til(names, keyisfalse)

same as feature_implies_c() but stop collecting implied features when feature’s option that provided through
parameter ‘keyisfalse’ is False, also sorting the returned features.

method
distutils.ccompiler_opt.CCompilerOpt.feature_implies(names, keep_origins=False)

Return a set of CPU features that implied by ‘names’
Parameters

names
[str or sequence of str] CPU feature name(s) in uppercase.

keep_origins
[bool] if False(default) then the returned set will not contain any features from ‘names’. This
case happens only when two features imply each other.

Examples

>>> self.feature_implies("SSE3")
{'SSE', 'SSE2'}
>>> self.feature_implies("SSE2")
{'SSE'}
>>> self.feature_implies("SSE2", keep_origins=True)
'SSE2' found here since 'SSE' and 'SSE2' imply each other
{'SSE', 'SSE2'}

1.1. NumPy’s module structure 579

NumPy Reference, Release 2.2.0

method
distutils.ccompiler_opt.CCompilerOpt.feature_implies_c(names)

same as feature_implies() but combining ‘names’
method
distutils.ccompiler_opt.CCompilerOpt.feature_is_exist(name)

Returns True if a certain feature is exist and covered within _Config.conf_features.
Parameters

‘name’: str
feature name in uppercase.

method
distutils.ccompiler_opt.CCompilerOpt.feature_names(names=None, force_flags=None,

macros=[])

Returns a set of CPU feature names that supported by platform and the C compiler.
Parameters

names
[sequence or None, optional] Specify certain CPU features to test it against the C compiler.
if None(default), it will test all current supported features. Note: feature names must be in
upper-case.

force_flags
[list or None, optional] If None(default), default compiler flags for every CPU feature will
be used during the test.

macros
[list of tuples, optional] A list of C macro definitions.

method
distutils.ccompiler_opt.CCompilerOpt.feature_sorted(names, reverse=False)

Sort a list of CPU features ordered by the lowest interest.
Parameters

‘names’: sequence
sequence of supported feature names in uppercase.

‘reverse’: bool, optional
If true, the sorted features is reversed. (highest interest)

Returns
list, sorted CPU features

method
distutils.ccompiler_opt.CCompilerOpt.feature_untied(names)

same as ‘feature_ahead()’ but if both features implied each other and keep the highest interest.
Parameters

‘names’: sequence
sequence of CPU feature names in uppercase.

Returns
list of CPU features sorted as-is ‘names’

580 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> self.feature_untied(["SSE2", "SSE3", "SSE41"])
["SSE2", "SSE3", "SSE41"]
assume AVX2 and FMA3 implies each other
>>> self.feature_untied(["SSE2", "SSE3", "SSE41", "FMA3", "AVX2"])
["SSE2", "SSE3", "SSE41", "AVX2"]

method
distutils.ccompiler_opt.CCompilerOpt.generate_dispatch_header(header_path)

Generate the dispatch header which contains the #definitions and headers for platform-specific instruction-sets
for the enabled CPU baseline and dispatch-able features.
Its highly recommended to take a look at the generated header also the generated source files via try_dispatch()
in order to get the full picture.

method
distutils.ccompiler_opt.CCompilerOpt.is_cached()

Returns True if the class loaded from the cache file
method
static distutils.ccompiler_opt.CCompilerOpt.me(cb)

A static method that can be treated as a decorator to dynamically cache certain methods.
method
distutils.ccompiler_opt.CCompilerOpt.parse_targets(source)

Fetch and parse configuration statements that required for defining the targeted CPU features, statements
should be declared in the top of source in between C comment and start with a special mark@targets.
Configuration statements are sort of keywords representing CPU features names, group of statements and
policies, combined together to determine the required optimization.

Parameters
source
[str] the path of C source file.

Returns
• bool, True if group has the ‘baseline’ option
• list, list of CPU features
• list, list of extra compiler flags

method
distutils.ccompiler_opt.CCompilerOpt.try_dispatch(sources, src_dir=None,

ccompiler=None, **kwargs)

Compile one or more dispatch-able sources and generates object files, also generates abstract C config headers
and macros that used later for the final runtime dispatching process.
The mechanism behind it is to takes each source file that specified in ‘sources’ and branching it into several
files depend on special configuration statements that must be declared in the top of each source which contains
targeted CPU features, then it compiles every branched source with the proper compiler flags.

Parameters

1.1. NumPy’s module structure 581

NumPy Reference, Release 2.2.0

sources
[list] Must be a list of dispatch-able sources file paths, and configuration statements must be
declared inside each file.

src_dir
[str] Path of parent directory for the generated headers andwrapped sources. If None(default)
the files will generated in-place.

ccompiler
[CCompiler] Distutils CCompiler instance to be used for compilation. If None (default), the
provided instance during the initialization will be used instead.

**kwargs
[any] Arguments to pass on to the CCompiler.compile()

Returns
list
[generated object files]

Raises
CompileError
Raises by CCompiler.compile() on compiling failure.

DistutilsError
Some errors during checking the sanity of configuration statements.

See also:

parse_targets
Parsing the configuration statements of dispatch-able sources.

cache_hash
cc_test_cexpr
cc_test_flags
feature_can_autovec
feature_extra_checks
feature_flags
feature_is_supported
feature_test
report

distutils.cpuinfo.cpu = <numpy.distutils.cpuinfo.LinuxCPUInfo object>

class numpy.distutils.core.Extension(name, sources, include_dirs=None, define_macros=None,
undef_macros=None, library_dirs=None, libraries=None,
runtime_library_dirs=None, extra_objects=None,
extra_compile_args=None, extra_link_args=None,
export_symbols=None, swig_opts=None, depends=None,
language=None, f2py_options=None, module_dirs=None,
extra_c_compile_args=None, extra_cxx_compile_args=None,
extra_f77_compile_args=None,
extra_f90_compile_args=None)

Parameters

582 1. Python API

NumPy Reference, Release 2.2.0

name
[str] Extension name.

sources
[list of str] List of source file locations relative to the top directory of the package.

extra_compile_args
[list of str] Extra command line arguments to pass to the compiler.

extra_f77_compile_args
[list of str] Extra command line arguments to pass to the fortran77 compiler.

extra_f90_compile_args
[list of str] Extra command line arguments to pass to the fortran90 compiler.

Methods

has_cxx_sources
has_f2py_sources

exec_command
Implements exec_command function that is (almost) equivalent to commands.getstatusoutput function but on NT, DOS
systems the returned status is actually correct (though, the returned status values may be different by a factor). In addition,
exec_command takes keyword arguments for (re-)defining environment variables.
Provides functions:

exec_command — execute command in a specified directory and
in the modified environment.

find_executable — locate a command using info from environment
variable PATH. Equivalent to posix which command.

Author: Pearu Peterson <pearu@cens.ioc.ee> Created: 11 January 2003
Requires: Python 2.x
Successfully tested on:

os.namesys.platformcomments
posix linux2 Debian (sid) Linux, Python 2.1.3+, 2.2.3+, 2.3.3 PyCrust 0.9.3, Idle 1.0.2
posix linux2 Red Hat 9 Linux, Python 2.1.3, 2.2.2, 2.3.2
posix sunos5 SunOS 5.9, Python 2.2, 2.3.2
posix dar-

win
Darwin 7.2.0, Python 2.3

nt win32 Windows Me Python 2.3(EE), Idle 1.0, PyCrust 0.7.2 Python 2.1.1 Idle 0.8
nt win32 Windows 98, Python 2.1.1. Idle 0.8
nt win32 Cygwin 98-4.10, Python 2.1.1(MSC) - echo tests fail i.e. redefining environment variables may not

work. FIXED: don’t use cygwin echo! Comment: also cmd /c echo will not work but redefining
environment variables do work.

posix cyg-
win

Cygwin 98-4.10, Python 2.3.3(cygming special)

nt win32 Windows XP, Python 2.3.3

Known bugs:

1.1. NumPy’s module structure 583

mailto:pearu@cens.ioc.ee

NumPy Reference, Release 2.2.0

• Tests, that send messages to stderr, fail when executed from MSYS prompt because the messages are lost at some
point.

Functions

exec_command(command[, execute_in, ...]) Return (status,output) of executed command.
filepath_from_subprocess_output(output) Convert bytes in the encoding used by a subprocess into a

filesystem-appropriate str.
find_executable(exe[, path, _cache]) Return full path of a executable or None.
forward_bytes_to_stdout(val) Forward bytes from a subprocess call to the console, with-

out attempting to decode them.
get_pythonexe()

temp_file_name()

distutils.exec_command.exec_command(command, execute_in='', use_shell=None, use_tee=None,
_with_python=1, **env)

Return (status,output) of executed command.
Deprecated since version 1.17: Use subprocess.Popen instead

Parameters
command

[str] A concatenated string of executable and arguments.
execute_in

[str] Before running command cd execute_in and after cd -.
use_shell

[{bool, None}, optional] If True, execute sh -c command. Default None (True)
use_tee

[{bool, None}, optional] If True use tee. Default None (True)
Returns

res
[str] Both stdout and stderr messages.

Notes

On NT, DOS systems the returned status is correct for external commands. Wild cards will not work for non-posix
systems or when use_shell=0.

distutils.exec_command.filepath_from_subprocess_output(output)
Convert bytes in the encoding used by a subprocess into a filesystem-appropriate str.
Inherited from exec_command, and possibly incorrect.

distutils.exec_command.find_executable(exe, path=None, _cache={})
Return full path of a executable or None.
Symbolic links are not followed.

584 1. Python API

NumPy Reference, Release 2.2.0

distutils.exec_command.forward_bytes_to_stdout(val)
Forward bytes from a subprocess call to the console, without attempting to decode them.
The assumption is that the subprocess call already returned bytes in a suitable encoding.

distutils.exec_command.get_pythonexe()

distutils.exec_command.temp_file_name()

distutils.log.set_verbosity(v, force=False)

distutils.system_info.get_info(name, notfound_action=0)

notfound_action:
0 - do nothing 1 - display warning message 2 - raise error

distutils.system_info.get_standard_file(fname)
Returns a list of files named ‘fname’ from 1) System-wide directory (directory-location of this module) 2) Users
HOME directory (os.environ[‘HOME’]) 3) Local directory

Configuration class
class numpy.distutils.misc_util.Configuration(package_name=None, parent_name=None,

top_path=None, package_path=None, **attrs)
Construct a configuration instance for the given package name. If parent_name is not None, then construct the
package as a sub-package of the parent_name package. If top_path and package_path are None then they are
assumed equal to the path of the file this instance was created in. The setup.py files in the numpy distribution are
good examples of how to use the Configuration instance.
todict()

Return a dictionary compatible with the keyword arguments of distutils setup function.

Examples

>>> setup(**config.todict())

get_distribution()

Return the distutils distribution object for self.
get_subpackage(subpackage_name, subpackage_path=None, parent_name=None, caller_level=1)

Return list of subpackage configurations.
Parameters

subpackage_name
[str or None] Name of the subpackage to get the configuration. ‘*’ in subpackage_name is
handled as a wildcard.

subpackage_path
[str] If None, then the path is assumed to be the local path plus the subpackage_name. If a
setup.py file is not found in the subpackage_path, then a default configuration is used.

parent_name
[str] Parent name.

1.1. NumPy’s module structure 585

NumPy Reference, Release 2.2.0

add_subpackage(subpackage_name, subpackage_path=None, standalone=False)
Add a sub-package to the current Configuration instance.
This is useful in a setup.py script for adding sub-packages to a package.

Parameters
subpackage_name
[str] name of the subpackage

subpackage_path
[str] if given, the subpackage path such as the subpackage is in subpackage_path / subpack-
age_name. If None,the subpackage is assumed to be located in the local path / subpack-
age_name.

standalone
[bool]

add_data_files(*files)
Add data files to configuration data_files.

Parameters
files
[sequence] Argument(s) can be either
• 2-sequence (<datadir prefix>,<path to data file(s)>)
• paths to data files where python datadir prefix defaults to package dir.

Notes

The form of each element of the files sequence is very flexible allowing many combinations of where to get
the files from the package and where they should ultimately be installed on the system. The most basic usage
is for an element of the files argument sequence to be a simple filename. This will cause that file from the
local path to be installed to the installation path of the self.name package (package path). The file argument
can also be a relative path in which case the entire relative path will be installed into the package directory.
Finally, the file can be an absolute path name in which case the file will be found at the absolute path name
but installed to the package path.
This basic behavior can be augmented by passing a 2-tuple in as the file argument. The first element of the
tuple should specify the relative path (under the package install directory) where the remaining sequence of
files should be installed to (it has nothing to do with the file-names in the source distribution). The second
element of the tuple is the sequence of files that should be installed. The files in this sequence can be filenames,
relative paths, or absolute paths. For absolute paths the file will be installed in the top-level package installation
directory (regardless of the first argument). Filenames and relative path names will be installed in the package
install directory under the path name given as the first element of the tuple.
Rules for installation paths:
1. file.txt -> (., file.txt)-> parent/file.txt
2. foo/file.txt -> (foo, foo/file.txt) -> parent/foo/file.txt
3. /foo/bar/file.txt -> (., /foo/bar/file.txt) -> parent/file.txt
4. *.txt -> parent/a.txt, parent/b.txt
5. foo/*.txt`` -> parent/foo/a.txt, parent/foo/b.txt
6. */*.txt -> (*, */*.txt) -> parent/c/a.txt, parent/d/b.txt

586 1. Python API

NumPy Reference, Release 2.2.0

7. (sun, file.txt) -> parent/sun/file.txt
8. (sun, bar/file.txt) -> parent/sun/file.txt
9. (sun, /foo/bar/file.txt) -> parent/sun/file.txt
10. (sun, *.txt) -> parent/sun/a.txt, parent/sun/b.txt
11. (sun, bar/*.txt) -> parent/sun/a.txt, parent/sun/b.txt
12. (sun/*, */*.txt) -> parent/sun/c/a.txt, parent/d/b.txt
An additional feature is that the path to a data-file can actually be a function that takes no arguments and
returns the actual path(s) to the data-files. This is useful when the data files are generated while building the
package.

Examples

Add files to the list of data_files to be included with the package.

>>> self.add_data_files('foo.dat',
... ('fun', ['gun.dat', 'nun/pun.dat', '/tmp/sun.dat']),
... 'bar/cat.dat',
... '/full/path/to/can.dat')

will install these data files to:

<package install directory>/
foo.dat
fun/
gun.dat
nun/
pun.dat

sun.dat
bar/
car.dat

can.dat

where <package install directory> is the package (or sub-package) directory such as ‘/usr/lib/python2.4/site-
packages/mypackage’ (‘C: Python2.4 Lib site-packages mypackage’) or ‘/usr/lib/python2.4/site- pack-
ages/mypackage/mysubpackage’ (‘C: Python2.4 Lib site-packages mypackage mysubpackage’).

add_data_dir(data_path)
Recursively add files under data_path to data_files list.
Recursively add files under data_path to the list of data_files to be installed (and distributed). The data_path
can be either a relative path-name, or an absolute path-name, or a 2-tuple where the first argument shows
where in the install directory the data directory should be installed to.

Parameters
data_path
[seq or str] Argument can be either
• 2-sequence (<datadir suffix>, <path to data directory>)
• path to data directory where python datadir suffix defaults to package dir.

1.1. NumPy’s module structure 587

NumPy Reference, Release 2.2.0

Notes

Rules for installation paths:

foo/bar -> (foo/bar, foo/bar) -> parent/foo/bar
(gun, foo/bar) -> parent/gun
foo/* -> (foo/a, foo/a), (foo/b, foo/b) -> parent/foo/a, parent/foo/b
(gun, foo/*) -> (gun, foo/a), (gun, foo/b) -> gun
(gun/*, foo/*) -> parent/gun/a, parent/gun/b
/foo/bar -> (bar, /foo/bar) -> parent/bar
(gun, /foo/bar) -> parent/gun
(fun/*/gun/*, sun/foo/bar) -> parent/fun/foo/gun/bar

Examples

For example suppose the source directory contains fun/foo.dat and fun/bar/car.dat:

>>> self.add_data_dir('fun')
>>> self.add_data_dir(('sun', 'fun'))
>>> self.add_data_dir(('gun', '/full/path/to/fun'))

Will install data-files to the locations:

<package install directory>/
fun/
foo.dat
bar/
car.dat

sun/
foo.dat
bar/
car.dat

gun/
foo.dat
car.dat

add_include_dirs(*paths)
Add paths to configuration include directories.
Add the given sequence of paths to the beginning of the include_dirs list. This list will be visible to all
extension modules of the current package.

add_headers(*files)
Add installable headers to configuration.
Add the given sequence of files to the beginning of the headers list. By default, headers will be installed under
<python- include>/<self.name.replace(‘.’,’/’)>/ directory. If an item of files is a tuple, then its first argument
specifies the actual installation location relative to the <python-include> path.

Parameters
files
[str or seq] Argument(s) can be either:
• 2-sequence (<includedir suffix>,<path to header file(s)>)
• path(s) to header file(s) where python includedir suffix will default to package name.

588 1. Python API

NumPy Reference, Release 2.2.0

add_extension(name, sources, **kw)
Add extension to configuration.
Create and add an Extension instance to the ext_modules list. This method also takes the following optional
keyword arguments that are passed on to the Extension constructor.

Parameters
name
[str] name of the extension

sources
[seq] list of the sources. The list of sources may contain functions (called source generators)
which must take an extension instance and a build directory as inputs and return a source
file or list of source files or None. If None is returned then no sources are generated. If the
Extension instance has no sources after processing all source generators, then no extension
module is built.

include_dirs
define_macros
undef_macros
library_dirs
libraries
runtime_library_dirs
extra_objects
extra_compile_args
extra_link_args
extra_f77_compile_args
extra_f90_compile_args
export_symbols
swig_opts
depends
The depends list contains paths to files or directories that the sources of the extension module
depend on. If any path in the depends list is newer than the extensionmodule, then themodule
will be rebuilt.

language
f2py_options
module_dirs
extra_info
[dict or list] dict or list of dict of keywords to be appended to keywords.

Notes

The self.paths(…) method is applied to all lists that may contain paths.
add_library(name, sources, **build_info)

Add library to configuration.
Parameters

name
[str] Name of the extension.

sources
[sequence] List of the sources. The list of sources may contain functions (called source
generators) which must take an extension instance and a build directory as inputs and return a
source file or list of source files or None. If None is returned then no sources are generated. If

1.1. NumPy’s module structure 589

NumPy Reference, Release 2.2.0

the Extension instance has no sources after processing all source generators, then no extension
module is built.

build_info
[dict, optional] The following keys are allowed:
• depends
• macros
• include_dirs
• extra_compiler_args
• extra_f77_compile_args
• extra_f90_compile_args
• f2py_options
• language

add_scripts(*files)
Add scripts to configuration.
Add the sequence of files to the beginning of the scripts list. Scripts will be installed under the <prefix>/bin/
directory.

add_installed_library(name, sources, install_dir, build_info=None)
Similar to add_library, but the specified library is installed.
Most C libraries used with distutils are only used to build python extensions, but libraries built through
this method will be installed so that they can be reused by third-party packages.

Parameters
name
[str] Name of the installed library.

sources
[sequence] List of the library’s source files. See add_library for details.

install_dir
[str] Path to install the library, relative to the current sub-package.

build_info
[dict, optional] The following keys are allowed:
• depends
• macros
• include_dirs
• extra_compiler_args
• extra_f77_compile_args
• extra_f90_compile_args
• f2py_options
• language

Returns
None

590 1. Python API

NumPy Reference, Release 2.2.0

See also:

add_library, add_npy_pkg_config, get_info

Notes

The best way to encode the options required to link against the specifiedC libraries is to use a “libname.ini” file,
and use get_info to retrieve the required options (see add_npy_pkg_config for more information).

add_npy_pkg_config(template, install_dir, subst_dict=None)
Generate and install a npy-pkg config file from a template.
The config file generated from template is installed in the given install directory, using subst_dict for variable
substitution.

Parameters
template
[str] The path of the template, relatively to the current package path.

install_dir
[str] Where to install the npy-pkg config file, relatively to the current package path.

subst_dict
[dict, optional] If given, any string of the form @key@ will be replaced by
subst_dict[key] in the template file when installed. The install prefix is always avail-
able through the variable @prefix@, since the install prefix is not easy to get reliably from
setup.py.

See also:

add_installed_library, get_info

Notes

This works for both standard installs and in-place builds, i.e. the @prefix@ refer to the source directory
for in-place builds.

Examples

config.add_npy_pkg_config('foo.ini.in', 'lib', {'foo': bar})

Assuming the foo.ini.in file has the following content:

[meta]
Name=@foo@
Version=1.0
Description=dummy description

[default]
Cflags=-I@prefix@/include
Libs=

The generated file will have the following content:

1.1. NumPy’s module structure 591

NumPy Reference, Release 2.2.0

[meta]
Name=bar
Version=1.0
Description=dummy description

[default]
Cflags=-Iprefix_dir/include
Libs=

and will be installed as foo.ini in the ‘lib’ subpath.
When cross-compiling with numpy distutils, it might be necessary to use modified npy-pkg-config files. Using
the default/generated files will link with the host libraries (i.e. libnpymath.a). For cross-compilation you of-
course need to link with target libraries, while using the host Python installation.
You can copy out the numpy/_core/lib/npy-pkg-config directory, add a pkgdir value to the .ini files and set
NPY_PKG_CONFIG_PATH environment variable to point to the directory with themodified npy-pkg-config
files.
Example npymath.ini modified for cross-compilation:

[meta]
Name=npymath
Description=Portable, core math library implementing C99 standard
Version=0.1

[variables]
pkgname=numpy._core
pkgdir=/build/arm-linux-gnueabi/sysroot/usr/lib/python3.7/site-packages/numpy/
↪→_core
prefix=${pkgdir}
libdir=${prefix}/lib
includedir=${prefix}/include

[default]
Libs=-L${libdir} -lnpymath
Cflags=-I${includedir}
Requires=mlib

[msvc]
Libs=/LIBPATH:${libdir} npymath.lib
Cflags=/INCLUDE:${includedir}
Requires=mlib

paths(*paths, **kws)
Apply glob to paths and prepend local_path if needed.
Applies glob.glob(…) to each path in the sequence (if needed) and prepends the local_path if needed. Because
this is called on all source lists, this allows wildcard characters to be specified in lists of sources for extension
modules and libraries and scripts and allows path-names be relative to the source directory.

get_config_cmd()

Returns the numpy.distutils config command instance.
get_build_temp_dir()

Return a path to a temporary directory where temporary files should be placed.
have_f77c()

Check for availability of Fortran 77 compiler.

592 1. Python API

NumPy Reference, Release 2.2.0

Use it inside source generating function to ensure that setup distribution instance has been initialized.

Notes

True if a Fortran 77 compiler is available (because a simple Fortran 77 code was able to be compiled suc-
cessfully).

have_f90c()

Check for availability of Fortran 90 compiler.
Use it inside source generating function to ensure that setup distribution instance has been initialized.

Notes

True if a Fortran 90 compiler is available (because a simple Fortran 90 code was able to be compiled suc-
cessfully)

get_version(version_file=None, version_variable=None)
Try to get version string of a package.
Return a version string of the current package or None if the version information could not be detected.

Notes

This method scans files named __version__.py, <packagename>_version.py, version.py, and
__svn_version__.py for string variables version, __version__, and <packagename>_version, until a
version number is found.

make_svn_version_py(delete=True)
Appends a data function to the data_files list that will generate __svn_version__.py file to the current package
directory.
Generate package __svn_version__.py file from SVN revision number, it will be removed after python exits
but will be available when sdist, etc commands are executed.

Notes

If __svn_version__.py existed before, nothing is done.
This is intended for working with source directories that are in an SVN repository.

make_config_py(name='__config__')
Generate package __config__.py file containing system_info information used during building the package.
This file is installed to the package installation directory.

get_info(*names)
Get resources information.
Return information (from system_info.get_info) for all of the names in the argument list in a single dictionary.

1.1. NumPy’s module structure 593

NumPy Reference, Release 2.2.0

Building installable C libraries
Conventional C libraries (installed through add_library) are not installed, and are just used during the build (they are
statically linked). An installable C library is a pure C library, which does not depend on the python C runtime, and is
installed such that it may be used by third-party packages. To build and install the C library, you just use the method
add_installed_library instead of add_library, which takes the same arguments except for an additional install_dir
argument:

.. hidden in a comment so as to be included in refguide but not rendered documentation
>>> import numpy.distutils.misc_util
>>> config = np.distutils.misc_util.Configuration(None, '', '.')
>>> with open('foo.c', 'w') as f: pass

>>> config.add_installed_library('foo', sources=['foo.c'], install_dir='lib')

npy-pkg-config files

To make the necessary build options available to third parties, you could use the npy-pkg-configmechanism implemented
in numpy.distutils. This mechanism is based on a .ini file which contains all the options. A .ini file is very similar
to .pc files as used by the pkg-config unix utility:

[meta]
Name: foo
Version: 1.0
Description: foo library

[variables]
prefix = /home/user/local
libdir = ${prefix}/lib
includedir = ${prefix}/include

[default]
cflags = -I${includedir}
libs = -L${libdir} -lfoo

Generally, the file needs to be generated during the build, since it needs some information known at build time only (e.g.
prefix). This is mostly automatic if one uses the Configuration method add_npy_pkg_config. Assuming we have a
template file foo.ini.in as follows:

[meta]
Name: foo
Version: @version@
Description: foo library

[variables]
prefix = @prefix@
libdir = ${prefix}/lib
includedir = ${prefix}/include

[default]
cflags = -I${includedir}
libs = -L${libdir} -lfoo

and the following code in setup.py:

594 1. Python API

NumPy Reference, Release 2.2.0

>>> config.add_installed_library('foo', sources=['foo.c'], install_dir='lib')
>>> subst = {'version': '1.0'}
>>> config.add_npy_pkg_config('foo.ini.in', 'lib', subst_dict=subst)

This will install the file foo.ini into the directory package_dir/lib, and the foo.ini file will be generated from foo.ini.in,
where each @version@ will be replaced by subst_dict['version']. The dictionary has an additional prefix
substitution rule automatically added, which contains the install prefix (since this is not easy to get from setup.py).

Reusing a C library from another package

Info are easily retrieved from the get_info function in numpy.distutils.misc_util:

>>> info = np.distutils.misc_util.get_info('npymath')
>>> config.add_extension('foo', sources=['foo.c'], extra_info=info)
<numpy.distutils.extension.Extension('foo') at 0x...>

An additional list of paths to look for .ini files can be given to get_info.

Conversion of .src files
NumPy distutils supports automatic conversion of source files named <somefile>.src. This facility can be used to maintain
very similar code blocks requiring only simple changes between blocks. During the build phase of setup, if a template
file named <somefile>.src is encountered, a new file named <somefile> is constructed from the template and placed in
the build directory to be used instead. Two forms of template conversion are supported. The first form occurs for files
named <file>.ext.src where ext is a recognized Fortran extension (f, f90, f95, f77, for, ftn, pyf). The second form is used
for all other cases. See Conversion of .src files using templates.

F2PY user guide and reference manual

The purpose of the F2PY –Fortran to Python interface generator– utility is to provide a connection between Python
and Fortran. F2PY distributed as part of NumPy (numpy.f2py) and once installed is also available as a standalone
command line tool. Originally created by Pearu Peterson, and older changelogs are in the historical reference.
F2PY facilitates creating/building native Python C/API extension modules that make it possible

• to call Fortran 77/90/95 external subroutines and Fortran 90/95 module subroutines as well as C functions;
• to access Fortran 77 COMMON blocks and Fortran 90/95 module data, including allocatable arrays

from Python.

Note: Fortran 77 is essentially feature complete, and an increasing amount of Modern Fortran is supported within F2PY.
Most iso_c_binding interfaces can be compiled to native extension modules automatically with f2py. Bug reports
welcome!

F2PY can be used either as a command line tool f2py or as a Python module numpy.f2py. While we try to provide
the command line tool as part of the numpy setup, some platforms like Windows make it difficult to reliably put the
executables on the PATH. If the f2py command is not available in your system, you may have to run it as a module:

python -m numpy.f2py

Using the python -m invocation is also good practice if you have multiple Python installs with NumPy in your system
(outside of virtual environments) and you want to ensure you pick up a particular version of Python/F2PY.

1.1. NumPy’s module structure 595

https://www.numpy.org/
https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e
https://docs.python.org/3/extending/extending.html#extending-python-with-c-or-c

NumPy Reference, Release 2.2.0

If you run f2py with no arguments, and the line numpy Version at the end matches the NumPy version printed
from python -m numpy.f2py, then you can use the shorter version. If not, or if you cannot run f2py, you should
replace all calls to f2py mentioned in this guide with the longer version.

F2PY user guide
Three ways to wrap - getting started

Wrapping Fortran or C functions to Python using F2PY consists of the following steps:
• Creating the so-called signature file that contains descriptions of wrappers to Fortran or C functions, also called
the signatures of the functions. For Fortran routines, F2PY can create an initial signature file by scanning Fortran
source codes and tracking all relevant information needed to create wrapper functions.

– Optionally, F2PY-created signature files can be edited to optimize wrapper functions, which can make them
“smarter” and more “Pythonic”.

• F2PY reads a signature file and writes a Python C/API module containing Fortran/C/Python bindings.
• F2PY compiles all sources and builds an extension module containing the wrappers.

– In building the extension modules, F2PY uses meson and used to use numpy.distutils For different
build systems, see F2PY and build systems.

Note:
See 1 Migrating to meson for migration information.

• Depending on your operating system, you may need to install the Python development headers (which provide the
file Python.h) separately. In Linux Debian-based distributions this package should be called python3-dev,
in Fedora-based distributions it is python3-devel. For macOS, depending how Python was installed, your
mileage may vary. In Windows, the headers are typically installed already, see F2PY and Windows.

Note: F2PY supports all the operating systems SciPy is tested on so their system dependencies panel is a good reference.

Depending on the situation, these steps can be carried out in a single composite command or step-by-step; in which case
some steps can be omitted or combined with others.
Below, we describe three typical approaches of using F2PY with Fortran 77. These can be read in order of increasing
effort, but also cater to different access levels depending on whether the Fortran code can be freely modified.
The following example Fortran 77 code will be used for illustration, save it as fib1.f:

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

(continues on next page)

596 1. Python API

http://scipy.github.io/devdocs/building/index.html#system-level-dependencies

NumPy Reference, Release 2.2.0

(continued from previous page)
ENDIF

ENDDO
END

C END FILE FIB1.F

Note: F2PY parses Fortran/C signatures to build wrapper functions to be used with Python. However, it is not a compiler,
and does not check for additional errors in source code, nor does it implement the entire language standards. Some errors
may pass silently (or as warnings) and need to be verified by the user.

The quick way

The quickest way to wrap the Fortran subroutine FIB for use in Python is to run

python -m numpy.f2py -c fib1.f -m fib1

or, alternatively, if the f2py command-line tool is available,

f2py -c fib1.f -m fib1

Note: Because the f2py command might not be available in all system, notably on Windows, we will use the python
-m numpy.f2py command throughout this guide.

This command compiles and wraps fib1.f (-c) to create the extensionmodule fib1.so (-m) in the current directory.
A list of command line options can be seen by executing python -m numpy.f2py. Now, in Python the Fortran
subroutine FIB is accessible via fib1.fib:

>>> import numpy as np
>>> import fib1
>>> print(fib1.fib.__doc__)
fib(a,[n])

Wrapper for ``fib``.

Parameters

a : input rank-1 array('d') with bounds (n)

Other parameters

n : input int, optional

Default: len(a)

>>> a = np.zeros(8, 'd')
>>> fib1.fib(a)
>>> print(a)
[0. 1. 1. 2. 3. 5. 8. 13.]

Note:
• Note that F2PY recognized that the second argument n is the dimension of the first array argument a. Since

1.1. NumPy’s module structure 597

NumPy Reference, Release 2.2.0

by default all arguments are input-only arguments, F2PY concludes that n can be optional with the default value
len(a).

• One can use different values for optional n:

>>> a1 = np.zeros(8, 'd')
>>> fib1.fib(a1, 6)
>>> print(a1)
[0. 1. 1. 2. 3. 5. 0. 0.]

but an exception is raised when it is incompatible with the input array a:

>>> fib1.fib(a, 10)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

fib.error: (len(a)>=n) failed for 1st keyword n: fib:n=10
>>>

F2PY implements basic compatibility checks between related arguments in order to avoid unexpected crashes.
• When a NumPy array that is Fortran contiguous and has a dtype corresponding to a presumed Fortran type is
used as an input array argument, then its C pointer is directly passed to Fortran.
Otherwise, F2PY makes a contiguous copy (with the proper dtype) of the input array and passes a C pointer of
the copy to the Fortran subroutine. As a result, any possible changes to the (copy of) input array have no effect on
the original argument, as demonstrated below:

>>> a = np.ones(8, 'i')
>>> fib1.fib(a)
>>> print(a)
[1 1 1 1 1 1 1 1]

Clearly, this is unexpected, as Fortran typically passes by reference. That the above example worked with
dtype=float is considered accidental.
F2PY provides an intent(inplace) attribute that modifies the attributes of an input array so that any changes
made by the Fortran routine will be reflected in the input argument. For example, if one specifies the in-
tent(inplace) a directive (see Attributes for details), then the example above would read:

>>> a = np.ones(8, 'i')
>>> fib1.fib(a)
>>> print(a)
[0. 1. 1. 2. 3. 5. 8. 13.]

However, the recommended way to have changes made by Fortran subroutine propagate to Python is to use the
intent(out) attribute. That approach is more efficient and also cleaner.

• The usage offib1.fib in Python is very similar to usingFIB in Fortran. However, using in situ output arguments
in Python is poor style, as there are no safety mechanisms in Python to protect against wrong argument types. When
using Fortran or C, compilers discover any type mismatches during the compilation process, but in Python the types
must be checked at runtime. Consequently, using in situ output arguments in Python may lead to difficult to find
bugs, not to mention the fact that the codes will be less readable when all required type checks are implemented.

Though the approach to wrapping Fortran routines for Python discussed so far is very straightforward, it has several
drawbacks (see the comments above). The drawbacks are due to the fact that there is no way for F2PY to determine
the actual intention of the arguments; that is, there is ambiguity in distinguishing between input and output arguments.
Consequently, F2PY assumes that all arguments are input arguments by default.

598 1. Python API

NumPy Reference, Release 2.2.0

There are ways (see below) to remove this ambiguity by “teaching” F2PY about the true intentions of function arguments,
and F2PY is then able to generate more explicit, easier to use, and less error prone wrappers for Fortran functions.

The smart way

If we want to have more control over how F2PY will treat the interface to our Fortran code, we can apply the wrapping
steps one by one.

• First, we create a signature file from fib1.f by running:

python -m numpy.f2py fib1.f -m fib2 -h fib1.pyf

The signature file is saved to fib1.pyf (see the -h flag) and its contents are shown below.

! -*- f90 -*-
python module fib2 ! in

interface ! in :fib2
subroutine fib(a,n) ! in :fib2:fib1.f

real*8 dimension(n) :: a
integer optional,check(len(a)>=n),depend(a) :: n=len(a)

end subroutine fib
end interface

end python module fib2

! This file was auto-generated with f2py (version:2.28.198-1366).
! See http://cens.ioc.ee/projects/f2py2e/

• Next, we’ll teach F2PY that the argument n is an input argument (using the intent(in) attribute) and that
the result, i.e., the contents of a after calling the Fortran function FIB, should be returned to Python (using the
intent(out) attribute). In addition, an array a should be created dynamically using the size determined by the
input argument n (using the depend(n) attribute to indicate this dependence relation).
The contents of a suitably modified version of fib1.pyf (saved as fib2.pyf) are as follows:

! -*- f90 -*-
python module fib2

interface
subroutine fib(a,n)

real*8 dimension(n),intent(out),depend(n) :: a
integer intent(in) :: n

end subroutine fib
end interface

end python module fib2

• Finally, we build the extension module with numpy.distutils by running:

python -m numpy.f2py -c fib2.pyf fib1.f

In Python:

>>> import fib2
>>> print(fib2.fib.__doc__)
a = fib(n)

Wrapper for ``fib``.

(continues on next page)

1.1. NumPy’s module structure 599

NumPy Reference, Release 2.2.0

(continued from previous page)
Parameters

n : input int

Returns

a : rank-1 array('d') with bounds (n)

>>> print(fib2.fib(8))
[0. 1. 1. 2. 3. 5. 8. 13.]

Note:
• The signature of fib2.fib now more closely corresponds to the intention of the Fortran subroutine FIB: given
the number n, fib2.fib returns the first n Fibonacci numbers as a NumPy array. The new Python signature
fib2.fib also rules out the unexpected behaviour in fib1.fib.

• Note that by default, using a single intent(out) also implies intent(hide). Arguments that have the
intent(hide) attribute specified will not be listed in the argument list of a wrapper function.

For more details, see Signature file.

The quick and smart way

The “smart way” of wrapping Fortran functions, as explained above, is suitable for wrapping (e.g. third party) Fortran
codes for which modifications to their source codes are not desirable nor even possible.
However, if editing Fortran codes is acceptable, then the generation of an intermediate signature file can be skipped in
most cases. F2PY specific attributes can be inserted directly into Fortran source codes using F2PY directives. A F2PY
directive consists of special comment lines (starting with Cf2py or !f2py, for example) which are ignored by Fortran
compilers but interpreted by F2PY as normal lines.
Consider a modified version of the previous Fortran code with F2PY directives, saved as fib3.f:

C FILE: FIB3.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)

Cf2py intent(in) n
Cf2py intent(out) a
Cf2py depend(n) a

DO I=1,N
IF (I.EQ.1) THEN

A(I) = 0.0D0
ELSEIF (I.EQ.2) THEN

A(I) = 1.0D0
ELSE

A(I) = A(I-1) + A(I-2)
ENDIF

ENDDO

(continues on next page)

600 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
END

C END FILE FIB3.F

Building the extension module can be now carried out in one command:

python -m numpy.f2py -c -m fib3 fib3.f

Notice that the resulting wrapper to FIB is as “smart” (unambiguous) as in the previous case:

>>> import fib3
>>> print(fib3.fib.__doc__)
a = fib(n)

Wrapper for ``fib``.

Parameters

n : input int

Returns

a : rank-1 array('d') with bounds (n)

>>> print(fib3.fib(8))
[0. 1. 1. 2. 3. 5. 8. 13.]

Using F2PY

This page contains a reference to all command-line options for the f2py command, as well as a reference to internal
functions of the numpy.f2py module.

Using f2py as a command-line tool

When used as a command-line tool, f2py has three major modes, distinguished by the usage of -c and -h switches.

1. Signature file generation

To scan Fortran sources and generate a signature file, use

f2py -h <filename.pyf> <options> <fortran files> \
[[only: <fortran functions> :] \
[skip: <fortran functions> :]]... \

[<fortran files> ...]

Note: A Fortran source file can contain many routines, and it is often not necessary to allow all routines to be usable
from Python. In such cases, either specify which routines should be wrapped (in the only: .. : part) or which
routines F2PY should ignore (in the skip: .. : part).
F2PY has no concept of a “per-file” skip or only list, so if functions are listed in only, no other functions will be
taken from any other files.

1.1. NumPy’s module structure 601

NumPy Reference, Release 2.2.0

If <filename.pyf> is specified as stdout, then signatures are written to standard output instead of a file.
Among other options (see below), the following can be used in this mode:
--overwrite-signature

Overwrites an existing signature file.

2. Extension module construction

To construct an extension module, use

f2py -m <modulename> <options> <fortran files> \
[[only: <fortran functions> :] \
[skip: <fortran functions> :]]... \

[<fortran files> ...]

The constructed extension module is saved as <modulename>module.c to the current directory.
Here <fortran files>may also contain signature files. Among other options (see below), the following options can
be used in this mode:
--debug-capi

Adds debugging hooks to the extension module. When using this extension module, various diagnostic information
about the wrapper is written to the standard output, for example, the values of variables, the steps taken, etc.

-include'<includefile>'
Add a CPP #include statement to the extension module source. <includefile> should be given in one of
the following forms

"filename.ext"
<filename.ext>

The include statement is inserted just before the wrapper functions. This feature enables using arbitrary C functions
(defined in <includefile>) in F2PY generated wrappers.

Note: This option is deprecated. Use usercode statement to specify C code snippets directly in signature files.

--[no-]wrap-functions
Create Fortran subroutine wrappers to Fortran functions. --wrap-functions is default because it ensures
maximum portability and compiler independence.

--[no-]freethreading-compatible
Create a module that declares it does or doesn’t require the GIL. The default is
--no-freethreading-compatible for backwards compatibility. Inspect the fortran code you are
wrapping for thread safety issues before passing --freethreading-compatible, as f2py does not
analyze fortran code for thread safety issues.

--include-paths "<path1>:<path2>..."
Search include files from given directories.

Note: The paths are to be separated by the correct operating system separator pathsep, that is : on Linux /
MacOS and ; on Windows. In CMake this corresponds to using $<SEMICOLON>.

602 1. Python API

https://docs.python.org/3/library/os.html#os.pathsep

NumPy Reference, Release 2.2.0

--help-link [<list of resources names>]
List system resources found by numpy_distutils/system_info.py. For example, try f2py
--help-link lapack_opt.

3. Building a module

To build an extension module, use

f2py -c <options> <fortran files> \
[[only: <fortran functions> :] \
[skip: <fortran functions> :]]... \

[<fortran/c source files>] [<.o, .a, .so files>]

If <fortran files> contains a signature file, then the source for an extension module is constructed, all Fortran and
C sources are compiled, and finally all object and library files are linked to the extension module <modulename>.so
which is saved into the current directory.
If <fortran files> does not contain a signature file, then an extension module is constructed by scanning all Fortran
source codes for routine signatures, before proceeding to build the extension module.

Warning: From Python 3.12 onwards, distutils has been removed. Use environment variables or native files
to interact with meson instead. See its FAQ for more information.

Among other options (see below) and options described for previous modes, the following can be used.

Note: Changed in version 1.26.0: There are now two separate build backends which can be used, distutils and
meson. Users are strongly recommended to switch to meson since it is the default above Python 3.12.

Common build flags:
--backend <backend_type>

Specify the build backend for the compilation process. The supported backends are meson and distutils. If
not specified, defaults to distutils. On Python 3.12 or higher, the default is meson.

--f77flags=<string>
Specify F77 compiler flags

--f90flags=<string>
Specify F90 compiler flags

--debug
Compile with debugging information

-l<libname>
Use the library <libname> when linking.

-D<macro>[=<defn=1>]
Define macro <macro> as <defn>.

-U<macro>
Define macro <macro>

-I<dir>
Append directory <dir> to the list of directories searched for include files.

1.1. NumPy’s module structure 603

https://mesonbuild.com/howtox.html

NumPy Reference, Release 2.2.0

-L<dir>
Add directory <dir> to the list of directories to be searched for -l.

The meson specific flags are:
--dep <dependency> meson only

Specify a meson dependency for the module. This may be passed multiple times for multiple dependencies. De-
pendencies are stored in a list for further processing. Example: --dep lapack --dep scalapack This
will identify “lapack” and “scalapack” as dependencies and remove them from argv, leaving a dependencies list
containing [“lapack”, “scalapack”].

The older distutils flags are:
--help-fcompiler no meson

List the available Fortran compilers.
--fcompiler=<Vendor> no meson

Specify a Fortran compiler type by vendor.
--f77exec=<path> no meson

Specify the path to a F77 compiler
--f90exec=<path> no meson

Specify the path to a F90 compiler
--opt=<string> no meson

Specify optimization flags
--arch=<string> no meson

Specify architecture specific optimization flags
--noopt no meson

Compile without optimization flags
--noarch no meson

Compile without arch-dependent optimization flags
link-<resource> no meson

Link the extension module with <resource> as defined by numpy_distutils/system_info.py. E.g. to
link with optimized LAPACK libraries (vecLib on MacOSX, ATLAS elsewhere), use --link-lapack_opt.
See also --help-link switch.

Note: The f2py -c option must be applied either to an existing .pyf file (plus the source/object/library files) or one
must specify the -m <modulename> option (plus the sources/object/library files). Use one of the following options:

f2py -c -m fib1 fib1.f

or

f2py -m fib1 fib1.f -h fib1.pyf
f2py -c fib1.pyf fib1.f

For more information, see the Building C and C++ Extensions Python documentation for details.

When building an extension module, a combination of the following macros may be required for non-gcc Fortran com-
pilers:

-DPREPEND_FORTRAN
-DNO_APPEND_FORTRAN
-DUPPERCASE_FORTRAN

604 1. Python API

https://docs.python.org/3/extending/building.html

NumPy Reference, Release 2.2.0

To test the performance of F2PY generated interfaces, use -DF2PY_REPORT_ATEXIT. Then a report of various
timings is printed out at the exit of Python. This feature may not work on all platforms, and currently only Linux is
supported.
To see whether F2PY generated interface performs copies of array arguments, use
-DF2PY_REPORT_ON_ARRAY_COPY=<int>. When the size of an array argument is larger than <int>, a
message about the copying is sent to stderr.

Other options

-m <modulename>
Name of an extension module. Default is untitled.

Warning: Don’t use this option if a signature file (*.pyf) is used.
Changed in version 1.26.3: Will ignore -m if a pyf file is provided.

--[no-]lower
Do [not] lower the cases in <fortran files>. By default, --lower is assumed with -h switch, and
--no-lower without the -h switch.

-include<header>
Writes additional headers in the C wrapper, can be passed multiple times, generates #include <header> each time.
Note that this is meant to be passed in single quotes and without spaces, for example '-include<stdbool.
h>'

--build-dir <dirname>
All F2PY generated files are created in <dirname>. Default is tempfile.mkdtemp().

--f2cmap <filename>
Load Fortran-to-C KIND specifications from the given file.

--quiet
Run quietly.

--verbose
Run with extra verbosity.

--skip-empty-wrappers
Do not generate wrapper files unless required by the inputs. This is a backwards compatibility flag to restore pre
1.22.4 behavior.

-v
Print the F2PY version and exit.

Execute f2py without any options to get an up-to-date list of available options.

1.1. NumPy’s module structure 605

NumPy Reference, Release 2.2.0

Python module numpy.f2py

Warning: Changed in version 2.0.0: There used to be a f2py.compile function, which was removed, users may
wrap python -m numpy.f2py via subprocess.run manually, and set environment variables to interact
with meson as required.

When using numpy.f2py as a module, the following functions can be invoked. Fortran to Python Interface Generator.
Copyright 1999 – 2011 Pearu Peterson all rights reserved. Copyright 2011 – present NumPy Developers. Permission to
use, modify, and distribute this software is given under the terms of the NumPy License.
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
numpy.f2py.get_include()

Return the directory that contains the fortranobject.c and .h files.

Note: This function is not needed when building an extension with numpy.distutils directly from .f and/or
.pyf files in one go.

Python extension modules built with f2py-generated code need to use fortranobject.c as a source file, and
include the fortranobject.h header. This function can be used to obtain the directory containing both of
these files.

Returns
include_path

[str] Absolute path to the directory containing fortranobject.c and
fortranobject.h.

See also:

numpy.get_include
function that returns the numpy include directory

Notes

New in version 1.21.1.
Unless the build system you are using has specific support for f2py, building a Python extension using a .pyf
signature file is a two-step process. For a module mymod:

• Step 1: run python -m numpy.f2py mymod.pyf --quiet. This generates mymodmodule.c
and (if needed) mymod-f2pywrappers.f files next to mymod.pyf.

• Step 2: build your Python extension module. This requires the following source files:
– mymodmodule.c

– mymod-f2pywrappers.f (if it was generated in Step 1)
– fortranobject.c

numpy.f2py.run_main(comline_list)
Equivalent to running:

606 1. Python API

NumPy Reference, Release 2.2.0

f2py <args>

where <args>=string.join(<list>,' '), but in Python. Unless -h is used, this function returns a
dictionary containing information on generated modules and their dependencies on source files.
You cannot build extension modules with this function, that is, using -c is not allowed. Use the compile com-
mand instead.

Examples

The command f2py -m scalar scalar.f can be executed from Python as follows.

>>> import numpy.f2py
>>> r = numpy.f2py.run_main(['-m','scalar','doc/source/f2py/scalar.f'])
Reading fortran codes...

Reading file 'doc/source/f2py/scalar.f' (format:fix,strict)
Post-processing...

Block: scalar
Block: FOO

Building modules...
Building module "scalar"...
Wrote C/API module "scalar" to file "./scalarmodule.c"

>>> print(r)
{'scalar': {'h': ['/home/users/pearu/src_cvs/f2py/src/fortranobject.h'],

'csrc': ['./scalarmodule.c',
'/home/users/pearu/src_cvs/f2py/src/fortranobject.c']}}

Automatic extension module generation

If you want to distribute your f2py extension module, then you only need to include the .pyf file and the Fortran code.
The distutils extensions in NumPy allow you to define an extension module entirely in terms of this interface file. A valid
setup.py file allowing distribution of the add.f module (as part of the package f2py_examples so that it would
be loaded as f2py_examples.add) is:

def configuration(parent_package='', top_path=None)
from numpy.distutils.misc_util import Configuration
config = Configuration('f2py_examples',parent_package, top_path)
config.add_extension('add', sources=['add.pyf','add.f'])
return config

if __name__ == '__main__':
from numpy.distutils.core import setup
setup(**configuration(top_path='').todict())

Installation of the new package is easy using:

pip install .

assuming you have the proper permissions to write to the main site- packages directory for the version of Python you
are using. For the resulting package to work, you need to create a file named __init__.py (in the same directory as
add.pyf). Notice the extension module is defined entirely in terms of the add.pyf and add.f files. The conversion
of the .pyf file to a .c file is handled by numpy.distutils.

1.1. NumPy’s module structure 607

NumPy Reference, Release 2.2.0

F2PY examples

Below are some examples of F2PY usage. This list is not comprehensive, but can be used as a starting point when
wrapping your own code.

Note: The best place to look for examples is the NumPy issue tracker, or the test cases for f2py. Some more use cases
are in Boilerplate reduction and templating.

F2PY walkthrough: a basic extension module

Creating source for a basic extension module

Consider the following subroutine, contained in a file named add.f

C
SUBROUTINE ZADD(A,B,C,N)

C
DOUBLE COMPLEX A(*)
DOUBLE COMPLEX B(*)
DOUBLE COMPLEX C(*)
INTEGER N
DO 20 J = 1, N

C(J) = A(J)+B(J)
20 CONTINUE

END

This routine simply adds the elements in two contiguous arrays and places the result in a third. The memory for all three
arrays must be provided by the calling routine. A very basic interface to this routine can be automatically generated by
f2py:

python -m numpy.f2py -m add add.f

This command will produce an extension module named addmodule.c in the current directory. This extension module
can now be compiled and used from Python just like any other extension module.

Creating a compiled extension module

You can also get f2py to both compile add.f along with the produced extension module leaving only a shared-library
extension file that can be imported from Python:

python -m numpy.f2py -c -m add add.f

This command produces a Python extension module compatible with your platform. This module may then be imported
from Python. It will contain a method for each subroutine in add. The docstring of each method contains information
about how the module method may be called:

>>> import add
>>> print(add.zadd.__doc__)
zadd(a,b,c,n)

Wrapper for ``zadd``.

(continues on next page)

608 1. Python API

https://github.com/numpy/numpy/issues?q=is%3Aissue+label%3A%22component%3A+numpy.f2py%22+is%3Aclosed

NumPy Reference, Release 2.2.0

(continued from previous page)

Parameters

a : input rank-1 array('D') with bounds (*)
b : input rank-1 array('D') with bounds (*)
c : input rank-1 array('D') with bounds (*)
n : input int

Improving the basic interface

The default interface is a very literal translation of the Fortran code into Python. The Fortran array arguments are con-
verted to NumPy arrays and the integer argument should be mapped to a C integer. The interface will attempt to convert
all arguments to their required types (and shapes) and issue an error if unsuccessful. However, because f2py knows
nothing about the semantics of the arguments (such that C is an output and n should really match the array sizes), it is
possible to abuse this function in ways that can cause Python to crash. For example:

>>> add.zadd([1, 2, 3], [1, 2], [3, 4], 1000)

will cause a program crash on most systems. Under the hood, the lists are being converted to arrays but then the underlying
add function is told to cycle way beyond the borders of the allocated memory.
In order to improve the interface, f2py supports directives. This is accomplished by constructing a signature file. It is
usually best to start from the interfaces that f2py produces in that file, which correspond to the default behavior. To get
f2py to generate the interface file use the -h option:

python -m numpy.f2py -h add.pyf -m add add.f

This command creates the add.pyf file in the current directory. The section of this file corresponding to zadd is:

subroutine zadd(a,b,c,n) ! in :add:add.f
double complex dimension(*) :: a
double complex dimension(*) :: b
double complex dimension(*) :: c
integer :: n

end subroutine zadd

By placing intent directives and checking code, the interface can be cleaned up quite a bit so the Python module method
is both easier to use and more robust to malformed inputs.

subroutine zadd(a,b,c,n) ! in :add:add.f
double complex dimension(n) :: a
double complex dimension(n) :: b
double complex intent(out),dimension(n) :: c
integer intent(hide),depend(a) :: n=len(a)

end subroutine zadd

The intent directive, intent(out) is used to tell f2py that c is an output variable and should be created by the interface
before being passed to the underlying code. The intent(hide) directive tells f2py to not allow the user to specify the
variable, n, but instead to get it from the size of a. The depend(a) directive is necessary to tell f2py that the value of n
depends on the input a (so that it won’t try to create the variable n until the variable a is created).
After modifying add.pyf, the new Python module file can be generated by compiling both add.f and add.pyf:

python -m numpy.f2py -c add.pyf add.f

1.1. NumPy’s module structure 609

NumPy Reference, Release 2.2.0

The new interface’s docstring is:

>>> import add
>>> print(add.zadd.__doc__)
c = zadd(a,b)

Wrapper for ``zadd``.

Parameters

a : input rank-1 array('D') with bounds (n)
b : input rank-1 array('D') with bounds (n)

Returns

c : rank-1 array('D') with bounds (n)

Now, the function can be called in a much more robust way:

>>> add.zadd([1, 2, 3], [4, 5, 6])
array([5.+0.j, 7.+0.j, 9.+0.j])

Notice the automatic conversion to the correct format that occurred.

Inserting directives in Fortran source

The robust interface of the previous section can also be generated automatically by placing the variable directives as
special comments in the original Fortran code.

Note: For projects where the Fortran code is being actively developed, this may be preferred.

Thus, if the source code is modified to contain:

C
SUBROUTINE ZADD(A,B,C,N)

C
CF2PY INTENT(OUT) :: C
CF2PY INTENT(HIDE) :: N
CF2PY DOUBLE COMPLEX :: A(N)
CF2PY DOUBLE COMPLEX :: B(N)
CF2PY DOUBLE COMPLEX :: C(N)

DOUBLE COMPLEX A(*)
DOUBLE COMPLEX B(*)
DOUBLE COMPLEX C(*)
INTEGER N
DO 20 J = 1, N

C(J) = A(J) + B(J)
20 CONTINUE

END

Then, one can compile the extension module using:

python -m numpy.f2py -c -m add add.f

The resulting signature for the function add.zadd is exactly the same one that was created previously. If the original source
code had contained A(N) instead of A(*) and so forth with B and C, then nearly the same interface can be obtained by

610 1. Python API

NumPy Reference, Release 2.2.0

placing the INTENT(OUT) :: C comment line in the source code. The only difference is that N would be an optional
input that would default to the length of A.

A filtering example

This example shows a function that filters a two-dimensional array of double precision floating-point numbers using a
fixed averaging filter. The advantage of using Fortran to index into multi-dimensional arrays should be clear from this
example.

C
SUBROUTINE DFILTER2D(A,B,M,N)

C
DOUBLE PRECISION A(M,N)
DOUBLE PRECISION B(M,N)
INTEGER N, M

CF2PY INTENT(OUT) :: B
CF2PY INTENT(HIDE) :: N
CF2PY INTENT(HIDE) :: M

DO 20 I = 2,M-1
DO 40 J = 2,N-1

B(I,J) = A(I,J) +
& (A(I-1,J)+A(I+1,J) +
& A(I,J-1)+A(I,J+1))*0.5D0 +
& (A(I-1,J-1) + A(I-1,J+1) +
& A(I+1,J-1) + A(I+1,J+1))*0.25D0

40 CONTINUE
20 CONTINUE

END

This code can be compiled and linked into an extension module named filter using:

python -m numpy.f2py -c -m filter filter.f

This will produce an extension module in the current directory with a method named dfilter2d that returns a filtered
version of the input.

depends keyword example

Consider the following code, saved in the file myroutine.f90:

subroutine s(n, m, c, x)
implicit none
integer, intent(in) :: n, m
real(kind=8), intent(out), dimension(n,m) :: x
real(kind=8), intent(in) :: c(:)

x = 0.0d0
x(1, 1) = c(1)

end subroutine s

Wrapping this with python -m numpy.f2py -c myroutine.f90 -m myroutine, we can do the following
in Python:

1.1. NumPy’s module structure 611

NumPy Reference, Release 2.2.0

>>> import numpy as np
>>> import myroutine
>>> x = myroutine.s(2, 3, np.array([5, 6, 7]))
>>> x
array([[5., 0., 0.],

[0., 0., 0.]])

Now, instead of generating the extension module directly, we will create a signature file for this subroutine first. This is a
common pattern for multi-step extension module generation. In this case, after running

python -m numpy.f2py myroutine.f90 -m myroutine -h myroutine.pyf

the following signature file is generated:

! -*- f90 -*-
! Note: the context of this file is case sensitive.

python module myroutine ! in
interface ! in :myroutine

subroutine s(n,m,c,x) ! in :myroutine:myroutine.f90
integer intent(in) :: n
integer intent(in) :: m
real(kind=8) dimension(:),intent(in) :: c
real(kind=8) dimension(n,m),intent(out),depend(m,n) :: x

end subroutine s
end interface

end python module myroutine

! This file was auto-generated with f2py (version:1.23.0.dev0+120.g4da01f42d).
! See:
! https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e

Now, if we run python -m numpy.f2py -c myroutine.pyf myroutine.f90 we see an error; note that
the signature file included a depend(m,n) statement for x which is not necessary. Indeed, editing the file above to read

! -*- f90 -*-
! Note: the context of this file is case sensitive.

python module myroutine ! in
interface ! in :myroutine

subroutine s(n,m,c,x) ! in :myroutine:myroutine.f90
integer intent(in) :: n
integer intent(in) :: m
real(kind=8) dimension(:),intent(in) :: c
real(kind=8) dimension(n,m),intent(out) :: x

end subroutine s
end interface

end python module myroutine

! This file was auto-generated with f2py (version:1.23.0.dev0+120.g4da01f42d).
! See:
! https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e

and running f2py -c myroutine.pyf myroutine.f90 yields correct results.

612 1. Python API

NumPy Reference, Release 2.2.0

Read more

• Wrapping C codes using f2py
• F2py section on the SciPy Cookbook
• F2py example: Interactive System for Ice sheet Simulation
• “Interfacing With Other Languages” section on the SciPy Cookbook.

F2PY reference manual
Signature file

The interface definition file (.pyf) is how you can fine-tune the interface between Python and Fortran. The syntax specifi-
cation for signature files (.pyf files) is modeled on the Fortran 90/95 language specification. Almost all Fortran standard
constructs are understood, both in free and fixed format (recall that Fortran 77 is a subset of Fortran 90/95). F2PY in-
troduces some extensions to the Fortran 90/95 language specification that help in the design of the Fortran to Python
interface, making it more “Pythonic”.
Signature files may contain arbitrary Fortran code so that any Fortran 90/95 codes can be treated as signature files. F2PY
silently ignores Fortran constructs that are irrelevant for creating the interface. However, this also means that syntax errors
are not caught by F2PY and will only be caught when the library is built.

Note: Currently, F2PY may fail with some valid Fortran constructs. If this happens, you can check the NumPy GitHub
issue tracker for possible workarounds or work-in-progress ideas.

In general, the contents of the signature files are case-sensitive. When scanning Fortran codes to generate a signature file,
F2PY lowers all cases automatically except in multi-line blocks or when the --no-lower option is used.
The syntax of signature files is presented below.

Signature files syntax

Python module block

A signature file may contain one (recommended) or more python module blocks. The python module block
describes the contents of a Python/C extension module <modulename>module.c that F2PY generates.

Warning: Exception: if <modulename> contains a substring __user__, then the corresponding python
module block describes the signatures of call-back functions (see Call-back arguments).

A python module block has the following structure:

python module <modulename>
[<usercode statement>]...
[
interface
<usercode statement>
<Fortran block data signatures>
<Fortran/C routine signatures>

end [interface]
]...

(continues on next page)

1.1. NumPy’s module structure 613

https://scipy.github.io/old-wiki/pages/Cookbook/f2py_and_NumPy.html
https://scipy-cookbook.readthedocs.io/items/F2Py.html
http://websrv.cs.umt.edu/isis/index.php/F2py_example
https://scipy-cookbook.readthedocs.io/items/idx_interfacing_with_other_languages.html
https://github.com/numpy/numpy/issues
https://github.com/numpy/numpy/issues

NumPy Reference, Release 2.2.0

(continued from previous page)
[
interface
module <F90 modulename>
[<F90 module data type declarations>]
[<F90 module routine signatures>]

end [module [<F90 modulename>]]
end [interface]
]...

end [python module [<modulename>]]

Here brackets [] indicate an optional section, dots ... indicate one or more of a previous section. So, []... is to be
read as zero or more of a previous section.

Fortran/C routine signatures

The signature of a Fortran routine has the following structure:

[<typespec>] function | subroutine <routine name> \
[([<arguments>])] [result (<entityname>)]

[<argument/variable type declarations>]
[<argument/variable attribute statements>]
[<use statements>]
[<common block statements>]
[<other statements>]

end [function | subroutine [<routine name>]]

From a Fortran routine signature F2PY generates a Python/C extension function that has the following signature:

def <routine name>(<required arguments>[,<optional arguments>]):
...
return <return variables>

The signature of a Fortran block data has the following structure:

block data [<block data name>]
[<variable type declarations>]
[<variable attribute statements>]
[<use statements>]
[<common block statements>]
[<include statements>]

end [block data [<block data name>]]

Type declarations

The definition of the <argument/variable type declaration> part is

<typespec> [[<attrspec>] ::] <entitydecl>

where

<typespec> := byte | character [<charselector>]
| complex [<kindselector>] | real [<kindselector>]
| double complex | double precision

(continues on next page)

614 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
| integer [<kindselector>] | logical [<kindselector>]

<charselector> := * <charlen>
| ([len=] <len> [, [kind=] <kind>])
| (kind= <kind> [, len= <len>])

<kindselector> := * <intlen> | ([kind=] <kind>)

<entitydecl> := <name> [[* <charlen>] [(<arrayspec>)]
| [(<arrayspec>)] * <charlen>]
| [/ <init_expr> / | = <init_expr>] \
[, <entitydecl>]

and
• <attrspec> is a comma separated list of attributes;
• <arrayspec> is a comma separated list of dimension bounds;
• <init_expr> is a C expression;
• <intlen>may be negative integer for integer type specifications. In such cases integer*<negintlen>
represents unsigned C integers;

If an argument has no <argument type declaration>, its type is determined by applying implicit rules to
its name.

Statements

Attribute statements

The <argument/variable attribute statement> is similar to the <argument/variable type
declaration>, but without <typespec>.
An attribute statement cannot contain other attributes, and <entitydecl> can be only a list of names. See Attributes
for more details on the attributes that can be used by F2PY.

Use statements

• The definition of the <use statement> part is

use <modulename> [, <rename_list> | , ONLY : <only_list>]

where

<rename_list> := <local_name> => <use_name> [, <rename_list>]

• Currently F2PY uses use statements only for linking call-back modules and external arguments (call-back
functions). See Call-back arguments.

1.1. NumPy’s module structure 615

NumPy Reference, Release 2.2.0

Common block statements

• The definition of the <common block statement> part is

common / <common name> / <shortentitydecl>

where

<shortentitydecl> := <name> [(<arrayspec>)] [, <shortentitydecl>]

• If a python module block contains two or more common blocks with the same name, the variables from
the additional declarations are appended. The types of variables in <shortentitydecl> are defined using
<argument type declarations>. Note that the corresponding <argument type declarations>
may contain array specifications; then these need not be specified in <shortentitydecl>.

Other statements

• The <other statement> part refers to any other Fortran language constructs that are not described above.
F2PY ignores most of them except the following:

– call statements and function calls of external arguments (see more details on external arguments);
– include statements

include '<filename>'
include "<filename>"

If a file <filename> does not exist, the include statement is ignored. Otherwise, the file
<filename> is included to a signature file. include statements can be used in any part of a signature
file, also outside the Fortran/C routine signature blocks.

– implicit statements

implicit none
implicit <list of implicit maps>

where

<implicit map> := <typespec> (<list of letters or range of letters>)

Implicit rules are used to determine the type specification of a variable (from the first-letter of its name)
if the variable is not defined using <variable type declaration>. Default implicit rules are
given by:

implicit real (a-h,o-z,$_), integer (i-m)

– entry statements

entry <entry name> [([<arguments>])]

F2PY generates wrappers for all entry names using the signature of the routine block.

Note: The entry statement can be used to describe the signature of an arbitrary subroutine or func-
tion allowing F2PY to generate a number of wrappers from only one routine block signature. There are

616 1. Python API

NumPy Reference, Release 2.2.0

few restrictions while doing this: fortranname cannot be used, callstatement and callpro-
toargument can be used only if they are valid for all entry routines, etc.

F2PY statements

In addition, F2PY introduces the following statements:
threadsafe

Uses a Py_BEGIN_ALLOW_THREADS .. Py_END_ALLOW_THREADS block around the call to Fortran/C
function.

callstatement <C-expr|multi-line block>
Replaces the F2PY generated call statement to Fortran/C function with <C-expr|multi-line block>. The
wrapped Fortran/C function is available as (*f2py_func).
To raise an exception, set f2py_success = 0 in <C-expr|multi-line block>.

callprotoargument <C-typespecs>
When the callstatement statement is used, F2PYmay not generate proper prototypes for Fortran/C functions
(because <C-expr> may contain function calls, and F2PY has no way to determine what should be the proper
prototype).
With this statement you can explicitly specify the arguments of the corresponding prototype:

extern <return type> FUNC_F(<routine name>,<ROUTINE NAME>)(<callprotoargument>);

fortranname [<actual Fortran/C routine name>]
F2PY allows for the use of an arbitrary <routine name> for a given Fortran/C function. Then this statement
is used for the <actual Fortran/C routine name>.
Iffortranname statement is usedwithout<actual Fortran/C routine name> then a dummywrapper
is generated.

usercode <multi-line block>
When this is used inside a python module block, the given C code will be inserted to generated C/API source
just before wrapper function definitions.
Here you can define arbitrary C functions to be used for the initialization of optional arguments.
For example, if usercode is used twice inside python module block then the second multi-line block is
inserted after the definition of the external routines.
When used inside <routine signature>, then the given C code will be inserted into the corresponding
wrapper function just after the declaration of variables but before any C statements. So, the usercode follow-up
can contain both declarations and C statements.
When used inside the first interface block, then the given C code will be inserted at the end of the initialization
function of the extension module. This is how the extension modules dictionary can be modified and has many
use-cases; for example, to define additional variables.

pymethoddef <multiline block>
This is a multi-line block which will be inserted into the definition of a module methods PyMethodDef-array.
It must be a comma-separated list of C arrays (see Extending and Embedding Python documentation for details).
pymethoddef statement can be used only inside python module block.

1.1. NumPy’s module structure 617

https://docs.python.org/extending/index.html

NumPy Reference, Release 2.2.0

Attributes

The following attributes can be used by F2PY.
optional

The corresponding argument is moved to the end of <optional arguments> list. A default value for an
optional argument can be specified via <init_expr> (see the entitydecl definition)

Note:
• The default value must be given as a valid C expression.
• Whenever <init_expr> is used, the optional attribute is set automatically by F2PY.
• For an optional array argument, all its dimensions must be bounded.

required
The corresponding argument with this attribute is considered mandatory. This is the default. required should
only be specified if there is a need to disable the automatic optional setting when <init_expr> is used.
If a Python None object is used as a required argument, the argument is treated as optional. That is, in the case
of array arguments, the memory is allocated. If <init_expr> is given, then the corresponding initialization is
carried out.

dimension(<arrayspec>)
The corresponding variable is considered as an array with dimensions given in <arrayspec>.

intent(<intentspec>)
This specifies the “intention” of the corresponding argument. <intentspec> is a comma separated list of the
following keys:

• in
The corresponding argument is considered to be input-only. This means that the value of the argument is
passed to a Fortran/C function and that the function is expected to not change the value of this argument.

• inout
The corresponding argument is marked for input/output or as an in situ output argument. in-
tent(inout) arguments can be only contiguous NumPy arrays (in either the Fortran or C sense)
with proper type and size. The latter coincides with the default contiguous concept used in NumPy and
is effective only if intent(c) is used. F2PY assumes Fortran contiguous arguments by default.

Note: Using intent(inout) is generally not recommended, as it can cause unexpected results. For
example, scalar arguments using intent(inout) are assumed to be array objects in order to have in
situ changes be effective. Use intent(in,out) instead.

See also the intent(inplace) attribute.
• inplace

The corresponding argument is considered to be an input/output or in situ output argument. in-
tent(inplace) arguments must be NumPy arrays of a proper size. If the type of an array is not
“proper” or the array is non-contiguous then the array will be modified in-place to fix the type and make
it contiguous.

Note: Using intent(inplace) is generally not recommended either.

618 1. Python API

NumPy Reference, Release 2.2.0

For example, when slices have been taken from an intent(inplace) argument then after in-place
changes, the data pointers for the slices may point to an unallocated memory area.

• out
The corresponding argument is considered to be a return variable. It is appended to the <returned
variables> list. Usingintent(out) setsintent(hide) automatically, unlessintent(in)
or intent(inout) are specified as well.
By default, returned multidimensional arrays are Fortran-contiguous. If intent(c) attribute is used,
then the returned multidimensional arrays are C-contiguous.

• hide
The corresponding argument is removed from the list of required or optional arguments. Typically
intent(hide) is used with intent(out) or when <init_expr> completely determines the
value of the argument like in the following example:

integer intent(hide),depend(a) :: n = len(a)
real intent(in),dimension(n) :: a

• c
The corresponding argument is treated as a C scalar or C array argument. For the case of a scalar
argument, its value is passed to a C function as a C scalar argument (recall that Fortran scalar argu-
ments are actually C pointer arguments). For array arguments, the wrapper function is assumed to treat
multidimensional arrays as C-contiguous arrays.
There is no need to use intent(c) for one-dimensional arrays, irrespective of whether the wrapped
function is in Fortran or C. This is because the concepts of Fortran- and C contiguity overlap in one-
dimensional cases.
If intent(c) is used as a statement but without an entity declaration list, then F2PY adds the in-
tent(c) attribute to all arguments.
Also, when wrapping C functions, one must use intent(c) attribute for <routine name> in order
to disable Fortran specific F_FUNC(..,..) macros.

• cache
The corresponding argument is treated as junk memory. No Fortran nor C contiguity checks are car-
ried out. Using intent(cache) makes sense only for array arguments, also in conjunction with
intent(hide) or optional attributes.

• copy
Ensures that the original contents of intent(in) argument is preserved. Typically used with
the intent(in,out) attribute. F2PY creates an optional argument overwrite_<argument
name> with the default value 0.

• overwrite
This indicates that the original contents of the intent(in) argument may be altered by the Fortran/C
function. F2PY creates an optional argument overwrite_<argument name> with the default
value 1.

• out=<new name>
Replaces the returned name with <new name> in the __doc__ string of the wrapper function.

• callback
Constructs an external function suitable for calling Python functions from Fortran. in-
tent(callback) must be specified before the corresponding external statement. If the ‘ar-
gument’ is not in the argument list then it will be added to Python wrapper but only by initializing an
external function.

1.1. NumPy’s module structure 619

NumPy Reference, Release 2.2.0

Note: Use intent(callback) in situations where the Fortran/C code assumes that the user
implemented a function with a given prototype and linked it to an executable. Don’t use in-
tent(callback) if the function appears in the argument list of a Fortran routine.

With intent(hide) or optional attributes specified and using a wrapper function without spec-
ifying the callback argument in the argument list; then the call-back function is assumed to be found in
the namespace of the F2PY generated extension module where it can be set as a module attribute by a
user.

• aux
Defines an auxiliary C variable in the F2PY generated wrapper function. Useful to save parameter values
so that they can be accessed in initialization expressions for other variables.

Note: intent(aux) silently implies intent(c).

The following rules apply:
• If none of intent(in | inout | out | hide) are specified, intent(in) is assumed.

– intent(in,inout) is intent(in);
– intent(in,hide) or intent(inout,hide) is intent(hide);
– intent(out) is intent(out,hide) unless intent(in) or intent(inout) is specified.

• If intent(copy) or intent(overwrite) is used, then an additional optional argument is introduced
with a name overwrite_<argument name> and a default value 0 or 1, respectively.
– intent(inout,inplace) is intent(inplace);
– intent(in,inplace) is intent(inplace);
– intent(hide) disables optional and required.

check([<C-booleanexpr>])
Performs a consistency check on the arguments by evaluating <C-booleanexpr>; if <C-booleanexpr>
returns 0, an exception is raised.

Note: If check(..) is not used then F2PY automatically generates a few standard checks (e.g. in a case of an
array argument, it checks for the proper shape and size). Use check() to disable checks generated by F2PY.

depend([<names>])
This declares that the corresponding argument depends on the values of variables in the<names> list. For example,
<init_expr> may use the values of other arguments. Using information given by depend(..) attributes,
F2PY ensures that arguments are initialized in a proper order. If the depend(..) attribute is not used then F2PY
determines dependence relations automatically. Use depend() to disable the dependence relations generated by
F2PY.
When you edit dependence relations that were initially generated by F2PY, be careful not to break the dependence
relations of other relevant variables. Another thing to watch out for is cyclic dependencies. F2PY is able to detect
cyclic dependencies when constructing wrappers and it complains if any are found.

allocatable
The corresponding variable is a Fortran 90 allocatable array defined as Fortran 90 module data.

external
The corresponding argument is a function provided by user. The signature of this call-back function can be defined

620 1. Python API

NumPy Reference, Release 2.2.0

• in __user__ module block,
• or by demonstrative (or real, if the signature file is a real Fortran code) call in the <other statements>
block.

For example, F2PY generates from:

external cb_sub, cb_fun
integer n
real a(n),r
call cb_sub(a,n)
r = cb_fun(4)

the following call-back signatures:

subroutine cb_sub(a,n)
real dimension(n) :: a
integer optional,check(len(a)>=n),depend(a) :: n=len(a)

end subroutine cb_sub
function cb_fun(e_4_e) result (r)

integer :: e_4_e
real :: r

end function cb_fun

The corresponding user-provided Python function are then:

def cb_sub(a,[n]):
...
return

def cb_fun(e_4_e):
...
return r

See also the intent(callback) attribute.
parameter

This indicates that the corresponding variable is a parameter and it must have a fixed value. F2PY replaces all
parameter occurrences by their corresponding values.

Extensions

F2PY directives

The F2PY directives allow using F2PY signature file constructs in Fortran 77/90 source codes. With this feature one can
(almost) completely skip the intermediate signature file generation and apply F2PY directly to Fortran source codes.
F2PY directives have the following form:

<comment char>f2py ...

where allowed comment characters for fixed and free format Fortran codes are cC*!# and !, respectively. Everything
that follows <comment char>f2py is ignored by a compiler but read by F2PY as a normal non-comment Fortran
line:

Note: When F2PY finds a line with F2PY directive, the directive is first replaced by 5 spaces and then the line is reread.

1.1. NumPy’s module structure 621

NumPy Reference, Release 2.2.0

For fixed format Fortran codes, <comment char> must be at the first column of a file, of course. For free format
Fortran codes, the F2PY directives can appear anywhere in a file.

C expressions

C expressions are used in the following parts of signature files:
• <init_expr> for variable initialization;
• <C-booleanexpr> of the check attribute;
• <arrayspec> of the dimension attribute;
• callstatement statement, here also a C multi-line block can be used.

A C expression may contain:
• standard C constructs;
• functions from math.h and Python.h;
• variables from the argument list, presumably initialized before according to given dependence relations;
• the following CPP macros:
f2py_rank(<name>)

Returns the rank of an array <name>.
f2py_shape(<name>, <n>)

Returns the <n>-th dimension of an array <name>.
f2py_len(<name>)

Returns the length of an array <name>.
f2py_size(<name>)

Returns the size of an array <name>.
f2py_itemsize(<name>)

Returns the itemsize of an array <name>.
f2py_slen(<name>)

Returns the length of a string <name>.
For initializing an array <array name>, F2PY generates a loop over all indices and dimensions that executes the
following pseudo-statement:

<array name>(_i[0],_i[1],...) = <init_expr>;

where _i[<i>] refers to the <i>-th index value and that runs from 0 to shape(<array name>,<i>)-1.
For example, a function myrange(n) generated from the following signature

subroutine myrange(a,n)
fortranname ! myrange is a dummy wrapper
integer intent(in) :: n
real*8 intent(c,out),dimension(n),depend(n) :: a = _i[0]

end subroutine myrange

is equivalent to numpy.arange(n,dtype=float).

622 1. Python API

NumPy Reference, Release 2.2.0

Warning: F2PYmay lower cases also in C expressions when scanning Fortran codes (see --[no]-lower option).

Multi-line blocks

A multi-line block starts with ''' (triple single-quotes) and ends with ''' in some strictly subsequent line. Multi-line
blocks can be used only within .pyf files. The contents of a multi-line block can be arbitrary (except that it cannot contain
''') and no transformations (e.g. lowering cases) are applied to it.
Currently, multi-line blocks can be used in the following constructs:

• as a C expression of the callstatement statement;
• as a C type specification of the callprotoargument statement;
• as a C code block of the usercode statement;
• as a list of C arrays of the pymethoddef statement;
• as documentation string.

Extended char-selector

F2PY extends char-selector specification, usable within a signature file or a F2PY directive, as follows:

<extended-charselector> := <charselector>
| (f2py_len= <len>)

See Character strings for usage.

Using F2PY bindings in Python

In this page, you can find a full description and a few examples of common usage patterns for F2PY with Python and
different argument types. For more examples and use cases, see F2PY examples.

Fortran type objects

All wrappers for Fortran/C routines, common blocks, or Fortran 90 module data generated by F2PY are exposed to
Python as fortran type objects. Routine wrappers are callable fortran type objects while wrappers to Fortran data
have attributes referring to data objects.
All fortran type objects have an attribute _cpointer that contains a PyCapsule referring to the C pointer of the
corresponding Fortran/C function or variable at the C level. Such PyCapsule objects can be used as callback arguments
for F2PY generated functions to bypass the Python C/API layer for calling Python functions from Fortran or C. This can
be useful when the computational aspects of such functions are implemented in C or Fortran and wrapped with F2PY (or
any other tool capable of providing the PyCapsule containing a function).
Consider a Fortran 77 file `ftype.f:

C FILE: FTYPE.F
SUBROUTINE FOO(N)
INTEGER N

Cf2py integer optional,intent(in) :: n = 13

(continues on next page)

1.1. NumPy’s module structure 623

https://docs.python.org/3/c-api/capsule.html#c.PyCapsule

NumPy Reference, Release 2.2.0

(continued from previous page)
REAL A,X
COMMON /DATA/ A,X(3)

C PRINT*, "IN FOO: N=",N," A=",A," X=[",X(1),X(2),X(3),"]"
END

C END OF FTYPE.F

and a wrapper built using f2py -c ftype.f -m ftype.
In Python, you can observe the types of foo and data, and how to access individual objects of the wrapped Fortran
code.

>>> import ftype
>>> print(ftype.__doc__)
This module 'ftype' is auto-generated with f2py (version:2).
Functions:
foo(n=13)

COMMON blocks:
/data/ a,x(3)

.
>>> type(ftype.foo), type(ftype.data)
(<class 'fortran'>, <class 'fortran'>)
>>> ftype.foo()
IN FOO: N= 13 A= 0. X=[0. 0. 0.]
>>> ftype.data.a = 3
>>> ftype.data.x = [1,2,3]
>>> ftype.foo()
IN FOO: N= 13 A= 3. X=[1. 2. 3.]
>>> ftype.data.x[1] = 45
>>> ftype.foo(24)
IN FOO: N= 24 A= 3. X=[1. 45. 3.]
>>> ftype.data.x
array([1., 45., 3.], dtype=float32)

Scalar arguments

In general, a scalar argument for a F2PY generated wrapper function can be an ordinary Python scalar (integer, float,
complex number) as well as an arbitrary sequence object (list, tuple, array, string) of scalars. In the latter case, the first
element of the sequence object is passed to the Fortran routine as a scalar argument.

Note:
• When type-casting is required and there is possible loss of information via narrowing e.g. when type-casting float
to integer or complex to float, F2PY does not raise an exception.

– For complex to real type-casting only the real part of a complex number is used.
• intent(inout) scalar arguments are assumed to be array objects in order to have in situ changes be effective.
It is recommended to use arrays with proper type but also other types work. Read more about the intent attribute.

Consider the following Fortran 77 code:

C FILE: SCALAR.F
SUBROUTINE FOO(A,B)
REAL*8 A, B

(continues on next page)

624 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
Cf2py intent(in) a
Cf2py intent(inout) b

PRINT*, " A=",A," B=",B
PRINT*, "INCREMENT A AND B"
A = A + 1D0
B = B + 1D0
PRINT*, "NEW A=",A," B=",B
END

C END OF FILE SCALAR.F

and wrap it using f2py -c -m scalar scalar.f.
In Python:

>>> import scalar
>>> print(scalar.foo.__doc__)
foo(a,b)

Wrapper for ``foo``.

Parameters

a : input float
b : in/output rank-0 array(float,'d')

>>> scalar.foo(2, 3)
A= 2. B= 3.

INCREMENT A AND B
NEW A= 3. B= 4.
>>> import numpy
>>> a = numpy.array(2) # these are integer rank-0 arrays
>>> b = numpy.array(3)
>>> scalar.foo(a, b)

A= 2. B= 3.
INCREMENT A AND B
NEW A= 3. B= 4.
>>> print(a, b) # note that only b is changed in situ
2 4

String arguments

F2PY generated wrapper functions accept almost any Python object as a string argument, since str is applied for non-
string objects. Exceptions are NumPy arrays that must have type code 'S1' or 'b' (corresponding to the outdated 'c'
or '1' typecodes, respectively) when used as string arguments. See Scalars for more information on these typecodes.
A string can have an arbitrary length when used as a string argument for an F2PY generated wrapper function. If the
length is greater than expected, the string is truncated silently. If the length is smaller than expected, additional memory
is allocated and filled with \0.
Because Python strings are immutable, an intent(inout) argument expects an array version of a string in order to
have in situ changes be effective.
Consider the following Fortran 77 code:

C FILE: STRING.F
SUBROUTINE FOO(A,B,C,D)

(continues on next page)

1.1. NumPy’s module structure 625

NumPy Reference, Release 2.2.0

(continued from previous page)
CHARACTER*5 A, B
CHARACTER*(*) C,D

Cf2py intent(in) a,c
Cf2py intent(inout) b,d

PRINT*, "A=",A
PRINT*, "B=",B
PRINT*, "C=",C
PRINT*, "D=",D
PRINT*, "CHANGE A,B,C,D"
A(1:1) = 'A'
B(1:1) = 'B'
C(1:1) = 'C'
D(1:1) = 'D'
PRINT*, "A=",A
PRINT*, "B=",B
PRINT*, "C=",C
PRINT*, "D=",D
END

C END OF FILE STRING.F

and wrap it using f2py -c -m mystring string.f.
Python session:

>>> import mystring
>>> print(mystring.foo.__doc__)
foo(a,b,c,d)

Wrapper for ``foo``.

Parameters

a : input string(len=5)
b : in/output rank-0 array(string(len=5),'c')
c : input string(len=-1)
d : in/output rank-0 array(string(len=-1),'c')

>>> from numpy import array
>>> a = array(b'123\0\0')
>>> b = array(b'123\0\0')
>>> c = array(b'123')
>>> d = array(b'123')
>>> mystring.foo(a, b, c, d)
A=123
B=123
C=123
D=123
CHANGE A,B,C,D
A=A23
B=B23
C=C23
D=D23
>>> a[()], b[()], c[()], d[()]
(b'123', b'B23', b'123', b'D2')

626 1. Python API

NumPy Reference, Release 2.2.0

Array arguments

In general, array arguments for F2PY generated wrapper functions accept arbitrary sequences that can be transformed to
NumPy array objects. There are two notable exceptions:

• intent(inout) array arguments must always be proper-contiguous and have a compatible dtype, otherwise
an exception is raised.

• intent(inplace) array arguments will be changed in situ if the argument has a different type than expected
(see the intent(inplace) attribute for more information).

In general, if a NumPy array is proper-contiguous and has a proper type then it is directly passed to the wrapped Fortran/C
function. Otherwise, an element-wise copy of the input array is made and the copy, being proper-contiguous and with
proper type, is used as the array argument.
Usually there is no need to worry about how the arrays are stored in memory and whether the wrapped functions, being
either Fortran or C functions, assume one or another storage order. F2PY automatically ensures that wrapped functions
get arguments with the proper storage order; the underlying algorithm is designed to make copies of arrays only when
absolutely necessary. However, when dealing with very large multidimensional input arrays with sizes close to the size
of the physical memory in your computer, then care must be taken to ensure the usage of proper-contiguous and proper
type arguments.
To transform input arrays to columnmajor storage order before passing them to Fortran routines, use the functionnumpy.
asfortranarray.
Consider the following Fortran 77 code:

C FILE: ARRAY.F
SUBROUTINE FOO(A,N,M)

C
C INCREMENT THE FIRST ROW AND DECREMENT THE FIRST COLUMN OF A
C

INTEGER N,M,I,J
REAL*8 A(N,M)

Cf2py intent(in,out,copy) a
Cf2py integer intent(hide),depend(a) :: n=shape(a,0), m=shape(a,1)

DO J=1,M
A(1,J) = A(1,J) + 1D0

ENDDO
DO I=1,N

A(I,1) = A(I,1) - 1D0
ENDDO
END

C END OF FILE ARRAY.F

and wrap it using f2py -c -m arr array.f -DF2PY_REPORT_ON_ARRAY_COPY=1.
In Python:

>>> import arr
>>> from numpy import asfortranarray
>>> print(arr.foo.__doc__)
a = foo(a,[overwrite_a])

Wrapper for ``foo``.

Parameters

a : input rank-2 array('d') with bounds (n,m)

(continues on next page)

1.1. NumPy’s module structure 627

NumPy Reference, Release 2.2.0

(continued from previous page)

Other Parameters

overwrite_a : input int, optional

Default: 0

Returns

a : rank-2 array('d') with bounds (n,m)

>>> a = arr.foo([[1, 2, 3],
... [4, 5, 6]])
created an array from object
>>> print(a)
[[1. 3. 4.]
[3. 5. 6.]]
>>> a.flags.c_contiguous
False
>>> a.flags.f_contiguous
True
even if a is proper-contiguous and has proper type,
a copy is made forced by intent(copy) attribute
to preserve its original contents
>>> b = arr.foo(a)
copied an array: size=6, elsize=8
>>> print(a)
[[1. 3. 4.]
[3. 5. 6.]]
>>> print(b)
[[1. 4. 5.]
[2. 5. 6.]]
>>> b = arr.foo(a, overwrite_a = 1) # a is passed directly to Fortran
... # routine and its contents is discarded
...
>>> print(a)
[[1. 4. 5.]
[2. 5. 6.]]
>>> print(b)
[[1. 4. 5.]
[2. 5. 6.]]
>>> a is b # a and b are actually the same objects
True
>>> print(arr.foo([1, 2, 3])) # different rank arrays are allowed
created an array from object
[1. 1. 2.]
>>> print(arr.foo([[[1], [2], [3]]]))
created an array from object
[[[1.]
[1.]
[2.]]]

>>>
>>> # Creating arrays with column major data storage order:
...
>>> s = asfortranarray([[1, 2, 3], [4, 5, 6]])
>>> s.flags.f_contiguous
True
>>> print(s)

(continues on next page)

628 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[[1 2 3]
[4 5 6]]
>>> print(arr.foo(s))
>>> s2 = asfortranarray(s)
>>> s2 is s # an array with column major storage order

is returned immediately
True
>>> # Note that arr.foo returns a column major data storage order array:
...
>>> s3 = ascontiguousarray(s)
>>> s3.flags.f_contiguous
False
>>> s3.flags.c_contiguous
True
>>> s3 = arr.foo(s3)
copied an array: size=6, elsize=8
>>> s3.flags.f_contiguous
True
>>> s3.flags.c_contiguous
False

Call-back arguments

F2PY supports calling Python functions from Fortran or C codes.
Consider the following Fortran 77 code:

C FILE: CALLBACK.F
SUBROUTINE FOO(FUN,R)
EXTERNAL FUN
INTEGER I
REAL*8 R, FUN

Cf2py intent(out) r
R = 0D0
DO I=-5,5

R = R + FUN(I)
ENDDO
END

C END OF FILE CALLBACK.F

and wrap it using f2py -c -m callback callback.f.
In Python:

>>> import callback
>>> print(callback.foo.__doc__)
r = foo(fun,[fun_extra_args])

Wrapper for ``foo``.

Parameters

fun : call-back function

Other Parameters

(continues on next page)

1.1. NumPy’s module structure 629

NumPy Reference, Release 2.2.0

(continued from previous page)

fun_extra_args : input tuple, optional

Default: ()

Returns

r : float

Notes

Call-back functions::

def fun(i): return r
Required arguments:
i : input int

Return objects:
r : float

>>> def f(i): return i*i
...
>>> print(callback.foo(f))
110.0
>>> print(callback.foo(lambda i:1))
11.0

In the above example F2PY was able to guess accurately the signature of the call-back function. However, sometimes
F2PY cannot establish the appropriate signature; in these cases the signature of the call-back function must be explicitly
defined in the signature file.
To facilitate this, signature files may contain special modules (the names of these modules contain the special __user__
sub-string) that define the various signatures for call-back functions. Callback arguments in routine signatures have the
external attribute (see also the intent(callback) attribute). To relate a callback argument with its signature
in a __user__ module block, a use statement can be utilized as illustrated below. The same signature for a callback
argument can be referred to in different routine signatures.
We use the same Fortran 77 code as in the previous example but now we will pretend that F2PY was not able to guess
the signatures of call-back arguments correctly. First, we create an initial signature file callback2.pyf using F2PY:

f2py -m callback2 -h callback2.pyf callback.f

Then modify it as follows

! -*- f90 -*-
python module __user__routines

interface
function fun(i) result (r)

integer :: i
real*8 :: r

end function fun
end interface

end python module __user__routines

python module callback2
interface

subroutine foo(f,r)
use __user__routines, f=>fun
external f

(continues on next page)

630 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
real*8 intent(out) :: r

end subroutine foo
end interface

end python module callback2

Finally, we build the extension module using f2py -c callback2.pyf callback.f.
An example Python session for this snippet would be identical to the previous example except that the argument names
would differ.
Sometimes a Fortran package may require that users provide routines that the package will use. F2PY can construct an
interface to such routines so that Python functions can be called from Fortran.
Consider the following Fortran 77 subroutine that takes an array as its input and applies a function func to its elements.

subroutine calculate(x,n)
cf2py intent(callback) func

external func
c The following lines define the signature of func for F2PY:
cf2py real*8 y
cf2py y = func(y)
c
cf2py intent(in,out,copy) x

integer n,i
real*8 x(n), func
do i=1,n

x(i) = func(x(i))
end do
end

The Fortran code expects that the function func has been defined externally. In order to use a Python function for func,
it must have an attribute intent(callback) and it must be specified before the external statement.
Finally, build an extension module using f2py -c -m foo calculate.f

In Python:

>>> import foo
>>> foo.calculate(range(5), lambda x: x*x)
array([0., 1., 4., 9., 16.])
>>> import math
>>> foo.calculate(range(5), math.exp)
array([1. , 2.71828183, 7.3890561, 20.08553692, 54.59815003])

The function is included as an argument to the python function call to the Fortran subroutine even though it was not in
the Fortran subroutine argument list. The “external” keyword refers to the C function generated by f2py, not the Python
function itself. The python function is essentially being supplied to the C function.
The callback function may also be explicitly set in the module. Then it is not necessary to pass the function in the argument
list to the Fortran function. This may be desired if the Fortran function calling the Python callback function is itself called
by another Fortran function.
Consider the following Fortran 77 subroutine:

subroutine f1()
print *, "in f1, calling f2 twice.."
call f2()
call f2()

(continues on next page)

1.1. NumPy’s module structure 631

NumPy Reference, Release 2.2.0

(continued from previous page)
return

end

subroutine f2()
cf2py intent(callback, hide) fpy

external fpy
print *, "in f2, calling f2py.."
call fpy()
return

end

and wrap it using f2py -c -m pfromf extcallback.f.
In Python:

>>> import pfromf
>>> pfromf.f2()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

pfromf.error: Callback fpy not defined (as an argument or module pfromf attribute).

>>> def f(): print("python f")
...
>>> pfromf.fpy = f
>>> pfromf.f2()
in f2, calling f2py..
python f
>>> pfromf.f1()
in f1, calling f2 twice..
in f2, calling f2py..
python f
in f2, calling f2py..
python f
>>>

Note: When using modified Fortran code via callstatement or other directives, the wrapped Python function must
be called as a callback, otherwise only the bare Fortran routine will be used. For more details, see https://github.com/
numpy/numpy/issues/26681#issuecomment-2466460943

Resolving arguments to call-back functions

F2PY generated interfaces are very flexible with respect to call-back arguments. For each call-back argument an additional
optional argument <name>_extra_args is introduced by F2PY. This argument can be used to pass extra arguments
to user provided call-back functions.
If a F2PY generated wrapper function expects the following call-back argument:

def fun(a_1,...,a_n):
...
return x_1,...,x_k

but the following Python function

632 1. Python API

https://github.com/numpy/numpy/issues/26681#issuecomment-2466460943
https://github.com/numpy/numpy/issues/26681#issuecomment-2466460943

NumPy Reference, Release 2.2.0

def gun(b_1,...,b_m):
...
return y_1,...,y_l

is provided by a user, and in addition,

fun_extra_args = (e_1,...,e_p)

is used, then the following rules are applied when a Fortran or C function evaluates the call-back argument gun:
• If p == 0 then gun(a_1, ..., a_q) is called, here q = min(m, n).
• If n + p <= m then gun(a_1, ..., a_n, e_1, ..., e_p) is called.
• If p <= m < n + p then gun(a_1, ..., a_q, e_1, ..., e_p) is called, and here q=m-p.
• If p > m then gun(e_1, ..., e_m) is called.
• If n + p is less than the number of required arguments to gun then an exception is raised.

If the function gun may return any number of objects as a tuple; then the following rules are applied:
• If k < l, then y_{k + 1}, ..., y_l are ignored.
• If k > l, then only x_1, ..., x_l are set.

Common blocks

F2PY generates wrappers to common blocks defined in a routine signature block. Common blocks are visible to all
Fortran codes linked to the current extension module, but not to other extension modules (this restriction is due to the
way Python imports shared libraries). In Python, the F2PY wrappers to common blocks are fortran type objects that
have (dynamic) attributes related to the data members of the common blocks. When accessed, these attributes return as
NumPy array objects (multidimensional arrays are Fortran-contiguous) which directly link to data members in common
blocks. Data members can be changed by direct assignment or by in-place changes to the corresponding array objects.
Consider the following Fortran 77 code:

C FILE: COMMON.F
SUBROUTINE FOO
INTEGER I,X
REAL A
COMMON /DATA/ I,X(4),A(2,3)
PRINT*, "I=",I
PRINT*, "X=[",X,"]"
PRINT*, "A=["
PRINT*, "[",A(1,1),",",A(1,2),",",A(1,3),"]"
PRINT*, "[",A(2,1),",",A(2,2),",",A(2,3),"]"
PRINT*, "]"
END

C END OF COMMON.F

and wrap it using f2py -c -m common common.f.
In Python:

>>> import common
>>> print(common.data.__doc__)
i : 'i'-scalar
x : 'i'-array(4)

(continues on next page)

1.1. NumPy’s module structure 633

NumPy Reference, Release 2.2.0

(continued from previous page)
a : 'f'-array(2,3)

>>> common.data.i = 5
>>> common.data.x[1] = 2
>>> common.data.a = [[1,2,3],[4,5,6]]
>>> common.foo()
>>> common.foo()
I= 5
X=[0 2 0 0]
A=[
[1.00000000 , 2.00000000 , 3.00000000]
[4.00000000 , 5.00000000 , 6.00000000]
]
>>> common.data.a[1] = 45
>>> common.foo()
I= 5
X=[0 2 0 0]
A=[
[1.00000000 , 2.00000000 , 3.00000000]
[45.0000000 , 45.0000000 , 45.0000000]
]
>>> common.data.a # a is Fortran-contiguous
array([[1., 2., 3.],

[45., 45., 45.]], dtype=float32)
>>> common.data.a.flags.f_contiguous
True

Fortran 90 module data

The F2PY interface to Fortran 90 module data is similar to the handling of Fortran 77 common blocks.
Consider the following Fortran 90 code:

module mod
integer i
integer :: x(4)
real, dimension(2,3) :: a
real, allocatable, dimension(:,:) :: b

contains
subroutine foo
integer k
print*, "i=",i
print*, "x=[",x,"]"
print*, "a=["
print*, "[",a(1,1),",",a(1,2),",",a(1,3),"]"
print*, "[",a(2,1),",",a(2,2),",",a(2,3),"]"
print*, "]"
print*, "Setting a(1,2)=a(1,2)+3"
a(1,2) = a(1,2)+3

end subroutine foo
end module mod

and wrap it using f2py -c -m moddata moddata.f90.
In Python:

634 1. Python API

NumPy Reference, Release 2.2.0

>>> import moddata
>>> print(moddata.mod.__doc__)
i : 'i'-scalar
x : 'i'-array(4)
a : 'f'-array(2,3)
b : 'f'-array(-1,-1), not allocated
foo()

Wrapper for ``foo``.

>>> moddata.mod.i = 5
>>> moddata.mod.x[:2] = [1,2]
>>> moddata.mod.a = [[1,2,3],[4,5,6]]
>>> moddata.mod.foo()
i= 5
x=[1 2 0 0]
a=[
[1.000000 , 2.000000 , 3.000000]
[4.000000 , 5.000000 , 6.000000]
]
Setting a(1,2)=a(1,2)+3
>>> moddata.mod.a # a is Fortran-contiguous
array([[1., 5., 3.],

[4., 5., 6.]], dtype=float32)
>>> moddata.mod.a.flags.f_contiguous
True

Allocatable arrays

F2PY has basic support for Fortran 90 module allocatable arrays.
Consider the following Fortran 90 code:

module mod
real, allocatable, dimension(:,:) :: b

contains
subroutine foo
integer k
if (allocated(b)) then

print*, "b=["
do k = 1,size(b,1)

print*, b(k,1:size(b,2))
enddo
print*, "]"

else
print*, "b is not allocated"

endif
end subroutine foo

end module mod

and wrap it using f2py -c -m allocarr allocarr.f90.
In Python:

1.1. NumPy’s module structure 635

NumPy Reference, Release 2.2.0

>>> import allocarr
>>> print(allocarr.mod.__doc__)
b : 'f'-array(-1,-1), not allocated
foo()

Wrapper for ``foo``.

>>> allocarr.mod.foo()
b is not allocated
>>> allocarr.mod.b = [[1, 2, 3], [4, 5, 6]] # allocate/initialize b
>>> allocarr.mod.foo()
b=[
1.000000 2.000000 3.000000
4.000000 5.000000 6.000000

]
>>> allocarr.mod.b # b is Fortran-contiguous
array([[1., 2., 3.],

[4., 5., 6.]], dtype=float32)
>>> allocarr.mod.b.flags.f_contiguous
True
>>> allocarr.mod.b = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # reallocate/initialize b
>>> allocarr.mod.foo()
b=[
1.000000 2.000000 3.000000
4.000000 5.000000 6.000000
7.000000 8.000000 9.000000

]
>>> allocarr.mod.b = None # deallocate array
>>> allocarr.mod.foo()
b is not allocated

F2PY and build systems

In this section we will cover the various popular build systems and their usage with f2py.
Changed in version NumPy: 1.26.x
The default build system for f2py has traditionally been through the enhanced numpy.distutils module. This
module is based on distutils which was removed in Python 3.12.0 in October 2023. Like the rest of NumPy
and SciPy, f2py uses meson now, see Status of numpy.distutils and migration advice for some more details.

All changes to f2py are tested on SciPy, so their CI configuration is always supported.

Note: See 1 Migrating to meson for migration information.

636 1. Python API

https://docs.scipy.org/doc/scipy/dev/toolchain.html#official-builds

NumPy Reference, Release 2.2.0

Basic concepts

Building an extension module which includes Python and Fortran consists of:
• Fortran source(s)
• One or more generated files from f2py

– A C wrapper file is always created
– Code with modules require an additional .f90 wrapper
– Code with functions generate an additional .f wrapper

• fortranobject.{c,h}

– Distributed with numpy
– Can be queried via python -c "import numpy.f2py; print(numpy.f2py.
get_include())"

• NumPy headers
– Can be queried via python -c "import numpy; print(numpy.get_include())"

• Python libraries and development headers
Broadly speaking there are three cases which arise when considering the outputs of f2py:
Fortran 77 programs

• Input file blah.f
• Generates

– blahmodule.c

– blah-f2pywrappers.f

When no COMMON blocks are present only a C wrapper file is generated. Wrappers are also generated to rewrite
assumed shape arrays as automatic arrays.

Fortran 90 programs
• Input file blah.f90
• Generates:

– blahmodule.c

– blah-f2pywrappers.f

– blah-f2pywrappers2.f90

The f90wrapper is used to handle code which is subdivided into modules. The fwrapper makes subroutines
for functions. It rewrites assumed shape arrays as automatic arrays.

Signature files
• Input file blah.pyf
• Generates:

– blahmodule.c

– blah-f2pywrappers2.f90 (occasionally)
– blah-f2pywrappers.f (occasionally)

1.1. NumPy’s module structure 637

NumPy Reference, Release 2.2.0

Signature files .pyf do not signal their language standard via the file extension, they may generate the F90 and
F77 specific wrappers depending on their contents; which shifts the burden of checking for generated files onto the
build system.

Changed in version NumPy: 1.22.4
f2py will deterministically generate wrapper files based on the input file Fortran standard (F77 or greater).
--skip-empty-wrappers can be passed to f2py to restore the previous behaviour of only generating wrappers
when needed by the input .
In theory keeping the above requirements in hand, any build system can be adapted to generate f2py extension modules.
Here we will cover a subset of the more popular systems.

Note: make has no place in a modern multi-language setup, and so is not discussed further.

Build systems

Using via numpy.distutils

Legacy
This submodule is considered legacy and will no longer receive updates. This could also mean it will be removed in future
NumPy versions. distutils has been removed in favor of meson see Status of numpy.distutils and migration advice.

numpy.distutils is part of NumPy, and extends the standard Python distutils module to deal with Fortran
sources and F2PY signature files, e.g. compile Fortran sources, call F2PY to construct extension modules, etc.

Example

Consider the following setup_file.py for the fib and scalar examples from Three ways to wrap - getting
started section:
from numpy.distutils.core import Extension

ext1 = Extension(name = 'scalar',
sources = ['scalar.f'])

ext2 = Extension(name = 'fib2',
sources = ['fib2.pyf', 'fib1.f'])

if __name__ == "__main__":
from numpy.distutils.core import setup
setup(name = 'f2py_example',

description = "F2PY Users Guide examples",
author = "Pearu Peterson",
author_email = "pearu@cens.ioc.ee",
ext_modules = [ext1, ext2]
)

End of setup_example.py

Running
python setup_example.py build

will build two extension modules scalar and fib2 to the build directory.

638 1. Python API

NumPy Reference, Release 2.2.0

Extensions to distutils

numpy.distutils extends distutils with the following features:
• Extension class argument sources may contain Fortran source files. In addition, the list sources may
contain at most one F2PY signature file, and in this case, the name of an Extension module must match with the
<modulename> used in signature file. It is assumed that an F2PY signature file contains exactly one python
module block.
If sources do not contain a signature file, then F2PY is used to scan Fortran source files to construct wrappers
to the Fortran codes.
Additional options to the F2PY executable can be given using the Extension class argument f2py_options.

• The following new distutils commands are defined:
build_src

to construct Fortran wrapper extension modules, among many other things.
config_fc

to change Fortran compiler options.
Additionally, the build_ext and build_clib commands are also enhanced to support Fortran sources.
Run

python <setup.py file> config_fc build_src build_ext --help

to see available options for these commands.
• When building Python packages containing Fortran sources, one can choose different Fortran compilers by using
the build_ext command option --fcompiler=<Vendor>. Here <Vendor> can be one of the following
names (on linux systems):

absoft compaq fujitsu g95 gnu gnu95 intel intele intelem lahey nag nagfor nv␣
↪→pathf95 pg vast

Seenumpy_distutils/fcompiler.py for an up-to-date list of supported compilers for different platforms,
or run

python -m numpy.f2py -c --backend distutils --help-fcompiler

Using via meson

Note: Much of this document is now obsoleted, one can run f2py with --build-dir to get a skeleton meson
project with basic dependencies setup.

Changed in version 1.26.x: The default build system for f2py is now meson, see Status of numpy.distutils and migration
advice for some more details..
The key advantage gained by leveraging meson over the techniques described in Using via numpy.distutils is that this
feeds into existing systems and larger projects with ease. meson has a rather pythonic syntax which makes it more
comfortable and amenable to extension for python users.

1.1. NumPy’s module structure 639

NumPy Reference, Release 2.2.0

Fibonacci walkthrough (F77)

We will need the generated C wrapper before we can use a general purpose build system like meson. We will acquire
this by:

python -m numpy.f2py fib1.f -m fib2

Now, consider the following meson.build file for the fib and scalar examples from Three ways to wrap - getting
started section:

project('f2py_examples', 'c',
version : '0.1',
license: 'BSD-3',
meson_version: '>=0.64.0',
default_options : ['warning_level=2'],

)

add_languages('fortran')

py_mod = import('python')
py = py_mod.find_installation(pure: false)
py_dep = py.dependency()

incdir_numpy = run_command(py,
['-c', 'import os; os.chdir(".."); import numpy; print(numpy.get_include())'],
check : true

).stdout().strip()

incdir_f2py = run_command(py,
['-c', 'import os; os.chdir(".."); import numpy.f2py; print(numpy.f2py.get_

↪→include())'],
check : true

).stdout().strip()

inc_np = include_directories(incdir_numpy, incdir_f2py)

py.extension_module('fib2',
[
'fib1.f',
'fib2module.c', # note: this assumes f2py was manually run before!

],
incdir_f2py / 'fortranobject.c',
include_directories: inc_np,
dependencies : py_dep,
install : true

)

At this point the build will complete, but the import will fail:

meson setup builddir
meson compile -C builddir
cd builddir
python -c 'import fib2'
Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: fib2.cpython-39-x86_64-linux-gnu.so: undefined symbol: FIB_
Check this isn't a false positive

(continues on next page)

640 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
nm -A fib2.cpython-39-x86_64-linux-gnu.so | grep FIB_
fib2.cpython-39-x86_64-linux-gnu.so: U FIB_

Recall that the original example, as reproduced below, was in SCREAMCASE:

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

ENDIF
ENDDO
END

C END FILE FIB1.F

With the standard approach, the subroutine exposed to python is fib and not FIB. This means we have a few options.
One approach (where possible) is to lowercase the original Fortran file with say:

tr "[:upper:]" "[:lower:]" < fib1.f > fib1.f
python -m numpy.f2py fib1.f -m fib2
meson --wipe builddir
meson compile -C builddir
cd builddir
python -c 'import fib2'

However this requires the ability to modify the source which is not always possible. The easiest way to solve this is to let
f2py deal with it:

python -m numpy.f2py fib1.f -m fib2 --lower
meson --wipe builddir
meson compile -C builddir
cd builddir
python -c 'import fib2'

Automating wrapper generation

Amajor pain point in the workflow defined above, is the manual tracking of inputs. Although it would require more effort
to figure out the actual outputs for reasons discussed in F2PY and build systems.

Note: FromNumPy 1.22.4 onwards, f2pywill deterministically generate wrapper files based on the input file Fortran
standard (F77 or greater). --skip-empty-wrappers can be passed to f2py to restore the previous behaviour of
only generating wrappers when needed by the input .

However, we can augment our workflow in a straightforward to take into account files for which the outputs are known
when the build system is set up.

1.1. NumPy’s module structure 641

NumPy Reference, Release 2.2.0

project('f2py_examples', 'c',
version : '0.1',
license: 'BSD-3',
meson_version: '>=0.64.0',
default_options : ['warning_level=2'],

)

add_languages('fortran')

py_mod = import('python')
py = py_mod.find_installation(pure: false)
py_dep = py.dependency()

incdir_numpy = run_command(py,
['-c', 'import os; os.chdir(".."); import numpy; print(numpy.get_include())'],
check : true

).stdout().strip()

incdir_f2py = run_command(py,
['-c', 'import os; os.chdir(".."); import numpy.f2py; print(numpy.f2py.get_

↪→include())'],
check : true

).stdout().strip()

fibby_source = custom_target('fibbymodule.c',
input : ['fib1.f'], # .f so no F90 wrappers
output : ['fibbymodule.c', 'fibby-f2pywrappers.f'],
command : [py, '-m', 'numpy.f2py', '@INPUT@', '-m', 'fibby', '--lower']

)

inc_np = include_directories(incdir_numpy, incdir_f2py)

py.extension_module('fibby',
['fib1.f', fibby_source],
incdir_f2py / 'fortranobject.c',
include_directories: inc_np,
dependencies : py_dep,
install : true

)

This can be compiled and run as before.

rm -rf builddir
meson setup builddir
meson compile -C builddir
cd builddir
python -c "import numpy as np; import fibby; a = np.zeros(9); fibby.fib(a); print (a)"
[0. 1. 1. 2. 3. 5. 8. 13. 21.]

642 1. Python API

NumPy Reference, Release 2.2.0

Salient points

It is worth keeping in mind the following:
• It is not possible to use SCREAMCASE in this context, so either the contents of the .f file or the generated
wrapper .c needs to be lowered to regular letters; which can be facilitated by the --lower option of F2PY

Using via cmake

In terms of complexity, cmake falls between make and meson. The learning curve is steeper since CMake syntax is
not pythonic and is closer to make with environment variables.
However, the trade-off is enhanced flexibility and support for most architectures and compilers. An introduction to the
syntax is out of scope for this document, but this extensive CMake collection of resources is great.

Note: cmake is very popular for mixed-language systems, however support for f2py is not particularly native or
pleasant; and a more natural approach is to consider Using via scikit-build

Fibonacci walkthrough (F77)

Returning to the fib example from Three ways to wrap - getting started section.

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

ENDIF
ENDDO
END

C END FILE FIB1.F

We do not need to explicitly generate the python -m numpy.f2py fib1.f output, which is fib1module.c,
which is beneficial. With this; we can now initialize a CMakeLists.txt file as follows:

cmake_minimum_required(VERSION 3.18) # Needed to avoid requiring embedded Python libs␣
↪→too

project(fibby
VERSION 1.0
DESCRIPTION "FIB module"
LANGUAGES C Fortran

)

(continues on next page)

1.1. NumPy’s module structure 643

https://cliutils.gitlab.io/modern-cmake/

NumPy Reference, Release 2.2.0

(continued from previous page)
Safety net
if(PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)
message(
FATAL_ERROR
"In-source builds not allowed. Please make a new directory (called a build␣

↪→directory) and run CMake from there.\n"
)

endif()

Grab Python, 3.8 or newer
find_package(Python 3.8 REQUIRED
COMPONENTS Interpreter Development.Module NumPy)

Grab the variables from a local Python installation
F2PY headers
execute_process(
COMMAND "${Python_EXECUTABLE}"
-c "import numpy.f2py; print(numpy.f2py.get_include())"
OUTPUT_VARIABLE F2PY_INCLUDE_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE

)

Print out the discovered paths
include(CMakePrintHelpers)
cmake_print_variables(Python_INCLUDE_DIRS)
cmake_print_variables(F2PY_INCLUDE_DIR)
cmake_print_variables(Python_NumPy_INCLUDE_DIRS)

Common variables
set(f2py_module_name "fibby")
set(fortran_src_file "${CMAKE_SOURCE_DIR}/fib1.f")
set(f2py_module_c "${f2py_module_name}module.c")

Generate sources
add_custom_target(
genpyf
DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"

)
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"
COMMAND ${Python_EXECUTABLE} -m "numpy.f2py"

"${fortran_src_file}"
-m "fibby"
--lower # Important

DEPENDS fib1.f # Fortran source
)

Set up target
Python_add_library(${CMAKE_PROJECT_NAME} MODULE WITH_SOABI
"${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}" # Generated
"${F2PY_INCLUDE_DIR}/fortranobject.c" # From NumPy
"${fortran_src_file}" # Fortran source(s)

)

Depend on sources
target_link_libraries(${CMAKE_PROJECT_NAME} PRIVATE Python::NumPy)
add_dependencies(${CMAKE_PROJECT_NAME} genpyf)

(continues on next page)

644 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
target_include_directories(${CMAKE_PROJECT_NAME} PRIVATE "${F2PY_INCLUDE_DIR}")

A key element of the CMakeLists.txt file defined above is that the add_custom_command is used to generate
the wrapper C files and then added as a dependency of the actual shared library target via a add_custom_target
directive which prevents the command from running every time. Additionally, the method used for obtaining the
fortranobject.c file can also be used to grab the numpy headers on older cmake versions.
This then works in the same manner as the other modules, although the naming conventions are different and the output
library is not automatically prefixed with the cython information.

ls .
CMakeLists.txt fib1.f
cmake -S . -B build
cmake --build build
cd build
python -c "import numpy as np; import fibby; a = np.zeros(9); fibby.fib(a); print (a)"
[0. 1. 1. 2. 3. 5. 8. 13. 21.]

This is particularly useful where an existing toolchain already exists and scikit-build or other additional python
dependencies are discouraged.

Using via scikit-build

scikit-build provides two separate concepts geared towards the users of Python extension modules.
1. A setuptools replacement (legacy behaviour)
2. A series of cmake modules with definitions which help building Python extensions

Note: It is possible to use scikit-build’s cmake modules to bypass the cmake setup mechanism completely, and
to write targets which call f2py -c. This usage is not recommended since the point of these build system documents
are to move away from the internal numpy.distutils methods.

For situations where no setuptools replacements are required or wanted (i.e. if wheels are not needed), it is
recommended to instead use the vanilla cmake setup described in Using via cmake.

Fibonacci walkthrough (F77)

We will consider the fib example from Three ways to wrap - getting started section.

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

(continues on next page)

1.1. NumPy’s module structure 645

https://scikit-build.readthedocs.io/en/latest/cmake-modules/F2PY.html

NumPy Reference, Release 2.2.0

(continued from previous page)
ELSE

A(I) = A(I-1) + A(I-2)
ENDIF

ENDDO
END

C END FILE FIB1.F

CMake modules only

Consider using the following CMakeLists.txt.

setup project
cmake_minimum_required(VERSION 3.9)

project(fibby
VERSION 1.0
DESCRIPTION "FIB module"
LANGUAGES C Fortran
)

Safety net
if(PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)
message(
FATAL_ERROR
"In-source builds not allowed. Please make a new directory (called a build␣

↪→directory) and run CMake from there.\n"
)

endif()

Ensure scikit-build modules
if (NOT SKBUILD)
find_package(PythonInterp 3.8 REQUIRED)
Kanged --> https://github.com/Kitware/torch_liberator/blob/master/CMakeLists.txt
If skbuild is not the driver; include its utilities in CMAKE_MODULE_PATH
execute_process(
COMMAND "${PYTHON_EXECUTABLE}"
-c "import os, skbuild; print(os.path.dirname(skbuild.__file__))"
OUTPUT_VARIABLE SKBLD_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE

)
list(APPEND CMAKE_MODULE_PATH "${SKBLD_DIR}/resources/cmake")
message(STATUS "Looking in ${SKBLD_DIR}/resources/cmake for CMake modules")

endif()

scikit-build style includes
find_package(PythonExtensions REQUIRED) # for ${PYTHON_EXTENSION_MODULE_SUFFIX}

Grab the variables from a local Python installation
NumPy headers
execute_process(
COMMAND "${PYTHON_EXECUTABLE}"
-c "import numpy; print(numpy.get_include())"
OUTPUT_VARIABLE NumPy_INCLUDE_DIRS
OUTPUT_STRIP_TRAILING_WHITESPACE

)

(continues on next page)

646 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
F2PY headers
execute_process(
COMMAND "${PYTHON_EXECUTABLE}"
-c "import numpy.f2py; print(numpy.f2py.get_include())"
OUTPUT_VARIABLE F2PY_INCLUDE_DIR
OUTPUT_STRIP_TRAILING_WHITESPACE

)

Prepping the module
set(f2py_module_name "fibby")
set(fortran_src_file "${CMAKE_SOURCE_DIR}/fib1.f")
set(f2py_module_c "${f2py_module_name}module.c")

Target for enforcing dependencies
add_custom_target(genpyf
DEPENDS "${fortran_src_file}"

)
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/${f2py_module_c}"
COMMAND ${PYTHON_EXECUTABLE} -m "numpy.f2py"

"${fortran_src_file}"
-m "fibby"
--lower # Important

DEPENDS fib1.f # Fortran source
)

add_library(${CMAKE_PROJECT_NAME} MODULE
"${f2py_module_name}module.c"
"${F2PY_INCLUDE_DIR}/fortranobject.c"
"${fortran_src_file}")

target_include_directories(${CMAKE_PROJECT_NAME} PUBLIC
${F2PY_INCLUDE_DIR}
${NumPy_INCLUDE_DIRS}
${PYTHON_INCLUDE_DIRS})

set_target_properties(${CMAKE_PROJECT_NAME} PROPERTIES SUFFIX "${PYTHON_EXTENSION_
↪→MODULE_SUFFIX}")
set_target_properties(${CMAKE_PROJECT_NAME} PROPERTIES PREFIX "")

Linker fixes
if (UNIX)
if (APPLE)
set_target_properties(${CMAKE_PROJECT_NAME} PROPERTIES
LINK_FLAGS '-Wl,-dylib,-undefined,dynamic_lookup')

else()
set_target_properties(${CMAKE_PROJECT_NAME} PROPERTIES

LINK_FLAGS '-Wl,--allow-shlib-undefined')
endif()

endif()

add_dependencies(${CMAKE_PROJECT_NAME} genpyf)

install(TARGETS ${CMAKE_PROJECT_NAME} DESTINATION fibby)

Much of the logic is the same as in Using via cmake, however notably here the appropriate module suffix is generated via
sysconfig.get_config_var("SO"). The resulting extension can be built and loaded in the standard workflow.

1.1. NumPy’s module structure 647

NumPy Reference, Release 2.2.0

ls .
CMakeLists.txt fib1.f
cmake -S . -B build
cmake --build build
cd build
python -c "import numpy as np; import fibby; a = np.zeros(9); fibby.fib(a); print (a)"
[0. 1. 1. 2. 3. 5. 8. 13. 21.]

setuptools replacement

Note: As of November 2021
The behavior described here of driving the cmake build of a module is considered to be legacy behaviour and should not
be depended on.

The utility of scikit-build lies in being able to drive the generation of more than extension modules, in particular a
common usage pattern is the generation of Python distributables (for example for PyPI).
The workflow with scikit-build straightforwardly supports such packaging requirements. Consider augmenting the
project with a setup.py as defined:

from skbuild import setup

setup(
name="fibby",
version="0.0.1",
description="a minimal example package (fortran version)",
license="MIT",
packages=['fibby'],
python_requires=">=3.7",

)

Along with a commensurate pyproject.toml

[build-system]
requires = ["setuptools>=42", "wheel", "scikit-build", "cmake>=3.9", "numpy>=1.21"]
build-backend = "setuptools.build_meta"

Together these can build the extension using cmake in tandem with other standard setuptools outputs. Running
cmake throughsetup.py is mostly used when it is necessary to integrate with extensionmodules not built withcmake.

ls .
CMakeLists.txt fib1.f pyproject.toml setup.py
python setup.py build_ext --inplace
python -c "import numpy as np; import fibby.fibby; a = np.zeros(9); fibby.fibby.
↪→fib(a); print (a)"
[0. 1. 1. 2. 3. 5. 8. 13. 21.]

Where we have modified the path to the module as --inplace places the extension module in a subfolder.

648 1. Python API

NumPy Reference, Release 2.2.0

1 Migrating to meson

As per the timeline laid out in Status of numpy.distutils and migration advice, distutils has ceased to be the default
build backend for f2py. This page collects common workflows in both formats.

Note: This is a **living** document, pull requests are very welcome!

1.1 Baseline

We will start out with a slightly modern variation of the classic Fibonnaci series generator.

! fib.f90
subroutine fib(a, n)
use iso_c_binding
integer(c_int), intent(in) :: n
integer(c_int), intent(out) :: a(n)
do i = 1, n

if (i .eq. 1) then
a(i) = 0.0d0

elseif (i .eq. 2) then
a(i) = 1.0d0

else
a(i) = a(i - 1) + a(i - 2)

end if
end do

end

This will not win any awards, but can be a reasonable starting point.

1.2 Compilation options

1.2.1 Basic Usage

This is unchanged:

python -m numpy.f2py -c fib.f90 -m fib
� python -c "import fib; print(fib.fib(30))"
[0 1 1 2 3 5 8 13 21 34

55 89 144 233 377 610 987 1597 2584 4181
6765 10946 17711 28657 46368 75025 121393 196418 317811 514229]

1.1. NumPy’s module structure 649

https://numpy.org/doc/stable/dev/howto-docs.html

NumPy Reference, Release 2.2.0

1.2.2 Specify the backend

Distutils

python -m numpy.f2py -c fib.f90 -m fib --backend distutils

This is the default for Python versions before 3.12.

Meson

python -m numpy.f2py -c fib.f90 -m fib --backend meson

This is the only option for Python versions after 3.12.

1.2.3 Pass a compiler name

Distutils

python -m numpy.f2py -c fib.f90 -m fib --backend distutils --fcompiler=gfortran

Meson

FC="gfortran" python -m numpy.f2py -c fib.f90 -m fib --backend meson

Native files can also be used.
Similarly, CC can be used in both cases to set the C compiler. Since the environment variables are generally pretty
common across both, so a small sample is included below.

Name What
FC Fortran compiler
CC C compiler
CFLAGS C compiler options
FFLAGS Fortran compiler options
LDFLAGS Linker options
LDLIBRARYPATH Library file locations (Unix)
LIBS Libraries to link against
PATH Search path for executables
LDFLAGS Linker flags
CXX C++ compiler
CXXFLAGS C++ compiler options

Note: For Windows, these may not work very reliably, so native files are likely the best bet, or by direct 1.3 Customizing
builds.

650 1. Python API

https://mesonbuild.com/Native-environments.html

NumPy Reference, Release 2.2.0

1.2.4 Dependencies

Here, meson can actually be used to set dependencies more robustly.

Distutils

python -m numpy.f2py -c fib.f90 -m fib --backend distutils -llapack

Note that this approach in practice is error prone.

Meson

python -m numpy.f2py -c fib.f90 -m fib --backend meson --dep lapack

This maps to dependency("lapack") and so can be used for a wide variety of dependencies. They can be cus-
tomized further to use CMake or other systems to resolve dependencies.

1.2.5 Libraries

Both meson and distutils are capable of linking against libraries.

Distutils

python -m numpy.f2py -c fib.f90 -m fib --backend distutils -lmylib -L/path/to/mylib

Meson

python -m numpy.f2py -c fib.f90 -m fib --backend meson -lmylib -L/path/to/mylib

1.3 Customizing builds

Distutils

python -m numpy.f2py -c fib.f90 -m fib --backend distutils --build-dir blah

This can be technically integrated with other codes, see Using via numpy.distutils.

1.1. NumPy’s module structure 651

https://mesonbuild.com/Dependencies.html
https://mesonbuild.com/Dependencies.html

NumPy Reference, Release 2.2.0

Meson

python -m numpy.f2py -c fib.f90 -m fib --backend meson --build-dir blah

The resulting build can be customized via the Meson Build How-To Guide. In fact, the resulting set of files can even be
committed directly and used as a meson subproject in a separate codebase.

Advanced F2PY use cases

Adding user-defined functions to F2PY generated modules

User-defined Python C/API functions can be defined inside signature files using usercode and pymethoddef state-
ments (they must be used inside the python module block). For example, the following signature file spam.pyf

! -*- f90 -*-
python module spam

usercode '''
static char doc_spam_system[] = "Execute a shell command.";
static PyObject *spam_system(PyObject *self, PyObject *args)
{
char *command;
int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command);
return Py_BuildValue("i", sts);

}
'''
pymethoddef '''
{"system", spam_system, METH_VARARGS, doc_spam_system},
'''

end python module spam

wraps the C library function system():

f2py -c spam.pyf

In Python this can then be used as:

>>> import spam
>>> status = spam.system('whoami')
pearu
>>> status = spam.system('blah')
sh: line 1: blah: command not found

652 1. Python API

https://mesonbuild.com/howtox.html

NumPy Reference, Release 2.2.0

Adding user-defined variables

The following example illustrates how to add user-defined variables to a F2PY generated extension module by modifying
the dictionary of a F2PY generated module. Consider the following signature file (compiled with f2py -c var.pyf):

! -*- f90 -*-
python module var
usercode '''
int BAR = 5;

'''
interface
usercode '''
PyDict_SetItemString(d,"BAR",PyLong_FromLong(BAR));

'''
end interface

end python module

Notice that the second usercode statement must be defined inside an interface block and the module dictionary
is available through the variable d (see varmodule.c generated by f2py var.pyf for additional details).
Usage in Python:

>>> import var
>>> var.BAR
5

Dealing with KIND specifiers

Currently, F2PY can handle only <type spec>(kind=<kindselector>) declarations where
<kindselector> is a numeric integer (e.g. 1, 2, 4,…), but not a function call KIND(..) or any other ex-
pression. F2PY needs to know what would be the corresponding C type and a general solution for that would be too
complicated to implement.
However, F2PY provides a hook to overcome this difficulty, namely, users can define their own <Fortran type> to <C
type> maps. For example, if Fortran 90 code contains:

REAL(kind=KIND(0.0D0)) ...

then create a mapping file containing a Python dictionary:

{'real': {'KIND(0.0D0)': 'double'}}

for instance.
Use the --f2cmap command-line option to pass the file name to F2PY. By default, F2PY assumes file name is .
f2py_f2cmap in the current working directory.
More generally, the f2cmap file must contain a dictionary with items:

<Fortran typespec> : {<selector_expr>:<C type>}

that defines mapping between Fortran type:

<Fortran typespec>([kind=]<selector_expr>)

and the corresponding <C type>. The <C type> can be one of the following:

1.1. NumPy’s module structure 653

NumPy Reference, Release 2.2.0

double
float
long_double
char
signed_char
unsigned_char
short
unsigned_short
int
long
long_long
unsigned
complex_float
complex_double
complex_long_double
string

For example, for a Fortran file func1.f containing:

subroutine func1(n, x, res)
use, intrinsic :: iso_fortran_env, only: int64, real64
implicit none
integer(int64), intent(in) :: n
real(real64), intent(in) :: x(n)
real(real64), intent(out) :: res

Cf2py intent(hide) :: n
res = sum(x)

end

In order to convert int64 and real64 to valid C data types, a .f2py_f2cmap file with the following content can be
created in the current directory:

dict(real=dict(real64='double'), integer=dict(int64='long long'))

and create the module as usual. F2PY checks if a .f2py_f2cmap file is present in the current directory and will use it
to map KIND specifiers to C data types.

f2py -c func1.f -m func1

Alternatively, the mapping file can be saved with any other name, for example mapfile.txt, and this information can
be passed to F2PY by using the --f2cmap option.

f2py -c func1.f -m func1 --f2cmap mapfile.txt

For more information, see F2Py source code numpy/f2py/capi_maps.py.

Character strings

Assumed length character strings

In Fortran, assumed length character string arguments are declared as character*(*) or character(len=*),
that is, the length of such arguments are determined by the actual string arguments at runtime. For intent(in)
arguments, this lack of length information poses no problems for f2py to construct functional wrapper functions. However,
for intent(out) arguments, the lack of length information is problematic for f2py generated wrappers because there
is no size information available for creating memory buffers for such arguments and F2PY assumes the length is 0.

654 1. Python API

NumPy Reference, Release 2.2.0

Depending on how the length of assumed length character strings are specified, there exist ways to workaround this
problem, as exemplified below.
If the length of the character*(*) output argument is determined by the state of other input arguments, the re-
quired connection can be established in a signature file or within a f2py-comment by adding an extra declaration for
the corresponding argument that specifies the length in character selector part. For example, consider a Fortran file
asterisk1.f90:

subroutine foo1(s)
character*(*), intent(out) :: s
!f2py character(f2py_len=12) s
s = "123456789A12"

end subroutine foo1

Compile it with f2py -c asterisk1.f90 -m asterisk1 and then in Python:

>>> import asterisk1
>>> asterisk1.foo1()
b'123456789A12'

Notice that the extra declaration character(f2py_len=12) s is interpreted only by f2py and in the f2py_len=
specification one can use C-expressions as a length value.
In the following example:

subroutine foo2(s, n)
character(len=*), intent(out) :: s
integer, intent(in) :: n
!f2py character(f2py_len=n), depend(n) :: s
s = "123456789A123456789B"(1:n)

end subroutine foo2

the length of the output assumed length string depends on an input argument n, after wrapping with F2PY, in Python:

>>> import asterisk
>>> asterisk.foo2(2)
b'12'
>>> asterisk.foo2(12)
b'123456789A12'
>>>

Boilerplate reduction and templating

Using FYPP for binding generic interfaces

f2py doesn’t currently support binding interface blocks. However, there are workarounds in use. Perhaps the best known
is the usage of tempita for using .pyf.src files as is done in the bindings which are part of scipy. tempita support
has been removed and is no longer recommended in any case.

Note: The reason interfaces cannot be supported withinf2py itself is because they don’t correspond to exported symbols
in compiled libraries.

� nm gen.o
0000000000000078 T __add_mod_MOD_add_complex
0000000000000000 T __add_mod_MOD_add_complex_dp

(continues on next page)

1.1. NumPy’s module structure 655

https://github.com/scipy/scipy/blob/c93da6f46dbed8b3cc0ccd2495b5678f7b740a03/scipy/linalg/clapack.pyf.src

NumPy Reference, Release 2.2.0

(continued from previous page)
0000000000000150 T __add_mod_MOD_add_integer
0000000000000124 T __add_mod_MOD_add_real
00000000000000ee T __add_mod_MOD_add_real_dp

Here we will discuss a few techniques to leverage f2py in conjunction with fypp to emulate generic interfaces and to
ease the binding of multiple (similar) functions.

Basic example: Addition module

Let us build on the example (from the user guide, F2PY examples) of a subroutine which takes in two arrays and returns
its sum.

C
SUBROUTINE ZADD(A,B,C,N)

C
DOUBLE COMPLEX A(*)
DOUBLE COMPLEX B(*)
DOUBLE COMPLEX C(*)
INTEGER N
DO 20 J = 1, N

C(J) = A(J)+B(J)
20 CONTINUE

END

We will recast this into modern fortran:

module adder
implicit none

contains

subroutine zadd(a, b, c, n)
integer, intent(in) :: n
double complex, intent(in) :: a(n), b(n)
double complex, intent(out) :: c(n)
integer :: j
do j = 1, n

c(j) = a(j) + b(j)
end do

end subroutine zadd

end module adder

We could go on as in the original example, adding intents by hand among other things, however in production often there
are other concerns. For one, we can template via FYPP the construction of similar functions:

module adder
implicit none

contains

#:def add_subroutine(dtype_prefix, dtype)
subroutine ${dtype_prefix}$add(a, b, c, n)

integer, intent(in) :: n
${dtype}$, intent(in) :: a(n), b(n)
${dtype}$:: c(n)

(continues on next page)

656 1. Python API

https://fypp.readthedocs.io/en/stable/fypp.html

NumPy Reference, Release 2.2.0

(continued from previous page)
integer :: j
do j = 1, n

c(j) = a(j) + b(j)
end do

end subroutine ${dtype_prefix}$add

#:enddef

#:for dtype_prefix, dtype in [('i', 'integer'), ('s', 'real'), ('d', 'real(kind=8)'),␣
↪→('c', 'complex'), ('z', 'double complex')]

@:add_subroutine(${dtype_prefix}$, ${dtype}$)
#:endfor

end module adder

This can be pre-processed to generate the full fortran code:

� fypp gen_adder.f90.fypp > adder.f90

As to be expected, this can be wrapped by f2py subsequently.
Now we will consider maintaining the bindings in a separate file. Note the following basic .pyf which can be generated
for a single subroutine via f2py -m adder adder_base.f90 -h adder.pyf:

! -*- f90 -*-
! Note: the context of this file is case sensitive.

python module adder ! in
interface ! in :adder

module adder ! in :adder:adder_base.f90
subroutine zadd(a,b,c,n) ! in :adder:adder_base.f90:adder

double complex dimension(n),intent(in) :: a
double complex dimension(n),intent(in),depend(n) :: b
double complex dimension(n),intent(out),depend(n) :: c
integer, optional,intent(in),check(shape(a, 0) == n),depend(a) ::␣

↪→n=shape(a, 0)
end subroutine zadd

end module adder
end interface

end python module adder

! This file was auto-generated with f2py (version:2.0.0.dev0+git20240101.bab7280).
! See:
! https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e

With the docstring:

c = zadd(a,b,[n])

Wrapper for ``zadd``.

Parameters

a : input rank-1 array('D') with bounds (n)
b : input rank-1 array('D') with bounds (n)

Other Parameters

(continues on next page)

1.1. NumPy’s module structure 657

NumPy Reference, Release 2.2.0

(continued from previous page)

n : input int, optional

Default: shape(a, 0)

Returns

c : rank-1 array('D') with bounds (n)

Which is already pretty good. However, n should never be passed in the first place so we will make some minor adjust-
ments.

! -*- f90 -*-
! Note: the context of this file is case sensitive.

python module adder ! in
interface ! in :adder

module adder ! in :adder:adder_base.f90
subroutine zadd(a,b,c,n) ! in :adder:adder_base.f90:adder

integer intent(hide),depend(a) :: n=len(a)
double complex dimension(n),intent(in) :: a
double complex dimension(n),intent(in),depend(n) :: b
double complex dimension(n),intent(out),depend(n) :: c

end subroutine zadd
end module adder

end interface
end python module adder

! This file was auto-generated with f2py (version:2.0.0.dev0+git20240101.bab7280).
! See:
! https://numpy.org/doc/stable/f2py/

Which corresponds to:

In [3]: ?adder.adder.zadd
Call signature: adder.adder.zadd(*args, **kwargs)
Type: fortran
String form: <fortran function zadd>
Docstring:
c = zadd(a,b)

Wrapper for ``zadd``.

Parameters

a : input rank-1 array('D') with bounds (n)
b : input rank-1 array('D') with bounds (n)

Returns

c : rank-1 array('D') with bounds (n)

Finally, we can template over this in a similar manner, to attain the original goal of having bindings which make use of
f2py directives and have minimal spurious repetition.

! -*- f90 -*-
! Note: the context of this file is case sensitive.

(continues on next page)

658 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)

python module adder ! in
interface ! in :adder

module adder ! in :adder:adder_base.f90
#:def add_subroutine(dtype_prefix, dtype)

subroutine ${dtype_prefix}$add(a,b,c,n) ! in :adder:adder_base.f90:adder
integer intent(hide),depend(a) :: n=len(a)
${dtype}$ dimension(n),intent(in) :: a
${dtype}$ dimension(n),intent(in),depend(n) :: b
${dtype}$ dimension(n),intent(out),depend(n) :: c

end subroutine ${dtype_prefix}$add

#:enddef

#:for dtype_prefix, dtype in [('i', 'integer'), ('s', 'real'), ('d', 'real(kind=8)'),␣
↪→('c', 'complex'), ('z', 'complex(kind=8)')]

@:add_subroutine(${dtype_prefix}$, ${dtype}$)
#:endfor

end module adder
end interface

end python module adder

! This file was auto-generated with f2py (version:2.0.0.dev0+git20240101.bab7280).
! See:
! https://numpy.org/doc/stable/f2py/

Usage boils down to:

fypp gen_adder.f90.fypp > adder.f90
fypp adder.pyf.fypp > adder.pyf
f2py -m adder -c adder.pyf adder.f90 --backend meson

F2PY test suite

F2PY’s test suite is present in the directory numpy/f2py/tests. Its aim is to ensure that Fortran language features
are correctly translated to Python. For example, the user can specify starting and ending indices of arrays in Fortran. This
behaviour is translated to the generated CPython library where the arrays strictly start from 0 index.
The directory of the test suite looks like the following:

./tests/
├── __init__.py
├── src
│ ├── abstract_interface
│ ├── array_from_pyobj
│ ├── // ... several test folders
│ └── string
├── test_abstract_interface.py
├── test_array_from_pyobj.py
├── // ... several test files
├── test_symbolic.py
└── util.py

Files starting with test_ contain tests for various aspects of f2py from parsing Fortran files to checking modules’ doc-
umentation. src directory contains the Fortran source files upon which we do the testing. util.py contains utility
functions for building and importing Fortran modules during test time using a temporary location.

1.1. NumPy’s module structure 659

NumPy Reference, Release 2.2.0

Adding a test

F2PY’s current test suite predates pytest and therefore does not use fixtures. Instead, the test files contain test classes
that inherit from F2PyTest class present in util.py.

1 backend = SimplifiedMesonBackend(
2 modulename=module_name,
3 sources=source_files,
4 extra_objects=kwargs.get("extra_objects", []),
5 build_dir=build_dir,
6 include_dirs=kwargs.get("include_dirs", []),
7 library_dirs=kwargs.get("library_dirs", []),
8 libraries=kwargs.get("libraries", []),
9 define_macros=kwargs.get("define_macros", []),
10 undef_macros=kwargs.get("undef_macros", []),

This class many helper functions for parsing and compiling test source files. Its child classes can override its sources
data member to provide their own source files. This superclass will then compile the added source files upon object
creation and their functions will be appended to self.module data member. Thus, the child classes will be able to
access the fortran functions specified in source file by calling self.module.[fortran_function_name].
New in version v2.0.0b1.
Each of the f2py tests should run without failure if no Fortran compilers are present on the host machine. To facilitate
this, the CompilerChecker is used, essentially providing a meson dependent set of utilities namely has_{c,f77,
f90,fortran}_compiler().
For the CLI tests in test_f2py2e, flags which are expected to call meson or otherwise depend on a compiler need
to call compiler_check_f2pycli() instead of f2pycli().

Example

Consider the following subroutines, contained in a file named add-test.f

subroutine addb(k)
real(8), intent(inout) :: k(:)
k=k+1

endsubroutine

subroutine addc(w,k)
real(8), intent(in) :: w(:)
real(8), intent(out) :: k(size(w))
k=w+1

endsubroutine

The first routine addb simply takes an array and increases its elements by 1. The second subroutine addc assigns a new
array k with elements greater that the elements of the input array w by 1.
A test can be implemented as follows:

class TestAdd(util.F2PyTest):
sources = [util.getpath("add-test.f")]

def test_module(self):
k = np.array([1, 2, 3], dtype=np.float64)
w = np.array([1, 2, 3], dtype=np.float64)
self.module.addb(k)

(continues on next page)

660 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
assert np.allclose(k, w + 1)
self.module.addc([w, k])
assert np.allclose(k, w + 1)

We override the sources data member to provide the source file. The source files are compiled and subroutines are
attached to module data member when the class object is created. The test_module function calls the subroutines
and tests their results.

F2PY and Windows

Warning: F2PY support for Windows is not always at par with Linux support

Note: ScPy’s documentation has some information on system-level dependencies which are well tested for Fortran as
well.

Broadly speaking, there are two issues working with F2PY on Windows:
• the lack of actively developed FOSS Fortran compilers, and,
• the linking issues related to the C runtime library for building Python-C extensions.

The focus of this section is to establish a guideline for developing and extending Fortran modules for Python natively, via
F2PY on Windows.
Currently supported toolchains are:

• Mingw-w64 C/C++/Fortran compilers
• Intel compilers
• Clang-cl + Flang
• MSVC + Flang

Overview

From a user perspective, the most UNIX compatible Windows development environment is through emulation, either
via the Windows Subsystem on Linux, or facilitated by Docker. In a similar vein, traditional virtualization methods like
VirtualBox are also reasonable methods to develop UNIX tools on Windows.
Native Windows support is typically stunted beyond the usage of commercial compilers. However, as of 2022, most
commercial compilers have free plans which are sufficient for general use. Additionally, the Fortran language features
supported by f2py (partial coverage of Fortran 2003), means that newer toolchains are often not required. Briefly, then,
for an end user, in order of use:
Classic Intel Compilers (commercial)

These are maintained actively, though licensing restrictions may apply as further detailed in F2PY and Windows
Intel Fortran.
Suitable for general use for those building native Windows programs by building off of MSVC.

MSYS2 (FOSS)
In conjunction with the mingw-w64 project, gfortran and gcc toolchains can be used to natively build Win-
dows programs.

1.1. NumPy’s module structure 661

http://scipy.github.io/devdocs/building/index.html#system-level-dependencies

NumPy Reference, Release 2.2.0

Windows Subsystem for Linux
Assuming the usage of gfortran, this can be used for cross-compiling Windows applications, but is significantly
more complicated.

Conda
Windows support for compilers in conda is facilitated by pulling MSYS2 binaries, however these are outdated,
and therefore not recommended (as of 30-01-2022).

PGI Compilers (commercial)
Unmaintained but sufficient if an existing license is present. Works natively, but has been superseded by the Nvidia
HPC SDK, with no native Windows support.

Cygwin (FOSS)
Can also be used for gfortran. However, the POSIX API compatibility layer provided by Cygwin is meant to
compile UNIX software onWindows, instead of building nativeWindows programs. This means cross compilation
is required.

The compilation suites described so far are compatible with the now deprecated np.distutils build backend which
is exposed by the F2PY CLI. Additional build system usage (meson, cmake) as described in F2PY and build systems
allows for a more flexible set of compiler backends including:
Intel oneAPI

The newer Intel compilers (ifx, icx) are based on LLVM and can be used for native compilation. Licensing
requirements can be onerous.

Classic Flang (FOSS)
The backbone of the PGI compilers were cannibalized to form the “classic” or legacy version of Flang. This may
be compiled from source and used natively. LLVM Flang does not support Windows yet (30-01-2022).

LFortran (FOSS)
One of two LLVM based compilers. Not all of F2PY supported Fortran can be compiled yet (30-01-2022) but
uses MSVC for native linking.

Baseline

For this document we will assume the following basic tools:
• The IDE being considered is the community supported Microsoft Visual Studio Code
• The terminal being used is the Windows Terminal
• The shell environment is assumed to be Powershell 7.x
• Python 3.10 from the Microsoft Store and this can be tested with

Get-Command python.exe resolving to C:\Users\$USERNAME\AppData\Local\
Microsoft\WindowsApps\python.exe

• The Microsoft Visual C++ (MSVC) toolset
With this baseline configuration, we will further consider a configuration matrix as follows:

Table 5: Support matrix, exe implies a Windows installer
Fortran Compiler C/C++ Compiler Source
Intel Fortran MSVC / ICC exe
GFortran MSVC MSYS2/exe
GFortran GCC WSL
Classic Flang MSVC Source / Conda
Anaconda GFortran Anaconda GCC exe

662 1. Python API

https://github.com/conda-forge/conda-forge.github.io/issues/1044
https://developer.nvidia.com/nvidia-hpc-sdk-downloads#collapseFour
https://github.com/numpy/numpy/pull/20875
https://github.com/flang-compiler/flang
https://releases.llvm.org/11.0.0/tools/flang/docs/ReleaseNotes.html
https://code.visualstudio.com/Download
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701?activetab=pivot:overviewtab
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.1
https://www.microsoft.com/en-us/p/python-310/9pjpw5ldxlz5

NumPy Reference, Release 2.2.0

For an understanding of the key issues motivating the need for such a matrix Pauli Virtanen’s in-depth post on wheels
with Fortran for Windows is an excellent resource. An entertaining explanation of an application binary interface (ABI)
can be found in this post by JeanHeyd Meneide.

PowerShell and MSVC

MSVC is installed either via the Visual Studio Bundle or the lighter (preferred) Build Tools for Visual Studio with the
Desktop development with C++ setting.

Note: This can take a significant amount of time as it includes a download of around 2GB and requires a restart.

It is possible to use the resulting environment from a standard command prompt. However, it is more pleasant to use a
developer powershell, with a profile in Windows Terminal. This can be achieved by adding the following block to the
profiles->list section of the JSON file used to configure Windows Terminal (see Settings->Open JSON
file):

{
"name": "Developer PowerShell for VS 2019",
"commandline": "powershell.exe -noe -c \"$vsPath = (Join-Path ${env:ProgramFiles(x86)}
↪→ -ChildPath 'Microsoft Visual Studio\\2019\\BuildTools'); Import-Module (Join-Path
↪→$vsPath 'Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'); Enter-VsDevShell -
↪→VsInstallPath $vsPath -SkipAutomaticLocation\"",
"icon": "ms-appx:///ProfileIcons/{61c54bbd-c2c6-5271-96e7-009a87ff44bf}.png"
}

Now, testing the compiler toolchain could look like:

New Windows Developer Powershell instance / tab
or
$vsPath = (Join-Path ${env:ProgramFiles(x86)} -ChildPath 'Microsoft Visual Studio\\
↪→2019\\BuildTools');
Import-Module (Join-Path $vsPath 'Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll
↪→');
Enter-VsDevShell -VsInstallPath $vsPath -SkipAutomaticLocation
**
** Visual Studio 2019 Developer PowerShell v16.11.9
** Copyright (c) 2021 Microsoft Corporation
**
cd $HOME
echo "#include<stdio.h>" > blah.cpp; echo 'int main(){printf("Hi");return 1;}' >>␣
↪→blah.cpp
cl blah.cpp
.\blah.exe
Hi
rm blah.cpp

It is also possible to check that the environment has been updated correctly with $ENV:PATH.

1.1. NumPy’s module structure 663

https://pav.iki.fi/blog/2017-10-08/pywingfortran.html#building-python-wheels-with-fortran-for-windows
https://pav.iki.fi/blog/2017-10-08/pywingfortran.html#building-python-wheels-with-fortran-for-windows
https://thephd.dev/binary-banshees-digital-demons-abi-c-c++-help-me-god-please
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-160#developer_command_file_locations
https://docs.microsoft.com/en-us/visualstudio/ide/reference/command-prompt-powershell?view=vs-2019
https://techcommunity.microsoft.com/t5/microsoft-365-pnp-blog/add-developer-powershell-and-developer-command-prompt-for-visual/ba-p/2243078

NumPy Reference, Release 2.2.0

Microsoft Store Python paths

The MS Windows version of Python discussed here installs to a non-deterministic path using a hash. This needs to be
added to the PATH variable.

$Env:Path += ";$env:LOCALAPPDATA\packages\pythonsoftwarefoundation.python.3.10_
↪→qbz5n2kfra8p0\localcache\local-packages\python310\scripts"

F2PY and Windows Intel Fortran

As of NumPy 1.23, only the classic Intel compilers (ifort) are supported.

Note: The licensing restrictions for beta software have been relaxed during the transition to the LLVM backed ifx/
icc family of compilers. However this document does not endorse the usage of Intel in downstream projects due to the
issues pertaining to disassembly of components and liability.
Neither the Python Intel installation nor the Classic Intel C/C++ Compiler are required.

• The Intel Fortran Compilers come in a combined installer providing both Classic and Beta versions; these also take
around a gigabyte and a half or so.

We will consider the classic example of the generation of Fibonnaci numbers, fib1.f, given by:

C FILE: FIB1.F
SUBROUTINE FIB(A,N)

C
C CALCULATE FIRST N FIBONACCI NUMBERS
C

INTEGER N
REAL*8 A(N)
DO I=1,N

IF (I.EQ.1) THEN
A(I) = 0.0D0

ELSEIF (I.EQ.2) THEN
A(I) = 1.0D0

ELSE
A(I) = A(I-1) + A(I-2)

ENDIF
ENDDO
END

C END FILE FIB1.F

For cmd.exe fans, using the Intel oneAPI command prompt is the easiest approach, as it loads the required environment
for both ifort and msvc. Helper batch scripts are also provided.

cmd.exe
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
python -m numpy.f2py -c fib1.f -m fib1
python -c "import fib1; import numpy as np; a=np.zeros(8); fib1.fib(a); print(a)"

Powershell usage is a little less pleasant, and this configuration now works with MSVC as:

Powershell
python -m numpy.f2py -c fib1.f -m fib1 --f77exec='C:\Program Files (x86)\Intel\oneAPI\

(continues on next page)

664 1. Python API

https://www.intel.com/content/www/us/en/developer/articles/release-notes/oneapi-fortran-compiler-release-notes.html
https://software.sintel.com/content/www/us/en/develop/articles/end-user-license-agreement.html
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#inpage-nav-6-1

NumPy Reference, Release 2.2.0

(continued from previous page)
↪→compiler\latest\windows\bin\intel64\ifort.exe' --f90exec='C:\Program Files (x86)\
↪→Intel\oneAPI\compiler\latest\windows\bin\intel64\ifort.exe' -L'C:\Program Files␣
↪→(x86)\Intel\oneAPI\compiler\latest\windows\compiler\lib\ia32'
python -c "import fib1; import numpy as np; a=np.zeros(8); fib1.fib(a); print(a)"
Alternatively, set environment and reload Powershell in one line
cmd.exe /k '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
python -m numpy.f2py -c fib1.f -m fib1
python -c "import fib1; import numpy as np; a=np.zeros(8); fib1.fib(a); print(a)"

Note that the actual path to your local installation of ifort may vary, and the command above will need to be updated
accordingly.

F2PY and Windows with MSYS2

Follow the standard installation instructions. Then, to grab the requisite Fortran compiler with MVSC:

Assuming a fresh install
pacman -Syu # Restart the terminal
pacman -Su # Update packages
Get the toolchains
pacman -S --needed base-devel gcc-fortran
pacman -S mingw-w64-x86_64-toolchain

F2PY and Conda on Windows

As a convenience measure, we will additionally assume the existence of scoop, which can be used to install tools without
administrative access.

Invoke-Expression (New-Object System.Net.WebClient).DownloadString('https://get.scoop.
↪→sh')

Now we will setup a conda environment.

scoop install miniconda3
For conda activate / deactivate in powershell
conda install -n root -c pscondaenvs pscondaenvs
Powershell -c Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
conda init powershell
Open a new shell for the rest

conda pulls packages from msys2, however, the UX is sufficiently different enough to warrant a separate discussion.

Warning: As of 30-01-2022, the MSYS2 binaries shipped with conda are outdated and this approach is not
preferred.

1.1. NumPy’s module structure 665

https://www.msys2.org/
https://github.com/conda-forge/conda-forge.github.io/issues/1044

NumPy Reference, Release 2.2.0

F2PY and PGI Fortran on Windows

A variant of these are part of the so called “classic” Flang, however, as classic Flang requires a custom LLVM and
compilation from sources.

Warning: Since the proprietary compilers are no longer available for usage they are not recommended and will not
be ported to the new f2py CLI.

Note: As of November 2021
As of 29-01-2022, PGI compiler toolchains have been superseded by the Nvidia HPC SDK, with no native Windows
support.

Masked array operations

Constants

ma.MaskType alias of bool

numpy.ma.MaskType

alias of bool

Creation
From existing data

ma.masked_array alias of MaskedArray
ma.array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
ma.copy(self, *args, **params) a.copy(order=) Return a copy of the array.
ma.frombuffer(buffer[, dtype, count, ...]) Interpret a buffer as a 1-dimensional array.
ma.fromfunction(function, shape, **dtype) Construct an array by executing a function over each co-

ordinate.
ma.MaskedArray.copy([order]) Return a copy of the array.
ma.diagflat Create a two-dimensional array with the flattened input as

a diagonal.

numpy.ma.masked_array

alias of MaskedArray
ma.array(data, dtype=None, copy=False, order=None, mask=np.False_, fill_value=None, keep_mask=True,

hard_mask=False, shrink=True, subok=True, ndmin=0)

An array class with possibly masked values.
Masked values of True exclude the corresponding element from any computation.
Construction:

666 1. Python API

https://www.pgroup.com/index.html
https://developer.nvidia.com/nvidia-hpc-sdk-downloads#collapseFour
https://developer.nvidia.com/nvidia-hpc-sdk-downloads#collapseFour

NumPy Reference, Release 2.2.0

x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
shrink=True, order=None)

Parameters
data

[array_like] Input data.
mask

[sequence, optional] Mask. Must be convertible to an array of booleans with the same shape
as data. True indicates a masked (i.e. invalid) data.

dtype
[dtype, optional] Data type of the output. If dtype is None, the type of the data argument
(data.dtype) is used. If dtype is not None and different from data.dtype, a copy is
performed.

copy
[bool, optional] Whether to copy the input data (True), or to use a reference instead. Default
is False.

subok
[bool, optional] Whether to return a subclass of MaskedArray if possible (True) or a plain
MaskedArray. Default is True.

ndmin
[int, optional] Minimum number of dimensions. Default is 0.

fill_value
[scalar, optional] Value used to fill in the masked values when necessary. If None, a default
based on the data-type is used.

keep_mask
[bool, optional] Whether to combine mask with the mask of the input data, if any (True), or
to use only mask for the output (False). Default is True.

hard_mask
[bool, optional] Whether to use a hard mask or not. With a hard mask, masked values cannot
be unmasked. Default is False.

shrink
[bool, optional] Whether to force compression of an empty mask. Default is True.

order
[{‘C’, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’, then the array will be
in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the returned array will
be in Fortran-contiguous order (first-index varies the fastest). If order is ‘A’ (default), then
the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous),
unless a copy is required, in which case it will be C-contiguous.

1.1. NumPy’s module structure 667

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np

The mask can be initialized with an array of boolean values with the same shape as data.

>>> data = np.arange(6).reshape((2, 3))
>>> np.ma.MaskedArray(data, mask=[[False, True, False],
... [False, False, True]])
masked_array(
data=[[0, --, 2],

[3, 4, --]],
mask=[[False, True, False],

[False, False, True]],
fill_value=999999)

Alternatively, the mask can be initialized to homogeneous boolean array with the same shape as data by passing
in a scalar boolean value:

>>> np.ma.MaskedArray(data, mask=False)
masked_array(
data=[[0, 1, 2],

[3, 4, 5]],
mask=[[False, False, False],

[False, False, False]],
fill_value=999999)

>>> np.ma.MaskedArray(data, mask=True)
masked_array(
data=[[--, --, --],

[--, --, --]],
mask=[[True, True, True],

[True, True, True]],
fill_value=999999,
dtype=int64)

Note: The recommended practice for initializing mask with a scalar boolean value is to use True/False rather
than np.True_/np.False_. The reason is nomask is represented internally as np.False_.

>>> np.False_ is np.ma.nomask
True

ma.copy(self, *args, **params) a.copy(order='C') = <numpy.ma.core._frommethod object>

Return a copy of the array.

Parameters
order

[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible. (Note that this function and numpy.copy are very similar
but have different default values for their order= arguments, and this function always passes
sub-classes through.)

668 1. Python API

NumPy Reference, Release 2.2.0

See also:

numpy.copy
Similar function with different default behavior

numpy.copyto

Notes

This function is the preferred method for creating an array copy. The function numpy.copy is similar, but it
defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

>>> import numpy as np
>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

For arrays containing Python objects (e.g. dtype=object), the copy is a shallow one. The new array will contain the
same object which may lead to surprises if that object can be modified (is mutable):

>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> b = a.copy()
>>> b[2][0] = 10
>>> a
array([1, 'm', list([10, 3, 4])], dtype=object)

To ensure all elements within an object array are copied, use copy.deepcopy:

>>> import copy
>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> c = copy.deepcopy(a)
>>> c[2][0] = 10
>>> c
array([1, 'm', list([10, 3, 4])], dtype=object)
>>> a
array([1, 'm', list([2, 3, 4])], dtype=object)

1.1. NumPy’s module structure 669

https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

ma.frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None) = <numpy.ma.core._convert2ma
object>

Interpret a buffer as a 1-dimensional array.
Parameters

buffer
[buffer_like] An object that exposes the buffer interface.

dtype
[data-type, optional] Data-type of the returned array; default: float.

count
[int, optional] Number of items to read. -1 means all data in the buffer.

offset
[int, optional] Start reading the buffer from this offset (in bytes); default: 0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out: MaskedArray

See also:

ndarray.tobytes
Inverse of this operation, construct Python bytes from the raw data bytes in the array.

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.
This function creates a view into the original object. This should be safe in general, but it may make sense to copy
the result when the original object is mutable or untrusted.

Examples

>>> import numpy as np
>>> s = b'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')

670 1. Python API

NumPy Reference, Release 2.2.0

>>> np.frombuffer(b'\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.frombuffer(b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

ma.fromfunction(function, shape, **dtype) = <numpy.ma.core._convert2ma object>

Construct an array by executing a function over each coordinate.
The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

Parameters
function

[callable] The function is called with N parameters, where N is the rank of shape. Each
parameter represents the coordinates of the array varying along a specific axis. For example,
if shape were (2, 2), then the parameters would be array([[0, 0], [1, 1]])
and array([[0, 1], [0, 1]])

shape
[(N,) tuple of ints] Shape of the output array, which also determines the shape of the coordinate
arrays passed to function.

dtype
[data-type, optional] Data-type of the coordinate arrays passed to function. By default, dtype
is float.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
fromfunction: MaskedArray

The result of the call to function is passed back directly. Therefore the shape of fromfunc-
tion is completely determined by function. If function returns a scalar value, the shape of
fromfunction would not match the shape parameter.

See also:

indices, meshgrid

Notes

Keywords other than dtype and like are passed to function.

1.1. NumPy’s module structure 671

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float)
array([[0., 0.],

[1., 1.]])

>>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float)
array([[0., 1.],

[0., 1.]])

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[True, False, False],

[False, True, False],
[False, False, True]])

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4]])

method
ma.MaskedArray.copy(order='C')

Return a copy of the array.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible. (Note that this function and numpy.copy are very similar
but have different default values for their order= arguments, and this function always passes
sub-classes through.)

See also:

numpy.copy
Similar function with different default behavior

numpy.copyto

Notes

This function is the preferred method for creating an array copy. The function numpy.copy is similar, but it
defaults to using order ‘K’, and will not pass sub-classes through by default.

672 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

For arrays containing Python objects (e.g. dtype=object), the copy is a shallow one. The new array will contain the
same object which may lead to surprises if that object can be modified (is mutable):

>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> b = a.copy()
>>> b[2][0] = 10
>>> a
array([1, 'm', list([10, 3, 4])], dtype=object)

To ensure all elements within an object array are copied, use copy.deepcopy:

>>> import copy
>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> c = copy.deepcopy(a)
>>> c[2][0] = 10
>>> c
array([1, 'm', list([10, 3, 4])], dtype=object)
>>> a
array([1, 'm', list([2, 3, 4])], dtype=object)

ma.diagflat = <numpy.ma.extras._fromnxfunction_single object>

Create a two-dimensional array with the flattened input as a diagonal.
Parameters

v
[array_like] Input data, which is flattened and set as the k-th diagonal of the output.

k
[int, optional] Diagonal to set; 0, the default, corresponds to the “main” diagonal, a positive
(negative) k giving the number of the diagonal above (below) the main.

Returns
out

[ndarray] The 2-D output array.

1.1. NumPy’s module structure 673

https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

See also:

diag
MATLAB work-alike for 1-D and 2-D arrays.

diagonal
Return specified diagonals.

trace
Sum along diagonals.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> np.diagflat([[1,2], [3,4]])
array([[1, 0, 0, 0],

[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])

>>> np.diagflat([1,2], 1)
array([[0, 1, 0],

[0, 0, 2],
[0, 0, 0]])

Ones and zeros

ma.empty(shape[, dtype, order, device, like]) Return a new array of given shape and type, without ini-
tializing entries.

ma.empty_like(prototype[, dtype, order, ...]) Return a new array with the same shape and type as a
given array.

ma.masked_all(shape[, dtype]) Empty masked array with all elements masked.
ma.masked_all_like(arr) Empty masked array with the properties of an existing

array.
ma.ones(shape[, dtype, order]) Return a new array of given shape and type, filled with

ones.
ma.ones_like Return an array of ones with the same shape and type as

a given array.
ma.zeros(shape[, dtype, order, like]) Return a new array of given shape and type, filled with

zeros.
ma.zeros_like Return an array of zeros with the same shape and type as

a given array.

ma.empty(shape, dtype=float, order='C', *, device=None, like=None) = <numpy.ma.core._convert2ma
object>

Return a new array of given shape and type, without initializing entries.

674 1. Python API

NumPy Reference, Release 2.2.0

Parameters
shape

[int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.
dtype

[data-type, optional] Desired output data-type for the array, e.g, numpy.int8. Default is
numpy.float64.

order
[{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major (C-
style) or column-major (Fortran-style) order in memory.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[MaskedArray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order.
Object arrays will be initialized to None.

See also:

empty_like
Return an empty array with shape and type of input.

ones
Return a new array setting values to one.

zeros
Return a new array setting values to zero.

full
Return a new array of given shape filled with value.

Notes

Unlike other array creation functions (e.g. zeros, ones, full), empty does not initialize the values of the
array, and may therefore be marginally faster. However, the values stored in the newly allocated array are arbitrary.
For reproducible behavior, be sure to set each element of the array before reading.

1.1. NumPy’s module structure 675

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.empty([2, 2])
array([[-9.74499359e+001, 6.69583040e-309],

[2.13182611e-314, 3.06959433e-309]]) #uninitialized

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],

[496041986, 19249760]]) #uninitialized

ma.empty_like(prototype, dtype=None, order='K', subok=True, shape=None, *, device=None) =
<numpy.ma.core._convert2ma object>

Return a new array with the same shape and type as a given array.
Parameters

prototype
[array_like] The shape and data-type of prototype define these same attributes of the returned
array.

dtype
[data-type, optional] Overrides the data type of the result.

order
[{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if prototype is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of prototype as closely as possible.

subok
[bool, optional.] If True, then the newly created array will use the sub-class type of prototype,
otherwise it will be a base-class array. Defaults to True.

shape
[int or sequence of ints, optional.] Overrides the shape of the result. If order=’K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
out

[MaskedArray] Array of uninitialized (arbitrary) data with the same shape and type as proto-
type.

See also:

ones_like
Return an array of ones with shape and type of input.

zeros_like
Return an array of zeros with shape and type of input.

full_like
Return a new array with shape of input filled with value.

676 1. Python API

NumPy Reference, Release 2.2.0

empty
Return a new uninitialized array.

Notes

Unlike other array creation functions (e.g. zeros_like, ones_like, full_like), empty_like does not
initialize the values of the array, and may therefore be marginally faster. However, the values stored in the newly
allocated array are arbitrary. For reproducible behavior, be sure to set each element of the array before reading.

Examples

>>> import numpy as np
>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], # uninitialized

[0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized

[4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

ma.masked_all(shape, dtype=<class 'float'>)
Empty masked array with all elements masked.
Return an empty masked array of the given shape and dtype, where all the data are masked.

Parameters
shape

[int or tuple of ints] Shape of the required MaskedArray, e.g., (2, 3) or 2.
dtype

[dtype, optional] Data type of the output.
Returns

a
[MaskedArray] A masked array with all data masked.

See also:

masked_all_like
Empty masked array modelled on an existing array.

Notes

Unlike other masked array creation functions (e.g. numpy.ma.zeros, numpy.ma.ones, numpy.ma.full),
masked_all does not initialize the values of the array, and may therefore be marginally faster. However, the
values stored in the newly allocated array are arbitrary. For reproducible behavior, be sure to set each element of
the array before reading.

1.1. NumPy’s module structure 677

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.ma.masked_all((3, 3))
masked_array(
data=[[--, --, --],

[--, --, --],
[--, --, --]],

mask=[[True, True, True],
[True, True, True],
[True, True, True]],

fill_value=1e+20,
dtype=float64)

The dtype parameter defines the underlying data type.

>>> a = np.ma.masked_all((3, 3))
>>> a.dtype
dtype('float64')
>>> a = np.ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype
dtype('int32')

ma.masked_all_like(arr)
Empty masked array with the properties of an existing array.
Return an empty masked array of the same shape and dtype as the array arr, where all the data are masked.

Parameters
arr

[ndarray] An array describing the shape and dtype of the required MaskedArray.
Returns

a
[MaskedArray] A masked array with all data masked.

Raises
AttributeError

If arr doesn’t have a shape attribute (i.e. not an ndarray)
See also:

masked_all
Empty masked array with all elements masked.

Notes

Unlike other masked array creation functions (e.g. numpy.ma.zeros_like, numpy.ma.ones_like,
numpy.ma.full_like), masked_all_like does not initialize the values of the array, and may therefore be
marginally faster. However, the values stored in the newly allocated array are arbitrary. For reproducible behavior,
be sure to set each element of the array before reading.

678 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr
array([[0., 0., 0.],

[0., 0., 0.]], dtype=float32)
>>> np.ma.masked_all_like(arr)
masked_array(
data=[[--, --, --],

[--, --, --]],
mask=[[True, True, True],

[True, True, True]],
fill_value=np.float64(1e+20),
dtype=float32)

The dtype of the masked array matches the dtype of arr.

>>> arr.dtype
dtype('float32')
>>> np.ma.masked_all_like(arr).dtype
dtype('float32')

ma.ones(shape, dtype=None, order='C') = <numpy.ma.core._convert2ma object>

Return a new array of given shape and type, filled with ones.
Parameters

shape
[int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype
[data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order
[{‘C’, ‘F’}, optional, default: C]Whether to storemulti-dimensional data in row-major (C-style)
or column-major (Fortran-style) order in memory.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[MaskedArray] Array of ones with the given shape, dtype, and order.
See also:

1.1. NumPy’s module structure 679

NumPy Reference, Release 2.2.0

ones_like
Return an array of ones with shape and type of input.

empty
Return a new uninitialized array.

zeros
Return a new array setting values to zero.

full
Return a new array of given shape filled with value.

Examples

>>> import numpy as np
>>> np.ones(5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[1.],

[1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],

[1., 1.]])

ma.ones_like = <numpy.ma.core._convert2ma object>

Return an array of ones with the same shape and type as a given array.
Parameters

a
[array_like] The shape and data-type of a define these same attributes of the returned array.

dtype
[data-type, optional] Overrides the data type of the result.

order
[{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.

subok
[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.

shape
[int or sequence of ints, optional.] Overrides the shape of the result. If order=’K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.

680 1. Python API

NumPy Reference, Release 2.2.0

New in version 2.0.0.
Returns

out
[MaskedArray] Array of ones with the same shape and type as a.

See also:

empty_like
Return an empty array with shape and type of input.

zeros_like
Return an array of zeros with shape and type of input.

full_like
Return a new array with shape of input filled with value.

ones
Return a new array setting values to one.

Examples

>>> import numpy as np
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],

[1, 1, 1]])

>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.])
>>> np.ones_like(y)
array([1., 1., 1.])

ma.zeros(shape, dtype=float, order='C', *, like=None) = <numpy.ma.core._convert2ma object>

Return a new array of given shape and type, filled with zeros.
Parameters

shape
[int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype
[data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order
[{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major (C-
style) or column-major (Fortran-style) order in memory.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,

1.1. NumPy’s module structure 681

NumPy Reference, Release 2.2.0

the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[MaskedArray] Array of zeros with the given shape, dtype, and order.
See also:

zeros_like
Return an array of zeros with shape and type of input.

empty
Return a new uninitialized array.

ones
Return a new array setting values to one.

full
Return a new array of given shape filled with value.

Examples

>>> import numpy as np
>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[0.],

[0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[0., 0.],

[0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],

dtype=[('x', '<i4'), ('y', '<i4')])

ma.zeros_like = <numpy.ma.core._convert2ma object>

Return an array of zeros with the same shape and type as a given array.
Parameters

a
[array_like] The shape and data-type of a define these same attributes of the returned array.

dtype
[data-type, optional] Overrides the data type of the result.

682 1. Python API

NumPy Reference, Release 2.2.0

order
[{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.

subok
[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.

shape
[int or sequence of ints, optional.] Overrides the shape of the result. If order=’K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
out

[MaskedArray] Array of zeros with the same shape and type as a.
See also:

empty_like
Return an empty array with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

full_like
Return a new array with shape of input filled with value.

zeros
Return a new array setting values to zero.

Examples

>>> import numpy as np
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],

[0, 0, 0]])

>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.])
>>> np.zeros_like(y)
array([0., 0., 0.])

1.1. NumPy’s module structure 683

NumPy Reference, Release 2.2.0

Inspecting the array

ma.all(self[, axis, out, keepdims]) Returns True if all elements evaluate to True.
ma.any(self[, axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
ma.count(self[, axis, keepdims]) Count the non-masked elements of the array along the

given axis.
ma.count_masked(arr[, axis]) Count the number of masked elements along the given

axis.
ma.getmask(a) Return the mask of a masked array, or nomask.
ma.getmaskarray(arr) Return the mask of a masked array, or full boolean array

of False.
ma.getdata(a[, subok]) Return the data of a masked array as an ndarray.
ma.nonzero(self) Return the indices of unmasked elements that are not

zero.
ma.shape(obj) Return the shape of an array.
ma.size(obj[, axis]) Return the number of elements along a given axis.
ma.is_masked(x) Determine whether input has masked values.
ma.is_mask(m) Return True if m is a valid, standard mask.
ma.isMaskedArray(x) Test whether input is an instance of MaskedArray.
ma.isMA(x) Test whether input is an instance of MaskedArray.
ma.isarray(x) Test whether input is an instance of MaskedArray.
ma.isin(element, test_elements[, ...]) Calculates element in test_elements, broadcasting over el-

ement only.
ma.in1d(ar1, ar2[, assume_unique, invert]) Test whether each element of an array is also present in a

second array.
ma.unique(ar1[, return_index, return_inverse]) Finds the unique elements of an array.
ma.MaskedArray.all([axis, out, keepdims]) Returns True if all elements evaluate to True.
ma.MaskedArray.any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
ma.MaskedArray.count([axis, keepdims]) Count the non-masked elements of the array along the

given axis.
ma.MaskedArray.nonzero() Return the indices of unmasked elements that are not

zero.
ma.shape(obj) Return the shape of an array.
ma.size(obj[, axis]) Return the number of elements along a given axis.

ma.all(self, axis=None, out=None, keepdims=<no value>) = <numpy.ma.core._frommethod object>

Returns True if all elements evaluate to True.
The output array is masked where all the values along the given axis are masked: if the output would have been a
scalar and that all the values are masked, then the output is masked.
Refer to numpy.all for full documentation.
See also:

numpy.ndarray.all
corresponding function for ndarrays

numpy.all
equivalent function

684 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

ma.any(self, axis=None, out=None, keepdims=<no value>) = <numpy.ma.core._frommethod object>

Returns True if any of the elements of a evaluate to True.
Masked values are considered as False during computation.
Refer to numpy.any for full documentation.
See also:

numpy.ndarray.any
corresponding function for ndarrays

numpy.any
equivalent function

ma.count(self, axis=None, keepdims=<no value>) = <numpy.ma.core._frommethod object>

Count the non-masked elements of the array along the given axis.
Parameters

axis
[None or int or tuple of ints, optional] Axis or axes along which the count is performed. The
default, None, performs the count over all the dimensions of the input array. axis may be
negative, in which case it counts from the last to the first axis. If this is a tuple of ints, the
count is performed on multiple axes, instead of a single axis or all the axes as before.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns
result

[ndarray or scalar] An array with the same shape as the input array, with the specified axis
removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

See also:

ma.count_masked
Count masked elements in array or along a given axis.

1.1. NumPy’s module structure 685

NumPy Reference, Release 2.2.0

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(
data=[[0, 1, 2],

[--, --, --]],
mask=[[False, False, False],

[True, True, True]],
fill_value=999999)

>>> a.count()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

ma.count_masked(arr, axis=None)
Count the number of masked elements along the given axis.

Parameters
arr

[array_like] An array with (possibly) masked elements.
axis

[int, optional] Axis along which to count. If None (default), a flattened version of the array is
used.

Returns
count

[int, ndarray] The total number of masked elements (axis=None) or the number of masked
elements along each slice of the given axis.

See also:

MaskedArray.count
Count non-masked elements.

Examples

>>> import numpy as np
>>> a = np.arange(9).reshape((3,3))
>>> a = np.ma.array(a)
>>> a[1, 0] = np.ma.masked
>>> a[1, 2] = np.ma.masked
>>> a[2, 1] = np.ma.masked
>>> a
masked_array(
data=[[0, 1, 2],

[--, 4, --],

(continues on next page)

686 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[6, --, 8]],

mask=[[False, False, False],
[True, False, True],
[False, True, False]],

fill_value=999999)
>>> np.ma.count_masked(a)
3

When the axis keyword is used an array is returned.

>>> np.ma.count_masked(a, axis=0)
array([1, 1, 1])
>>> np.ma.count_masked(a, axis=1)
array([0, 2, 1])

ma.getmask(a)
Return the mask of a masked array, or nomask.
Return the mask of a as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask.
To guarantee a full array of booleans of the same shape as a, use getmaskarray.

Parameters
a

[array_like] Input MaskedArray for which the mask is required.
See also:

getdata
Return the data of a masked array as an ndarray.

getmaskarray
Return the mask of a masked array, or full array of False.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(
data=[[1, --],

[3, 4]],
mask=[[False, True],

[False, False]],
fill_value=2)

>>> ma.getmask(a)
array([[False, True],

[False, False]])

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array([[False, True],

[False, False]])

Result when mask == nomask

1.1. NumPy’s module structure 687

NumPy Reference, Release 2.2.0

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(
data=[[1, 2],

[3, 4]],
mask=False,
fill_value=999999)

>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
True
>>> b.mask == ma.nomask
True

ma.getmaskarray(arr)
Return the mask of a masked array, or full boolean array of False.
Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full
boolean array of False of the same shape as arr.

Parameters
arr

[array_like] Input MaskedArray for which the mask is required.
See also:

getmask
Return the mask of a masked array, or nomask.

getdata
Return the data of a masked array as an ndarray.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(
data=[[1, --],

[3, 4]],
mask=[[False, True],

[False, False]],
fill_value=2)

>>> ma.getmaskarray(a)
array([[False, True],

[False, False]])

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
masked_array(
data=[[1, 2],

[3, 4]],
mask=False,

(continues on next page)

688 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
fill_value=999999)

>>> ma.getmaskarray(b)
array([[False, False],

[False, False]])

ma.getdata(a, subok=True)
Return the data of a masked array as an ndarray.
Return the data of a (if any) as an ndarray if a is a MaskedArray, else return a as a ndarray or subclass (depending
on subok) if not.

Parameters
a

[array_like] Input MaskedArray, alternatively a ndarray or a subclass thereof.
subok

[bool]Whether to force the output to be a pure ndarray (False) or to return a subclass of ndarray
if appropriate (True, default).

See also:

getmask
Return the mask of a masked array, or nomask.

getmaskarray
Return the mask of a masked array, or full array of False.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
masked_array(
data=[[1, --],

[3, 4]],
mask=[[False, True],

[False, False]],
fill_value=2)

>>> ma.getdata(a)
array([[1, 2],

[3, 4]])

Equivalently use the MaskedArray data attribute.

>>> a.data
array([[1, 2],

[3, 4]])

ma.nonzero(self) = <numpy.ma.core._frommethod object>

Return the indices of unmasked elements that are not zero.
Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that dimension.
The corresponding non-zero values can be obtained with:

1.1. NumPy’s module structure 689

NumPy Reference, Release 2.2.0

a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.
Parameters

None
Returns

tuple_of_arrays
[tuple] Indices of elements that are non-zero.

See also:

numpy.nonzero
Function operating on ndarrays.

flatnonzero
Return indices that are non-zero in the flattened version of the input array.

numpy.ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(
data=[[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]],

mask=False,
fill_value=1e+20)

>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(
data=[[1.0, 0.0, 0.0],

[0.0, --, 0.0],
[0.0, 0.0, 1.0]],

mask=[[False, False, False],
[False, True, False],
[False, False, False]],

fill_value=1e+20)

(continues on next page)

690 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],

[2, 2]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the a
where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(
data=[[False, False, False],

[True, True, True],
[True, True, True]],

mask=False,
fill_value=True)

>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

ma.shape(obj)
Return the shape of an array.

Parameters
a

[array_like] Input array.
Returns

shape
[tuple of ints] The elements of the shape tuple give the lengths of the corresponding array
dimensions.

See also:

len
len(a) is equivalent to np.shape(a)[0] for N-D arrays with N>=1.

ndarray.shape
Equivalent array method.

1.1. NumPy’s module structure 691

https://docs.python.org/3/library/functions.html#len

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 3]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1, 2), (3, 4), (5, 6)],
... dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(3,)
>>> a.shape
(3,)

ma.size(obj, axis=None)
Return the number of elements along a given axis.

Parameters
a

[array_like] Input data.
axis

[int, optional] Axis along which the elements are counted. By default, give the total number
of elements.

Returns
element_count

[int] Number of elements along the specified axis.
See also:

shape
dimensions of array

ndarray.shape
dimensions of array

ndarray.size
number of elements in array

Examples

>>> import numpy as np
>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

692 1. Python API

NumPy Reference, Release 2.2.0

ma.is_masked(x)
Determine whether input has masked values.
Accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values.

Parameters
x

[array_like] Array to check for masked values.
Returns

result
[bool] True if x is a MaskedArray with masked values, False otherwise.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> x
masked_array(data=[--, 1, --, 2, 3],

mask=[True, False, True, False, False],
fill_value=0)

>>> ma.is_masked(x)
True
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
>>> x
masked_array(data=[0, 1, 0, 2, 3],

mask=False,
fill_value=42)

>>> ma.is_masked(x)
False

Always returns False if x isn’t a MaskedArray.

>>> x = [False, True, False]
>>> ma.is_masked(x)
False
>>> x = 'a string'
>>> ma.is_masked(x)
False

ma.is_mask(m)
Return True if m is a valid, standard mask.
This function does not check the contents of the input, only that the type is MaskType. In particular, this function
returns False if the mask has a flexible dtype.

Parameters
m

[array_like] Array to test.
Returns

result
[bool] True if m.dtype.type is MaskType, False otherwise.

See also:

1.1. NumPy’s module structure 693

NumPy Reference, Release 2.2.0

ma.isMaskedArray
Test whether input is an instance of MaskedArray.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> m
masked_array(data=[--, 1, --, 2, 3],

mask=[True, False, True, False, False],
fill_value=0)

>>> ma.is_mask(m)
False
>>> ma.is_mask(m.mask)
True

Input must be an ndarray (or have similar attributes) for it to be considered a valid mask.

>>> m = [False, True, False]
>>> ma.is_mask(m)
False
>>> m = np.array([False, True, False])
>>> m
array([False, True, False])
>>> ma.is_mask(m)
True

Arrays with complex dtypes don’t return True.

>>> dtype = np.dtype({'names':['monty', 'pithon'],
... 'formats':[bool, bool]})
>>> dtype
dtype([('monty', '|b1'), ('pithon', '|b1')])
>>> m = np.array([(True, False), (False, True), (True, False)],
... dtype=dtype)
>>> m
array([(True, False), (False, True), (True, False)],

dtype=[('monty', '?'), ('pithon', '?')])
>>> ma.is_mask(m)
False

ma.isMaskedArray(x)
Test whether input is an instance of MaskedArray.
This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted
as input.

Parameters
x

[object] Object to test.
Returns

result
[bool] True if x is a MaskedArray.

See also:

694 1. Python API

NumPy Reference, Release 2.2.0

isMA
Alias to isMaskedArray.

isarray
Alias to isMaskedArray.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.eye(3, 3)
>>> a
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> m = ma.masked_values(a, 0)
>>> m
masked_array(
data=[[1.0, --, --],

[--, 1.0, --],
[--, --, 1.0]],

mask=[[False, True, True],
[True, False, True],
[True, True, False]],

fill_value=0.0)
>>> ma.isMaskedArray(a)
False
>>> ma.isMaskedArray(m)
True
>>> ma.isMaskedArray([0, 1, 2])
False

ma.isMA(x)
Test whether input is an instance of MaskedArray.
This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted
as input.

Parameters
x

[object] Object to test.
Returns

result
[bool] True if x is a MaskedArray.

See also:

isMA
Alias to isMaskedArray.

isarray
Alias to isMaskedArray.

1.1. NumPy’s module structure 695

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.eye(3, 3)
>>> a
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> m = ma.masked_values(a, 0)
>>> m
masked_array(
data=[[1.0, --, --],

[--, 1.0, --],
[--, --, 1.0]],

mask=[[False, True, True],
[True, False, True],
[True, True, False]],

fill_value=0.0)
>>> ma.isMaskedArray(a)
False
>>> ma.isMaskedArray(m)
True
>>> ma.isMaskedArray([0, 1, 2])
False

ma.isarray(x)
Test whether input is an instance of MaskedArray.
This function returns True if x is an instance of MaskedArray and returns False otherwise. Any object is accepted
as input.

Parameters
x

[object] Object to test.
Returns

result
[bool] True if x is a MaskedArray.

See also:

isMA
Alias to isMaskedArray.

isarray
Alias to isMaskedArray.

696 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.eye(3, 3)
>>> a
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> m = ma.masked_values(a, 0)
>>> m
masked_array(
data=[[1.0, --, --],

[--, 1.0, --],
[--, --, 1.0]],

mask=[[False, True, True],
[True, False, True],
[True, True, False]],

fill_value=0.0)
>>> ma.isMaskedArray(a)
False
>>> ma.isMaskedArray(m)
True
>>> ma.isMaskedArray([0, 1, 2])
False

ma.isin(element, test_elements, assume_unique=False, invert=False)
Calculates element in test_elements, broadcasting over element only.
The output is always a masked array of the same shape as element. See numpy.isin for more details.
See also:

in1d
Flattened version of this function.

numpy.isin
Equivalent function for ndarrays.

Examples

>>> import numpy as np
>>> element = np.ma.array([1, 2, 3, 4, 5, 6])
>>> test_elements = [0, 2]
>>> np.ma.isin(element, test_elements)
masked_array(data=[False, True, False, False, False, False],

mask=False,
fill_value=True)

ma.in1d(ar1, ar2, assume_unique=False, invert=False)
Test whether each element of an array is also present in a second array.
The output is always a masked array. See numpy.in1d for more details.
We recommend using isin instead of in1d for new code.
See also:

1.1. NumPy’s module structure 697

NumPy Reference, Release 2.2.0

isin
Version of this function that preserves the shape of ar1.

numpy.in1d
Equivalent function for ndarrays.

Examples

>>> import numpy as np
>>> ar1 = np.ma.array([0, 1, 2, 5, 0])
>>> ar2 = [0, 2]
>>> np.ma.in1d(ar1, ar2)
masked_array(data=[True, False, True, False, True],

mask=False,
fill_value=True)

ma.unique(ar1, return_index=False, return_inverse=False)
Finds the unique elements of an array.
Masked values are considered the same element (masked). The output array is always a masked array. See numpy.
unique for more details.
See also:

numpy.unique
Equivalent function for ndarrays.

Examples

>>> import numpy as np
>>> a = [1, 2, 1000, 2, 3]
>>> mask = [0, 0, 1, 0, 0]
>>> masked_a = np.ma.masked_array(a, mask)
>>> masked_a
masked_array(data=[1, 2, --, 2, 3],

mask=[False, False, True, False, False],
fill_value=999999)

>>> np.ma.unique(masked_a)
masked_array(data=[1, 2, 3, --],

mask=[False, False, False, True],
fill_value=999999)

>>> np.ma.unique(masked_a, return_index=True)
(masked_array(data=[1, 2, 3, --],

mask=[False, False, False, True],
fill_value=999999), array([0, 1, 4, 2]))

>>> np.ma.unique(masked_a, return_inverse=True)
(masked_array(data=[1, 2, 3, --],

mask=[False, False, False, True],
fill_value=999999), array([0, 1, 3, 1, 2]))

>>> np.ma.unique(masked_a, return_index=True, return_inverse=True)
(masked_array(data=[1, 2, 3, --],

mask=[False, False, False, True],
fill_value=999999), array([0, 1, 4, 2]), array([0, 1, 3, 1, 2]))

method

698 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.all(axis=None, out=None, keepdims=<no value>)
Returns True if all elements evaluate to True.
The output array is masked where all the values along the given axis are masked: if the output would have been a
scalar and that all the values are masked, then the output is masked.
Refer to numpy.all for full documentation.
See also:

numpy.ndarray.all
corresponding function for ndarrays

numpy.all
equivalent function

Examples

>>> import numpy as np
>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True

method
ma.MaskedArray.any(axis=None, out=None, keepdims=<no value>)

Returns True if any of the elements of a evaluate to True.
Masked values are considered as False during computation.
Refer to numpy.any for full documentation.
See also:

numpy.ndarray.any
corresponding function for ndarrays

numpy.any
equivalent function

method
ma.MaskedArray.count(axis=None, keepdims=<no value>)

Count the non-masked elements of the array along the given axis.
Parameters

axis
[None or int or tuple of ints, optional] Axis or axes along which the count is performed. The
default, None, performs the count over all the dimensions of the input array. axis may be
negative, in which case it counts from the last to the first axis. If this is a tuple of ints, the
count is performed on multiple axes, instead of a single axis or all the axes as before.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns

1.1. NumPy’s module structure 699

NumPy Reference, Release 2.2.0

result
[ndarray or scalar] An array with the same shape as the input array, with the specified axis
removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

See also:

ma.count_masked
Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
masked_array(
data=[[0, 1, 2],

[--, --, --]],
mask=[[False, False, False],

[True, True, True]],
fill_value=999999)

>>> a.count()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count(axis=0)
array([1, 1, 1])
>>> a.count(axis=1)
array([3, 0])

method
ma.MaskedArray.nonzero()

Return the indices of unmasked elements that are not zero.
Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that dimension.
The corresponding non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.
Parameters

None
Returns

tuple_of_arrays
[tuple] Indices of elements that are non-zero.

See also:

700 1. Python API

NumPy Reference, Release 2.2.0

numpy.nonzero
Function operating on ndarrays.

flatnonzero
Return indices that are non-zero in the flattened version of the input array.

numpy.ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array(
data=[[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]],

mask=False,
fill_value=1e+20)

>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array(
data=[[1.0, 0.0, 0.0],

[0.0, --, 0.0],
[0.0, 0.0, 1.0]],

mask=[[False, False, False],
[False, True, False],
[False, False, False]],

fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())
array([[0, 0],

[2, 2]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the a
where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
masked_array(
data=[[False, False, False],

[True, True, True],

(continues on next page)

1.1. NumPy’s module structure 701

NumPy Reference, Release 2.2.0

(continued from previous page)
[True, True, True]],

mask=False,
fill_value=True)

>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

ma.MaskedArray.data Returns the underlying data, as a view of the masked ar-
ray.

ma.MaskedArray.mask Current mask.
ma.MaskedArray.recordmask Get or set the mask of the array if it has no named fields.

Manipulating a MaskedArray
Changing the shape

ma.ravel(self[, order]) Returns a 1D version of self, as a view.
ma.reshape(a, new_shape[, order]) Returns an array containing the same data with a new

shape.
ma.resize(x, new_shape) Return a new masked array with the specified size and

shape.
ma.MaskedArray.flatten([order]) Return a copy of the array collapsed into one dimension.
ma.MaskedArray.ravel([order]) Returns a 1D version of self, as a view.
ma.MaskedArray.reshape(*s, **kwargs) Give a new shape to the array without changing its data.
ma.MaskedArray.resize(newshape[, refcheck,
...])

ma.ravel(self, order='C') = <numpy.ma.core._frommethod object>

Returns a 1D version of self, as a view.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’ means
to index the elements in C-like order, with the last axis index changing fastest, back to the
first axis index changing slowest. ‘F’ means to index the elements in Fortran-like index order,
with the first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer to
the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order if m is
Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the elements in the
order they occur in memory, except for reversing the data when strides are negative. By default,
‘C’ index order is used. (Masked arrays currently use ‘A’ on the data when ‘K’ is passed.)

Returns
MaskedArray

Output view is of shape (self.size,) (or (np.ma.product(self.shape),)).

702 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> x
masked_array(
data=[[1, --, 3],

[--, 5, --],
[7, --, 9]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)
>>> x.ravel()
masked_array(data=[1, --, 3, --, 5, --, 7, --, 9],

mask=[False, True, False, True, False, True, False, True,
False],

fill_value=999999)

ma.reshape(a, new_shape, order='C')
Returns an array containing the same data with a new shape.
Refer to MaskedArray.reshape for full documentation.
See also:

MaskedArray.reshape
equivalent function

Examples

Reshaping a 1-D array:

>>> a = np.ma.array([1, 2, 3, 4])
>>> np.ma.reshape(a, (2, 2))
masked_array(
data=[[1, 2],

[3, 4]],
mask=False,
fill_value=999999)

Reshaping a 2-D array:

>>> b = np.ma.array([[1, 2], [3, 4]])
>>> np.ma.reshape(b, (1, 4))
masked_array(data=[[1, 2, 3, 4]],

mask=False,
fill_value=999999)

Reshaping a 1-D array with a mask:

>>> c = np.ma.array([1, 2, 3, 4], mask=[False, True, False, False])
>>> np.ma.reshape(c, (2, 2))
masked_array(
data=[[1, --],

[3, 4]],

(continues on next page)

1.1. NumPy’s module structure 703

NumPy Reference, Release 2.2.0

(continued from previous page)
mask=[[False, True],

[False, False]],
fill_value=999999)

ma.resize(x, new_shape)
Return a new masked array with the specified size and shape.
This is the masked equivalent of the numpy.resize function. The new array is filled with repeated copies of x
(in the order that the data are stored in memory). If x is masked, the new array will be masked, and the new mask
will be a repetition of the old one.
See also:

numpy.resize
Equivalent function in the top level NumPy module.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = ma.array([[1, 2] ,[3, 4]])
>>> a[0, 1] = ma.masked
>>> a
masked_array(
data=[[1, --],

[3, 4]],
mask=[[False, True],

[False, False]],
fill_value=999999)

>>> np.resize(a, (3, 3))
masked_array(
data=[[1, 2, 3],

[4, 1, 2],
[3, 4, 1]],

mask=False,
fill_value=999999)

>>> ma.resize(a, (3, 3))
masked_array(
data=[[1, --, 3],

[4, 1, --],
[3, 4, 1]],

mask=[[False, True, False],
[False, False, True],
[False, False, False]],

fill_value=999999)

A MaskedArray is always returned, regardless of the input type.

>>> a = np.array([[1, 2] ,[3, 4]])
>>> ma.resize(a, (3, 3))
masked_array(
data=[[1, 2, 3],

[4, 1, 2],
[3, 4, 1]],

(continues on next page)

704 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
mask=False,
fill_value=999999)

method
ma.MaskedArray.flatten(order='C')

Return a copy of the array collapsed into one dimension.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if
a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the
order the elements occur in memory. The default is ‘C’.

Returns
y

[ndarray] A copy of the input array, flattened to one dimension.
See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> import numpy as np
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

method
ma.MaskedArray.ravel(order='C')

Returns a 1D version of self, as a view.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’ means
to index the elements in C-like order, with the last axis index changing fastest, back to the
first axis index changing slowest. ‘F’ means to index the elements in Fortran-like index order,
with the first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer to
the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order if m is
Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the elements in the
order they occur in memory, except for reversing the data when strides are negative. By default,
‘C’ index order is used. (Masked arrays currently use ‘A’ on the data when ‘K’ is passed.)

Returns

1.1. NumPy’s module structure 705

NumPy Reference, Release 2.2.0

MaskedArray
Output view is of shape (self.size,) (or (np.ma.product(self.shape),)).

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> x
masked_array(
data=[[1, --, 3],

[--, 5, --],
[7, --, 9]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)
>>> x.ravel()
masked_array(data=[1, --, 3, --, 5, --, 7, --, 9],

mask=[False, True, False, True, False, True, False, True,
False],

fill_value=999999)

method
ma.MaskedArray.reshape(*s, **kwargs)

Give a new shape to the array without changing its data.
Returns a masked array containing the same data, but with a new shape. The result is a view on the original array;
if this is not possible, a ValueError is raised.

Parameters
shape

[int or tuple of ints] The new shape should be compatible with the original shape. If an integer
is supplied, then the result will be a 1-D array of that length.

order
[{‘C’, ‘F’}, optional] Determines whether the array data should be viewed as in C (row-major)
or FORTRAN (column-major) order.

Returns
reshaped_array

[array] A new view on the array.
See also:

reshape
Equivalent function in the masked array module.

numpy.ndarray.reshape
Equivalent method on ndarray object.

numpy.reshape
Equivalent function in the NumPy module.

706 1. Python API

NumPy Reference, Release 2.2.0

Notes

The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use a.shape
= s

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> x
masked_array(
data=[[--, 2],

[3, --]],
mask=[[True, False],

[False, True]],
fill_value=999999)

>>> x = x.reshape((4,1))
>>> x
masked_array(
data=[[--],

[2],
[3],
[--]],

mask=[[True],
[False],
[False],
[True]],

fill_value=999999)

method
ma.MaskedArray.resize(newshape, refcheck=True, order=False)

Warning: This method does nothing, except raise a ValueError exception. A masked array does not own its
data and therefore cannot safely be resized in place. Use the numpy.ma.resize function instead.

This method is difficult to implement safely and may be deprecated in future releases of NumPy.

Modifying axes

ma.swapaxes(self, *args, ...) Return a view of the array with axis1 and axis2 inter-
changed.

ma.transpose(a[, axes]) Permute the dimensions of an array.
ma.MaskedArray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

ma.swapaxes(self, *args, **params) a.swapaxes(axis1, axis2) = <numpy.ma.core._frommethod
object>

1.1. NumPy’s module structure 707

NumPy Reference, Release 2.2.0

Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes
equivalent function

ma.transpose(a, axes=None)
Permute the dimensions of an array.
This function is exactly equivalent to numpy.transpose.
See also:

numpy.transpose
Equivalent function in top-level NumPy module.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
>>> x
masked_array(
data=[[0, 1],

[2, --]],
mask=[[False, False],

[False, True]],
fill_value=999999)

>>> ma.transpose(x)
masked_array(
data=[[0, 2],

[1, --]],
mask=[[False, False],

[False, True]],
fill_value=999999)

method
ma.MaskedArray.swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See also:

numpy.swapaxes
equivalent function

method

708 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.transpose(*axes)
Returns a view of the array with axes transposed.
Refer to numpy.transpose for full documentation.

Parameters
axes

[None, tuple of ints, or n ints]
• None or no argument: reverses the order of the axes.
• tuple of ints: i in the j-th place in the tuple means that the array’s i-th axis becomes the
transposed array’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form).

Returns
p

[ndarray] View of the array with its axes suitably permuted.
See also:

transpose
Equivalent function.

ndarray.T
Array property returning the array transposed.

ndarray.reshape
Give a new shape to an array without changing its data.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.transpose()
array([1, 2, 3, 4])

1.1. NumPy’s module structure 709

NumPy Reference, Release 2.2.0

Changing the number of dimensions

ma.atleast_1d Convert inputs to arrays with at least one dimension.
ma.atleast_2d View inputs as arrays with at least two dimensions.
ma.atleast_3d View inputs as arrays with at least three dimensions.
ma.expand_dims(a, axis) Expand the shape of an array.
ma.squeeze Remove axes of length one from a.
ma.MaskedArray.squeeze([axis]) Remove axes of length one from a.
ma.stack Join a sequence of arrays along a new axis.
ma.column_stack Stack 1-D arrays as columns into a 2-D array.
ma.concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.
ma.dstack Stack arrays in sequence depth wise (along third axis).
ma.hstack Stack arrays in sequence horizontally (column wise).
ma.hsplit Split an array into multiple sub-arrays horizontally

(column-wise).
ma.mr_ Translate slice objects to concatenation along the first axis.
ma.vstack Stack arrays in sequence vertically (row wise).

ma.atleast_1d = <numpy.ma.extras._fromnxfunction_allargs object>

Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters
arys1, arys2, …

[array_like] One or more input arrays.
Returns

ret
[ndarray] An array, or tuple of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

See also:

atleast_2d, atleast_3d

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> np.atleast_1d(1.0)
array([1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.]])

(continues on next page)

710 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
(array([1]), array([3, 4]))

ma.atleast_2d = <numpy.ma.extras._fromnxfunction_allargs object>

View inputs as arrays with at least two dimensions.
Parameters

arys1, arys2, …
[array_like] One or more array-like sequences. Non-array inputs are converted to arrays. Ar-
rays that already have two or more dimensions are preserved.

Returns
res, res2, …

[ndarray] An array, or tuple of arrays, each with a.ndim >= 2. Copies are avoided where
possible, and views with two or more dimensions are returned.

See also:

atleast_1d, atleast_3d

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> np.atleast_2d(3.0)
array([[3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
(array([[1]]), array([[1, 2]]), array([[1, 2]]))

ma.atleast_3d = <numpy.ma.extras._fromnxfunction_allargs object>

View inputs as arrays with at least three dimensions.
Parameters

arys1, arys2, …
[array_like] One or more array-like sequences. Non-array inputs are converted to arrays. Ar-
rays that already have three or more dimensions are preserved.

Returns

1.1. NumPy’s module structure 711

NumPy Reference, Release 2.2.0

res1, res2, …
[ndarray] An array, or tuple of arrays, each with a.ndim >= 3. Copies are avoided where
possible, and views with three or more dimensions are returned. For example, a 1-D array
of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape (M, N)
becomes a view of shape (M, N, 1).

See also:

atleast_1d, atleast_2d

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> np.atleast_3d(3.0)
array([[[3.]]])

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print(arr, arr.shape)
...
[[[1]
[2]]] (1, 2, 1)

[[[1]
[2]]] (1, 2, 1)

[[[1 2]]] (1, 1, 2)

ma.expand_dims(a, axis)
Expand the shape of an array.
Insert a new axis that will appear at the axis position in the expanded array shape.

Parameters
a

[array_like] Input array.
axis

[int or tuple of ints] Position in the expanded axes where the new axis (or axes) is placed.
Deprecated since version 1.13.0: Passing an axis where axis > a.ndim will be treated as
axis == a.ndim, and passing axis < -a.ndim - 1 will be treated as axis ==
0. This behavior is deprecated.

712 1. Python API

NumPy Reference, Release 2.2.0

Returns
result

[ndarray] View of a with the number of dimensions increased.
See also:

squeeze
The inverse operation, removing singleton dimensions

reshape
Insert, remove, and combine dimensions, and resize existing ones

atleast_1d, atleast_2d, atleast_3d

Examples

>>> import numpy as np
>>> x = np.array([1, 2])
>>> x.shape
(2,)

The following is equivalent to x[np.newaxis, :] or x[np.newaxis]:

>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)

The following is equivalent to x[:, np.newaxis]:

>>> y = np.expand_dims(x, axis=1)
>>> y
array([[1],

[2]])
>>> y.shape
(2, 1)

axis may also be a tuple:

>>> y = np.expand_dims(x, axis=(0, 1))
>>> y
array([[[1, 2]]])

>>> y = np.expand_dims(x, axis=(2, 0))
>>> y
array([[[1],

[2]]])

Note that some examples may use None instead of np.newaxis. These are the same objects:

>>> np.newaxis is None
True

ma.squeeze = <numpy.ma.core._convert2ma object>

Remove axes of length one from a.

1.1. NumPy’s module structure 713

NumPy Reference, Release 2.2.0

Parameters
a

[array_like] Input data.
axis

[None or int or tuple of ints, optional] Selects a subset of the entries of length one in the shape.
If an axis is selected with shape entry greater than one, an error is raised.

Returns
squeezed

[MaskedArray] The input array, but with all or a subset of the dimensions of length 1 removed.
This is always a itself or a view into a. Note that if all axes are squeezed, the result is a 0d
array and not a scalar.

Raises
ValueError

If axis is not None, and an axis being squeezed is not of length 1
See also:

expand_dims
The inverse operation, adding entries of length one

reshape
Insert, remove, and combine dimensions, and resize existing ones

Examples

>>> import numpy as np
>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=0).shape
(3, 1)
>>> np.squeeze(x, axis=1).shape
Traceback (most recent call last):
...
ValueError: cannot select an axis to squeeze out which has size
not equal to one
>>> np.squeeze(x, axis=2).shape
(1, 3)
>>> x = np.array([[1234]])
>>> x.shape
(1, 1)
>>> np.squeeze(x)
array(1234) # 0d array
>>> np.squeeze(x).shape
()
>>> np.squeeze(x)[()]
1234

method

714 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.squeeze(axis=None)
Remove axes of length one from a.
Refer to numpy.squeeze for full documentation.
See also:

numpy.squeeze
equivalent function

ma.stack = <numpy.ma.extras._fromnxfunction_seq object>

Join a sequence of arrays along a new axis.
The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0
it will be the first dimension and if axis=-1 it will be the last dimension.

Parameters
arrays

[sequence of ndarrays] Each array must have the same shape. In the case of a single ndarray
array_like input, it will be treated as a sequence of arrays; i.e., each element along the zeroth
axis is treated as a separate array.

axis
[int, optional] The axis in the result array along which the input arrays are stacked.

out
[ndarray, optional] If provided, the destination to place the result. The shape must be correct,
matching that of what stack would have returned if no out argument were specified.

dtype
[str or dtype] If provided, the destination array will have this dtype. Cannot be provided
together with out.
New in version 1.24.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘same_kind’.
New in version 1.24.

Returns
stacked

[ndarray] The stacked array has one more dimension than the input arrays.
See also:

concatenate
Join a sequence of arrays along an existing axis.

block
Assemble an nd-array from nested lists of blocks.

split
Split array into a list of multiple sub-arrays of equal size.

unstack
Split an array into a tuple of sub-arrays along an axis.

1.1. NumPy’s module structure 715

NumPy Reference, Release 2.2.0

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> arrays = [rng.normal(size=(3,4)) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4)

>>> np.stack(arrays, axis=1).shape
(3, 10, 4)

>>> np.stack(arrays, axis=2).shape
(3, 4, 10)

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.stack((a, b))
array([[1, 2, 3],

[4, 5, 6]])

>>> np.stack((a, b), axis=-1)
array([[1, 4],

[2, 5],
[3, 6]])

ma.column_stack = <numpy.ma.extras._fromnxfunction_seq object>

Stack 1-D arrays as columns into a 2-D array.
Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters
tup

[sequence of 1-D or 2-D arrays.] Arrays to stack. All of them must have the same first dimen-
sion.

Returns
stacked

[2-D array] The array formed by stacking the given arrays.
See also:

stack, hstack, vstack, concatenate

716 1. Python API

NumPy Reference, Release 2.2.0

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

ma.concatenate(arrays, axis=0)
Concatenate a sequence of arrays along the given axis.

Parameters
arrays

[sequence of array_like] The arrays must have the same shape, except in the dimension corre-
sponding to axis (the first, by default).

axis
[int, optional] The axis along which the arrays will be joined. Default is 0.

Returns
result

[MaskedArray] The concatenated array with any masked entries preserved.
See also:

numpy.concatenate
Equivalent function in the top-level NumPy module.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = ma.arange(3)
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
masked_array(data=[0, --, 2],

mask=[False, True, False],
fill_value=999999)

>>> b
masked_array(data=[2, 3, 4],

mask=False,
fill_value=999999)

>>> ma.concatenate([a, b])
masked_array(data=[0, --, 2, 2, 3, 4],

mask=[False, True, False, False, False, False],
fill_value=999999)

1.1. NumPy’s module structure 717

NumPy Reference, Release 2.2.0

ma.dstack = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence depth wise (along third axis).
This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been reshaped to
(M,N,1) and 1-D arrays of shape (N,) have been reshaped to (1,N,1). Rebuilds arrays divided by dsplit.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters
tup

[sequence of arrays] The arrays must have the same shape along all but the third axis. 1-D or
2-D arrays must have the same shape.

Returns
stacked

[ndarray] The array formed by stacking the given arrays, will be at least 3-D.
See also:

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

block
Assemble an nd-array from nested lists of blocks.

vstack
Stack arrays in sequence vertically (row wise).

hstack
Stack arrays in sequence horizontally (column wise).

column_stack
Stack 1-D arrays as columns into a 2-D array.

dsplit
Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],

[2, 3],
[3, 4]]])

718 1. Python API

NumPy Reference, Release 2.2.0

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],

[[2, 3]],
[[3, 4]]])

ma.hstack = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence horizontally (column wise).
This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first
axis. Rebuilds arrays divided by hsplit.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters
tup

[sequence of ndarrays] The arrays must have the same shape along all but the second axis,
except 1-D arrays which can be any length. In the case of a single array_like input, it will be
treated as a sequence of arrays; i.e., each element along the zeroth axis is treated as a separate
array.

dtype
[str or dtype] If provided, the destination array will have this dtype. Cannot be provided
together with out.
New in version 1.24.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘same_kind’.
New in version 1.24.

Returns
stacked

[ndarray] The array formed by stacking the given arrays.
See also:

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

block
Assemble an nd-array from nested lists of blocks.

vstack
Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third axis).

column_stack
Stack 1-D arrays as columns into a 2-D array.

1.1. NumPy’s module structure 719

NumPy Reference, Release 2.2.0

hsplit
Split an array into multiple sub-arrays horizontally (column-wise).

unstack
Split an array into a tuple of sub-arrays along an axis.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> a = np.array((1,2,3))
>>> b = np.array((4,5,6))
>>> np.hstack((a,b))
array([1, 2, 3, 4, 5, 6])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[4],[5],[6]])
>>> np.hstack((a,b))
array([[1, 4],

[2, 5],
[3, 6]])

ma.hsplit = <numpy.ma.extras._fromnxfunction_single object>

Split an array into multiple sub-arrays horizontally (column-wise).
Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is always
split along the second axis except for 1-D arrays, where it is split at axis=0.
See also:

split
Split an array into multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]])

>>> np.hsplit(x, 2)
[array([[0., 1.],

[4., 5.],
[8., 9.],
[12., 13.]]),

(continues on next page)

720 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
array([[2., 3.],

[6., 7.],
[10., 11.],
[14., 15.]])]

>>> np.hsplit(x, np.array([3, 6]))
[array([[0., 1., 2.],

[4., 5., 6.],
[8., 9., 10.],
[12., 13., 14.]]),

array([[3.],
[7.],
[11.],
[15.]]),

array([], shape=(4, 0), dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],

[2., 3.]],
[[4., 5.],
[6., 7.]]])

>>> np.hsplit(x, 2)
[array([[[0., 1.]],

[[4., 5.]]]),
array([[[2., 3.]],

[[6., 7.]]])]

With a 1-D array, the split is along axis 0.

>>> x = np.array([0, 1, 2, 3, 4, 5])
>>> np.hsplit(x, 2)
[array([0, 1, 2]), array([3, 4, 5])]

ma.mr_ = <numpy.ma.extras.mr_class object>

Translate slice objects to concatenation along the first axis.
This is the masked array version of r_.
See also:

r_

Examples

>>> import numpy as np
>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
masked_array(data=[1, 2, 3, ..., 4, 5, 6],

mask=False,
fill_value=999999)

ma.vstack = <numpy.ma.extras._fromnxfunction_seq object>

Stack arrays in sequence vertically (row wise).

1.1. NumPy’s module structure 721

NumPy Reference, Release 2.2.0

This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N).
Rebuilds arrays divided by vsplit.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters
tup

[sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length. In the case of a single array_like input, it will be treated as
a sequence of arrays; i.e., each element along the zeroth axis is treated as a separate array.

dtype
[str or dtype] If provided, the destination array will have this dtype. Cannot be provided
together with out.
New in version 1.24.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘same_kind’.
New in version 1.24.

Returns
stacked

[ndarray] The array formed by stacking the given arrays, will be at least 2-D.
See also:

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

block
Assemble an nd-array from nested lists of blocks.

hstack
Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third axis).

column_stack
Stack 1-D arrays as columns into a 2-D array.

vsplit
Split an array into multiple sub-arrays vertically (row-wise).

unstack
Split an array into a tuple of sub-arrays along an axis.

722 1. Python API

NumPy Reference, Release 2.2.0

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> import numpy as np
>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.vstack((a,b))
array([[1, 2, 3],

[4, 5, 6]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[4], [5], [6]])
>>> np.vstack((a,b))
array([[1],

[2],
[3],
[4],
[5],
[6]])

Joining arrays

ma.concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.
ma.stack Join a sequence of arrays along a new axis.
ma.vstack Stack arrays in sequence vertically (row wise).
ma.hstack Stack arrays in sequence horizontally (column wise).
ma.dstack Stack arrays in sequence depth wise (along third axis).
ma.column_stack Stack 1-D arrays as columns into a 2-D array.
ma.append(a, b[, axis]) Append values to the end of an array.

ma.append(a, b, axis=None)
Append values to the end of an array.

Parameters
a

[array_like] Values are appended to a copy of this array.
b

[array_like] These values are appended to a copy of a. It must be of the correct shape (the same
shape as a, excluding axis). If axis is not specified, b can be any shape and will be flattened
before use.

axis
[int, optional] The axis along which v are appended. If axis is not given, both a and b are
flattened before use.

Returns

1.1. NumPy’s module structure 723

NumPy Reference, Release 2.2.0

append
[MaskedArray] A copy of a with b appended to axis. Note that append does not occur
in-place: a new array is allocated and filled. If axis is None, the result is a flattened array.

See also:

numpy.append
Equivalent function in the top-level NumPy module.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = ma.masked_values([1, 2, 3], 2)
>>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
>>> ma.append(a, b)
masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9],

mask=[False, True, False, False, False, False, True, False,
False],

fill_value=999999)

Operations on masks
Creating a mask

ma.make_mask(m[, copy, shrink, dtype]) Create a boolean mask from an array.
ma.make_mask_none(newshape[, dtype]) Return a boolean mask of the given shape, filled with

False.
ma.mask_or(m1, m2[, copy, shrink]) Combine two masks with the logical_or operator.
ma.make_mask_descr(ndtype) Construct a dtype description list from a given dtype.

ma.make_mask(m, copy=False, shrink=True, dtype=<class 'numpy.bool'>)
Create a boolean mask from an array.
Return m as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence that
is convertible to integers, or nomask. Does not require that contents must be 0s and 1s, values of 0 are interpreted
as False, everything else as True.

Parameters
m

[array_like] Potential mask.
copy

[bool, optional] Whether to return a copy of m (True) or m itself (False).
shrink

[bool, optional] Whether to shrink m to nomask if all its values are False.
dtype

[dtype, optional] Data-type of the output mask. By default, the output mask has a dtype of
MaskType (bool). If the dtype is flexible, each field has a boolean dtype. This is ignored when
m is nomask, in which case nomask is always returned.

724 1. Python API

NumPy Reference, Release 2.2.0

Returns
result

[ndarray] A boolean mask derived from m.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> m = [True, False, True, True]
>>> ma.make_mask(m)
array([True, False, True, True])
>>> m = [1, 0, 1, 1]
>>> ma.make_mask(m)
array([True, False, True, True])
>>> m = [1, 0, 2, -3]
>>> ma.make_mask(m)
array([True, False, True, True])

Effect of the shrink parameter.

>>> m = np.zeros(4)
>>> m
array([0., 0., 0., 0.])
>>> ma.make_mask(m)
False
>>> ma.make_mask(m, shrink=False)
array([False, False, False, False])

Using a flexible dtype.

>>> m = [1, 0, 1, 1]
>>> n = [0, 1, 0, 0]
>>> arr = []
>>> for man, mouse in zip(m, n):
... arr.append((man, mouse))
>>> arr
[(1, 0), (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype({'names':['man', 'mouse'],
... 'formats':[np.int64, np.int64]})
>>> arr = np.array(arr, dtype=dtype)
>>> arr
array([(1, 0), (0, 1), (1, 0), (1, 0)],

dtype=[('man', '<i8'), ('mouse', '<i8')])
>>> ma.make_mask(arr, dtype=dtype)
array([(True, False), (False, True), (True, False), (True, False)],

dtype=[('man', '|b1'), ('mouse', '|b1')])

ma.make_mask_none(newshape, dtype=None)
Return a boolean mask of the given shape, filled with False.
This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations. If
a complex dtype is specified, the type of each field is converted to a boolean type.

Parameters
newshape

[tuple] A tuple indicating the shape of the mask.

1.1. NumPy’s module structure 725

NumPy Reference, Release 2.2.0

dtype
[{None, dtype}, optional] If None, use a MaskType instance. Otherwise, use a new datatype
with the same fields as dtype, converted to boolean types.

Returns
result

[ndarray] An ndarray of appropriate shape and dtype, filled with False.
See also:

make_mask
Create a boolean mask from an array.

make_mask_descr
Construct a dtype description list from a given dtype.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> ma.make_mask_none((3,))
array([False, False, False])

Defining a more complex dtype.

>>> dtype = np.dtype({'names':['foo', 'bar'],
... 'formats':[np.float32, np.int64]})
>>> dtype
dtype([('foo', '<f4'), ('bar', '<i8')])
>>> ma.make_mask_none((3,), dtype=dtype)
array([(False, False), (False, False), (False, False)],

dtype=[('foo', '|b1'), ('bar', '|b1')])

ma.mask_or(m1, m2, copy=False, shrink=True)
Combine two masks with the logical_or operator.
The result may be a view on m1 or m2 if the other is nomask (i.e. False).

Parameters
m1, m2

[array_like] Input masks.
copy

[bool, optional] If copy is False and one of the inputs is nomask, return a view of the other
input mask. Defaults to False.

shrink
[bool, optional] Whether to shrink the output to nomask if all its values are False. Defaults
to True.

Returns
mask

[output mask] The result masks values that are masked in either m1 or m2.
Raises

726 1. Python API

NumPy Reference, Release 2.2.0

ValueError
If m1 and m2 have different flexible dtypes.

Examples

>>> import numpy as np
>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
array([True, True, True, False])

ma.make_mask_descr(ndtype)
Construct a dtype description list from a given dtype.
Returns a new dtype object, with the type of all fields in ndtype to a boolean type. Field names are not altered.

Parameters
ndtype

[dtype] The dtype to convert.
Returns

result
[dtype] A dtype that looks like ndtype, the type of all fields is boolean.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> dtype = np.dtype({'names':['foo', 'bar'],
... 'formats':[np.float32, np.int64]})
>>> dtype
dtype([('foo', '<f4'), ('bar', '<i8')])
>>> ma.make_mask_descr(dtype)
dtype([('foo', '|b1'), ('bar', '|b1')])
>>> ma.make_mask_descr(np.float32)
dtype('bool')

Accessing a mask

ma.getmask(a) Return the mask of a masked array, or nomask.
ma.getmaskarray(arr) Return the mask of a masked array, or full boolean array

of False.
ma.masked_array.mask Current mask.

property
property ma.masked_array.mask

Current mask.

1.1. NumPy’s module structure 727

NumPy Reference, Release 2.2.0

Finding masked data

ma.ndenumerate(a[, compressed]) Multidimensional index iterator.
ma.flatnotmasked_contiguous(a) Find contiguous unmasked data in a masked array.
ma.flatnotmasked_edges(a) Find the indices of the first and last unmasked values.
ma.notmasked_contiguous(a[, axis]) Find contiguous unmasked data in a masked array along

the given axis.
ma.notmasked_edges(a[, axis]) Find the indices of the first and last unmasked values along

an axis.
ma.clump_masked(a) Returns a list of slices corresponding to the masked

clumps of a 1-D array.
ma.clump_unmasked(a) Return list of slices corresponding to the unmasked

clumps of a 1-D array.

ma.ndenumerate(a, compressed=True)
Multidimensional index iterator.
Return an iterator yielding pairs of array coordinates and values, skipping elements that are masked. With com-
pressed=False, ma.masked is yielded as the value of masked elements. This behavior differs from that of
numpy.ndenumerate, which yields the value of the underlying data array.

Parameters
a

[array_like] An array with (possibly) masked elements.
compressed

[bool, optional] If True (default), masked elements are skipped.
See also:

numpy.ndenumerate
Equivalent function ignoring any mask.

Notes

New in version 1.23.0.

Examples

>>> import numpy as np
>>> a = np.ma.arange(9).reshape((3, 3))
>>> a[1, 0] = np.ma.masked
>>> a[1, 2] = np.ma.masked
>>> a[2, 1] = np.ma.masked
>>> a
masked_array(
data=[[0, 1, 2],

[--, 4, --],
[6, --, 8]],

mask=[[False, False, False],
[True, False, True],
[False, True, False]],

(continues on next page)

728 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
fill_value=999999)

>>> for index, x in np.ma.ndenumerate(a):
... print(index, x)
(0, 0) 0
(0, 1) 1
(0, 2) 2
(1, 1) 4
(2, 0) 6
(2, 2) 8

>>> for index, x in np.ma.ndenumerate(a, compressed=False):
... print(index, x)
(0, 0) 0
(0, 1) 1
(0, 2) 2
(1, 0) --
(1, 1) 4
(1, 2) --
(2, 0) 6
(2, 1) --
(2, 2) 8

ma.flatnotmasked_contiguous(a)
Find contiguous unmasked data in a masked array.

Parameters
a

[array_like] The input array.
Returns

slice_list
[list] A sorted sequence of slice objects (start index, end index).

See also:

flatnotmasked_edges, notmasked_contiguous, notmasked_edges
clump_masked, clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> import numpy as np
>>> a = np.ma.arange(10)
>>> np.ma.flatnotmasked_contiguous(a)
[slice(0, 10, None)]

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

1.1. NumPy’s module structure 729

NumPy Reference, Release 2.2.0

>>> np.ma.flatnotmasked_contiguous(a)
[slice(3, 5, None), slice(6, 9, None)]
>>> a[:] = np.ma.masked
>>> np.ma.flatnotmasked_contiguous(a)
[]

ma.flatnotmasked_edges(a)
Find the indices of the first and last unmasked values.
Expects a 1-D MaskedArray, returns None if all values are masked.

Parameters
a

[array_like] Input 1-D MaskedArray

Returns
edges

[ndarray or None] The indices of first and last non-masked value in the array. Returns None
if all values are masked.

See also:

flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges
clump_masked, clump_unmasked

Notes

Only accepts 1-D arrays.

Examples

>>> import numpy as np
>>> a = np.ma.arange(10)
>>> np.ma.flatnotmasked_edges(a)
array([0, 9])

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])

>>> np.ma.flatnotmasked_edges(a)
array([3, 8])

>>> a[:] = np.ma.masked
>>> print(np.ma.flatnotmasked_edges(a))
None

ma.notmasked_contiguous(a, axis=None)
Find contiguous unmasked data in a masked array along the given axis.

Parameters

730 1. Python API

NumPy Reference, Release 2.2.0

a
[array_like] The input array.

axis
[int, optional] Axis along which to perform the operation. If None (default), applies to a
flattened version of the array, and this is the same as flatnotmasked_contiguous.

Returns
endpoints

[list] A list of slices (start and end indexes) of unmasked indexes in the array.
If the input is 2d and axis is specified, the result is a list of lists.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
clump_masked, clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> import numpy as np
>>> a = np.arange(12).reshape((3, 4))
>>> mask = np.zeros_like(a)
>>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
>>> ma = np.ma.array(a, mask=mask)
>>> ma
masked_array(
data=[[0, --, 2, 3],

[--, --, --, 7],
[8, --, --, 11]],

mask=[[False, True, False, False],
[True, True, True, False],
[False, True, True, False]],

fill_value=999999)
>>> np.array(ma[~ma.mask])
array([0, 2, 3, 7, 8, 11])

>>> np.ma.notmasked_contiguous(ma)
[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]

>>> np.ma.notmasked_contiguous(ma, axis=0)
[[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3,␣
↪→None)]]

>>> np.ma.notmasked_contiguous(ma, axis=1)
[[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None),␣
↪→slice(3, 4, None)]]

1.1. NumPy’s module structure 731

NumPy Reference, Release 2.2.0

ma.notmasked_edges(a, axis=None)
Find the indices of the first and last unmasked values along an axis.
If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the
first and last unmasked values respectively.

Parameters
a

[array_like] The input array.
axis

[int, optional] Axis along which to perform the operation. If None (default), applies to a
flattened version of the array.

Returns
edges

[ndarray or list] An array of start and end indexes if there are any masked data in the array. If
there are no masked data in the array, edges is a list of the first and last index.

See also:

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous
clump_masked, clump_unmasked

Examples

>>> import numpy as np
>>> a = np.arange(9).reshape((3, 3))
>>> m = np.zeros_like(a)
>>> m[1:, 1:] = 1

>>> am = np.ma.array(a, mask=m)
>>> np.array(am[~am.mask])
array([0, 1, 2, 3, 6])

>>> np.ma.notmasked_edges(am)
array([0, 6])

ma.clump_masked(a)
Returns a list of slices corresponding to the masked clumps of a 1-D array. (A “clump” is defined as a contiguous
region of the array).

Parameters
a

[ndarray] A one-dimensional masked array.
Returns

slices
[list of slice] The list of slices, one for each continuous region of masked elements in a.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
notmasked_contiguous, clump_unmasked

732 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.ma.masked_array(np.arange(10))
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_masked(a)
[slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)]

ma.clump_unmasked(a)
Return list of slices corresponding to the unmasked clumps of a 1-D array. (A “clump” is defined as a contiguous
region of the array).

Parameters
a

[ndarray] A one-dimensional masked array.
Returns

slices
[list of slice] The list of slices, one for each continuous region of unmasked elements in a.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
notmasked_contiguous, clump_masked

Examples

>>> import numpy as np
>>> a = np.ma.masked_array(np.arange(10))
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_unmasked(a)
[slice(3, 6, None), slice(7, 8, None)]

Modifying a mask

ma.mask_cols(a[, axis]) Mask columns of a 2D array that contain masked values.
ma.mask_or(m1, m2[, copy, shrink]) Combine two masks with the logical_or operator.
ma.mask_rowcols(a[, axis]) Mask rows and/or columns of a 2D array that contain

masked values.
ma.mask_rows(a[, axis]) Mask rows of a 2D array that contain masked values.
ma.harden_mask(self) Force the mask to hard, preventing unmasking by assign-

ment.
ma.soften_mask(self) Force the mask to soft (default), allowing unmasking by

assignment.
ma.MaskedArray.harden_mask() Force the mask to hard, preventing unmasking by assign-

ment.
ma.MaskedArray.soften_mask() Force the mask to soft (default), allowing unmasking by

assignment.
ma.MaskedArray.shrink_mask() Reduce a mask to nomask when possible.
ma.MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.

1.1. NumPy’s module structure 733

NumPy Reference, Release 2.2.0

ma.mask_cols(a, axis=<no value>)
Mask columns of a 2D array that contain masked values.
This function is a shortcut to mask_rowcols with axis equal to 1.
See also:

mask_rowcols
Mask rows and/or columns of a 2D array.

masked_where
Mask where a condition is met.

Examples

>>> import numpy as np
>>> a = np.zeros((3, 3), dtype=int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 0]])

>>> a = np.ma.masked_equal(a, 1)
>>> a
masked_array(
data=[[0, 0, 0],

[0, --, 0],
[0, 0, 0]],

mask=[[False, False, False],
[False, True, False],
[False, False, False]],

fill_value=1)
>>> np.ma.mask_cols(a)
masked_array(
data=[[0, --, 0],

[0, --, 0],
[0, --, 0]],

mask=[[False, True, False],
[False, True, False],
[False, True, False]],

fill_value=1)

ma.mask_rowcols(a, axis=None)
Mask rows and/or columns of a 2D array that contain masked values.
Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using
the axis parameter.

• If axis is None, rows and columns are masked.
• If axis is 0, only rows are masked.
• If axis is 1 or -1, only columns are masked.

Parameters
a

[array_like, MaskedArray] The array to mask. If not a MaskedArray instance (or if no array

734 1. Python API

NumPy Reference, Release 2.2.0

elements are masked), the result is a MaskedArray with mask set to nomask (False). Must
be a 2D array.

axis
[int, optional] Axis along which to perform the operation. If None, applies to a flattened version
of the array.

Returns
a

[MaskedArray] A modified version of the input array, masked depending on the value of the
axis parameter.

Raises
NotImplementedError

If input array a is not 2D.

See also:

mask_rows
Mask rows of a 2D array that contain masked values.

mask_cols
Mask cols of a 2D array that contain masked values.

masked_where
Mask where a condition is met.

Notes

The input array’s mask is modified by this function.

Examples

>>> import numpy as np
>>> a = np.zeros((3, 3), dtype=int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 0]])

>>> a = np.ma.masked_equal(a, 1)
>>> a
masked_array(
data=[[0, 0, 0],

[0, --, 0],
[0, 0, 0]],

mask=[[False, False, False],
[False, True, False],
[False, False, False]],

fill_value=1)
>>> np.ma.mask_rowcols(a)
masked_array(
data=[[0, --, 0],

[--, --, --],
[0, --, 0]],

(continues on next page)

1.1. NumPy’s module structure 735

NumPy Reference, Release 2.2.0

(continued from previous page)
mask=[[False, True, False],

[True, True, True],
[False, True, False]],

fill_value=1)

ma.mask_rows(a, axis=<no value>)
Mask rows of a 2D array that contain masked values.
This function is a shortcut to mask_rowcols with axis equal to 0.
See also:

mask_rowcols
Mask rows and/or columns of a 2D array.

masked_where
Mask where a condition is met.

Examples

>>> import numpy as np
>>> a = np.zeros((3, 3), dtype=int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 0]])

>>> a = np.ma.masked_equal(a, 1)
>>> a
masked_array(
data=[[0, 0, 0],

[0, --, 0],
[0, 0, 0]],

mask=[[False, False, False],
[False, True, False],
[False, False, False]],

fill_value=1)

>>> np.ma.mask_rows(a)
masked_array(
data=[[0, 0, 0],

[--, --, --],
[0, 0, 0]],

mask=[[False, False, False],
[True, True, True],
[False, False, False]],

fill_value=1)

ma.harden_mask(self) = <numpy.ma.core._frommethod object>

Force the mask to hard, preventing unmasking by assignment.
Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask
sets hardmask to True (and returns the modified self).
See also:

736 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.hardmask
ma.MaskedArray.soften_mask

ma.soften_mask(self) = <numpy.ma.core._frommethod object>

Force the mask to soft (default), allowing unmasking by assignment.
Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask
sets hardmask to False (and returns the modified self).
See also:

ma.MaskedArray.hardmask
ma.MaskedArray.harden_mask

method
ma.MaskedArray.harden_mask()

Force the mask to hard, preventing unmasking by assignment.
Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask
sets hardmask to True (and returns the modified self).
See also:

ma.MaskedArray.hardmask
ma.MaskedArray.soften_mask

method
ma.MaskedArray.soften_mask()

Force the mask to soft (default), allowing unmasking by assignment.
Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask
sets hardmask to False (and returns the modified self).
See also:

ma.MaskedArray.hardmask
ma.MaskedArray.harden_mask

method
ma.MaskedArray.shrink_mask()

Reduce a mask to nomask when possible.
Parameters

None
Returns

None

1.1. NumPy’s module structure 737

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2], [3, 4]], mask=[0]*4)
>>> x.mask
array([[False, False],

[False, False]])
>>> x.shrink_mask()
masked_array(
data=[[1, 2],

[3, 4]],
mask=False,
fill_value=999999)

>>> x.mask
False

method
ma.MaskedArray.unshare_mask()

Copy the mask and set the sharedmask flag to False.
Whether the mask is shared between masked arrays can be seen from the sharedmask property. un-
share_mask ensures the mask is not shared. A copy of the mask is only made if it was shared.
See also:

sharedmask

Conversion operations
> to a masked array

ma.asarray(a[, dtype, order]) Convert the input to a masked array of the given data-
type.

ma.asanyarray(a[, dtype]) Convert the input to a masked array, conserving sub-
classes.

ma.fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by a
fill value.

ma.masked_equal(x, value[, copy]) Mask an array where equal to a given value.
ma.masked_greater(x, value[, copy]) Mask an array where greater than a given value.
ma.masked_greater_equal(x, value[, copy]) Mask an arraywhere greater than or equal to a given value.
ma.masked_inside(x, v1, v2[, copy]) Mask an array inside a given interval.
ma.masked_invalid(a[, copy]) Mask an array where invalid values occur (NaNs or infs).
ma.masked_less(x, value[, copy]) Mask an array where less than a given value.
ma.masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
ma.masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
ma.masked_object(x, value[, copy, shrink]) Mask the array xwhere the data are exactly equal to value.
ma.masked_outside(x, v1, v2[, copy]) Mask an array outside a given interval.
ma.masked_values(x, value[, rtol, atol, ...]) Mask using floating point equality.
ma.masked_where(condition, a[, copy]) Mask an array where a condition is met.

738 1. Python API

NumPy Reference, Release 2.2.0

ma.asarray(a, dtype=None, order=None)
Convert the input to a masked array of the given data-type.
No copy is performed if the input is already an ndarray. If a is a subclass of MaskedArray, a base class
MaskedArray is returned.

Parameters
a

[array_like] Input data, in any form that can be converted to a masked array. This includes
lists, lists of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.

dtype
[dtype, optional] By default, the data-type is inferred from the input data.

order
[{‘C’, ‘F’}, optional] Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Default is ‘C’.

Returns
out

[MaskedArray] Masked array interpretation of a.
See also:

asanyarray
Similar to asarray, but conserves subclasses.

Examples

>>> import numpy as np
>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]])
>>> np.ma.asarray(x)
masked_array(
data=[[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]],
mask=False,
fill_value=1e+20)

>>> type(np.ma.asarray(x))
<class 'numpy.ma.MaskedArray'>

ma.asanyarray(a, dtype=None)
Convert the input to a masked array, conserving subclasses.
If a is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already an
ndarray.

Parameters
a

[array_like] Input data, in any form that can be converted to an array.
dtype

[dtype, optional] By default, the data-type is inferred from the input data.

1.1. NumPy’s module structure 739

NumPy Reference, Release 2.2.0

order
[{‘C’, ‘F’}, optional] Whether to use row-major (‘C’) or column-major (‘FORTRAN’) memory
representation. Default is ‘C’.

Returns
out

[MaskedArray] MaskedArray interpretation of a.
See also:

asarray
Similar to asanyarray, but does not conserve subclass.

Examples

>>> import numpy as np
>>> x = np.arange(10.).reshape(2, 5)
>>> x
array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]])
>>> np.ma.asanyarray(x)
masked_array(
data=[[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]],
mask=False,
fill_value=1e+20)

>>> type(np.ma.asanyarray(x))
<class 'numpy.ma.MaskedArray'>

ma.fix_invalid(a, mask=np.False_, copy=True, fill_value=None)
Return input with invalid data masked and replaced by a fill value.
Invalid data means values of nan, inf, etc.

Parameters
a

[array_like] Input array, a (subclass of) ndarray.
mask

[sequence, optional] Mask. Must be convertible to an array of booleans with the same shape
as data. True indicates a masked (i.e. invalid) data.

copy
[bool, optional] Whether to use a copy of a (True) or to fix a in place (False). Default is True.

fill_value
[scalar, optional] Value used for fixing invalid data. Default is None, in which case the a.
fill_value is used.

Returns
b

[MaskedArray] The input array with invalid entries fixed.

740 1. Python API

NumPy Reference, Release 2.2.0

Notes

A copy is performed by default.

Examples

>>> import numpy as np
>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x
masked_array(data=[--, -1.0, nan, inf],

mask=[True, False, False, False],
fill_value=1e+20)

>>> np.ma.fix_invalid(x)
masked_array(data=[--, -1.0, --, --],

mask=[True, False, True, True],
fill_value=1e+20)

>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
array([1.e+00, -1.e+00, 1.e+20, 1.e+20])
>>> x.data
array([1., -1., nan, inf])

ma.masked_equal(x, value, copy=True)
Mask an array where equal to a given value.
Return a MaskedArray, masked where the data in array x are equal to value. The fill_value of the returned
MaskedArray is set to value.
For floating point arrays, consider using masked_values(x, value).
See also:

masked_where
Mask where a condition is met.

masked_values
Mask using floating point equality.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2)
masked_array(data=[0, 1, --, 3],

mask=[False, False, True, False],
fill_value=2)

ma.masked_greater(x, value, copy=True)
Mask an array where greater than a given value.
This function is a shortcut to masked_where, with condition = (x > value).

1.1. NumPy’s module structure 741

NumPy Reference, Release 2.2.0

See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
masked_array(data=[0, 1, 2, --],

mask=[False, False, False, True],
fill_value=999999)

ma.masked_greater_equal(x, value, copy=True)
Mask an array where greater than or equal to a given value.
This function is a shortcut to masked_where, with condition = (x >= value).
See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
masked_array(data=[0, 1, --, --],

mask=[False, False, True, True],
fill_value=999999)

ma.masked_inside(x, v1, v2, copy=True)
Mask an array inside a given interval.
Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1 <= x <= v2). The
boundaries v1 and v2 can be given in either order.
See also:

masked_where
Mask where a condition is met.

742 1. Python API

NumPy Reference, Release 2.2.0

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],

mask=[False, False, True, True, False, False],
fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],

mask=[False, False, True, True, False, False],
fill_value=1e+20)

ma.masked_invalid(a, copy=True)
Mask an array where invalid values occur (NaNs or infs).
This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask is con-
served. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but accepts
any array_like object.
See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(5, dtype=float)
>>> a[2] = np.nan
>>> a[3] = np.inf
>>> a
array([0., 1., nan, inf, 4.])
>>> ma.masked_invalid(a)
masked_array(data=[0.0, 1.0, --, --, 4.0],

mask=[False, False, True, True, False],
fill_value=1e+20)

ma.masked_less(x, value, copy=True)
Mask an array where less than a given value.
This function is a shortcut to masked_where, with condition = (x < value).
See also:

masked_where
Mask where a condition is met.

1.1. NumPy’s module structure 743

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
masked_array(data=[--, --, 2, 3],

mask=[True, True, False, False],
fill_value=999999)

ma.masked_less_equal(x, value, copy=True)
Mask an array where less than or equal to a given value.
This function is a shortcut to masked_where, with condition = (x <= value).
See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
masked_array(data=[--, --, --, 3],

mask=[True, True, True, False],
fill_value=999999)

ma.masked_not_equal(x, value, copy=True)
Mask an array where not equal to a given value.
This function is a shortcut to masked_where, with condition = (x != value).
See also:

masked_where
Mask where a condition is met.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
masked_array(data=[--, --, 2, --],

mask=[True, True, False, True],
fill_value=999999)

744 1. Python API

NumPy Reference, Release 2.2.0

ma.masked_object(x, value, copy=True, shrink=True)
Mask the array x where the data are exactly equal to value.
This function is similar to masked_values, but only suitable for object arrays: for floating point, use
masked_values instead.

Parameters
x

[array_like] Array to mask
value

[object] Comparison value
copy

[{True, False}, optional] Whether to return a copy of x.
shrink

[{True, False}, optional] Whether to collapse a mask full of False to nomask
Returns

result
[MaskedArray] The result of masking x where equal to value.

See also:

masked_where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

masked_values
Mask using floating point equality.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
>>> eat
masked_array(data=[--, 'ham'],

mask=[True, False],
fill_value='green_eggs',

dtype=object)
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
>>> eat
masked_array(data=['cheese', 'ham', 'pineapple'],

mask=False,
fill_value='green_eggs',

dtype=object)

Note that mask is set to nomask if possible.

1.1. NumPy’s module structure 745

NumPy Reference, Release 2.2.0

>>> eat
masked_array(data=['cheese', 'ham', 'pineapple'],

mask=False,
fill_value='green_eggs',

dtype=object)

ma.masked_outside(x, v1, v2, copy=True)
Mask an array outside a given interval.
Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v1)|(x > v2). The
boundaries v1 and v2 can be given in either order.
See also:

masked_where
Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array(data=[--, --, 0.01, 0.2, --, --],

mask=[True, True, False, False, True, True],
fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array(data=[--, --, 0.01, 0.2, --, --],

mask=[True, True, False, False, True, True],
fill_value=1e+20)

ma.masked_values(x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)
Mask using floating point equality.
Return a MaskedArray, masked where the data in array x are approximately equal to value, determined using
isclose. The default tolerances for masked_values are the same as those for isclose.
For integer types, exact equality is used, in the same way as masked_equal.
The fill_value is set to value and the mask is set to nomask if possible.

Parameters
x

[array_like] Array to mask.
value

[float] Masking value.

746 1. Python API

NumPy Reference, Release 2.2.0

rtol, atol
[float, optional] Tolerance parameters passed on to isclose

copy
[bool, optional] Whether to return a copy of x.

shrink
[bool, optional] Whether to collapse a mask full of False to nomask.

Returns
result

[MaskedArray] The result of masking x where approximately equal to value.
See also:

masked_where
Mask where a condition is met.

masked_equal
Mask where equal to a given value (integers).

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
masked_array(data=[1.0, --, 2.0, --, 3.0],

mask=[False, True, False, True, False],
fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values(x, 2.1)
masked_array(data=[1. , 1.1, 2. , 1.1, 3.],

mask=False,
fill_value=2.1)

Unlike masked_equal, masked_values can perform approximate equalities.

>>> ma.masked_values(x, 2.1, atol=1e-1)
masked_array(data=[1.0, 1.1, --, 1.1, 3.0],

mask=[False, False, True, False, False],
fill_value=2.1)

ma.masked_where(condition, a, copy=True)
Mask an array where a condition is met.
Return a as an array masked where condition is True. Any masked values of a or condition are also masked in the
output.

Parameters
condition

[array_like] Masking condition. When condition tests floating point values for equality, con-
sider using masked_values instead.

1.1. NumPy’s module structure 747

NumPy Reference, Release 2.2.0

a
[array_like] Array to mask.

copy
[bool] If True (default) make a copy of a in the result. If False modify a in place and return a
view.

Returns
result

[MaskedArray] The result of masking a where condition is True.
See also:

masked_values
Mask using floating point equality.

masked_equal
Mask where equal to a given value.

masked_not_equal
Mask where not equal to a given value.

masked_less_equal
Mask where less than or equal to a given value.

masked_greater_equal
Mask where greater than or equal to a given value.

masked_less
Mask where less than a given value.

masked_greater
Mask where greater than a given value.

masked_inside
Mask inside a given interval.

masked_outside
Mask outside a given interval.

masked_invalid
Mask invalid values (NaNs or infs).

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
masked_array(data=[--, --, --, 3],

mask=[True, True, True, False],
fill_value=999999)

Mask array b conditional on a.

748 1. Python API

NumPy Reference, Release 2.2.0

>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
masked_array(data=['a', 'b', --, 'd'],

mask=[False, False, True, False],
fill_value='N/A',

dtype='<U1')

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a)
>>> c
masked_array(data=[--, --, --, 3],

mask=[True, True, True, False],
fill_value=999999)

>>> c[0] = 99
>>> c
masked_array(data=[99, --, --, 3],

mask=[False, True, True, False],
fill_value=999999)

>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
masked_array(data=[99, --, --, 3],

mask=[False, True, True, False],
fill_value=999999)

>>> a
array([99, 1, 2, 3])

When condition or a contain masked values.

>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array(data=[0, 1, --, 3],

mask=[False, False, True, False],
fill_value=999999)

>>> b = np.arange(4)
>>> b = ma.masked_where(b == 0, b)
>>> b
masked_array(data=[--, 1, 2, 3],

mask=[True, False, False, False],
fill_value=999999)

>>> ma.masked_where(a == 3, b)
masked_array(data=[--, 1, --, --],

mask=[True, False, True, True],
fill_value=999999)

1.1. NumPy’s module structure 749

NumPy Reference, Release 2.2.0

> to a ndarray

ma.compress_cols(a) Suppress whole columns of a 2-D array that contain
masked values.

ma.compress_rowcols(x[, axis]) Suppress the rows and/or columns of a 2-D array that con-
tain masked values.

ma.compress_rows(a) Suppress whole rows of a 2-D array that contain masked
values.

ma.compressed(x) Return all the non-masked data as a 1-D array.
ma.filled(a[, fill_value]) Return input as an ndarray, with masked values re-

placed by fill_value.
ma.MaskedArray.compressed() Return all the non-masked data as a 1-D array.
ma.MaskedArray.filled([fill_value]) Return a copy of self, with masked values filled with a

given value.

ma.compress_cols(a)
Suppress whole columns of a 2-D array that contain masked values.
This is equivalent to np.ma.compress_rowcols(a, 1), see compress_rowcols for details.

Parameters
x

[array_like, MaskedArray] The array to operate on. If not a MaskedArray instance (or if no
array elements are masked), x is interpreted as a MaskedArray with mask set to nomask.
Must be a 2D array.

Returns
compressed_array

[ndarray] The compressed array.
See also:

compress_rowcols

Examples

>>> import numpy as np
>>> a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> np.ma.compress_cols(a)
array([[1, 2],

[4, 5],
[7, 8]])

ma.compress_rowcols(x, axis=None)
Suppress the rows and/or columns of a 2-D array that contain masked values.
The suppression behavior is selected with the axis parameter.

• If axis is None, both rows and columns are suppressed.
• If axis is 0, only rows are suppressed.

750 1. Python API

NumPy Reference, Release 2.2.0

• If axis is 1 or -1, only columns are suppressed.

Parameters
x

[array_like, MaskedArray] The array to operate on. If not a MaskedArray instance (or if no
array elements are masked), x is interpreted as a MaskedArray with mask set to nomask.
Must be a 2D array.

axis
[int, optional] Axis along which to perform the operation. Default is None.

Returns
compressed_array

[ndarray] The compressed array.

Examples

>>> import numpy as np
>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x
masked_array(
data=[[--, 1, 2],

[--, 4, 5],
[6, 7, 8]],

mask=[[True, False, False],
[True, False, False],
[False, False, False]],

fill_value=999999)

>>> np.ma.compress_rowcols(x)
array([[7, 8]])
>>> np.ma.compress_rowcols(x, 0)
array([[6, 7, 8]])
>>> np.ma.compress_rowcols(x, 1)
array([[1, 2],

[4, 5],
[7, 8]])

ma.compress_rows(a)
Suppress whole rows of a 2-D array that contain masked values.
This is equivalent to np.ma.compress_rowcols(a, 0), see compress_rowcols for details.

Parameters
x

[array_like, MaskedArray] The array to operate on. If not a MaskedArray instance (or if no
array elements are masked), x is interpreted as a MaskedArray with mask set to nomask.
Must be a 2D array.

Returns
compressed_array

[ndarray] The compressed array.

1.1. NumPy’s module structure 751

NumPy Reference, Release 2.2.0

See also:

compress_rowcols

Examples

>>> import numpy as np
>>> a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> np.ma.compress_rows(a)
array([[6, 7, 8]])

ma.compressed(x)
Return all the non-masked data as a 1-D array.
This function is equivalent to calling the “compressed” method of a ma.MaskedArray, see ma.
MaskedArray.compressed for details.
See also:

ma.MaskedArray.compressed
Equivalent method.

Examples

>>> import numpy as np

Create an array with negative values masked:

>>> import numpy as np
>>> x = np.array([[1, -1, 0], [2, -1, 3], [7, 4, -1]])
>>> masked_x = np.ma.masked_array(x, mask=x < 0)
>>> masked_x
masked_array(
data=[[1, --, 0],

[2, --, 3],
[7, 4, --]],

mask=[[False, True, False],
[False, True, False],
[False, False, True]],

fill_value=999999)

Compress the masked array into a 1-D array of non-masked values:

>>> np.ma.compressed(masked_x)
array([1, 0, 2, 3, 7, 4])

ma.filled(a, fill_value=None)
Return input as an ndarray, with masked values replaced by fill_value.
If a is not a MaskedArray, a itself is returned. If a is a MaskedArray with no masked values, then a.data
is returned. If a is a MaskedArray and fill_value is None, fill_value is set to a.fill_value.

Parameters

752 1. Python API

NumPy Reference, Release 2.2.0

a
[MaskedArray or array_like] An input object.

fill_value
[array_like, optional.] Can be scalar or non-scalar. If non-scalar, the resulting filled array
should be broadcastable over input array. Default is None.

Returns
a

[ndarray] The filled array.
See also:

compressed

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x.filled()
array([[999999, 1, 2],

[999999, 4, 5],
[6, 7, 8]])

>>> x.filled(fill_value=333)
array([[333, 1, 2],

[333, 4, 5],
[6, 7, 8]])

>>> x.filled(fill_value=np.arange(3))
array([[0, 1, 2],

[0, 4, 5],
[6, 7, 8]])

method
ma.MaskedArray.compressed()

Return all the non-masked data as a 1-D array.
Returns

data
[ndarray] A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

1.1. NumPy’s module structure 753

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
<class 'numpy.ndarray'>

N-D arrays are compressed to 1-D.

>>> arr = [[1, 2], [3, 4]]
>>> mask = [[1, 0], [0, 1]]
>>> x = np.ma.array(arr, mask=mask)
>>> x.compressed()
array([2, 3])

method
ma.MaskedArray.filled(fill_value=None)

Return a copy of self, with masked values filled with a given value. However, if there are no masked values to fill,
self will be returned instead as an ndarray.

Parameters
fill_value

[array_like, optional] The value to use for invalid entries. Can be scalar or non-scalar. If non-
scalar, the resulting ndarray must be broadcastable over input array. Default is None, in which
case, the fill_value attribute of the array is used instead.

Returns
filled_array

[ndarray] A copy of self with invalid entries replaced by fill_value (be it the function argu-
ment or the attribute of self), or self itself as an ndarray if there are no invalid entries to
be replaced.

Notes

The result is not a MaskedArray!

Examples

>>> import numpy as np
>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
array([1, 2, -999, 4, -999])
>>> x.filled(fill_value=1000)
array([1, 2, 1000, 4, 1000])
>>> type(x.filled())
<class 'numpy.ndarray'>

Subclassing is preserved. This means that if, e.g., the data part of the masked array is a recarray, filled returns
a recarray:

754 1. Python API

NumPy Reference, Release 2.2.0

>>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray)
>>> m = np.ma.array(x, mask=[(True, False), (False, True)])
>>> m.filled()
rec.array([(999999, 2), (-3, 999999)],

dtype=[('f0', '<i8'), ('f1', '<i8')])

> to another object

ma.MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.
ma.MaskedArray.tolist([fill_value]) Return the data portion of the masked array as a hierar-

chical Python list.
ma.MaskedArray.torecords() Transforms a masked array into a flexible-type array.
ma.MaskedArray.tobytes([fill_value, order]) Return the array data as a string containing the raw bytes

in the array.

method
ma.MaskedArray.tofile(fid, sep='', format='%s')

Save a masked array to a file in binary format.

Warning: This function is not implemented yet.

Raises
NotImplementedError

When tofile is called.

method
ma.MaskedArray.tolist(fill_value=None)

Return the data portion of the masked array as a hierarchical Python list.
Data items are converted to the nearest compatible Python type. Masked values are converted to fill_value.
If fill_value is None, the corresponding entries in the output list will be None.

Parameters
fill_value

[scalar, optional] The value to use for invalid entries. Default is None.
Returns

result
[list] The Python list representation of the masked array.

1.1. NumPy’s module structure 755

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
>>> x.tolist()
[[1, None, 3], [None, 5, None], [7, None, 9]]
>>> x.tolist(-999)
[[1, -999, 3], [-999, 5, -999], [7, -999, 9]]

method
ma.MaskedArray.torecords()

Transforms a masked array into a flexible-type array.
The flexible type array that is returned will have two fields:

• the _data field stores the _data part of the array.
• the _mask field stores the _mask part of the array.

Parameters
None

Returns
record

[ndarray] A new flexible-type ndarray with two fields: the first element containing a value,
the second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (fill_value,
…) will be lost.

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> x
masked_array(
data=[[1, --, 3],

[--, 5, --],
[7, --, 9]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)
>>> x.toflex()
array([[(1, False), (2, True), (3, False)],

[(4, True), (5, False), (6, True)],
[(7, False), (8, True), (9, False)]],
dtype=[('_data', '<i8'), ('_mask', '?')])

method

756 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.tobytes(fill_value=None, order='C')
Return the array data as a string containing the raw bytes in the array.
The array is filled with a fill value before the string conversion.

Parameters
fill_value

[scalar, optional] Value used to fill in the masked values. Default is None, in which case
MaskedArray.fill_value is used.

order
[{‘C’,’F’,’A’}, optional] Order of the data item in the copy. Default is ‘C’.
• ‘C’ – C order (row major).
• ‘F’ – Fortran order (column major).
• ‘A’ – Any, current order of array.
• None – Same as ‘A’.

See also:

numpy.ndarray.tobytes
tolist, tofile

Notes

As for ndarray.tobytes, information about the shape, dtype, etc., but also about fill_value, will be lost.

Examples

>>> import numpy as np
>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
b'\x01\x00\x00\x00\x00\x00\x00\x00?B\x0f\x00\x00\x00\x00\x00?B\x0f\x00\x00\x00\
↪→x00\x00\x04\x00\x00\x00\x00\x00\x00\x00'

Filling a masked array

ma.common_fill_value(a, b) Return the common filling value of two masked arrays, if
any.

ma.default_fill_value(obj) Return the default fill value for the argument object.
ma.maximum_fill_value(obj) Return the minimum value that can be represented by the

dtype of an object.
ma.minimum_fill_value(obj) Return the maximum value that can be represented by the

dtype of an object.
ma.set_fill_value(a, fill_value) Set the filling value of a, if a is a masked array.
ma.MaskedArray.get_fill_value() The filling value of the masked array is a scalar.
ma.MaskedArray.set_fill_value([value])

1.1. NumPy’s module structure 757

NumPy Reference, Release 2.2.0

ma.common_fill_value(a, b)
Return the common filling value of two masked arrays, if any.
If a.fill_value == b.fill_value, return the fill value, otherwise return None.

Parameters
a, b

[MaskedArray] The masked arrays for which to compare fill values.
Returns

fill_value
[scalar or None] The common fill value, or None.

Examples

>>> import numpy as np
>>> x = np.ma.array([0, 1.], fill_value=3)
>>> y = np.ma.array([0, 1.], fill_value=3)
>>> np.ma.common_fill_value(x, y)
3.0

ma.default_fill_value(obj)
Return the default fill value for the argument object.
The default filling value depends on the datatype of the input array or the type of the input scalar:

datatype default
bool True
int 999999
float 1.e20
complex 1.e20+0j
object ‘?’
string ‘N/A’

For structured types, a structured scalar is returned, with each field the default fill value for its type.
For subarray types, the fill value is an array of the same size containing the default scalar fill value.

Parameters
obj

[ndarray, dtype or scalar] The array data-type or scalar for which the default fill value is re-
turned.

Returns
fill_value

[scalar] The default fill value.

758 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.ma.default_fill_value(1)
999999
>>> np.ma.default_fill_value(np.array([1.1, 2., np.pi]))
1e+20
>>> np.ma.default_fill_value(np.dtype(complex))
(1e+20+0j)

ma.maximum_fill_value(obj)
Return the minimum value that can be represented by the dtype of an object.
This function is useful for calculating a fill value suitable for taking the maximum of an array with a given dtype.

Parameters
obj

[ndarray, dtype or scalar] An object that can be queried for it’s numeric type.
Returns

val
[scalar] The minimum representable value.

Raises
TypeError

If obj isn’t a suitable numeric type.
See also:

minimum_fill_value
The inverse function.

set_fill_value
Set the filling value of a masked array.

MaskedArray.fill_value
Return current fill value.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.int8()
>>> ma.maximum_fill_value(a)
-128
>>> a = np.int32()
>>> ma.maximum_fill_value(a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_value(a)
-128
>>> a = np.array([1, 2, 3], dtype=np.float32)

(continues on next page)

1.1. NumPy’s module structure 759

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> ma.maximum_fill_value(a)
-inf

ma.minimum_fill_value(obj)
Return the maximum value that can be represented by the dtype of an object.
This function is useful for calculating a fill value suitable for taking the minimum of an array with a given dtype.

Parameters
obj

[ndarray, dtype or scalar] An object that can be queried for it’s numeric type.
Returns

val
[scalar] The maximum representable value.

Raises
TypeError

If obj isn’t a suitable numeric type.
See also:

maximum_fill_value
The inverse function.

set_fill_value
Set the filling value of a masked array.

MaskedArray.fill_value
Return current fill value.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.int8()
>>> ma.minimum_fill_value(a)
127
>>> a = np.int32()
>>> ma.minimum_fill_value(a)
2147483647

An array of numeric data can also be passed.

>>> a = np.array([1, 2, 3], dtype=np.int8)
>>> ma.minimum_fill_value(a)
127
>>> a = np.array([1, 2, 3], dtype=np.float32)
>>> ma.minimum_fill_value(a)
inf

ma.set_fill_value(a, fill_value)
Set the filling value of a, if a is a masked array.

760 1. Python API

NumPy Reference, Release 2.2.0

This function changes the fill value of the masked array a in place. If a is not a masked array, the function returns
silently, without doing anything.

Parameters
a

[array_like] Input array.
fill_value

[dtype] Filling value. A consistency test is performed to make sure the value is compatible
with the dtype of a.

Returns
None

Nothing returned by this function.
See also:

maximum_fill_value
Return the default fill value for a dtype.

MaskedArray.fill_value
Return current fill value.

MaskedArray.set_fill_value
Equivalent method.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a = ma.masked_where(a < 3, a)
>>> a
masked_array(data=[--, --, --, 3, 4],

mask=[True, True, True, False, False],
fill_value=999999)

>>> ma.set_fill_value(a, -999)
>>> a
masked_array(data=[--, --, --, 3, 4],

mask=[True, True, True, False, False],
fill_value=-999)

Nothing happens if a is not a masked array.

>>> a = list(range(5))
>>> a
[0, 1, 2, 3, 4]
>>> ma.set_fill_value(a, 100)
>>> a
[0, 1, 2, 3, 4]
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> ma.set_fill_value(a, 100)

(continues on next page)

1.1. NumPy’s module structure 761

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> a
array([0, 1, 2, 3, 4])

method
ma.MaskedArray.get_fill_value()

The filling value of the masked array is a scalar. When setting, None will set to a default based on the data type.

Examples

>>> import numpy as np
>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
... np.ma.array([0, 1], dtype=dt).get_fill_value()
...
np.int64(999999)
np.int64(999999)
np.float64(1e+20)
np.complex128(1e+20+0j)

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
np.float64(-inf)
>>> x.fill_value = np.pi
>>> x.fill_value
np.float64(3.1415926535897931)

Reset to default:

>>> x.fill_value = None
>>> x.fill_value
np.float64(1e+20)

method
ma.MaskedArray.set_fill_value(value=None)

ma.MaskedArray.fill_value The filling value of the masked array is a scalar.

Masked arrays arithmetic

762 1. Python API

NumPy Reference, Release 2.2.0

Arithmetic

ma.anom(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma.anomalies(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma.average(a[, axis, weights, returned, ...]) Return the weighted average of array over the given axis.
ma.conjugate(x, /[, out, where, casting, ...]) Return the complex conjugate, element-wise.
ma.corrcoef(x[, y, rowvar, bias, ...]) Return Pearson product-moment correlation coefficients.
ma.cov(x[, y, rowvar, bias, allow_masked, ddof]) Estimate the covariance matrix.
ma.cumsum(self[, axis, dtype, out]) Return the cumulative sum of the array elements over the

given axis.
ma.cumprod(self[, axis, dtype, out]) Return the cumulative product of the array elements over

the given axis.
ma.mean(self[, axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
ma.median(a[, axis, out, overwrite_input, ...]) Compute the median along the specified axis.
ma.power(a, b[, third]) Returns element-wise base array raised to power from

second array.
ma.prod(self[, axis, dtype, out, keepdims]) Return the product of the array elements over the given

axis.
ma.std(self[, axis, dtype, out, ddof, ...]) Returns the standard deviation of the array elements along

given axis.
ma.sum(self[, axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
ma.var(self[, axis, dtype, out, ddof, ...]) Compute the variance along the specified axis.
ma.MaskedArray.anom([axis, dtype]) Compute the anomalies (deviations from the arithmetic

mean) along the given axis.
ma.MaskedArray.cumprod([axis, dtype, out]) Return the cumulative product of the array elements over

the given axis.
ma.MaskedArray.cumsum([axis, dtype, out]) Return the cumulative sum of the array elements over the

given axis.
ma.MaskedArray.mean([axis, dtype, out, keep-
dims])

Returns the average of the array elements along given axis.

ma.MaskedArray.prod([axis, dtype, out, keep-
dims])

Return the product of the array elements over the given
axis.

ma.MaskedArray.std([axis, dtype, out, ddof, ...]) Returns the standard deviation of the array elements along
given axis.

ma.MaskedArray.sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
ma.MaskedArray.var([axis, dtype, out, ddof, ...]) Compute the variance along the specified axis.

ma.anom(self, axis=None, dtype=None) = <numpy.ma.core._frommethod object>

Compute the anomalies (deviations from the arithmetic mean) along the given axis.
Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed along
the given axis.

Parameters
axis

[int, optional] Axis over which the anomalies are taken. The default is to use the mean of the
flattened array as reference.

dtype
[dtype, optional]

1.1. NumPy’s module structure 763

NumPy Reference, Release 2.2.0

Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See also:

mean
Compute the mean of the array.

Examples

>>> import numpy as np
>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data=[-1., 0., 1.],

mask=False,
fill_value=1e+20)

ma.anomalies(self, axis=None, dtype=None) = <numpy.ma.core._frommethod object>

Compute the anomalies (deviations from the arithmetic mean) along the given axis.
Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed along
the given axis.

Parameters
axis

[int, optional] Axis over which the anomalies are taken. The default is to use the mean of the
flattened array as reference.

dtype
[dtype, optional]
Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See also:

mean
Compute the mean of the array.

Examples

>>> import numpy as np
>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data=[-1., 0., 1.],

mask=False,
fill_value=1e+20)

ma.average(a, axis=None, weights=None, returned=False, *, keepdims=<no value>)
Return the weighted average of array over the given axis.

Parameters
a

[array_like] Data to be averaged. Masked entries are not taken into account in the computation.

764 1. Python API

NumPy Reference, Release 2.2.0

axis
[None or int or tuple of ints, optional] Axis or axes along which to average a. The default,
axis=None, will average over all of the elements of the input array. If axis is a tuple of ints,
averaging is performed on all of the axes specified in the tuple instead of a single axis or all
the axes as before.

weights
[array_like, optional] An array of weights associated with the values in a. Each value in a
contributes to the average according to its associated weight. The array of weights must be the
same shape as a if no axis is specified, otherwise the weights must have dimensions and shape
consistent with a along the specified axis. If weights=None, then all data in a are assumed to
have a weight equal to one. The calculation is:

avg = sum(a * weights) / sum(weights)

where the sum is over all included elements. The only constraint on the values of weights is
that sum(weights) must not be 0.

returned
[bool, optional] Flag indicating whether a tuple (result, sum of weights) should
be returned as output (True), or just the result (False). Default is False.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a. Note: keepdims will not work with instances of numpy.matrix or other classes whose
methods do not support keepdims.
New in version 1.23.0.

Returns
average, [sum_of_weights]

[(tuple of) scalar or MaskedArray] The average along the specified axis. When returned is
True, return a tuple with the average as the first element and the sum of theweights as the second
element. The return type is np.float64 if a is of integer type and floats smaller than float64,
or the input data-type, otherwise. If returned, sum_of_weights is always float64.

Raises
ZeroDivisionError

When all weights along axis are zero. See numpy.ma.average for a version robust to this
type of error.

TypeError
When weights does not have the same shape as a, and axis=None.

ValueError
When weights does not have dimensions and shape consistent with a along specified axis.

1.1. NumPy’s module structure 765

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average(a, weights=[3, 1, 0, 0])
1.25

>>> x = np.ma.arange(6.).reshape(3, 2)
>>> x
masked_array(
data=[[0., 1.],

[2., 3.],
[4., 5.]],

mask=False,
fill_value=1e+20)

>>> data = np.arange(8).reshape((2, 2, 2))
>>> data
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.ma.average(data, axis=(0, 1), weights=[[1./4, 3./4], [1., 1./2]])
masked_array(data=[3.4, 4.4],

mask=[False, False],
fill_value=1e+20)

>>> np.ma.average(data, axis=0, weights=[[1./4, 3./4], [1., 1./2]])
Traceback (most recent call last):

...
ValueError: Shape of weights must be consistent
with shape of a along specified axis.

>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
... returned=True)
>>> avg
masked_array(data=[2.6666666666666665, 3.6666666666666665],

mask=[False, False],
fill_value=1e+20)

With keepdims=True, the following result has shape (3, 1).

>>> np.ma.average(x, axis=1, keepdims=True)
masked_array(
data=[[0.5],

[2.5],
[4.5]],

mask=False,
fill_value=1e+20)

ma.conjugate(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <numpy.ma.core._MaskedUnaryOperation object>

Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x

[array_like] Input value.

766 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The complex conjugate of x, with same dtype as y. This is a scalar if x is a scalar.

Notes

conj is an alias for conjugate:

>>> np.conj is np.conjugate
True

Examples

>>> import numpy as np
>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[1.-1.j, 0.-0.j],

[0.-0.j, 1.-1.j]])

ma.corrcoef(x, y=None, rowvar=True, bias=<no value>, allow_masked=True, ddof=<no value>)
Return Pearson product-moment correlation coefficients.
Except for the handling of missing data this function does the same as numpy.corrcoef. For more details and
examples, see numpy.corrcoef.

Parameters
x

[array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
x represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y
[array_like, optional] An additional set of variables and observations. y has the same shape as
x.

1.1. NumPy’s module structure 767

NumPy Reference, Release 2.2.0

rowvar
[bool, optional] If rowvar is True (default), then each row represents a variable, with obser-
vations in the columns. Otherwise, the relationship is transposed: each column represents a
variable, while the rows contain observations.

bias
[_NoValue, optional] Has no effect, do not use.
Deprecated since version 1.10.0.

allow_masked
[bool, optional] If True, masked values are propagated pair-wise: if a value is masked in x, the
corresponding value is masked in y. If False, raises an exception. Because bias is deprecated,
this argument needs to be treated as keyword only to avoid a warning.

ddof
[_NoValue, optional] Has no effect, do not use.
Deprecated since version 1.10.0.

See also:

numpy.corrcoef
Equivalent function in top-level NumPy module.

cov
Estimate the covariance matrix.

Notes

This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous
versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

Examples

>>> import numpy as np
>>> x = np.ma.array([[0, 1], [1, 1]], mask=[0, 1, 0, 1])
>>> np.ma.corrcoef(x)
masked_array(
data=[[--, --],

[--, --]],
mask=[[True, True],

[True, True]],
fill_value=1e+20,
dtype=float64)

ma.cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)
Estimate the covariance matrix.
Except for the handling ofmissing data this function does the same asnumpy.cov. Formore details and examples,
see numpy.cov.
By default, masked values are recognized as such. If x and y have the same shape, a common mask is allocated: if
x[i,j] is masked, then y[i,j] will also be masked. Setting allow_masked to False will raise an exception if
values are missing in either of the input arrays.

Parameters

768 1. Python API

NumPy Reference, Release 2.2.0

x
[array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
x represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y
[array_like, optional] An additional set of variables and observations. y has the same shape as
x.

rowvar
[bool, optional] If rowvar is True (default), then each row represents a variable, with obser-
vations in the columns. Otherwise, the relationship is transposed: each column represents a
variable, while the rows contain observations.

bias
[bool, optional] Default normalization (False) is by (N-1), where N is the number of obser-
vations given (unbiased estimate). If bias is True, then normalization is by N. This keyword
can be overridden by the keyword ddof in numpy versions >= 1.5.

allow_masked
[bool, optional] If True, masked values are propagated pair-wise: if a value is masked in x, the
corresponding value is masked in y. If False, raises a ValueError exception when some values
are missing.

ddof
[{None, int}, optional] If not None normalization is by (N - ddof), where N is the number
of observations; this overrides the value implied by bias. The default value is None.

Raises
ValueError

Raised if some values are missing and allow_masked is False.
See also:

numpy.cov

Examples

>>> import numpy as np
>>> x = np.ma.array([[0, 1], [1, 1]], mask=[0, 1, 0, 1])
>>> y = np.ma.array([[1, 0], [0, 1]], mask=[0, 0, 1, 1])
>>> np.ma.cov(x, y)
masked_array(
data=[[--, --, --, --],

[--, --, --, --],
[--, --, --, --],
[--, --, --, --]],

mask=[[True, True, True, True],
[True, True, True, True],
[True, True, True, True],
[True, True, True, True]],

fill_value=1e+20,
dtype=float64)

ma.cumsum(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod object>

Return the cumulative sum of the array elements over the given axis.

1.1. NumPy’s module structure 769

NumPy Reference, Release 2.2.0

Masked values are set to 0 internally during the computation. However, their position is saved, and the result will
be masked at the same locations.
Refer to numpy.cumsum for full documentation.
See also:

numpy.ndarray.cumsum
corresponding function for ndarrays

numpy.cumsum
equivalent function

Notes

The mask is lost if out is not a valid ma.MaskedArray !
Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> import numpy as np
>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> marr.cumsum()
masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33],

mask=[False, False, False, True, True, True, False, False,
False, False],

fill_value=999999)

ma.cumprod(self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod object>

Return the cumulative product of the array elements over the given axis.
Masked values are set to 1 internally during the computation. However, their position is saved, and the result will
be masked at the same locations.
Refer to numpy.cumprod for full documentation.
See also:

numpy.ndarray.cumprod
corresponding function for ndarrays

numpy.cumprod
equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !
Arithmetic is modular when using integer types, and no error is raised on overflow.

ma.mean(self, axis=None, dtype=None, out=None, keepdims=<no value>) =
<numpy.ma.core._frommethod object>

Returns the average of the array elements along given axis.
Masked entries are ignored, and result elements which are not finite will be masked.

770 1. Python API

NumPy Reference, Release 2.2.0

Refer to numpy.mean for full documentation.
See also:

numpy.ndarray.mean
corresponding function for ndarrays

numpy.mean
Equivalent function

numpy.ma.average
Weighted average.

Examples

>>> import numpy as np
>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data=[1, 2, --],

mask=[False, False, True],
fill_value=999999)

>>> a.mean()
1.5

ma.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Compute the median along the specified axis.
Returns the median of the array elements.

Parameters
a

[array_like] Input array or object that can be converted to an array.
axis

[int, optional] Axis along which the medians are computed. The default (None) is to compute
the median along a flattened version of the array.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output but the type will be cast if necessary.

overwrite_input
[bool, optional] If True, then allow use of memory of input array (a) for calculations. The input
array will be modified by the call to median. This will save memory when you do not need to
preserve the contents of the input array. Treat the input as undefined, but it will probably be
fully or partially sorted. Default is False. Note that, if overwrite_input is True, and the input
is not already an ndarray, an error will be raised.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.

Returns
median

[ndarray] A new array holding the result is returned unless out is specified, in which case a

1.1. NumPy’s module structure 771

NumPy Reference, Release 2.2.0

reference to out is returned. Return data-type is float64 for integers and floats smaller than
float64, or the input data-type, otherwise.

See also:

mean

Notes

Given a vector V with N non masked values, the median of V is the middle value of a sorted copy of V (Vs) - i.e.
Vs[(N-1)/2], when N is odd, or {Vs[N/2 - 1] + Vs[N/2]}/2 when N is even.

Examples

>>> import numpy as np
>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
>>> np.ma.median(x)
1.5

>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
>>> np.ma.median(x)
2.5
>>> np.ma.median(x, axis=-1, overwrite_input=True)
masked_array(data=[2.0, 5.0],

mask=[False, False],
fill_value=1e+20)

ma.power(a, b, third=None)
Returns element-wise base array raised to power from second array.
This is the masked array version of numpy.power. For details see numpy.power.
See also:

numpy.power

Notes

The out argument to numpy.power is not supported, third has to be None.

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = [11.2, -3.973, 0.801, -1.41]
>>> mask = [0, 0, 0, 1]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(data=[11.2, -3.973, 0.801, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.power(masked_x, 2)

(continues on next page)

772 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
masked_array(data=[125.43999999999998, 15.784728999999999,

0.6416010000000001, --],
mask=[False, False, False, True],

fill_value=1e+20)
>>> y = [-0.5, 2, 0, 17]
>>> masked_y = ma.masked_array(y, mask)
>>> masked_y
masked_array(data=[-0.5, 2.0, 0.0, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.power(masked_x, masked_y)
masked_array(data=[0.2988071523335984, 15.784728999999999, 1.0, --],

mask=[False, False, False, True],
fill_value=1e+20)

ma.prod(self, axis=None, dtype=None, out=None, keepdims=<no value>) =
<numpy.ma.core._frommethod object>

Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.
Refer to numpy.prod for full documentation.
See also:

numpy.ndarray.prod
corresponding function for ndarrays

numpy.prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.
ma.std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, mean=<no value>) =

<numpy.ma.core._frommethod object>

Returns the standard deviation of the array elements along given axis.
Masked entries are ignored.
Refer to numpy.std for full documentation.
See also:

numpy.ndarray.std
corresponding function for ndarrays

numpy.std
Equivalent function

ma.sum(self, axis=None, dtype=None, out=None, keepdims=<no value>) =
<numpy.ma.core._frommethod object>

Return the sum of the array elements over the given axis.
Masked elements are set to 0 internally.
Refer to numpy.sum for full documentation.

1.1. NumPy’s module structure 773

NumPy Reference, Release 2.2.0

See also:

numpy.ndarray.sum
corresponding function for ndarrays

numpy.sum
equivalent function

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> x
masked_array(
data=[[1, --, 3],

[--, 5, --],
[7, --, 9]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)
>>> x.sum()
25
>>> x.sum(axis=1)
masked_array(data=[4, 5, 16],

mask=[False, False, False],
fill_value=999999)

>>> x.sum(axis=0)
masked_array(data=[8, 5, 12],

mask=[False, False, False],
fill_value=999999)

>>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
<class 'numpy.int64'>

ma.var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, mean=<no value>) =
<numpy.ma.core._frommethod object>

Compute the variance along the specified axis.
Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for
the flattened array by default, otherwise over the specified axis.

Parameters
a

[array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis
[None or int or tuple of ints, optional] Axis or axes along which the variance is computed. The
default is to compute the variance of the flattened array. If this is a tuple of ints, a variance is
performed over multiple axes, instead of a single axis or all the axes as before.

dtype
[data-type, optional] Type to use in computing the variance. For arrays of integer type the
default is float64; for arrays of float types it is the same as the array type.

774 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof
[{int, float}, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N
- ddof, where N represents the number of elements. By default ddof is zero. See notes for
details about use of ddof.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

where
[array_like of bool, optional] Elements to include in the variance. See reduce for details.
New in version 1.20.0.

mean
[array like, optional] Provide the mean to prevent its recalculation. The mean should have a
shape as if it was calculated with keepdims=True. The axis for the calculation of the mean
should be the same as used in the call to this var function.
New in version 2.0.0.

correction
[{int, float}, optional] Array API compatible name for the ddof parameter. Only one of them
can be provided at the same time.
New in version 2.0.0.

Returns
variance

[ndarray, see dtype parameter above] If out=None, returns a new array containing the vari-
ance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar
ufuncs-output-type

Notes

There are several common variants of the array variance calculation. Assuming the input a is a one-dimensional
NumPy array and mean is either provided as an argument or computed as a.mean(), NumPy computes the
variance of an array as:

N = len(a)
d2 = abs(a - mean)**2 # abs is for complex `a`
var = d2.sum() / (N - ddof) # note use of `ddof`

1.1. NumPy’s module structure 775

NumPy Reference, Release 2.2.0

Different values of the argument ddof are useful in different contexts. NumPy’s default ddof=0 corresponds with
the expression: ∑

i |ai − ā|2

N

which is sometimes called the “population variance” in the field of statistics because it applies the definition of
variance to a as if a were a complete population of possible observations.
Many other libraries define the variance of an array differently, e.g.:∑

i |ai − ā|2

N − 1

In statistics, the resulting quantity is sometimes called the “sample variance” because if a is a random sample from
a larger population, this calculation provides an unbiased estimate of the variance of the population. The use of
N − 1 in the denominator is often called “Bessel’s correction” because it corrects for bias (toward lower values) in
the variance estimate introduced when the sample mean of a is used in place of the true mean of the population.
For this quantity, use ddof=1.
Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.
For floating-point input, the variance is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
np.float32(0.20250003)

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932944759 # may vary
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Specifying a where argument:

>>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
>>> np.var(a)

(continues on next page)

776 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
6.833333333333333 # may vary
>>> np.var(a, where=[[True], [True], [False]])
4.0

Using the mean keyword to save computation time:

>>> import numpy as np
>>> from timeit import timeit
>>>
>>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
>>> mean = np.mean(a, axis=1, keepdims=True)
>>>
>>> g = globals()
>>> n = 10000
>>> t1 = timeit("var = np.var(a, axis=1, mean=mean)", globals=g, number=n)
>>> t2 = timeit("var = np.var(a, axis=1)", globals=g, number=n)
>>> print(f'Percentage execution time saved {100*(t2-t1)/t2:.0f}%')

Percentage execution time saved 32%

method
ma.MaskedArray.anom(axis=None, dtype=None)

Compute the anomalies (deviations from the arithmetic mean) along the given axis.
Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed along
the given axis.

Parameters
axis

[int, optional] Axis over which the anomalies are taken. The default is to use the mean of the
flattened array as reference.

dtype
[dtype, optional]
Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

See also:

mean
Compute the mean of the array.

Examples

>>> import numpy as np
>>> a = np.ma.array([1,2,3])
>>> a.anom()
masked_array(data=[-1., 0., 1.],

mask=False,
fill_value=1e+20)

method

1.1. NumPy’s module structure 777

NumPy Reference, Release 2.2.0

ma.MaskedArray.cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the array elements over the given axis.
Masked values are set to 1 internally during the computation. However, their position is saved, and the result will
be masked at the same locations.
Refer to numpy.cumprod for full documentation.
See also:

numpy.ndarray.cumprod
corresponding function for ndarrays

numpy.cumprod
equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !
Arithmetic is modular when using integer types, and no error is raised on overflow.

method
ma.MaskedArray.cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the array elements over the given axis.
Masked values are set to 0 internally during the computation. However, their position is saved, and the result will
be masked at the same locations.
Refer to numpy.cumsum for full documentation.
See also:

numpy.ndarray.cumsum
corresponding function for ndarrays

numpy.cumsum
equivalent function

Notes

The mask is lost if out is not a valid ma.MaskedArray !
Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> import numpy as np
>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
>>> marr.cumsum()
masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33],

mask=[False, False, False, True, True, True, False, False,
False, False],

fill_value=999999)

method

778 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.mean(axis=None, dtype=None, out=None, keepdims=<no value>)
Returns the average of the array elements along given axis.
Masked entries are ignored, and result elements which are not finite will be masked.
Refer to numpy.mean for full documentation.
See also:

numpy.ndarray.mean
corresponding function for ndarrays

numpy.mean
Equivalent function

numpy.ma.average
Weighted average.

Examples

>>> import numpy as np
>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
masked_array(data=[1, 2, --],

mask=[False, False, True],
fill_value=999999)

>>> a.mean()
1.5

method
ma.MaskedArray.prod(axis=None, dtype=None, out=None, keepdims=<no value>)

Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.
Refer to numpy.prod for full documentation.
See also:

numpy.ndarray.prod
corresponding function for ndarrays

numpy.prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.
method
ma.MaskedArray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, mean=<no value>)

Returns the standard deviation of the array elements along given axis.
Masked entries are ignored.
Refer to numpy.std for full documentation.
See also:

1.1. NumPy’s module structure 779

NumPy Reference, Release 2.2.0

numpy.ndarray.std
corresponding function for ndarrays

numpy.std
Equivalent function

method
ma.MaskedArray.sum(axis=None, dtype=None, out=None, keepdims=<no value>)

Return the sum of the array elements over the given axis.
Masked elements are set to 0 internally.
Refer to numpy.sum for full documentation.
See also:

numpy.ndarray.sum
corresponding function for ndarrays

numpy.sum
equivalent function

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> x
masked_array(
data=[[1, --, 3],

[--, 5, --],
[7, --, 9]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)
>>> x.sum()
25
>>> x.sum(axis=1)
masked_array(data=[4, 5, 16],

mask=[False, False, False],
fill_value=999999)

>>> x.sum(axis=0)
masked_array(data=[8, 5, 12],

mask=[False, False, False],
fill_value=999999)

>>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
<class 'numpy.int64'>

method
ma.MaskedArray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, mean=<no value>)

Compute the variance along the specified axis.
Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for
the flattened array by default, otherwise over the specified axis.

Parameters

780 1. Python API

NumPy Reference, Release 2.2.0

a
[array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis
[None or int or tuple of ints, optional] Axis or axes along which the variance is computed. The
default is to compute the variance of the flattened array. If this is a tuple of ints, a variance is
performed over multiple axes, instead of a single axis or all the axes as before.

dtype
[data-type, optional] Type to use in computing the variance. For arrays of integer type the
default is float64; for arrays of float types it is the same as the array type.

out
[ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof
[{int, float}, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N
- ddof, where N represents the number of elements. By default ddof is zero. See notes for
details about use of ddof.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

where
[array_like of bool, optional] Elements to include in the variance. See reduce for details.
New in version 1.20.0.

mean
[array like, optional] Provide the mean to prevent its recalculation. The mean should have a
shape as if it was calculated with keepdims=True. The axis for the calculation of the mean
should be the same as used in the call to this var function.
New in version 2.0.0.

correction
[{int, float}, optional] Array API compatible name for the ddof parameter. Only one of them
can be provided at the same time.
New in version 2.0.0.

Returns
variance

[ndarray, see dtype parameter above] If out=None, returns a new array containing the vari-
ance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar
ufuncs-output-type

1.1. NumPy’s module structure 781

NumPy Reference, Release 2.2.0

Notes

There are several common variants of the array variance calculation. Assuming the input a is a one-dimensional
NumPy array and mean is either provided as an argument or computed as a.mean(), NumPy computes the
variance of an array as:

N = len(a)
d2 = abs(a - mean)**2 # abs is for complex `a`
var = d2.sum() / (N - ddof) # note use of `ddof`

Different values of the argument ddof are useful in different contexts. NumPy’s default ddof=0 corresponds with
the expression: ∑

i |ai − ā|2

N

which is sometimes called the “population variance” in the field of statistics because it applies the definition of
variance to a as if a were a complete population of possible observations.
Many other libraries define the variance of an array differently, e.g.:∑

i |ai − ā|2

N − 1

In statistics, the resulting quantity is sometimes called the “sample variance” because if a is a random sample from
a larger population, this calculation provides an unbiased estimate of the variance of the population. The use of
N − 1 in the denominator is often called “Bessel’s correction” because it corrects for bias (toward lower values) in
the variance estimate introduced when the sample mean of a is used in place of the true mean of the population.
For this quantity, use ddof=1.
Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.
For floating-point input, the variance is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
np.float32(0.20250003)

Computing the variance in float64 is more accurate:

782 1. Python API

NumPy Reference, Release 2.2.0

>>> np.var(a, dtype=np.float64)
0.20249999932944759 # may vary
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Specifying a where argument:

>>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
>>> np.var(a)
6.833333333333333 # may vary
>>> np.var(a, where=[[True], [True], [False]])
4.0

Using the mean keyword to save computation time:

>>> import numpy as np
>>> from timeit import timeit
>>>
>>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
>>> mean = np.mean(a, axis=1, keepdims=True)
>>>
>>> g = globals()
>>> n = 10000
>>> t1 = timeit("var = np.var(a, axis=1, mean=mean)", globals=g, number=n)
>>> t2 = timeit("var = np.var(a, axis=1)", globals=g, number=n)
>>> print(f'Percentage execution time saved {100*(t2-t1)/t2:.0f}%')

Percentage execution time saved 32%

Minimum/maximum

ma.argmax(self[, axis, fill_value, out]) Returns array of indices of the maximum values along the
given axis.

ma.argmin(self[, axis, fill_value, out]) Return array of indices to the minimum values along the
given axis.

ma.max(obj[, axis, out, fill_value, keepdims]) Return the maximum along a given axis.
ma.min(obj[, axis, out, fill_value, keepdims]) Return the minimum along a given axis.
ma.ptp(obj[, axis, out, fill_value, keepdims]) Return (maximum -minimum) along the given dimension

(i.e. peak-to-peak value).
ma.diff(a, /[, n, axis, prepend, append]) Calculate the n-th discrete difference along the given axis.
ma.MaskedArray.argmax([axis, fill_value, ...]) Returns array of indices of the maximum values along the

given axis.
ma.MaskedArray.argmin([axis, fill_value, ...]) Return array of indices to the minimum values along the

given axis.
ma.MaskedArray.max([axis, out, fill_value, ...]) Return the maximum along a given axis.
ma.MaskedArray.min([axis, out, fill_value, ...]) Return the minimum along a given axis.
ma.MaskedArray.ptp([axis, out, fill_value, ...]) Return (maximum -minimum) along the given dimension

(i.e. peak-to-peak value).

ma.argmax(self, axis=None, fill_value=None, out=None) = <numpy.ma.core._frommethod object>

Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had the
value fill_value.

1.1. NumPy’s module structure 783

NumPy Reference, Release 2.2.0

Parameters
axis

[{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out
[{None, array}, optional] Array into which the result can be placed. Its type is preserved and
it must be of the right shape to hold the output.

Returns
index_array

[{integer_array}]

Examples

>>> import numpy as np
>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

ma.argmin(self, axis=None, fill_value=None, out=None) = <numpy.ma.core._frommethod object>

Return array of indices to the minimum values along the given axis.
Parameters

axis
[{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out
[{None, array}, optional] Array into which the result can be placed. Its type is preserved and
it must be of the right shape to hold the output.

Returns
ndarray or scalar

If multi-dimension input, returns a new ndarray of indices to the minimum values along the
given axis. Otherwise, returns a scalar of index to the minimum values along the given axis.

784 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.ma.array(np.arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> x
masked_array(
data=[[--, --],

[2, 3]],
mask=[[True, True],

[False, False]],
fill_value=999999)

>>> x.argmin(axis=0, fill_value=-1)
array([0, 0])
>>> x.argmin(axis=0, fill_value=9)
array([1, 1])

ma.max(obj, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the maximum along a given axis.

Parameters
axis

[None or int or tuple of ints, optional] Axis along which to operate. By default, axis is None
and the flattened input is used. If this is a tuple of ints, the maximum is selected over multiple
axes, instead of a single axis or all the axes as before.

out
[array_like, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output.

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, use the output of
maximum_fill_value().

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns
amax

[array_like] New array holding the result. If out was specified, out is returned.
See also:

ma.maximum_fill_value
Returns the maximum filling value for a given datatype.

1.1. NumPy’s module structure 785

NumPy Reference, Release 2.2.0

Examples

>>> import numpy.ma as ma
>>> x = [[-1., 2.5], [4., -2.], [3., 0.]]
>>> mask = [[0, 0], [1, 0], [1, 0]]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(
data=[[-1.0, 2.5],

[--, -2.0],
[--, 0.0]],

mask=[[False, False],
[True, False],
[True, False]],

fill_value=1e+20)
>>> ma.max(masked_x)
2.5
>>> ma.max(masked_x, axis=0)
masked_array(data=[-1.0, 2.5],

mask=[False, False],
fill_value=1e+20)

>>> ma.max(masked_x, axis=1, keepdims=True)
masked_array(
data=[[2.5],

[-2.0],
[0.0]],

mask=[[False],
[False],
[False]],

fill_value=1e+20)
>>> mask = [[1, 1], [1, 1], [1, 1]]
>>> masked_x = ma.masked_array(x, mask)
>>> ma.max(masked_x, axis=1)
masked_array(data=[--, --, --],

mask=[True, True, True],
fill_value=1e+20,

dtype=float64)

ma.min(obj, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the minimum along a given axis.

Parameters
axis

[None or int or tuple of ints, optional] Axis along which to operate. By default, axis is None
and the flattened input is used. If this is a tuple of ints, the minimum is selected over multiple
axes, instead of a single axis or all the axes as before.

out
[array_like, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output.

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, use the output of
minimum_fill_value.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

786 1. Python API

NumPy Reference, Release 2.2.0

Returns
amin

[array_like] New array holding the result. If out was specified, out is returned.
See also:

ma.minimum_fill_value
Returns the minimum filling value for a given datatype.

Examples

>>> import numpy.ma as ma
>>> x = [[1., -2., 3.], [0.2, -0.7, 0.1]]
>>> mask = [[1, 1, 0], [0, 0, 1]]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(
data=[[--, --, 3.0],

[0.2, -0.7, --]],
mask=[[True, True, False],

[False, False, True]],
fill_value=1e+20)

>>> ma.min(masked_x)
-0.7
>>> ma.min(masked_x, axis=-1)
masked_array(data=[3.0, -0.7],

mask=[False, False],
fill_value=1e+20)

>>> ma.min(masked_x, axis=0, keepdims=True)
masked_array(data=[[0.2, -0.7, 3.0]],

mask=[[False, False, False]],
fill_value=1e+20)

>>> mask = [[1, 1, 1,], [1, 1, 1]]
>>> masked_x = ma.masked_array(x, mask)
>>> ma.min(masked_x, axis=0)
masked_array(data=[--, --, --],

mask=[True, True, True],
fill_value=1e+20,

dtype=float64)

ma.ptp(obj, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

Warning: ptp preserves the data type of the array. This means the return value for an input of signed integers
with n bits (e.g. np.int8, np.int16, etc) is also a signed integer with n bits. In that case, peak-to-peak values
greater than 2**(n-1)-1 will be returned as negative values. An example with a work-around is shown
below.

Parameters
axis

[{None, int}, optional] Axis along which to find the peaks. If None (default) the flattened array
is used.

1.1. NumPy’s module structure 787

NumPy Reference, Release 2.2.0

out
[{None, array_like}, optional] Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output but the type will be cast if
necessary.

fill_value
[scalar or None, optional] Value used to fill in the masked values.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns
ptp

[ndarray.] A new array holding the result, unless out was specified, in which case a reference
to out is returned.

Examples

>>> import numpy as np
>>> x = np.ma.MaskedArray([[4, 9, 2, 10],
... [6, 9, 7, 12]])

>>> x.ptp(axis=1)
masked_array(data=[8, 6],

mask=False,
fill_value=999999)

>>> x.ptp(axis=0)
masked_array(data=[2, 0, 5, 2],

mask=False,
fill_value=999999)

>>> x.ptp()
10

This example shows that a negative value can be returned when the input is an array of signed integers.

>>> y = np.ma.MaskedArray([[1, 127],
... [0, 127],
... [-1, 127],
... [-2, 127]], dtype=np.int8)
>>> y.ptp(axis=1)
masked_array(data=[126, 127, -128, -127],

mask=False,
fill_value=np.int64(999999),

dtype=int8)

A work-around is to use the view() method to view the result as unsigned integers with the same bit width:

>>> y.ptp(axis=1).view(np.uint8)
masked_array(data=[126, 127, 128, 129],

mask=False,
fill_value=np.uint64(999999),

dtype=uint8)

788 1. Python API

NumPy Reference, Release 2.2.0

ma.diff(a, / , n=1, axis=-1, prepend=<no value>, append=<no value>)
Calculate the n-th discrete difference along the given axis. The first difference is given by out[i] = a[i+1] -
a[i] along the given axis, higher differences are calculated by using diff recursively. Preserves the input mask.

Parameters
a

[array_like] Input array
n

[int, optional] The number of times values are differenced. If zero, the input is returned as-is.
axis

[int, optional] The axis along which the difference is taken, default is the last axis.
prepend, append

[array_like, optional] Values to prepend or append to a along axis prior to performing the
difference. Scalar values are expanded to arrays with length 1 in the direction of axis and the
shape of the input array in along all other axes. Otherwise the dimension and shape must match
a except along axis.

Returns
diff

[MaskedArray] The n-th differences. The shape of the output is the same as a except along
axis where the dimension is smaller by n. The type of the output is the same as the type of the
difference between any two elements of a. This is the same as the type of a in most cases. A
notable exception is datetime64, which results in a timedelta64 output array.

See also:

numpy.diff
Equivalent function in the top-level NumPy module.

Notes

Type is preserved for boolean arrays, so the result will contain False when consecutive elements are the same and
True when they differ.
For unsigned integer arrays, the results will also be unsigned. This should not be surprising, as the result is consistent
with calculating the difference directly:

>>> u8_arr = np.array([1, 0], dtype=np.uint8)
>>> np.ma.diff(u8_arr)
masked_array(data=[255],

mask=False,
fill_value=np.uint64(999999),

dtype=uint8)
>>> u8_arr[1,...] - u8_arr[0,...]
np.uint8(255)

If this is not desirable, then the array should be cast to a larger integer type first:

>>> i16_arr = u8_arr.astype(np.int16)
>>> np.ma.diff(i16_arr)
masked_array(data=[-1],

mask=False,
fill_value=np.int64(999999),

dtype=int16)

1.1. NumPy’s module structure 789

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([1, 2, 3, 4, 7, 0, 2, 3])
>>> x = np.ma.masked_where(a < 2, a)
>>> np.ma.diff(x)
masked_array(data=[--, 1, 1, 3, --, --, 1],

mask=[True, False, False, False, True, True, False],
fill_value=999999)

>>> np.ma.diff(x, n=2)
masked_array(data=[--, 0, 2, --, --, --],

mask=[True, False, False, True, True, True],
fill_value=999999)

>>> a = np.array([[1, 3, 1, 5, 10], [0, 1, 5, 6, 8]])
>>> x = np.ma.masked_equal(a, value=1)
>>> np.ma.diff(x)
masked_array(

data=[[--, --, --, 5],
[--, --, 1, 2]],

mask=[[True, True, True, False],
[True, True, False, False]],

fill_value=1)

>>> np.ma.diff(x, axis=0)
masked_array(data=[[--, --, --, 1, -2]],

mask=[[True, True, True, False, False]],
fill_value=1)

method
ma.MaskedArray.argmax(axis=None, fill_value=None, out=None, *, keepdims=<no value>)

Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had the
value fill_value.

Parameters
axis

[{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out
[{None, array}, optional] Array into which the result can be placed. Its type is preserved and
it must be of the right shape to hold the output.

Returns
index_array

[{integer_array}]

790 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

method
ma.MaskedArray.argmin(axis=None, fill_value=None, out=None, *, keepdims=<no value>)

Return array of indices to the minimum values along the given axis.
Parameters

axis
[{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out
[{None, array}, optional] Array into which the result can be placed. Its type is preserved and
it must be of the right shape to hold the output.

Returns
ndarray or scalar

If multi-dimension input, returns a new ndarray of indices to the minimum values along the
given axis. Otherwise, returns a scalar of index to the minimum values along the given axis.

Examples

>>> import numpy as np
>>> x = np.ma.array(np.arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
>>> x
masked_array(
data=[[--, --],

[2, 3]],
mask=[[True, True],

[False, False]],
fill_value=999999)

>>> x.argmin(axis=0, fill_value=-1)
array([0, 0])
>>> x.argmin(axis=0, fill_value=9)
array([1, 1])

method
ma.MaskedArray.max(axis=None, out=None, fill_value=None, keepdims=<no value>)

Return the maximum along a given axis.

1.1. NumPy’s module structure 791

NumPy Reference, Release 2.2.0

Parameters
axis

[None or int or tuple of ints, optional] Axis along which to operate. By default, axis is None
and the flattened input is used. If this is a tuple of ints, the maximum is selected over multiple
axes, instead of a single axis or all the axes as before.

out
[array_like, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output.

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, use the output of
maximum_fill_value().

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns
amax

[array_like] New array holding the result. If out was specified, out is returned.
See also:

ma.maximum_fill_value
Returns the maximum filling value for a given datatype.

Examples

>>> import numpy.ma as ma
>>> x = [[-1., 2.5], [4., -2.], [3., 0.]]
>>> mask = [[0, 0], [1, 0], [1, 0]]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(
data=[[-1.0, 2.5],

[--, -2.0],
[--, 0.0]],

mask=[[False, False],
[True, False],
[True, False]],

fill_value=1e+20)
>>> ma.max(masked_x)
2.5
>>> ma.max(masked_x, axis=0)
masked_array(data=[-1.0, 2.5],

mask=[False, False],
fill_value=1e+20)

>>> ma.max(masked_x, axis=1, keepdims=True)
masked_array(
data=[[2.5],

[-2.0],
[0.0]],

mask=[[False],
[False],
[False]],

(continues on next page)

792 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
fill_value=1e+20)

>>> mask = [[1, 1], [1, 1], [1, 1]]
>>> masked_x = ma.masked_array(x, mask)
>>> ma.max(masked_x, axis=1)
masked_array(data=[--, --, --],

mask=[True, True, True],
fill_value=1e+20,

dtype=float64)

method
ma.MaskedArray.min(axis=None, out=None, fill_value=None, keepdims=<no value>)

Return the minimum along a given axis.
Parameters

axis
[None or int or tuple of ints, optional] Axis along which to operate. By default, axis is None
and the flattened input is used. If this is a tuple of ints, the minimum is selected over multiple
axes, instead of a single axis or all the axes as before.

out
[array_like, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output.

fill_value
[scalar or None, optional] Value used to fill in the masked values. If None, use the output of
minimum_fill_value.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns
amin

[array_like] New array holding the result. If out was specified, out is returned.
See also:

ma.minimum_fill_value
Returns the minimum filling value for a given datatype.

Examples

>>> import numpy.ma as ma
>>> x = [[1., -2., 3.], [0.2, -0.7, 0.1]]
>>> mask = [[1, 1, 0], [0, 0, 1]]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(
data=[[--, --, 3.0],

[0.2, -0.7, --]],
mask=[[True, True, False],

[False, False, True]],
fill_value=1e+20)

>>> ma.min(masked_x)

(continues on next page)

1.1. NumPy’s module structure 793

NumPy Reference, Release 2.2.0

(continued from previous page)
-0.7
>>> ma.min(masked_x, axis=-1)
masked_array(data=[3.0, -0.7],

mask=[False, False],
fill_value=1e+20)

>>> ma.min(masked_x, axis=0, keepdims=True)
masked_array(data=[[0.2, -0.7, 3.0]],

mask=[[False, False, False]],
fill_value=1e+20)

>>> mask = [[1, 1, 1,], [1, 1, 1]]
>>> masked_x = ma.masked_array(x, mask)
>>> ma.min(masked_x, axis=0)
masked_array(data=[--, --, --],

mask=[True, True, True],
fill_value=1e+20,

dtype=float64)

method
ma.MaskedArray.ptp(axis=None, out=None, fill_value=None, keepdims=False)

Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

Warning: ptp preserves the data type of the array. This means the return value for an input of signed integers
with n bits (e.g. np.int8, np.int16, etc) is also a signed integer with n bits. In that case, peak-to-peak values
greater than 2**(n-1)-1 will be returned as negative values. An example with a work-around is shown
below.

Parameters
axis

[{None, int}, optional] Axis along which to find the peaks. If None (default) the flattened array
is used.

out
[{None, array_like}, optional] Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output but the type will be cast if
necessary.

fill_value
[scalar or None, optional] Value used to fill in the masked values.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.

Returns
ptp

[ndarray.] A new array holding the result, unless out was specified, in which case a reference
to out is returned.

794 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.ma.MaskedArray([[4, 9, 2, 10],
... [6, 9, 7, 12]])

>>> x.ptp(axis=1)
masked_array(data=[8, 6],

mask=False,
fill_value=999999)

>>> x.ptp(axis=0)
masked_array(data=[2, 0, 5, 2],

mask=False,
fill_value=999999)

>>> x.ptp()
10

This example shows that a negative value can be returned when the input is an array of signed integers.

>>> y = np.ma.MaskedArray([[1, 127],
... [0, 127],
... [-1, 127],
... [-2, 127]], dtype=np.int8)
>>> y.ptp(axis=1)
masked_array(data=[126, 127, -128, -127],

mask=False,
fill_value=np.int64(999999),

dtype=int8)

A work-around is to use the view() method to view the result as unsigned integers with the same bit width:

>>> y.ptp(axis=1).view(np.uint8)
masked_array(data=[126, 127, 128, 129],

mask=False,
fill_value=np.uint64(999999),

dtype=uint8)

Sorting

ma.argsort(a[, axis, kind, order, endwith, ...]) Return an ndarray of indices that sort the array along the
specified axis.

ma.sort(a[, axis, kind, order, endwith, ...]) Return a sorted copy of the masked array.
ma.MaskedArray.argsort([axis, kind, order, ...]) Return an ndarray of indices that sort the array along the

specified axis.
ma.MaskedArray.sort([axis, kind, order, ...]) Sort the array, in-place

ma.argsort(a, axis=<no value>, kind=None, order=None, endwith=True, fill_value=None, *, stable=None)
Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
fill_value.

Parameters

1.1. NumPy’s module structure 795

NumPy Reference, Release 2.2.0

axis
[int, optional] Axis along which to sort. If None, the default, the flattened array is used.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.

order
[list, optional] When a is an array with fields defined, this argument specifies which fields to
compare first, second, etc. Not all fields need be specified.

endwith
[{True, False}, optional]Whether missing values (if any) should be treated as the largest values
(True) or the smallest values (False) When the array contains unmasked values at the same
extremes of the datatype, the ordering of these values and the masked values is undefined.

fill_value
[scalar or None, optional] Value used internally for the masked values. If fill_value is
not None, it supersedes endwith.

stable
[bool, optional] Only for compatibility with np.argsort. Ignored.

Returns
index_array

[ndarray, int] Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See also:

ma.MaskedArray.sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

numpy.ndarray.sort
Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> import numpy as np
>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data=[3, 2, --],

mask=[False, False, True],
fill_value=999999)

>>> a.argsort()
array([1, 0, 2])

ma.sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None, *, stable=None)
Return a sorted copy of the masked array.
Equivalent to creating a copy of the array and applying the MaskedArray sort() method.

796 1. Python API

NumPy Reference, Release 2.2.0

Refer to MaskedArray.sort for the full documentation
See also:

MaskedArray.sort
equivalent method

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = [11.2, -3.973, 0.801, -1.41]
>>> mask = [0, 0, 0, 1]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(data=[11.2, -3.973, 0.801, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.sort(masked_x)
masked_array(data=[-3.973, 0.801, 11.2, --],

mask=[False, False, False, True],
fill_value=1e+20)

method
ma.MaskedArray.argsort(axis=<no value>, kind=None, order=None, endwith=True, fill_value=None, *,

stable=False)

Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
fill_value.

Parameters
axis

[int, optional] Axis along which to sort. If None, the default, the flattened array is used.
kind

[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.
order

[list, optional] When a is an array with fields defined, this argument specifies which fields to
compare first, second, etc. Not all fields need be specified.

endwith
[{True, False}, optional]Whether missing values (if any) should be treated as the largest values
(True) or the smallest values (False) When the array contains unmasked values at the same
extremes of the datatype, the ordering of these values and the masked values is undefined.

fill_value
[scalar or None, optional] Value used internally for the masked values. If fill_value is
not None, it supersedes endwith.

stable
[bool, optional] Only for compatibility with np.argsort. Ignored.

Returns
index_array

[ndarray, int] Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

1.1. NumPy’s module structure 797

NumPy Reference, Release 2.2.0

See also:

ma.MaskedArray.sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

numpy.ndarray.sort
Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> import numpy as np
>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data=[3, 2, --],

mask=[False, False, True],
fill_value=999999)

>>> a.argsort()
array([1, 0, 2])

method
ma.MaskedArray.sort(axis=-1, kind=None, order=None, endwith=True, fill_value=None, *, stable=False)

Sort the array, in-place
Parameters

a
[array_like] Array to be sorted.

axis
[int, optional] Axis along which to sort. If None, the array is flattened before sorting. The
default is -1, which sorts along the last axis.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.

order
[list, optional] When a is a structured array, this argument specifies which fields to compare
first, second, and so on. This list does not need to include all of the fields.

endwith
[{True, False}, optional]Whether missing values (if any) should be treated as the largest values
(True) or the smallest values (False) When the array contains unmasked values sorting at the
same extremes of the datatype, the ordering of these values and the masked values is undefined.

fill_value
[scalar or None, optional] Value used internally for the masked values. If fill_value is
not None, it supersedes endwith.

stable
[bool, optional] Only for compatibility with np.sort. Ignored.

798 1. Python API

NumPy Reference, Release 2.2.0

Returns
sorted_array

[ndarray] Array of the same type and shape as a.
See also:

numpy.ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> import numpy as np
>>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
>>> a
masked_array(data=[1, 3, 5, --, --],

mask=[False, False, False, True, True],
fill_value=999999)

>>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
>>> a
masked_array(data=[--, --, 1, 3, 5],

mask=[True, True, False, False, False],
fill_value=999999)

>>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
>>> a
masked_array(data=[1, --, --, 3, 5],

mask=[False, True, True, False, False],
fill_value=999999)

1.1. NumPy’s module structure 799

NumPy Reference, Release 2.2.0

Algebra

ma.diag(v[, k]) Extract a diagonal or construct a diagonal array.
ma.dot(a, b[, strict, out]) Return the dot product of two arrays.
ma.identity(n[, dtype]) Return the identity array.
ma.inner(a, b, /) Inner product of two arrays.
ma.innerproduct(a, b, /) Inner product of two arrays.
ma.outer(a, b) Compute the outer product of two vectors.
ma.outerproduct(a, b) Compute the outer product of two vectors.
ma.trace(self[, offset, axis1, axis2, ...]) Return the sum along diagonals of the array.
ma.transpose(a[, axes]) Permute the dimensions of an array.
ma.MaskedArray.trace([offset, axis1, axis2, ...]) Return the sum along diagonals of the array.
ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

ma.diag(v, k=0)
Extract a diagonal or construct a diagonal array.
This function is the equivalent of numpy.diag that takes masked values into account, see numpy.diag for
details.
See also:

numpy.diag
Equivalent function for ndarrays.

Examples

>>> import numpy as np

Create an array with negative values masked:

>>> import numpy as np
>>> x = np.array([[11.2, -3.973, 18], [0.801, -1.41, 12], [7, 33, -12]])
>>> masked_x = np.ma.masked_array(x, mask=x < 0)
>>> masked_x
masked_array(
data=[[11.2, --, 18.0],

[0.801, --, 12.0],
[7.0, 33.0, --]],

mask=[[False, True, False],
[False, True, False],
[False, False, True]],

fill_value=1e+20)

Isolate the main diagonal from the masked array:

>>> np.ma.diag(masked_x)
masked_array(data=[11.2, --, --],

mask=[False, True, True],
fill_value=1e+20)

Isolate the first diagonal below the main diagonal:

800 1. Python API

NumPy Reference, Release 2.2.0

>>> np.ma.diag(masked_x, -1)
masked_array(data=[0.801, 33.0],

mask=[False, False],
fill_value=1e+20)

ma.dot(a, b, strict=False, out=None)
Return the dot product of two arrays.
This function is the equivalent of numpy.dot that takes masked values into account. Note that strict and out are
in different position than in the method version. In order to maintain compatibility with the corresponding method,
it is recommended that the optional arguments be treated as keyword only. At some point that may be mandatory.

Parameters
a, b

[masked_array_like] Inputs arrays.
strict

[bool, optional] Whether masked data are propagated (True) or set to 0 (False) for the compu-
tation. Default is False. Propagating the mask means that if a masked value appears in a row
or column, the whole row or column is considered masked.

out
[masked_array, optional] Output argument. This must have the exact kind that would be re-
turned if it was not used. In particular, it must have the right type, must be C-contiguous, and
its dtype must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

See also:

numpy.dot
Equivalent function for ndarrays.

Examples

>>> import numpy as np
>>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
>>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
>>> np.ma.dot(a, b)
masked_array(
data=[[21, 26],

[45, 64]],
mask=[[False, False],

[False, False]],
fill_value=999999)

>>> np.ma.dot(a, b, strict=True)
masked_array(
data=[[--, --],

[--, 64]],
mask=[[True, True],

[True, False]],
fill_value=999999)

ma.identity(n, dtype=None) = <numpy.ma.core._convert2ma object>

Return the identity array.

1.1. NumPy’s module structure 801

NumPy Reference, Release 2.2.0

The identity array is a square array with ones on the main diagonal.
Parameters

n
[int] Number of rows (and columns) in n x n output.

dtype
[data-type, optional] Data-type of the output. Defaults to float.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[MaskedArray] n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> import numpy as np
>>> np.identity(3)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

ma.inner(a, b, /)
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product
over the last axes.

Parameters
a, b

[array_like] If a and b are nonscalar, their last dimensions must match.
Returns

out
[ndarray] If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an
array is returned. out.shape = (*a.shape[:-1], *b.shape[:-1])

Raises
ValueError

If both a and b are nonscalar and their last dimensions have different sizes.
See also:

tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

802 1. Python API

NumPy Reference, Release 2.2.0

vecdot
Vector dot product of two arrays.

einsum
Einstein summation convention.

Notes

Masked values are replaced by 0.
For vectors (1-D arrays) it computes the ordinary inner-product:

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
= sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])

In addition a or b may be scalars, in which case:

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> import numpy as np
>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

Some multidimensional examples:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> c = np.inner(a, b)
>>> c.shape
(2, 3)
>>> c
array([[14, 38, 62],

[86, 110, 134]])

>>> a = np.arange(2).reshape((1,1,2))
>>> b = np.arange(6).reshape((3,2))
>>> c = np.inner(a, b)
>>> c.shape
(1, 1, 3)
>>> c
array([[[1, 3, 5]]])

1.1. NumPy’s module structure 803

NumPy Reference, Release 2.2.0

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],

[0., 7.]])

ma.innerproduct(a, b, /)
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product
over the last axes.

Parameters
a, b

[array_like] If a and b are nonscalar, their last dimensions must match.
Returns

out
[ndarray] If a and b are both scalars or both 1-D arrays then a scalar is returned; otherwise an
array is returned. out.shape = (*a.shape[:-1], *b.shape[:-1])

Raises
ValueError

If both a and b are nonscalar and their last dimensions have different sizes.
See also:

tensordot
Sum products over arbitrary axes.

dot
Generalised matrix product, using second last dimension of b.

vecdot
Vector dot product of two arrays.

einsum
Einstein summation convention.

Notes

Masked values are replaced by 0.
For vectors (1-D arrays) it computes the ordinary inner-product:

np.inner(a, b) = sum(a[:]*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-2,j0,...,js-2]
= sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])

In addition a or b may be scalars, in which case:

804 1. Python API

NumPy Reference, Release 2.2.0

np.inner(a,b) = a*b

Examples

Ordinary inner product for vectors:

>>> import numpy as np
>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)
2

Some multidimensional examples:

>>> a = np.arange(24).reshape((2,3,4))
>>> b = np.arange(4)
>>> c = np.inner(a, b)
>>> c.shape
(2, 3)
>>> c
array([[14, 38, 62],

[86, 110, 134]])

>>> a = np.arange(2).reshape((1,1,2))
>>> b = np.arange(6).reshape((3,2))
>>> c = np.inner(a, b)
>>> c.shape
(1, 1, 3)
>>> c
array([[[1, 3, 5]]])

An example where b is a scalar:

>>> np.inner(np.eye(2), 7)
array([[7., 0.],

[0., 7.]])

ma.outer(a, b)
Compute the outer product of two vectors.
Given two vectors a and b of length M and N, respectively, the outer product [1] is:

[[a_0*b_0 a_0*b_1 ... a_0*b_{N-1}]
[a_1*b_0 .
[... .
[a_{M-1}*b_0 a_{M-1}*b_{N-1}]]

Parameters
a

[(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.
b

[(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.

1.1. NumPy’s module structure 805

NumPy Reference, Release 2.2.0

out
[(M, N) ndarray, optional] A location where the result is stored

Returns
out

[(M, N) ndarray] out[i, j] = a[i] * b[j]

See also:

inner
einsum

einsum('i,j->ij', a.ravel(), b.ravel()) is the equivalent.
ufunc.outer

A generalization to dimensions other than 1D and other operations. np.multiply.outer(a.
ravel(), b.ravel()) is the equivalent.

linalg.outer
An Array API compatible variation of np.outer, which accepts 1-dimensional inputs only.

tensordot
np.tensordot(a.ravel(), b.ravel(), axes=((), ())) is the equivalent.

Notes

Masked values are replaced by 0.

References

[1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> import numpy as np
>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],

(continues on next page)

806 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([['a', 'aa', 'aaa'],

['b', 'bb', 'bbb'],
['c', 'cc', 'ccc']], dtype=object)

ma.outerproduct(a, b)
Compute the outer product of two vectors.
Given two vectors a and b of length M and N, respectively, the outer product [1] is:

[[a_0*b_0 a_0*b_1 ... a_0*b_{N-1}]
[a_1*b_0 .
[... .
[a_{M-1}*b_0 a_{M-1}*b_{N-1}]]

Parameters
a

[(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.
b

[(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.
out

[(M, N) ndarray, optional] A location where the result is stored
Returns

out
[(M, N) ndarray] out[i, j] = a[i] * b[j]

See also:

inner
einsum

einsum('i,j->ij', a.ravel(), b.ravel()) is the equivalent.
ufunc.outer

A generalization to dimensions other than 1D and other operations. np.multiply.outer(a.
ravel(), b.ravel()) is the equivalent.

linalg.outer
An Array API compatible variation of np.outer, which accepts 1-dimensional inputs only.

tensordot
np.tensordot(a.ravel(), b.ravel(), axes=((), ())) is the equivalent.

1.1. NumPy’s module structure 807

NumPy Reference, Release 2.2.0

Notes

Masked values are replaced by 0.

References

[1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> import numpy as np
>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
array([['a', 'aa', 'aaa'],

['b', 'bb', 'bbb'],
['c', 'cc', 'ccc']], dtype=object)

ma.trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None) a.trace(offset=0, axis1=0, axis2=1,
dtype=None, out=None) = <numpy.ma.core._frommethod object>

Return the sum along diagonals of the array.
Refer to numpy.trace for full documentation.

See also:

numpy.trace
equivalent function

method

808 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to numpy.trace for full documentation.
See also:

numpy.trace
equivalent function

Polynomial fit

ma.vander(x[, n]) Generate a Vandermonde matrix.
ma.polyfit(x, y, deg[, rcond, full, w, cov]) Least squares polynomial fit.

ma.vander(x, n=None)
Generate a Vandermonde matrix.
The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector raised
element-wise to the power of N - i - 1. Such a matrix with a geometric progression in each row is named for
Alexandre- Theophile Vandermonde.

Parameters
x

[array_like] 1-D input array.
N

[int, optional] Number of columns in the output. IfN is not specified, a square array is returned
(N = len(x)).

increasing
[bool, optional] Order of the powers of the columns. If True, the powers increase from left to
right, if False (the default) they are reversed.

Returns
out

[ndarray] Vandermonde matrix. If increasing is False, the first column is x^(N-1), the sec-
ond x^(N-2) and so forth. If increasing is True, the columns are x^0, x^1, ...,
x^(N-1).

See also:

polynomial.polynomial.polyvander

1.1. NumPy’s module structure 809

NumPy Reference, Release 2.2.0

Notes

Masked values in the input array result in rows of zeros.

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[1, 1, 1],

[4, 2, 1],
[9, 3, 1],
[25, 5, 1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[1, 1, 1],

[4, 2, 1],
[9, 3, 1],
[25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[1, 1, 1, 1],

[8, 4, 2, 1],
[27, 9, 3, 1],
[125, 25, 5, 1]])

>>> np.vander(x, increasing=True)
array([[1, 1, 1, 1],

[1, 2, 4, 8],
[1, 3, 9, 27],
[1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product of the differences between the values of the input
vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043 # may vary
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

ma.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
Least squares polynomial fit.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error in the order deg, deg-1, … 0.
The Polynomial.fit class method is recommended for new code as it is more stable numerically. See the
documentation of the method for more information.

Parameters

810 1. Python API

NumPy Reference, Release 2.2.0

x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg
[int] Degree of the fitting polynomial

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the un-
squared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. When using inverse-variance
weighting, use w[i] = 1/sigma(y[i]). The default value is None.

cov
[bool or str, optional] If given and not False, return not just the estimate but also its covariance
matrix. By default, the covariance are scaled by chi2/dof, where dof = M - (deg + 1), i.e., the
weights are presumed to be unreliable except in a relative sense and everything is scaled such
that the reduced chi2 is unity. This scaling is omitted if cov='unscaled', as is relevant
for the case that the weights are w = 1/sigma, with sigma known to be a reliable estimate of
the uncertainty.

Returns
p

[ndarray, shape (deg + 1,) or (deg + 1, K)] Polynomial coefficients, highest power first. If y
was 2-D, the coefficients for k-th data set are in p[:,k].

residuals, rank, singular_values, rcond
These values are only returned if full == True

• residuals – sum of squared residuals of the least squares fit
• rank – the effective rank of the scaled Vandermonde

coefficient matrix
• singular_values – singular values of the scaled Vandermonde

coefficient matrix
• rcond – value of rcond.
For more details, see numpy.linalg.lstsq.

V
[ndarray, shape (deg + 1, deg + 1) or (deg + 1, deg + 1, K)] Present only if full == False
and cov == True. The covariance matrix of the polynomial coefficient estimates. The
diagonal of this matrix are the variance estimates for each coefficient. If y is a 2-D array, then
the covariance matrix for the k-th data set are in V[:,:,k]

1.1. NumPy’s module structure 811

NumPy Reference, Release 2.2.0

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised
if full == False.
The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See also:

polyval
Compute polynomial values.

linalg.lstsq
Computes a least-squares fit.

scipy.interpolate.UnivariateSpline
Computes spline fits.

Notes

Any masked values in x is propagated in y, and vice-versa.
The solution minimizes the squared error

E =

k∑
j=0

|p(xj)− yj |2

in the equations:

x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
...
x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]

The coefficient matrix of the coefficients p is a Vandermonde matrix.
polyfit issues a RankWarning when the least-squares fit is badly conditioned. This implies that the best fit
is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by
replacing x by x - x.mean(). The rcond parameter can also be set to a value smaller than its default, but the resulting
fit may be spurious: including contributions from the small singular values can add numerical noise to the result.
Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large
or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases.
When polynomial fits are not satisfactory, splines may be a good alternative.

812 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

>>> import numpy as np
>>> import warnings
>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179 # may vary
>>> p(3.5)
-0.34732142857143039 # may vary
>>> p(10)
22.579365079365115 # may vary

High-order polynomials may oscillate wildly:

>>> with warnings.catch_warnings():
... warnings.simplefilter('ignore', np.exceptions.RankWarning)
... p30 = np.poly1d(np.polyfit(x, y, 30))
...
>>> p30(4)
-0.80000000000000204 # may vary
>>> p30(5)
-0.99999999999999445 # may vary
>>> p30(4.5)
-0.10547061179440398 # may vary

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

1.1. NumPy’s module structure 813

NumPy Reference, Release 2.2.0

2 1 0 1 2 3 4 5 6
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Clipping and rounding

ma.around Round an array to the given number of decimals.
ma.clip Clip (limit) the values in an array.
ma.round(a[, decimals, out]) Return a copy of a, rounded to 'decimals' places.
ma.MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min,

max].
ma.MaskedArray.round([decimals, out]) Return each element rounded to the given number of dec-

imals.

ma.around = <numpy.ma.core._MaskedUnaryOperation object>

Round an array to the given number of decimals.
around is an alias of round.
See also:

ndarray.round
equivalent method

round
alias for this function

ceil, fix, floor, rint, trunc

ma.clip = <numpy.ma.core._convert2ma object>

Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0,
1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.
Equivalent to but faster than np.minimum(a_max, np.maximum(a, a_min)).
No check is performed to ensure a_min < a_max.

Parameters

814 1. Python API

NumPy Reference, Release 2.2.0

a
[array_like] Array containing elements to clip.

a_min, a_max
[array_like or None] Minimum and maximum value. If None, clipping is not performed on
the corresponding edge. If both a_min and a_max are None, the elements of the returned
array stay the same. Both are broadcasted against a.

out
[ndarray, optional] The results will be placed in this array. It may be the input array for in-place
clipping. out must be of the right shape to hold the output. Its type is preserved.

min, max
[array_like or None] Array API compatible alternatives for a_min and a_max arguments.
Either a_min and a_max or min and max can be passed at the same time. Default: None.
New in version 2.1.0.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
clipped_array

[MaskedArray] An array with the elements of a, but where values < a_min are replaced with
a_min, and those > a_max with a_max.

See also:

ufuncs-output-type

Notes

When a_min is greater than a_max, clip returns an array in which all values are equal to a_max, as shown in the
second example.

Examples

>>> import numpy as np
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> np.clip(a, 8, 1)
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

1.1. NumPy’s module structure 815

NumPy Reference, Release 2.2.0

ma.round(a, decimals=0, out=None)
Return a copy of a, rounded to ‘decimals’ places.
When ‘decimals’ is negative, it specifies the number of positions to the left of the decimal point. The real and
imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and
‘decimals’ is greater than or equal to 0.

Parameters
decimals

[int] Number of decimals to round to. May be negative.
out

[array_like] Existing array to use for output. If not given, returns a default copy of a.

Notes

If out is given and does not have a mask attribute, the mask of a is lost!

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = [11.2, -3.973, 0.801, -1.41]
>>> mask = [0, 0, 0, 1]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(data=[11.2, -3.973, 0.801, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.round_(masked_x)
masked_array(data=[11.0, -4.0, 1.0, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.round(masked_x, decimals=1)
masked_array(data=[11.2, -4.0, 0.8, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.round_(masked_x, decimals=-1)
masked_array(data=[10.0, -0.0, 0.0, --],

mask=[False, False, False, True],
fill_value=1e+20)

method
ma.MaskedArray.clip(min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy.clip for full documentation.
See also:

numpy.clip
equivalent function

method

816 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.round(decimals=0, out=None)
Return each element rounded to the given number of decimals.
Refer to numpy.around for full documentation.
See also:

numpy.ndarray.round
corresponding function for ndarrays

numpy.around
equivalent function

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = ma.array([1.35, 2.5, 1.5, 1.75, 2.25, 2.75],
... mask=[0, 0, 0, 1, 0, 0])
>>> ma.round(x)
masked_array(data=[1.0, 2.0, 2.0, --, 2.0, 3.0],

mask=[False, False, False, True, False, False],
fill_value=1e+20)

Set operations

ma.intersect1d(ar1, ar2[, assume_unique]) Returns the unique elements common to both arrays.
ma.setdiff1d(ar1, ar2[, assume_unique]) Set difference of 1D arrays with unique elements.
ma.setxor1d(ar1, ar2[, assume_unique]) Set exclusive-or of 1-D arrays with unique elements.
ma.union1d(ar1, ar2) Union of two arrays.

ma.intersect1d(ar1, ar2, assume_unique=False)
Returns the unique elements common to both arrays.
Masked values are considered equal one to the other. The output is always a masked array.
See numpy.intersect1d for more details.
See also:

numpy.intersect1d
Equivalent function for ndarrays.

1.1. NumPy’s module structure 817

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1])
>>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1])
>>> np.ma.intersect1d(x, y)
masked_array(data=[1, 3, --],

mask=[False, False, True],
fill_value=999999)

ma.setdiff1d(ar1, ar2, assume_unique=False)
Set difference of 1D arrays with unique elements.
The output is always a masked array. See numpy.setdiff1d for more details.
See also:

numpy.setdiff1d
Equivalent function for ndarrays.

Examples

>>> import numpy as np
>>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1])
>>> np.ma.setdiff1d(x, [1, 2])
masked_array(data=[3, --],

mask=[False, True],
fill_value=999999)

ma.setxor1d(ar1, ar2, assume_unique=False)
Set exclusive-or of 1-D arrays with unique elements.
The output is always a masked array. See numpy.setxor1d for more details.
See also:

numpy.setxor1d
Equivalent function for ndarrays.

Examples

>>> import numpy as np
>>> ar1 = np.ma.array([1, 2, 3, 2, 4])
>>> ar2 = np.ma.array([2, 3, 5, 7, 5])
>>> np.ma.setxor1d(ar1, ar2)
masked_array(data=[1, 4, 5, 7],

mask=False,
fill_value=999999)

ma.union1d(ar1, ar2)
Union of two arrays.
The output is always a masked array. See numpy.union1d for more details.
See also:

818 1. Python API

NumPy Reference, Release 2.2.0

numpy.union1d
Equivalent function for ndarrays.

Examples

>>> import numpy as np
>>> ar1 = np.ma.array([1, 2, 3, 4])
>>> ar2 = np.ma.array([3, 4, 5, 6])
>>> np.ma.union1d(ar1, ar2)
masked_array(data=[1, 2, 3, 4, 5, 6],

mask=False,
fill_value=999999)

Miscellanea

ma.allequal(a, b[, fill_value]) Return True if all entries of a and b are equal, using
fill_value as a truth value where either or both are masked.

ma.allclose(a, b[, masked_equal, rtol, atol]) Returns True if two arrays are element-wise equal within
a tolerance.

ma.amax(a[, axis, out, keepdims, initial, where]) Return the maximum of an array or maximum along an
axis.

ma.amin(a[, axis, out, keepdims, initial, where]) Return the minimum of an array or minimum along an
axis.

ma.apply_along_axis(func1d, axis, arr, ...) Apply a function to 1-D slices along the given axis.
ma.apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes.
ma.arange([start,] stop[, step,][, dtype, ...]) Return evenly spaced values within a given interval.
ma.choose(indices, choices[, out, mode]) Use an index array to construct a new array from a list of

choices.
ma.compress_nd(x[, axis]) Suppress slices from multiple dimensions which contain

masked values.
ma.convolve(a, v[, mode, propagate_mask]) Returns the discrete, linear convolution of two one-

dimensional sequences.
ma.correlate(a, v[, mode, propagate_mask]) Cross-correlation of two 1-dimensional sequences.
ma.ediff1d(arr[, to_end, to_begin]) Compute the differences between consecutive elements of

an array.
ma.flatten_mask(mask) Returns a completely flattened version of the mask, where

nested fields are collapsed.
ma.flatten_structured_array(a) Flatten a structured array.
ma.fromflex(fxarray) Build a masked array from a suitable flexible-type array.
ma.indices(dimensions[, dtype, sparse]) Return an array representing the indices of a grid.
ma.left_shift(a, n) Shift the bits of an integer to the left.
ma.ndim(obj) Return the number of dimensions of an array.
ma.put(a, indices, values[, mode]) Set storage-indexed locations to corresponding values.
ma.putmask(a, mask, values) Changes elements of an array based on conditional and

input values.
ma.right_shift(a, n) Shift the bits of an integer to the right.
ma.round_(a[, decimals, out]) Return a copy of a, rounded to 'decimals' places.
ma.take(a, indices[, axis, out, mode])

ma.where(condition[, x, y]) Return a masked array with elements from x or y, depend-
ing on condition.

1.1. NumPy’s module structure 819

NumPy Reference, Release 2.2.0

ma.allequal(a, b, fill_value=True)
Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

Parameters
a, b

[array_like] Input arrays to compare.
fill_value

[bool, optional] Whether masked values in a or b are considered equal (True) or not (False).
Returns

y
[bool] Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any
numpy.ma.allclose

Examples

>>> import numpy as np
>>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data=[10000000000.0, 1e-07, --],

mask=[False, False, True],
fill_value=1e+20)

>>> b = np.array([1e10, 1e-7, -42.0])
>>> b
array([1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
>>> np.ma.allequal(a, b, fill_value=False)
False
>>> np.ma.allequal(a, b)
True

ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)
Returns True if two arrays are element-wise equal within a tolerance.
This function is equivalent to allclose except that masked values are treated as equal (default) or unequal,
depending on the masked_equal argument.

Parameters
a, b

[array_like] Input arrays to compare.
masked_equal

[bool, optional] Whether masked values in a and b are considered equal (True) or not (False).
They are considered equal by default.

rtol
[float, optional] Relative tolerance. The relative difference is equal to rtol * b. Default is
1e-5.

820 1. Python API

NumPy Reference, Release 2.2.0

atol
[float, optional] Absolute tolerance. The absolute difference is equal to atol. Default is 1e-8.

Returns
y

[bool] Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any
numpy.allclose

the non-masked allclose.

Notes

If the following equation is element-wise True, then allclose returns True:

absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))

Return True if all elements of a and b are equal subject to given tolerances.

Examples

>>> import numpy as np
>>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
masked_array(data=[10000000000.0, 1e-07, --],

mask=[False, False, True],
fill_value=1e+20)

>>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
>>> np.ma.allclose(a, b)
False

>>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
>>> np.ma.allclose(a, b)
True
>>> np.ma.allclose(a, b, masked_equal=False)
False

Masked values are not compared directly.

>>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
>>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
>>> np.ma.allclose(a, b)
True
>>> np.ma.allclose(a, b, masked_equal=False)
False

ma.amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the maximum of an array or maximum along an axis.
amax is an alias of max.
See also:

1.1. NumPy’s module structure 821

NumPy Reference, Release 2.2.0

max
alias of this function

ndarray.max
equivalent method

ma.amin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the minimum of an array or minimum along an axis.
amin is an alias of min.
See also:

min
alias of this function

ndarray.min
equivalent method

ma.apply_along_axis(func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.
Execute func1d(a, *args, **kwargs) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.
This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii, jj, and kk
to a tuple of indices:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
f = func1d(arr[ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex(Nj):

out[ii + jj + kk] = f[jj]

Equivalently, eliminating the inner loop, this can be expressed as:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])

Parameters
func1d

[function (M,) -> (Nj…)] This function should accept 1-D arrays. It is applied to 1-D slices of
arr along the specified axis.

axis
[integer] Axis along which arr is sliced.

arr
[ndarray (Ni…, M, Nk…)] Input array.

args
[any] Additional arguments to func1d.

kwargs
[any] Additional named arguments to func1d.

822 1. Python API

NumPy Reference, Release 2.2.0

Returns
out

[ndarray (Ni…, Nj…, Nk…)] The output array. The shape of out is identical to the shape of
arr, except along the axis dimension. This axis is removed, and replaced with new dimensions
equal to the shape of the return value of func1d. So if func1d returns a scalar out will have
one fewer dimensions than arr.

See also:

apply_over_axes
Apply a function repeatedly over multiple axes.

Examples

>>> import numpy as np
>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])

For a function that returns a 1D array, the number of dimensions in outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],

[3, 4, 9],
[2, 5, 6]])

For a function that returns a higher dimensional array, those dimensions are inserted in place of the axis dimension.

>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)
array([[[1, 0, 0],

[0, 2, 0],
[0, 0, 3]],
[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],
[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])

ma.apply_over_axes(func, a, axes)
Apply a function repeatedly over multiple axes.
func is called as res = func(a, axis), where axis is the first element of axes. The result res of the function call must
have either the same dimensions as a or one less dimension. If res has one less dimension than a, a dimension is
inserted before axis. The call to func is then repeated for each axis in axes, with res as the first argument.

Parameters

1.1. NumPy’s module structure 823

NumPy Reference, Release 2.2.0

func
[function] This function must take two arguments, func(a, axis).

a
[array_like] Input array.

axes
[array_like] Axes over which func is applied; the elements must be integers.

Returns
apply_over_axis

[ndarray] The output array. The number of dimensions is the same as a, but the shape can
be different. This depends on whether func changes the shape of its output with respect to its
input.

See also:

apply_along_axis
Apply a function to 1-D slices of an array along the given axis.

Examples

>>> import numpy as np
>>> a = np.ma.arange(24).reshape(2,3,4)
>>> a[:,0,1] = np.ma.masked
>>> a[:,1,:] = np.ma.masked
>>> a
masked_array(
data=[[[0, --, 2, 3],

[--, --, --, --],
[8, 9, 10, 11]],
[[12, --, 14, 15],
[--, --, --, --],
[20, 21, 22, 23]]],

mask=[[[False, True, False, False],
[True, True, True, True],
[False, False, False, False]],
[[False, True, False, False],
[True, True, True, True],
[False, False, False, False]]],

fill_value=999999)
>>> np.ma.apply_over_axes(np.ma.sum, a, [0,2])
masked_array(
data=[[[46],

[--],
[124]]],

mask=[[[False],
[True],
[False]]],

fill_value=999999)

Tuple axis arguments to ufuncs are equivalent:

>>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1))
masked_array(
data=[[[46],

(continues on next page)

824 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[--],
[124]]],

mask=[[[False],
[True],
[False]]],

fill_value=999999)

ma.arange([start,]stop, [step,]dtype=None, *, device=None, like=None) =
<numpy.ma.core._convert2ma object>

Return evenly spaced values within a given interval.
arange can be called with a varying number of positional arguments:

• arange(stop): Values are generated within the half-open interval [0, stop) (in other words, the
interval including start but excluding stop).

• arange(start, stop): Values are generated within the half-open interval [start, stop).
• arange(start, stop, step)Values are generated within the half-open interval [start, stop),
with spacing between values given by step.

For integer arguments the function is roughly equivalent to the Python built-in range, but returns an ndarray rather
than a range instance.
When using a non-integer step, such as 0.1, it is often better to use numpy.linspace.
See the Warning sections below for more information.

Parameters
start

[integer or real, optional] Start of interval. The interval includes this value. The default start
value is 0.

stop
[integer or real] End of interval. The interval does not include this value, except in some cases
where step is not an integer and floating point round-off affects the length of out.

step
[integer or real, optional] Spacing between values. For any output out, this is the distance
between two adjacent values, out[i+1] - out[i]. The default step size is 1. If step is
specified as a position argument, start must also be given.

dtype
[dtype, optional] The type of the output array. If dtype is not given, infer the data type from
the other input arguments.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

1.1. NumPy’s module structure 825

https://docs.python.org/3/library/stdtypes.html#range

NumPy Reference, Release 2.2.0

Returns
arange

[MaskedArray] Array of evenly spaced values.
For floating point arguments, the length of the result is ceil((stop - start)/step).
Because of floating point overflow, this rule may result in the last element of out being greater
than stop.

Warning: The length of the output might not be numerically stable.
Another stability issue is due to the internal implementation of numpy.arange. The actual step value used
to populate the array is dtype(start + step) - dtype(start) and not step. Precision loss can
occur here, due to casting or due to using floating points when start is much larger than step. This can lead to
unexpected behaviour. For example:
>>> np.arange(0, 5, 0.5, dtype=int)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> np.arange(-3, 3, 0.5, dtype=int)
array([-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

In such cases, the use of numpy.linspace should be preferred.
The built-in range generates Python built-in integers that have arbitrary size, while numpy.arange pro-
duces numpy.int32 or numpy.int64 numbers. This may result in incorrect results for large integer
values:
>>> power = 40
>>> modulo = 10000
>>> x1 = [(n ** power) % modulo for n in range(8)]
>>> x2 = [(n ** power) % modulo for n in np.arange(8)]
>>> print(x1)
[0, 1, 7776, 8801, 6176, 625, 6576, 4001] # correct
>>> print(x2)
[0, 1, 7776, 7185, 0, 5969, 4816, 3361] # incorrect

See also:

numpy.linspace
Evenly spaced numbers with careful handling of endpoints.

numpy.ogrid
Arrays of evenly spaced numbers in N-dimensions.

numpy.mgrid
Grid-shaped arrays of evenly spaced numbers in N-dimensions.

how-to-partition

826 1. Python API

https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/c-api/long.html

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

ma.choose(indices, choices, out=None, mode='raise')
Use an index array to construct a new array from a list of choices.
Given an array of integers and a list of n choice arrays, this method will create a new array that merges each of the
choice arrays. Where a value in index is i, the new array will have the value that choices[i] contains in the same
place.

Parameters
indices

[ndarray of ints] This array must contain integers in [0, n-1], where n is the number of
choices.

choices
[sequence of arrays] Choice arrays. The index array and all of the choices should be broad-
castable to the same shape.

out
[array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

mode
[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
• ‘raise’ : raise an error
• ‘wrap’ : wrap around
• ‘clip’ : clip to the range

Returns
merged_array

[array]
See also:

choose
equivalent function

1.1. NumPy’s module structure 827

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
>>> a = np.array([2, 1, 0])
>>> np.ma.choose(a, choice)
masked_array(data=[3, 2, 1],

mask=False,
fill_value=999999)

ma.compress_nd(x, axis=None)
Suppress slices from multiple dimensions which contain masked values.

Parameters
x

[array_like, MaskedArray] The array to operate on. If not a MaskedArray instance (or if no
array elements are masked), x is interpreted as a MaskedArray with mask set to nomask.

axis
[tuple of ints or int, optional] Which dimensions to suppress slices from can be configured with
this parameter. - If axis is a tuple of ints, those are the axes to suppress slices from. - If axis is
an int, then that is the only axis to suppress slices from. - If axis is None, all axis are selected.

Returns
compress_array

[ndarray] The compressed array.

Examples

>>> import numpy as np
>>> arr = [[1, 2], [3, 4]]
>>> mask = [[0, 1], [0, 0]]
>>> x = np.ma.array(arr, mask=mask)
>>> np.ma.compress_nd(x, axis=0)
array([[3, 4]])
>>> np.ma.compress_nd(x, axis=1)
array([[1],

[3]])
>>> np.ma.compress_nd(x)
array([[3]])

ma.convolve(a, v, mode='full', propagate_mask=True)
Returns the discrete, linear convolution of two one-dimensional sequences.

Parameters
a, v

[array_like] Input sequences.
mode

[{‘valid’, ‘same’, ‘full’}, optional] Refer to the np.convolve docstring.
propagate_mask

[bool] If True, then if any masked element is included in the sum for a result element, then
the result is masked. If False, then the result element is only masked if no non-masked cells
contribute towards it

828 1. Python API

NumPy Reference, Release 2.2.0

Returns
out

[MaskedArray] Discrete, linear convolution of a and v.
See also:

numpy.convolve
Equivalent function in the top-level NumPy module.

ma.correlate(a, v, mode='valid', propagate_mask=True)
Cross-correlation of two 1-dimensional sequences.

Parameters
a, v

[array_like] Input sequences.
mode

[{‘valid’, ‘same’, ‘full’}, optional] Refer to the np.convolve docstring. Note that the default is
‘valid’, unlike convolve, which uses ‘full’.

propagate_mask
[bool] If True, then a result element is masked if any masked element contributes towards it.
If False, then a result element is only masked if no non-masked element contribute towards it

Returns
out

[MaskedArray] Discrete cross-correlation of a and v.
See also:

numpy.correlate
Equivalent function in the top-level NumPy module.

Examples

Basic correlation:

>>> a = np.ma.array([1, 2, 3])
>>> v = np.ma.array([0, 1, 0])
>>> np.ma.correlate(a, v, mode='valid')
masked_array(data=[2],

mask=[False],
fill_value=999999)

Correlation with masked elements:

>>> a = np.ma.array([1, 2, 3], mask=[False, True, False])
>>> v = np.ma.array([0, 1, 0])
>>> np.ma.correlate(a, v, mode='valid', propagate_mask=True)
masked_array(data=[--],

mask=[True],
fill_value=999999,

dtype=int64)

Correlation with different modes and mixed array types:

1.1. NumPy’s module structure 829

NumPy Reference, Release 2.2.0

>>> a = np.ma.array([1, 2, 3])
>>> v = np.ma.array([0, 1, 0])
>>> np.ma.correlate(a, v, mode='full')
masked_array(data=[0, 1, 2, 3, 0],

mask=[False, False, False, False, False],
fill_value=999999)

ma.ediff1d(arr, to_end=None, to_begin=None)
Compute the differences between consecutive elements of an array.
This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy.
ediff1d for details.
See also:

numpy.ediff1d
Equivalent function for ndarrays.

Examples

>>> import numpy as np
>>> arr = np.ma.array([1, 2, 4, 7, 0])
>>> np.ma.ediff1d(arr)
masked_array(data=[1, 2, 3, -7],

mask=False,
fill_value=999999)

ma.flatten_mask(mask)
Returns a completely flattened version of the mask, where nested fields are collapsed.

Parameters
mask

[array_like] Input array, which will be interpreted as booleans.
Returns

flattened_mask
[ndarray of bools] The flattened input.

Examples

>>> import numpy as np
>>> mask = np.array([0, 0, 1])
>>> np.ma.flatten_mask(mask)
array([False, False, True])

>>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
>>> np.ma.flatten_mask(mask)
array([False, False, False, True])

>>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
>>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype)
>>> np.ma.flatten_mask(mask)
array([False, False, False, False, False, True])

830 1. Python API

NumPy Reference, Release 2.2.0

ma.flatten_structured_array(a)
Flatten a structured array.
The data type of the output is chosen such that it can represent all of the (nested) fields.

Parameters
a

[structured array]
Returns

output
[masked array or ndarray] A flattened masked array if the input is a masked array, otherwise
a standard ndarray.

Examples

>>> import numpy as np
>>> ndtype = [('a', int), ('b', float)]
>>> a = np.array([(1, 1), (2, 2)], dtype=ndtype)
>>> np.ma.flatten_structured_array(a)
array([[1., 1.],

[2., 2.]])

ma.fromflex(fxarray)
Build a masked array from a suitable flexible-type array.
The input array has to have a data-type with _data and _mask fields. This type of array is output by
MaskedArray.toflex.

Parameters
fxarray

[ndarray] The structured input array, containing _data and _mask fields. If present, other
fields are discarded.

Returns
result

[MaskedArray] The constructed masked array.
See also:

MaskedArray.toflex
Build a flexible-type array from a masked array.

Examples

>>> import numpy as np
>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4)
>>> rec = x.toflex()
>>> rec
array([[(0, False), (1, True), (2, False)],

[(3, True), (4, False), (5, True)],
[(6, False), (7, True), (8, False)]],
dtype=[('_data', '<i8'), ('_mask', '?')])

(continues on next page)

1.1. NumPy’s module structure 831

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> x2 = np.ma.fromflex(rec)
>>> x2
masked_array(
data=[[0, --, 2],

[--, 4, --],
[6, --, 8]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)

Extra fields can be present in the structured array but are discarded:

>>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')]
>>> rec2 = np.zeros((2, 2), dtype=dt)
>>> rec2
array([[(0, False, 0.), (0, False, 0.)],

[(0, False, 0.), (0, False, 0.)]],
dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')])

>>> y = np.ma.fromflex(rec2)
>>> y
masked_array(
data=[[0, 0],

[0, 0]],
mask=[[False, False],

[False, False]],
fill_value=np.int64(999999),
dtype=int32)

ma.indices(dimensions, dtype=<class 'int'>, sparse=False) = <numpy.ma.core._convert2ma object>

Return an array representing the indices of a grid.
Compute an array where the subarrays contain index values 0, 1, … varying only along the corresponding axis.

Parameters
dimensions

[sequence of ints] The shape of the grid.
dtype

[dtype, optional] Data type of the result.
sparse

[boolean, optional] Return a sparse representation of the grid instead of a dense representation.
Default is False.

Returns
grid

[one MaskedArray or tuple of MaskedArrays]
If sparse is False:
Returns one array of grid indices, grid.shape = (len(dimensions),) + tu-
ple(dimensions).

If sparse is True:
Returns a tuple of arrays, with grid[i].shape = (1, ..., 1,
dimensions[i], 1, ..., 1) with dimensions[i] in the ith place

See also:

832 1. Python API

NumPy Reference, Release 2.2.0

mgrid, ogrid, meshgrid

Notes

The output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple of
dimensions, i.e. if dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N, r0, ...,
rN-1).
The subarrays grid[k] contains the N-D array of indices along the k-th axis. Explicitly:

grid[k, i0, i1, ..., iN-1] = ik

Examples

>>> import numpy as np
>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],

[1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],

[0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],

[4, 5, 6]])

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].
If sparse is set to true, the grid will be returned in a sparse representation.

>>> i, j = np.indices((2, 3), sparse=True)
>>> i.shape
(2, 1)
>>> j.shape
(1, 3)
>>> i # row indices
array([[0],

[1]])
>>> j # column indices
array([[0, 1, 2]])

ma.left_shift(a, n)
Shift the bits of an integer to the left.
This is the masked array version of numpy.left_shift, for details see that function.
See also:

numpy.left_shift

1.1. NumPy’s module structure 833

NumPy Reference, Release 2.2.0

Examples

Shift with a masked array:

>>> arr = np.ma.array([10, 20, 30], mask=[False, True, False])
>>> np.ma.left_shift(arr, 1)
masked_array(data=[20, --, 60],

mask=[False, True, False],
fill_value=999999)

Large shift:

>>> np.ma.left_shift(10, 10)
masked_array(data=10240,

mask=False,
fill_value=999999)

Shift with a scalar and an array:

>>> scalar = 10
>>> arr = np.ma.array([1, 2, 3], mask=[False, True, False])
>>> np.ma.left_shift(scalar, arr)
masked_array(data=[20, --, 80],

mask=[False, True, False],
fill_value=999999)

ma.ndim(obj)
Return the number of dimensions of an array.

Parameters
a

[array_like] Input array. If it is not already an ndarray, a conversion is attempted.
Returns

number_of_dimensions
[int] The number of dimensions in a. Scalars are zero-dimensional.

See also:

ndarray.ndim
equivalent method

shape
dimensions of array

ndarray.shape
dimensions of array

834 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.ndim([[1,2,3],[4,5,6]])
2
>>> np.ndim(np.array([[1,2,3],[4,5,6]]))
2
>>> np.ndim(1)
0

ma.put(a, indices, values, mode='raise')
Set storage-indexed locations to corresponding values.
This function is equivalent to MaskedArray.put, see that method for details.
See also:

MaskedArray.put

Examples

Putting values in a masked array:

>>> a = np.ma.array([1, 2, 3, 4], mask=[False, True, False, False])
>>> np.ma.put(a, [1, 3], [10, 30])
>>> a
masked_array(data=[1, 10, 3, 30],

mask=False,
fill_value=999999)

Using put with a 2D array:

>>> b = np.ma.array([[1, 2], [3, 4]], mask=[[False, True], [False, False]])
>>> np.ma.put(b, [[0, 1], [1, 0]], [[10, 20], [30, 40]])
>>> b
masked_array(
data=[[40, 30],

[3, 4]],
mask=False,
fill_value=999999)

ma.putmask(a, mask, values)
Changes elements of an array based on conditional and input values.
This is the masked array version of numpy.putmask, for details see numpy.putmask.
See also:

numpy.putmask

1.1. NumPy’s module structure 835

NumPy Reference, Release 2.2.0

Notes

Using a masked array as values will not transform a ndarray into a MaskedArray.

Examples

>>> import numpy as np
>>> arr = [[1, 2], [3, 4]]
>>> mask = [[1, 0], [0, 0]]
>>> x = np.ma.array(arr, mask=mask)
>>> np.ma.putmask(x, x < 4, 10*x)
>>> x
masked_array(
data=[[--, 20],

[30, 4]],
mask=[[True, False],

[False, False]],
fill_value=999999)

>>> x.data
array([[10, 20],

[30, 4]])

ma.right_shift(a, n)
Shift the bits of an integer to the right.
This is the masked array version of numpy.right_shift, for details see that function.
See also:

numpy.right_shift

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = [11, 3, 8, 1]
>>> mask = [0, 0, 0, 1]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(data=[11, 3, 8, --],

mask=[False, False, False, True],
fill_value=999999)

>>> ma.right_shift(masked_x,1)
masked_array(data=[5, 1, 4, --],

mask=[False, False, False, True],
fill_value=999999)

ma.round_(a, decimals=0, out=None)
Return a copy of a, rounded to ‘decimals’ places.
When ‘decimals’ is negative, it specifies the number of positions to the left of the decimal point. The real and
imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and
‘decimals’ is greater than or equal to 0.

Parameters

836 1. Python API

NumPy Reference, Release 2.2.0

decimals
[int] Number of decimals to round to. May be negative.

out
[array_like] Existing array to use for output. If not given, returns a default copy of a.

Notes

If out is given and does not have a mask attribute, the mask of a is lost!

Examples

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = [11.2, -3.973, 0.801, -1.41]
>>> mask = [0, 0, 0, 1]
>>> masked_x = ma.masked_array(x, mask)
>>> masked_x
masked_array(data=[11.2, -3.973, 0.801, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.round_(masked_x)
masked_array(data=[11.0, -4.0, 1.0, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.round(masked_x, decimals=1)
masked_array(data=[11.2, -4.0, 0.8, --],

mask=[False, False, False, True],
fill_value=1e+20)

>>> ma.round_(masked_x, decimals=-1)
masked_array(data=[10.0, -0.0, 0.0, --],

mask=[False, False, False, True],
fill_value=1e+20)

ma.take(a, indices, axis=None, out=None, mode='raise')

ma.where(condition, x=<no value>, y=<no value>)
Return a masked array with elements from x or y, depending on condition.

Note: When only condition is provided, this function is identical to nonzero. The rest of this documentation
covers only the case where all three arguments are provided.

Parameters
condition

[array_like, bool] Where True, yield x, otherwise yield y.
x, y

[array_like, optional] Values fromwhich to choose. x, y and condition need to be broadcastable
to some shape.

Returns

1.1. NumPy’s module structure 837

NumPy Reference, Release 2.2.0

out
[MaskedArray] An masked array with masked elements where the condition is masked, ele-
ments from x where condition is True, and elements from y elsewhere.

See also:

numpy.where
Equivalent function in the top-level NumPy module.

nonzero
The function that is called when x and y are omitted

Examples

>>> import numpy as np
>>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
... [1, 0, 1],
... [0, 1, 0]])
>>> x
masked_array(
data=[[0.0, --, 2.0],

[--, 4.0, --],
[6.0, --, 8.0]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=1e+20)
>>> np.ma.where(x > 5, x, -3.1416)
masked_array(
data=[[-3.1416, --, -3.1416],

[--, -3.1416, --],
[6.0, --, 8.0]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=1e+20)

Matrix library (numpy.matlib)

This module contains all functions in the numpy namespace, with the following replacement functions that return ma-
trices instead of ndarrays.
Functions that are also in the numpy namespace and return matrices

matrix(data[, dtype, copy]) Returns a matrix from an array-like object, or from a
string of data.

asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or

array.

Replacement functions in matlib

838 1. Python API

NumPy Reference, Release 2.2.0

empty(shape[, dtype, order]) Return a new matrix of given shape and type, without ini-
tializing entries.

zeros(shape[, dtype, order]) Return a matrix of given shape and type, filled with zeros.
ones(shape[, dtype, order]) Matrix of ones.
eye(n[, M, k, dtype, order]) Return a matrix with ones on the diagonal and zeros else-

where.
identity(n[, dtype]) Returns the square identity matrix of given size.
repmat(a, m, n) Repeat a 0-D to 2-D array or matrix MxN times.
rand(*args) Return a matrix of random values with given shape.
randn(*args) Return a randommatrix with data from the "standard nor-

mal" distribution.

matlib.empty(shape, dtype=None, order='C')
Return a new matrix of given shape and type, without initializing entries.

Parameters
shape

[int or tuple of int] Shape of the empty matrix.
dtype

[data-type, optional] Desired output data-type.
order

[{‘C’, ‘F’}, optional] Whether to store multi-dimensional data in row-major (C-style) or
column-major (Fortran-style) order in memory.

See also:

numpy.empty
Equivalent array function.

matlib.zeros
Return a matrix of zeros.

matlib.ones
Return a matrix of ones.

Notes

Unlike other matrix creation functions (e.g. matlib.zeros, matlib.ones), matlib.empty does not
initialize the values of the matrix, and may therefore be marginally faster. However, the values stored in the newly
allocated matrix are arbitrary. For reproducible behavior, be sure to set each element of the matrix before reading.

Examples

>>> import numpy.matlib
>>> np.matlib.empty((2, 2)) # filled with random data
matrix([[6.76425276e-320, 9.79033856e-307], # random

[7.39337286e-309, 3.22135945e-309]])
>>> np.matlib.empty((2, 2), dtype=int)
matrix([[6600475, 0], # random

[6586976, 22740995]])

1.1. NumPy’s module structure 839

NumPy Reference, Release 2.2.0

matlib.zeros(shape, dtype=None, order='C')
Return a matrix of given shape and type, filled with zeros.

Parameters
shape

[int or sequence of ints] Shape of the matrix
dtype

[data-type, optional] The desired data-type for the matrix, default is float.
order

[{‘C’, ‘F’}, optional] Whether to store the result in C- or Fortran-contiguous order, default is
‘C’.

Returns
out

[matrix] Zero matrix of given shape, dtype, and order.
See also:

numpy.zeros
Equivalent array function.

matlib.ones
Return a matrix of ones.

Notes

If shape has length one i.e. (N,), or is a scalar N, out becomes a single row matrix of shape (1,N).

Examples

>>> import numpy.matlib
>>> np.matlib.zeros((2, 3))
matrix([[0., 0., 0.],

[0., 0., 0.]])

>>> np.matlib.zeros(2)
matrix([[0., 0.]])

matlib.ones(shape, dtype=None, order='C')
Matrix of ones.
Return a matrix of given shape and type, filled with ones.

Parameters
shape

[{sequence of ints, int}] Shape of the matrix
dtype

[data-type, optional] The desired data-type for the matrix, default is np.float64.
order

[{‘C’, ‘F’}, optional] Whether to store matrix in C- or Fortran-contiguous order, default is ‘C’.
Returns

840 1. Python API

NumPy Reference, Release 2.2.0

out
[matrix] Matrix of ones of given shape, dtype, and order.

See also:

ones
Array of ones.

matlib.zeros
Zero matrix.

Notes

If shape has length one i.e. (N,), or is a scalar N, out becomes a single row matrix of shape (1,N).

Examples

>>> np.matlib.ones((2,3))
matrix([[1., 1., 1.],

[1., 1., 1.]])

>>> np.matlib.ones(2)
matrix([[1., 1.]])

matlib.eye(n, M=None, k=0, dtype=<class 'float'>, order='C')
Return a matrix with ones on the diagonal and zeros elsewhere.

Parameters
n

[int] Number of rows in the output.
M

[int, optional] Number of columns in the output, defaults to n.
k

[int, optional] Index of the diagonal: 0 refers to the main diagonal, a positive value refers to an
upper diagonal, and a negative value to a lower diagonal.

dtype
[dtype, optional] Data-type of the returned matrix.

order
[{‘C’, ‘F’}, optional] Whether the output should be stored in row-major (C-style) or column-
major (Fortran-style) order in memory.

Returns
I

[matrix] A n x M matrix where all elements are equal to zero, except for the k-th diagonal,
whose values are equal to one.

See also:

numpy.eye
Equivalent array function.

1.1. NumPy’s module structure 841

NumPy Reference, Release 2.2.0

identity
Square identity matrix.

Examples

>>> import numpy.matlib
>>> np.matlib.eye(3, k=1, dtype=float)
matrix([[0., 1., 0.],

[0., 0., 1.],
[0., 0., 0.]])

matlib.identity(n, dtype=None)
Returns the square identity matrix of given size.

Parameters
n

[int] Size of the returned identity matrix.
dtype

[data-type, optional] Data-type of the output. Defaults to float.
Returns

out
[matrix] n x n matrix with its main diagonal set to one, and all other elements zero.

See also:

numpy.identity
Equivalent array function.

matlib.eye
More general matrix identity function.

Examples

>>> import numpy.matlib
>>> np.matlib.identity(3, dtype=int)
matrix([[1, 0, 0],

[0, 1, 0],
[0, 0, 1]])

matlib.repmat(a, m, n)
Repeat a 0-D to 2-D array or matrix MxN times.

Parameters
a

[array_like] The array or matrix to be repeated.
m, n

[int] The number of times a is repeated along the first and second axes.
Returns

out
[ndarray] The result of repeating a.

842 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy.matlib
>>> a0 = np.array(1)
>>> np.matlib.repmat(a0, 2, 3)
array([[1, 1, 1],

[1, 1, 1]])

>>> a1 = np.arange(4)
>>> np.matlib.repmat(a1, 2, 2)
array([[0, 1, 2, 3, 0, 1, 2, 3],

[0, 1, 2, 3, 0, 1, 2, 3]])

>>> a2 = np.asmatrix(np.arange(6).reshape(2, 3))
>>> np.matlib.repmat(a2, 2, 3)
matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2],

[3, 4, 5, 3, 4, 5, 3, 4, 5],
[0, 1, 2, 0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5, 3, 4, 5]])

matlib.rand(*args)
Return a matrix of random values with given shape.
Create a matrix of the given shape and propagate it with random samples from a uniform distribution over [0,
1).

Parameters
*args

[Arguments] Shape of the output. If given as N integers, each integer specifies the size of one
dimension. If given as a tuple, this tuple gives the complete shape.

Returns
out

[ndarray] The matrix of random values with shape given by *args.
See also:

randn, numpy.random.RandomState.rand

Examples

>>> np.random.seed(123)
>>> import numpy.matlib
>>> np.matlib.rand(2, 3)
matrix([[0.69646919, 0.28613933, 0.22685145],

[0.55131477, 0.71946897, 0.42310646]])
>>> np.matlib.rand((2, 3))
matrix([[0.9807642 , 0.68482974, 0.4809319],

[0.39211752, 0.34317802, 0.72904971]])

If the first argument is a tuple, other arguments are ignored:

>>> np.matlib.rand((2, 3), 4)
matrix([[0.43857224, 0.0596779 , 0.39804426],

[0.73799541, 0.18249173, 0.17545176]])

1.1. NumPy’s module structure 843

NumPy Reference, Release 2.2.0

matlib.randn(*args)
Return a random matrix with data from the “standard normal” distribution.
randn generates a matrix filled with random floats sampled from a univariate “normal” (Gaussian) distribution of
mean 0 and variance 1.

Parameters
*args

[Arguments] Shape of the output. If given as N integers, each integer specifies the size of one
dimension. If given as a tuple, this tuple gives the complete shape.

Returns
Z

[matrix of floats] A matrix of floating-point samples drawn from the standard normal distri-
bution.

See also:

rand, numpy.random.RandomState.randn

Notes

For random samples from the normal distribution with mean mu and standard deviation sigma, use:

sigma * np.matlib.randn(...) + mu

Examples

>>> np.random.seed(123)
>>> import numpy.matlib
>>> np.matlib.randn(1)
matrix([[-1.0856306]])
>>> np.matlib.randn(1, 2, 3)
matrix([[0.99734545, 0.2829785 , -1.50629471],

[-0.57860025, 1.65143654, -2.42667924]])

Two-by-four matrix of samples from the normal distribution with mean 3 and standard deviation 2.5:

>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462],

[2.76322758, 6.72847407, 1.40274501, 1.8900451]])

1.2 Array objects

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
The items can be indexed using for example N integers.
All ndarrays are homogeneous: every item takes up the same size block of memory, and all blocks are interpreted in
exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one
of which is associated with every array. In addition to basic types (integers, floats, etc.), the data type objects can also
represent data structures.

844 1. Python API

NumPy Reference, Release 2.2.0

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array scalar
types built in NumPy. The array scalars allow easy manipulation of also more complicated arrangements of data.

Fig. 1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to describe the
data in an array: 1) the ndarray itself, 2) the data-type object that describes the layout of a single fixed-size element of
the array, 3) the array-scalar Python object that is returned when a single element of the array is accessed.

1.2.1 The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number of
dimensions and items in an array is defined by its shape, which is a tuple of N non-negative integers that specify the
sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of which is
associated with each ndarray.
As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or
slicing the array (using, for example, N integers), and via the methods and attributes of the ndarray.
Different ndarrays can share the same data, so that changes made in one ndarray may be visible in another. That
is, an ndarray can be a “view” to another ndarray, and the data it is referring to is taken care of by the “base” ndarray.
ndarrays can also be views to memory owned by Python strings or objects implementing the memoryview or array
interfaces.

Example
A 2-dimensional array of size 2 x 3, composed of 4-byte integer elements:

>>> import numpy as np

>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> type(x)
<class 'numpy.ndarray'>
>>> x.shape
(2, 3)
>>> x.dtype
dtype('int32')

The array can be indexed using Python container-like syntax:

1.2. Array objects 845

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#memoryview

NumPy Reference, Release 2.2.0

>>> # The element of x in the *second* row, *third* column, namely, 6.
>>> x[1, 2]

6

For example slicing can produce views of the array:

>>> y = x[:,1]
>>> y
array([2, 5], dtype=int32)
>>> y[0] = 9 # this also changes the corresponding element in x
>>> y
array([9, 5], dtype=int32)
>>> x
array([[1, 9, 3],

[4, 5, 6]], dtype=int32)

Constructing arrays

New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level
ndarray constructor:

ndarray(shape[, dtype, buffer, offset, ...]) An array object represents a multidimensional, homoge-
neous array of fixed-size items.

class numpy.ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

846 1. Python API

NumPy Reference, Release 2.2.0

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] View of the transposed array.
data

[buffer] Python buffer object pointing to the start of the array’s data.
dtype

[dtype object] Data-type of the array’s elements.
flags

[dict] Information about the memory layout of the array.
flat

[numpy.flatiter object] A 1-D iterator over the array.

1.2. Array objects 847

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

imag
[ndarray] The imaginary part of the array.

real
[ndarray] The real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] Length of one array element in bytes.

nbytes
[int] Total bytes consumed by the elements of the array.

ndim
[int] Number of array dimensions.

shape
[tuple of ints] Tuple of array dimensions.

strides
[tuple of ints] Tuple of bytes to step in each dimension when traversing an array.

ctypes
[ctypes object] An object to simplify the interaction of the array with the ctypes module.

base
[ndarray] Base object if memory is from some other object.

Methods

all([axis, out, keepdims, where]) Returns True if all elements evaluate to True.
any([axis, out, keepdims, where]) Returns True if any of the elements of a evaluate to

True.
argmax([axis, out, keepdims]) Return indices of the maximum values along the given

axis.
argmin([axis, out, keepdims]) Return indices of the minimum values along the given

axis.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set

of choices.
clip([min, max, out]) Return an array whose values are limited to [min,

max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along

the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.

continues on next page

848 1. Python API

NumPy Reference, Release 2.2.0

Table 6 – continued from previous page
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimen-

sion.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python

scalar and return it.
max([axis, out, keepdims, initial, where]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims, where]) Returns the average of the array elements along given

axis.
min([axis, out, keepdims, initial, where]) Return the minimum along a given axis.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Partially sorts the elements in the array in such a way

that the value of the element in k-th position is in the
position it would be in a sorted array.

prod([axis, dtype, out, keepdims, initial, ...]) Return the product of the array elements over the given
axis

put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape, /, *[, order, copy]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given num-

ber of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in

a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by

a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, WRITE-

BACKIFCOPY, respectively.
sort([axis, kind, order]) Sort an array in-place.
squeeze([axis]) Remove axes of length one from a.
std([axis, dtype, out, ddof, keepdims, where]) Returns the standard deviation of the array elements

along given axis.
sum([axis, dtype, out, keepdims, initial, where]) Return the sum of the array elements over the given

axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the

given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes

in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as an a.ndim-levels deep nested list

of Python scalars.
tostring([order]) A compatibility alias for tobytes, with exactly the

same behavior.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.

continues on next page

1.2. Array objects 849

NumPy Reference, Release 2.2.0

Table 6 – continued from previous page
var([axis, dtype, out, ddof, keepdims, where]) Returns the variance of the array elements, along given

axis.
view([dtype][, type]) New view of array with the same data.

method
ndarray.all(axis=None, out=None, keepdims=False, *, where=True)

Returns True if all elements evaluate to True.
Refer to numpy.all for full documentation.
See also:

numpy.all
equivalent function

method
ndarray.any(axis=None, out=None, keepdims=False, *, where=True)

Returns True if any of the elements of a evaluate to True.
Refer to numpy.any for full documentation.
See also:

numpy.any
equivalent function

method
ndarray.argmax(axis=None, out=None, *, keepdims=False)

Return indices of the maximum values along the given axis.
Refer to numpy.argmax for full documentation.
See also:

numpy.argmax
equivalent function

method
ndarray.argmin(axis=None, out=None, *, keepdims=False)

Return indices of the minimum values along the given axis.
Refer to numpy.argmin for detailed documentation.
See also:

numpy.argmin
equivalent function

method

850 1. Python API

NumPy Reference, Release 2.2.0

ndarray.argpartition(kth, axis=-1, kind='introselect', order=None)
Returns the indices that would partition this array.
Refer to numpy.argpartition for full documentation.
See also:

numpy.argpartition
equivalent function

method
ndarray.argsort(axis=-1, kind=None, order=None)

Returns the indices that would sort this array.
Refer to numpy.argsort for full documentation.
See also:

numpy.argsort
equivalent function

method
ndarray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.
Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. Default is ‘K’.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.
• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.

subok
[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

copy
[bool, optional] By default, astype always returns a newly allocated array. If this is set to
false, and the dtype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

Returns

1.2. Array objects 851

NumPy Reference, Release 2.2.0

arr_t
[ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning
When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

method
ndarray.byteswap(inplace=False)

Swap the bytes of the array elements
Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number
are swapped individually.

Parameters
inplace
[bool, optional] If True, swap bytes in-place, default is False.

Returns
out
[ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> import numpy as np
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

852 1. Python API

NumPy Reference, Release 2.2.0

A.view(A.dtype.newbyteorder()).byteswap() produces an array with the same values but
different representation in memory

>>> A = np.array([1, 2, 3],dtype=np.int64)
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0], dtype=uint8)
>>> A.view(A.dtype.newbyteorder()).byteswap(inplace=True)
array([1, 2, 3], dtype='>i8')
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 3], dtype=uint8)

method
ndarray.choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.
Refer to numpy.choose for full documentation.
See also:

numpy.choose
equivalent function

method
ndarray.clip(min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy.clip for full documentation.
See also:

numpy.clip
equivalent function

method
ndarray.compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.
Refer to numpy.compress for full documentation.
See also:

numpy.compress
equivalent function

method
ndarray.conj()

Complex-conjugate all elements.
Refer to numpy.conjugate for full documentation.
See also:

numpy.conjugate
equivalent function

1.2. Array objects 853

NumPy Reference, Release 2.2.0

method
ndarray.conjugate()

Return the complex conjugate, element-wise.
Refer to numpy.conjugate for full documentation.
See also:

numpy.conjugate
equivalent function

method
ndarray.copy(order='C')

Return a copy of the array.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match
the layout of a as closely as possible. (Note that this function and numpy.copy are very
similar but have different default values for their order= arguments, and this function always
passes sub-classes through.)

See also:

numpy.copy
Similar function with different default behavior

numpy.copyto

Notes

This function is the preferred method for creating an array copy. The function numpy.copy is similar, but
it defaults to using order ‘K’, and will not pass sub-classes through by default.

Examples

>>> import numpy as np
>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

854 1. Python API

NumPy Reference, Release 2.2.0

>>> y.flags['C_CONTIGUOUS']
True

For arrays containing Python objects (e.g. dtype=object), the copy is a shallow one. The new array will
contain the same object which may lead to surprises if that object can be modified (is mutable):

>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> b = a.copy()
>>> b[2][0] = 10
>>> a
array([1, 'm', list([10, 3, 4])], dtype=object)

To ensure all elements within an object array are copied, use copy.deepcopy:

>>> import copy
>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> c = copy.deepcopy(a)
>>> c[2][0] = 10
>>> c
array([1, 'm', list([10, 3, 4])], dtype=object)
>>> a
array([1, 'm', list([2, 3, 4])], dtype=object)

method
ndarray.cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.
Refer to numpy.cumprod for full documentation.
See also:

numpy.cumprod
equivalent function

method
ndarray.cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.
Refer to numpy.cumsum for full documentation.
See also:

numpy.cumsum
equivalent function

method
ndarray.diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.
Refer to numpy.diagonal for full documentation.
See also:

numpy.diagonal
equivalent function

1.2. Array objects 855

https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

method
ndarray.dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.
Parameters

file
[str or Path] A string naming the dump file.

method
ndarray.dumps()

Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.
Parameters

None
method
ndarray.fill(value)

Fill the array with a scalar value.
Parameters

value
[scalar] All elements of a will be assigned this value.

Examples

>>> import numpy as np
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

Fill expects a scalar value and always behaves the same as assigning to a single array element. The following
is a rare example where this distinction is important:

>>> a = np.array([None, None], dtype=object)
>>> a[0] = np.array(3)
>>> a
array([array(3), None], dtype=object)
>>> a.fill(np.array(3))
>>> a
array([array(3), array(3)], dtype=object)

Where other forms of assignments will unpack the array being assigned:

>>> a[...] = np.array(3)
>>> a
array([3, 3], dtype=object)

method

856 1. Python API

NumPy Reference, Release 2.2.0

ndarray.flatten(order='C')
Return a copy of the array collapsed into one dimension.

Parameters
order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if
a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the
order the elements occur in memory. The default is ‘C’.

Returns
y
[ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

Examples

>>> import numpy as np
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

method
ndarray.getfield(dtype, offset=0)

Returns a field of the given array as a certain type.
A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit
integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype
[str or dtype] The data type of the view. The dtype size of the view can not be larger than
that of the array itself.

offset
[int] Number of bytes to skip before beginning the element view.

1.2. Array objects 857

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

method
ndarray.item(*args)

Copy an element of an array to a standard Python scalar and return it.
Parameters

*args
[Arguments (variable number and type)]
• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z
[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.
item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

858 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

For an array with object dtype, elements are returned as-is.

>>> a = np.array([np.int64(1)], dtype=object)
>>> a.item() #return np.int64
np.int64(1)

method
ndarray.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the maximum along a given axis.
Refer to numpy.amax for full documentation.
See also:

numpy.amax
equivalent function

method
ndarray.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)

Returns the average of the array elements along given axis.
Refer to numpy.mean for full documentation.
See also:

numpy.mean
equivalent function

method
ndarray.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the minimum along a given axis.
Refer to numpy.amin for full documentation.
See also:

numpy.amin
equivalent function

1.2. Array objects 859

NumPy Reference, Release 2.2.0

method
ndarray.nonzero()

Return the indices of the elements that are non-zero.
Refer to numpy.nonzero for full documentation.
See also:

numpy.nonzero
equivalent function

method
ndarray.partition(kth, axis=-1, kind='introselect', order=None)

Partially sorts the elements in the array in such a way that the value of the element in k-th position is in the
position it would be in a sorted array. In the output array, all elements smaller than the k-th element are
located to the left of this element and all equal or greater are located to its right. The ordering of the elements
in the two partitions on the either side of the k-th element in the output array is undefined.

Parameters
kth
[int or sequence of ints] Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it and all equal or greater
elements behind it. The order of all elements in the partitions is undefined. If provided with a
sequence of kth it will partition all elements indexed by kth of them into their sorted position
at once.
Deprecated since version 1.22.0: Passing booleans as index is deprecated.

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind
[{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need to be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See also:

numpy.partition
Return a partitioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.

860 1. Python API

NumPy Reference, Release 2.2.0

Notes

See np.partition for notes on the different algorithms.

Examples

>>> import numpy as np
>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4]) # may vary

>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])

method
ndarray.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)

Return the product of the array elements over the given axis
Refer to numpy.prod for full documentation.
See also:

numpy.prod
equivalent function

method
ndarray.put(indices, values, mode='raise')

Set a.flat[n] = values[n] for all n in indices.
Refer to numpy.put for full documentation.
See also:

numpy.put
equivalent function

method
ndarray.ravel([order])

Return a flattened array.
Refer to numpy.ravel for full documentation.
See also:

numpy.ravel
equivalent function

ndarray.flat
a flat iterator on the array.

method

1.2. Array objects 861

NumPy Reference, Release 2.2.0

ndarray.repeat(repeats, axis=None)
Repeat elements of an array.
Refer to numpy.repeat for full documentation.
See also:

numpy.repeat
equivalent function

method
ndarray.reshape(shape, / , *, order='C', copy=None)

Returns an array containing the same data with a new shape.
Refer to numpy.reshape for full documentation.
See also:

numpy.reshape
equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

method
ndarray.resize(new_shape, refcheck=True)

Change shape and size of array in-place.
Parameters

new_shape
[tuple of ints, or n ints] Shape of resized array.

refcheck
[bool, optional] If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError
If a does not own its own data or references or views to it exist, and the data memory must
be changed. PyPy only: will always raise if the data memory must be changed, since there
is no reliable way to determine if references or views to it exist.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

862 1. Python API

NumPy Reference, Release 2.2.0

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.
The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> import numpy as np

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

method

1.2. Array objects 863

NumPy Reference, Release 2.2.0

ndarray.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.
Refer to numpy.around for full documentation.
See also:

numpy.around
equivalent function

method
ndarray.searchsorted(v, side='left', sorter=None)

Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy.searchsorted
See also:

numpy.searchsorted
equivalent function

method
ndarray.setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.
Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters
val
[object] Value to be placed in field.

dtype
[dtype object] Data-type of the field in which to place val.

offset
[int, optional] The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

Examples

>>> import numpy as np
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

(continues on next page)

864 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[3, 3, 3],
[3, 3, 3]], dtype=int32)

>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],

[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

method
ndarray.setflags(write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.
These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string.
(The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write
[bool, optional] Describes whether or not a can be written to.

align
[bool, optional] Describes whether or not a is aligned properly for its type.

uic
[bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7
Boolean flags in use, only three of which can be changed by the user: WRITEBACKIFCOPY,WRITEABLE,
and ALIGNED.
WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);
WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this
array.
All flags can be accessed using the single (upper case) letter as well as the full name.

1.2. Array objects 865

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

method
ndarray.sort(axis=-1, kind=None, order=None)

Sort an array in-place. Refer to numpy.sort for full documentation.
Parameters

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is
‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with datatype. The ‘mergesort’ option is retained
for backwards compatibility.

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

See also:

numpy.sort
Return a sorted copy of an array.

numpy.argsort
Indirect sort.

866 1. Python API

NumPy Reference, Release 2.2.0

numpy.lexsort
Indirect stable sort on multiple keys.

numpy.searchsorted
Find elements in sorted array.

numpy.partition
Partial sort.

Notes

See numpy.sort for notes on the different sorting algorithms.

Examples

>>> import numpy as np
>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],

dtype=[('x', 'S1'), ('y', '<i8')])

method
ndarray.squeeze(axis=None)

Remove axes of length one from a.
Refer to numpy.squeeze for full documentation.
See also:

numpy.squeeze
equivalent function

method
ndarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the standard deviation of the array elements along given axis.
Refer to numpy.std for full documentation.
See also:

numpy.std
equivalent function

1.2. Array objects 867

NumPy Reference, Release 2.2.0

method
ndarray.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)

Return the sum of the array elements over the given axis.
Refer to numpy.sum for full documentation.
See also:

numpy.sum
equivalent function

method
ndarray.swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See also:

numpy.swapaxes
equivalent function

method
ndarray.take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of a at the given indices.
Refer to numpy.take for full documentation.
See also:

numpy.take
equivalent function

method
ndarray.tobytes(order='C')

Construct Python bytes containing the raw data bytes in the array.
Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced
in C-order by default. This behavior is controlled by the order parameter.

Parameters
order
[{‘C’, ‘F’, ‘A’}, optional] Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise.
Default is ‘C’.

Returns
s
[bytes] Python bytes exhibiting a copy of a’s raw data.

See also:

frombuffer
Inverse of this operation, construct a 1-dimensional array from Python bytes.

868 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'

method
ndarray.tofile(fid, sep='', format='%s')

Write array to a file as text or binary (default).
Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters
fid
[file or str or Path] An open file object, or a string containing a filename.

sep
[str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format
[str] Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at the
expense of speed and file size.
When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-
like objects that do not support fileno() (e.g., BytesIO).

method
ndarray.tolist()

Return the array as an a.ndim-levels deep nested list of Python scalars.
Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the item function.
If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none

Returns

1.2. Array objects 869

NumPy Reference, Release 2.2.0

y
[object, or list of object, or list of list of object, or …] The possibly nested list of array
elements.

Notes

The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose
precision.

Examples

For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars
to Python scalars:

>>> import numpy as np
>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[np.uint32(1), np.uint32(2)]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
...

TypeError: iteration over a 0-d array
>>> a.tolist()
1

method
ndarray.tostring(order='C')

A compatibility alias for tobytes, with exactly the same behavior.
Despite its name, it returns bytes not strs.
Deprecated since version 1.19.0.

method

870 1. Python API

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 2.2.0

ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to numpy.trace for full documentation.
See also:

numpy.trace
equivalent function

method
ndarray.transpose(*axes)

Returns a view of the array with axes transposed.
Refer to numpy.transpose for full documentation.

Parameters
axes
[None, tuple of ints, or n ints]
• None or no argument: reverses the order of the axes.
• tuple of ints: i in the j-th place in the tuple means that the array’s i-th axis becomes the
transposed array’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form).

Returns
p
[ndarray] View of the array with its axes suitably permuted.

See also:

transpose
Equivalent function.

ndarray.T
Array property returning the array transposed.

ndarray.reshape
Give a new shape to an array without changing its data.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)

(continues on next page)

1.2. Array objects 871

NumPy Reference, Release 2.2.0

(continued from previous page)
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.transpose()
array([1, 2, 3, 4])

method
ndarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the variance of the array elements, along given axis.
Refer to numpy.var for full documentation.
See also:

numpy.var
equivalent function

method
ndarray.view([dtype][, type])

New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype(None) which is an alias for dtype('float64').

Parameters
dtype
[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. Omitting it results in the view having the same data-type as a. This argument
can also be specified as an ndarray sub-class, which then specifies the type of the returned
object (this is equivalent to setting the type parameter).

type
[Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view() is used two different ways:
a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.
a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpre-
tation of the memory.
For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis ofamust be contiguous.
This axis will be resized in the result.

872 1. Python API

NumPy Reference, Release 2.2.0

Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

Examples

>>> import numpy as np
>>> x = np.array([(-1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> nonneg = np.dtype([("a", np.uint8), ("b", np.uint8)])
>>> y = x.view(dtype=nonneg, type=np.recarray)
>>> x["a"]
array([-1], dtype=int8)
>>> y.a
array([255], dtype=uint8)

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
np.record((9, 10), dtype=[('a', 'i1'), ('b', 'i1')])

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
>>> y = x[:, ::2]
>>> y
array([[1, 3],

[4, 6]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):

...

(continues on next page)

1.2. Array objects 873

NumPy Reference, Release 2.2.0

(continued from previous page)
ValueError: To change to a dtype of a different size, the last axis must be␣
↪→contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 3)],

[(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the
axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
>>> x.transpose(1, 0, 2).view(np.int16)
array([[[256, 770],

[3340, 3854]],

[[1284, 1798],
[4368, 4882]],

[[2312, 2826],
[5396, 5910]]], dtype=int16)

dot
to_device

Indexing arrays

Arrays can be indexed using an extended Python slicing syntax, array[selection]. Similar syntax is also used for
accessing fields in a structured data type.
See also:
Array Indexing.

Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous one-dimensional segment of computer memory (owned by the
array, or by some other object), combined with an indexing scheme that maps N integers into the location of an item in
the block. The ranges in which the indices can vary is specified by the shape of the array. How many bytes each item
takes and how the bytes are interpreted is defined by the data-type object associated with the array.
A segment of memory is inherently 1-dimensional, and there are many different schemes for arranging the items of an
N-dimensional array in a 1-dimensional block. NumPy is flexible, and ndarray objects can accommodate any strided
indexing scheme. In a strided scheme, the N-dimensional index (n0, n1, ..., nN−1) corresponds to the offset (in bytes):

noffset =
N−1∑
k=0

sknk

from the beginning of the memory block associated with the array. Here, sk are integers which specify the strides
of the array. The column-major order (used, for example, in the Fortran language and in Matlab) and row-major order
(used in C) schemes are just specific kinds of strided scheme, and correspond to memory that can be addressed by the
strides:

scolumnk = itemsize
k−1∏
j=0

dj , srowk = itemsize
N−1∏

j=k+1

dj .

874 1. Python API

NumPy Reference, Release 2.2.0

where dj = self.shape[j].
Both the C and Fortran orders are contiguous, i.e., single-segment, memory layouts, in which every part of the memory
block can be accessed by some combination of the indices.

Note: Contiguous arrays and single-segment arrays are synonymous and are used interchangeably throughout the docu-
mentation.

While a C-style and Fortran-style contiguous array, which has the corresponding flags set, can be addressed with the above
strides, the actual strides may be different. This can happen in two cases:

1. If self.shape[k] == 1 then for any legal index index[k] == 0. This means that in the formula for the
offset nk = 0 and thus sknk = 0 and the value of sk = self.strides[k] is arbitrary.

2. If an array has no elements (self.size == 0) there is no legal index and the strides are never used. Any array
with no elements may be considered C-style and Fortran-style contiguous.

Point 1. means that self and self.squeeze() always have the same contiguity and aligned flags value. This
also means that even a high dimensional array could be C-style and Fortran-style contiguous at the same time.
An array is considered aligned if the memory offsets for all elements and the base offset itself is a multiple of self.
itemsize. Understanding memory-alignment leads to better performance on most hardware.

Warning: It does not generally hold that self.strides[-1] == self.itemsize for C-style contiguous
arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true.

Data in new ndarrays is in the row-major (C) order, unless otherwise specified, but, for example, basic array slicing
often produces views in a different scheme.

Note: Several algorithms in NumPy work on arbitrarily strided arrays. However, some algorithms require single-segment
arrays. When an irregularly strided array is passed in to such algorithms, a copy is automatically made.

Array attributes

Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array through its attributes
allows you to get and sometimes set intrinsic properties of the array without creating a new array. The exposed attributes
are the core parts of an array and only some of them can be reset meaningfully without creating a new array. Information
on each attribute is given below.

Memory layout
The following attributes contain information about the memory layout of the array:

1.2. Array objects 875

NumPy Reference, Release 2.2.0

ndarray.flags Information about the memory layout of the array.
ndarray.shape Tuple of array dimensions.
ndarray.strides Tuple of bytes to step in each dimension when traversing

an array.
ndarray.ndim Number of array dimensions.
ndarray.data Python buffer object pointing to the start of the array's

data.
ndarray.size Number of elements in the array.
ndarray.itemsize Length of one array element in bytes.
ndarray.nbytes Total bytes consumed by the elements of the array.
ndarray.base Base object if memory is from some other object.

attribute
ndarray.flags

Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased
attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.
Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.
The array flags cannot be set arbitrarily:

• WRITEBACKIFCOPY can only be set False.
• ALIGNED can only be set True if the data is truly aligned.
• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays, but
can also be true for higher dimensional arrays.
Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1]
== self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes
C_CONTIGUOUS (C)

The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F)

The data is in a single, Fortran-style contiguous segment.
OWNDATA (O)

The array owns the memory it uses or borrows it from another object.
WRITEABLE (W)

The data area can be written to. Setting this to False locks the data, making it read-only. A
view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of
a writeable array may be subsequently locked while the base array remains writeable. (The
opposite is not true, in that a view of a locked array may not be made writeable. However,

876 1. Python API

NumPy Reference, Release 2.2.0

currently, locking a base object does not lock any views that already reference it, so under
that circumstance it is possible to alter the contents of a locked array via a previously created
writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError
exception.

ALIGNED (A)
The data and all elements are aligned appropriately for the hardware.

WRITEBACKIFCOPY (X)
This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array
will be updated with the contents of this array.

FNC
F_CONTIGUOUS and not C_CONTIGUOUS.

FORC
F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B)
ALIGNED and WRITEABLE.

CARRAY (CA)
BEHAVED and C_CONTIGUOUS.

FARRAY (FA)
BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

attribute
ndarray.shape

Tuple of array dimensions.
The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-
place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new shape dimensions
can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping
an array in-place will fail if a copy is required.

Warning: Setting arr.shape is discouraged and may be deprecated in the future. Using ndarray.
reshape is the preferred approach.

See also:

numpy.shape
Equivalent getter function.

numpy.reshape
Function similar to setting shape.

ndarray.reshape
Method similar to setting shape.

1.2. Array objects 877

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: Incompatible shape for in-place modification. Use
`.reshape()` to make a copy with the desired shape.

attribute
ndarray.strides

Tuple of bytes to step in each dimension when traversing an array.
The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in The N-dimensional array (ndarray).

Warning: Setting arr.strides is discouraged and may be deprecated in the future. numpy.lib.
stride_tricks.as_strided should be preferred to create a new view of the same data in a safer way.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to
the same position in the next row. As such, the strides for the array x will be (20, 4).

878 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

attribute
ndarray.ndim

Number of array dimensions.

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

attribute
ndarray.data

Python buffer object pointing to the start of the array’s data.
attribute
ndarray.size

Number of elements in the array.
Equal to np.prod(a.shape), i.e., the product of the array’s dimensions.

1.2. Array objects 879

NumPy Reference, Release 2.2.0

Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of ob-
taining the same value (like the suggested np.prod(a.shape), which returns an instance of np.int_), and
may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> import numpy as np
>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

attribute
ndarray.itemsize

Length of one array element in bytes.

Examples

>>> import numpy as np
>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

attribute
ndarray.nbytes

Total bytes consumed by the elements of the array.
See also:

sys.getsizeof
Memory consumed by the object itself without parents in case view. This does include memory consumed
by non-element attributes.

Notes

Does not include memory consumed by non-element attributes of the array object.

880 1. Python API

https://docs.python.org/3/library/sys.html#sys.getsizeof

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

attribute
ndarray.base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> import numpy as np
>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

Data type
See also:
Data type objects

The data type object associated with the array can be found in the dtype attribute:

ndarray.dtype Data-type of the array's elements.

attribute
ndarray.dtype

Data-type of the array’s elements.

Warning: Setting arr.dtype is discouraged and may be deprecated in the future. Setting will replace the
dtype without modifying the memory (see also ndarray.view and ndarray.astype).

Parameters
None

Returns
d

[numpy dtype object]

1.2. Array objects 881

NumPy Reference, Release 2.2.0

See also:

ndarray.astype
Cast the values contained in the array to a new data-type.

ndarray.view
Create a view of the same data but a different data-type.

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

Other attributes

ndarray.T View of the transposed array.
ndarray.real The real part of the array.
ndarray.imag The imaginary part of the array.
ndarray.flat A 1-D iterator over the array.

attribute
ndarray.T

View of the transposed array.
Same as self.transpose().
See also:

transpose

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.T
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.T
array([1, 2, 3, 4])

882 1. Python API

NumPy Reference, Release 2.2.0

attribute
ndarray.real

The real part of the array.
See also:

numpy.real
equivalent function

Examples

>>> import numpy as np
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

attribute
ndarray.imag

The imaginary part of the array.

Examples

>>> import numpy as np
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

attribute
ndarray.flat

A 1-D iterator over the array.
This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.
See also:

flatten
Return a copy of the array collapsed into one dimension.

flatiter

1.2. Array objects 883

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<class 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

Array interface
See also:
The array interface protocol.

__array_interface__ Python-side of the array interface
__array_struct__ C-side of the array interface

ctypes foreign function interface

ndarray.ctypes An object to simplify the interaction of the array with the
ctypes module.

attribute
ndarray.ctypes

An object to simplify the interaction of the array with the ctypes module.
This attribute creates an object thatmakes it easier to use arrays when calling shared libraries with the ctypesmodule.
The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return
ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns

884 1. Python API

NumPy Reference, Release 2.2.0

c
[Python object] Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):
_ctypes.data

A pointer to the memory area of the array as a Python integer. This memory area may contain data that is
not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and
data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble
that can include Python crashing. User Beware! The value of this attribute is exactly the same as: self.
_array_interface_['data'][0].
Note that unlike data_as, a reference won’t be kept to the array: code like ctypes.c_void_p((a
+ b).ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + b).
ctypes.data_as(ctypes.c_void_p)

_ctypes.shape

(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding
to dtype('p') on this platform (see c_intp). This base-type could be ctypes.c_int, ctypes.
c_long, or ctypes.c_longlong depending on the platform. The ctypes array contains the shape of
the underlying array.

_ctypes.strides

(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape at-
tribute. This ctypes array contains the strides information from the underlying array. This strides information
is important for showing how many bytes must be jumped to get to the next element in the array.

_ctypes.data_as(obj)
Return the data pointer cast to a particular c-types object. For example, calling self._as_parameter_
is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a pointer to
a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).
The returned pointer will keep a reference to the array.

_ctypes.shape_as(obj)
Return the shape tuple as an array of some other c-types type. For example: self.shape_as(ctypes.
c_short).

_ctypes.strides_as(obj)
Return the strides tuple as an array of some other c-types type. For example: self.
strides_as(ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the
as_parameter attribute which will return an integer equal to the data attribute.

1.2. Array objects 885

https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_longlong

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> import ctypes
>>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
>>> x
array([[0, 1],

[2, 3]], dtype=int32)
>>> x.ctypes.data
31962608 # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
<__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
c_uint(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
c_ulong(4294967296)
>>> x.ctypes.shape
<numpy._core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
>>> x.ctypes.strides
<numpy._core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary

Array methods

An ndarray object has many methods which operate on or with the array in some fashion, typically returning an array
result. These methods are briefly explained below. (Each method’s docstring has a more complete description.)
For the following methods there are also corresponding functions in numpy: all, any, argmax, argmin, argpar-
tition, argsort, choose, clip, compress, copy, cumprod, cumsum, diagonal, imag, max, mean,
min, nonzero, partition, prod, put, ravel, real, repeat, reshape, round, searchsorted, sort,
squeeze, std, sum, swapaxes, take, trace, transpose, var.

Array conversion

ndarray.item(*args) Copy an element of an array to a standard Python scalar
and return it.

ndarray.tolist() Return the array as an a.ndim-levels deep nested list of
Python scalars.

ndarray.tostring([order]) A compatibility alias fortobytes, with exactly the same
behavior.

ndarray.tobytes([order]) Construct Python bytes containing the raw data bytes in
the array.

ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).
ndarray.dump(file) Dump a pickle of the array to the specified file.
ndarray.dumps() Returns the pickle of the array as a string.
ndarray.astype(dtype[, order, casting, ...]) Copy of the array, cast to a specified type.
ndarray.byteswap([inplace]) Swap the bytes of the array elements
ndarray.copy([order]) Return a copy of the array.
ndarray.view([dtype][, type]) New view of array with the same data.
ndarray.getfield(dtype[, offset]) Returns a field of the given array as a certain type.
ndarray.setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, WRITE-

BACKIFCOPY, respectively.
ndarray.fill(value) Fill the array with a scalar value.

886 1. Python API

NumPy Reference, Release 2.2.0

Shape manipulation
For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted
as an n-tuple.

ndarray.reshape(shape, /, *[, order, copy]) Returns an array containing the same data with a new
shape.

ndarray.resize(new_shape[, refcheck]) Change shape and size of array in-place.
ndarray.transpose(*axes) Returns a view of the array with axes transposed.
ndarray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
ndarray.flatten([order]) Return a copy of the array collapsed into one dimension.
ndarray.ravel([order]) Return a flattened array.
ndarray.squeeze([axis]) Remove axes of length one from a.

Item selection and manipulation
For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D array.
Any other value for axis represents the dimension along which the operation should proceed.

ndarray.take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given
indices.

ndarray.put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ndarray.repeat(repeats[, axis]) Repeat elements of an array.
ndarray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of

choices.
ndarray.sort([axis, kind, order]) Sort an array in-place.
ndarray.argsort([axis, kind, order]) Returns the indices that would sort this array.
ndarray.partition(kth[, axis, kind, order]) Partially sorts the elements in the array in such a way that

the value of the element in k-th position is in the position
it would be in a sorted array.

ndarray.argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
ndarray.searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a

to maintain order.
ndarray.nonzero() Return the indices of the elements that are non-zero.
ndarray.compress(condition[, axis, out]) Return selected slices of this array along given axis.
ndarray.diagonal([offset, axis1, axis2]) Return specified diagonals.

Calculation
Many of these methods take an argument named axis. In such cases,

• If axis is None (the default), the array is treated as a 1-D array and the operation is performed over the entire array.
This behavior is also the default if self is a 0-dimensional array or array scalar. (An array scalar is an instance of
the types/classes float32, float64, etc., whereas a 0-dimensional array is an ndarray instance containing precisely
one array scalar.)

• If axis is an integer, then the operation is done over the given axis (for each 1-D subarray that can be created along
the given axis).

Example of the axis argument
A 3-dimensional array of size 3 x 3 x 3, summed over each of its three axes:

1.2. Array objects 887

NumPy Reference, Release 2.2.0

>>> import numpy as np

>>> x = np.arange(27).reshape((3,3,3))
>>> x
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8]],
[[9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])

>>> x.sum(axis=0)
array([[27, 30, 33],

[36, 39, 42],
[45, 48, 51]])

>>> # for sum, axis is the first keyword, so we may omit it,
>>> # specifying only its value
>>> x.sum(0), x.sum(1), x.sum(2)
(array([[27, 30, 33],

[36, 39, 42],
[45, 48, 51]]),

array([[9, 12, 15],
[36, 39, 42],
[63, 66, 69]]),

array([[3, 12, 21],
[30, 39, 48],
[57, 66, 75]]))

The parameter dtype specifies the data type over which a reduction operation (like summing) should take place. The
default reduce data type is the same as the data type of self. To avoid overflow, it can be useful to perform the reduction
using a larger data type.
For several methods, an optional out argument can also be provided and the result will be placed into the output array
given. The out argument must be an ndarray and have the same number of elements. It can have a different data type
in which case casting will be performed.

888 1. Python API

NumPy Reference, Release 2.2.0

ndarray.max([axis, out, keepdims, initial, ...]) Return the maximum along a given axis.
ndarray.argmax([axis, out, keepdims]) Return indices of the maximum values along the given

axis.
ndarray.min([axis, out, keepdims, initial, ...]) Return the minimum along a given axis.
ndarray.argmin([axis, out, keepdims]) Return indices of the minimum values along the given

axis.
ndarray.clip([min, max, out]) Return an array whose values are limited to [min,

max].
ndarray.conj() Complex-conjugate all elements.
ndarray.round([decimals, out]) Return a with each element rounded to the given number

of decimals.
ndarray.trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
ndarray.sum([axis, dtype, out, keepdims, ...]) Return the sum of the array elements over the given axis.
ndarray.cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given

axis.
ndarray.mean([axis, dtype, out, keepdims, where]) Returns the average of the array elements along given axis.
ndarray.var([axis, dtype, out, ddof, ...]) Returns the variance of the array elements, along given

axis.
ndarray.std([axis, dtype, out, ddof, ...]) Returns the standard deviation of the array elements along

given axis.
ndarray.prod([axis, dtype, out, keepdims, ...]) Return the product of the array elements over the given

axis
ndarray.cumprod([axis, dtype, out]) Return the cumulative product of the elements along the

given axis.
ndarray.all([axis, out, keepdims, where]) Returns True if all elements evaluate to True.
ndarray.any([axis, out, keepdims, where]) Returns True if any of the elements of a evaluate to True.

Arithmetic, matrix multiplication, and comparison operations

Arithmetic and comparison operations on ndarrays are defined as element-wise operations, and generally yield ndar-
ray objects as results.
Each of the arithmetic operations (+, -, *, /, //, %, divmod(), ** or pow(), <<, >>, &, ^, |, ~) and the comparisons
(==, <, >, <=, >=, !=) is equivalent to the corresponding universal function (or ufunc for short) in NumPy. For more
information, see the section on Universal Functions.
Comparison operators:

ndarray.__lt__(value, /) Return self<value.
ndarray.__le__(value, /) Return self<=value.
ndarray.__gt__(value, /) Return self>value.
ndarray.__ge__(value, /) Return self>=value.
ndarray.__eq__(value, /) Return self==value.
ndarray.__ne__(value, /) Return self!=value.

method
ndarray.__lt__(value, /)

Return self<value.
method

1.2. Array objects 889

NumPy Reference, Release 2.2.0

ndarray.__le__(value, /)
Return self<=value.

method
ndarray.__gt__(value, /)

Return self>value.
method
ndarray.__ge__(value, /)

Return self>=value.
method
ndarray.__eq__(value, /)

Return self==value.
method
ndarray.__ne__(value, /)

Return self!=value.
Truth value of an array (bool()):

ndarray.__bool__(/) True if self else False

method
ndarray.__bool__(/)

True if self else False

Note: Truth-value testing of an array invokes ndarray.__bool__, which raises an error if the number of elements
in the array is not 1, because the truth value of such arrays is ambiguous. Use .any() and .all() instead to be clear
about what is meant in such cases. (If you wish to check for whether an array is empty, use for example .size > 0.)

Unary operations:

ndarray.__neg__(/) -self
ndarray.__pos__(/) +self
ndarray.__abs__(self)

ndarray.__invert__(/) ~self

method
ndarray.__neg__(/)

-self
method
ndarray.__pos__(/)

+self
method

890 1. Python API

NumPy Reference, Release 2.2.0

ndarray.__abs__(self)

method
ndarray.__invert__(/)

~self
Arithmetic:

ndarray.__add__(value, /) Return self+value.
ndarray.__sub__(value, /) Return self-value.
ndarray.__mul__(value, /) Return self*value.
ndarray.__truediv__(value, /) Return self/value.
ndarray.__floordiv__(value, /) Return self//value.
ndarray.__mod__(value, /) Return self%value.
ndarray.__divmod__(value, /) Return divmod(self, value).
ndarray.__pow__(value[, mod]) Return pow(self, value, mod).
ndarray.__lshift__(value, /) Return self<<value.
ndarray.__rshift__(value, /) Return self>>value.
ndarray.__and__(value, /) Return self&value.
ndarray.__or__(value, /) Return self|value.
ndarray.__xor__(value, /) Return self^value.

method
ndarray.__add__(value, /)

Return self+value.
method
ndarray.__sub__(value, /)

Return self-value.
method
ndarray.__mul__(value, /)

Return self*value.
method
ndarray.__truediv__(value, /)

Return self/value.
method
ndarray.__floordiv__(value, /)

Return self//value.
method
ndarray.__mod__(value, /)

Return self%value.
method
ndarray.__divmod__(value, /)

Return divmod(self, value).
method

1.2. Array objects 891

NumPy Reference, Release 2.2.0

ndarray.__pow__(value, mod=None, /)
Return pow(self, value, mod).

method
ndarray.__lshift__(value, /)

Return self<<value.
method
ndarray.__rshift__(value, /)

Return self>>value.
method
ndarray.__and__(value, /)

Return self&value.
method
ndarray.__or__(value, /)

Return self|value.
method
ndarray.__xor__(value, /)

Return self^value.

Note:
• Any third argument to pow is silently ignored, as the underlying ufunc takes only two arguments.
• Because ndarray is a built-in type (written in C), the __r{op}__ special methods are not directly defined.
• The functions called to implement many arithmetic special methods for arrays can be modified using __ar-
ray_ufunc__.

Arithmetic, in-place:

ndarray.__iadd__(value, /) Return self+=value.
ndarray.__isub__(value, /) Return self-=value.
ndarray.__imul__(value, /) Return self*=value.
ndarray.__itruediv__(value, /) Return self/=value.
ndarray.__ifloordiv__(value, /) Return self//=value.
ndarray.__imod__(value, /) Return self%=value.
ndarray.__ipow__(value, /) Return self**=value.
ndarray.__ilshift__(value, /) Return self<<=value.
ndarray.__irshift__(value, /) Return self>>=value.
ndarray.__iand__(value, /) Return self&=value.
ndarray.__ior__(value, /) Return self|=value.
ndarray.__ixor__(value, /) Return self^=value.

method
ndarray.__iadd__(value, /)

Return self+=value.
method

892 1. Python API

NumPy Reference, Release 2.2.0

ndarray.__isub__(value, /)
Return self-=value.

method
ndarray.__imul__(value, /)

Return self*=value.
method
ndarray.__itruediv__(value, /)

Return self/=value.
method
ndarray.__ifloordiv__(value, /)

Return self//=value.
method
ndarray.__imod__(value, /)

Return self%=value.
method
ndarray.__ipow__(value, /)

Return self**=value.
method
ndarray.__ilshift__(value, /)

Return self<<=value.
method
ndarray.__irshift__(value, /)

Return self>>=value.
method
ndarray.__iand__(value, /)

Return self&=value.
method
ndarray.__ior__(value, /)

Return self|=value.
method
ndarray.__ixor__(value, /)

Return self^=value.

Warning: In place operations will perform the calculation using the precision decided by the data type of the two
operands, but will silently downcast the result (if necessary) so it can fit back into the array. Therefore, for mixed
precision calculations, A {op}= B can be different than A = A {op} B. For example, suppose a = ones((3,
3)). Then, a += 3j is different than a = a + 3j: while they both perform the same computation, a += 3
casts the result to fit back in a, whereas a = a + 3j re-binds the name a to the result.

1.2. Array objects 893

NumPy Reference, Release 2.2.0

Matrix Multiplication:

ndarray.__matmul__(value, /) Return self@value.

method
ndarray.__matmul__(value, /)

Return self@value.

Note: Matrix operators @ and @= were introduced in Python 3.5 following PEP 465, and the @ operator has been
introduced in NumPy 1.10.0. Further information can be found in the matmul documentation.

Special methods

For standard library functions:

ndarray.__copy__() Used if copy.copy is called on an array.
ndarray.__deepcopy__(memo, /) Used if copy.deepcopy is called on an array.
ndarray.__reduce__() For pickling.
ndarray.__setstate__(state, /) For unpickling.

method
ndarray.__copy__()

Used if copy.copy is called on an array. Returns a copy of the array.
Equivalent to a.copy(order='K').

method
ndarray.__deepcopy__(memo, /)

Used if copy.deepcopy is called on an array.
method
ndarray.__reduce__()

For pickling.
method
ndarray.__setstate__(state, /)

For unpickling.
The state argument must be a sequence that contains the following elements:

Parameters
version

[int] optional pickle version. If omitted defaults to 0.
shape

[tuple]
dtype

[data-type]

894 1. Python API

mailto:self@value
mailto:self@value
https://peps.python.org/pep-0465/
https://docs.python.org/3/library/copy.html#copy.copy
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/copy.html#copy.copy
https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

isFortran
[bool]

rawdata
[string or list] a binary string with the data (or a list if ‘a’ is an object array)

Basic customization:

ndarray.__new__(*args, **kwargs)

ndarray.__array__([dtype], *[, copy]) For dtype parameter it returns a new reference to self if
dtype is not given or it matches array's data type.

ndarray.__array_wrap__(array[, context], /) Returns a view of array with the same type as self.

method
ndarray.__new__(*args, **kwargs)

method
ndarray.__array__([dtype,]*, copy=None)

For dtype parameter it returns a new reference to self if dtype is not given or it matches array’s data type. A
new array of provided data type is returned if dtype is different from the current data type of the array. For
copy parameter it returns a new reference to self if copy=False or copy=None and copying isn’t enforced
by dtype parameter. The method returns a new array for copy=True, regardless of dtype parameter.
A more detailed explanation of the __array__ interface can be found in dunder_array.interface.

method
ndarray.__array_wrap__(array, [context,]/)

Returns a view of array with the same type as self.
Container customization: (see Indexing)

ndarray.__len__(/) Return len(self).
ndarray.__getitem__(key, /) Return self[key].
ndarray.__setitem__(key, value, /) Set self[key] to value.
ndarray.__contains__(key, /) Return key in self.

method
ndarray.__len__(/)

Return len(self).
method
ndarray.__getitem__(key, /)

Return self[key].
method
ndarray.__setitem__(key, value, /)

Set self[key] to value.
method

1.2. Array objects 895

NumPy Reference, Release 2.2.0

ndarray.__contains__(key, /)
Return key in self.

Conversion; the operations int(), float() and complex(). They work only on arrays that have one element in
them and return the appropriate scalar.

ndarray.__int__(self)

ndarray.__float__(self)

ndarray.__complex__

method
ndarray.__int__(self)

method
ndarray.__float__(self)

method
ndarray.__complex__()

String representations:

ndarray.__str__(/) Return str(self).
ndarray.__repr__(/) Return repr(self).

method
ndarray.__str__(/)

Return str(self).
method
ndarray.__repr__(/)

Return repr(self).
Utility method for typing:

ndarray.__class_getitem__(item, /) Return a parametrized wrapper around the ndarray
type.

method
ndarray.__class_getitem__(item, /)

Return a parametrized wrapper around the ndarray type.
New in version 1.22.

Returns
alias

[types.GenericAlias] A parametrized ndarray type.

896 1. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex

NumPy Reference, Release 2.2.0

See also:

PEP 585
Type hinting generics in standard collections.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Examples

>>> from typing import Any
>>> import numpy as np

>>> np.ndarray[Any, np.dtype[Any]]
numpy.ndarray[typing.Any, numpy.dtype[typing.Any]]

1.2.2 Scalars

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.). This
can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a computer.
For scientific computing, however, more control is often needed.
In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors are
mostly based on the types available in the C language that CPython is written in, with several additional types compatible
with Python’s types.
Array scalars have the same attributes and methods as ndarrays.1 This allows one to treat items of an array partly on
the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.
Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy: For
example, isinstance(val, np.generic) will return True if val is an array scalar object. Alternatively,
what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for ex-
ample isinstance(val, np.complexfloating) will return True if val is a complex valued type, while
isinstance(val, np.flexible) will return true if val is one of the flexible itemsize array types (str_,
bytes_, void).

Built-in scalar types

The built-in scalar types are shown below. The C-like names are associated with character codes, which are shown in
their descriptions. Use of the character codes, however, is discouraged.
Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as well
as from the generic array scalar type:

1 However, array scalars are immutable, so none of the array scalar attributes are settable.

1.2. Array objects 897

https://peps.python.org/pep-0585/
https://docs.python.org/3/glossary.html#term-generic-type
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

NumPy Reference, Release 2.2.0

Fig. 2: Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types intp
and uintp which are used for indexing (the same as the default integer since NumPy 2).

898 1. Python API

NumPy Reference, Release 2.2.0

Array scalar type Related Python type Inherits?
int_ int Python 2 only
double float yes
cdouble complex yes
bytes_ bytes yes
str_ str yes
bool_ bool no
datetime64 datetime.datetime no
timedelta64 datetime.timedelta no

The bool_ data type is very similar to the Python bool but does not inherit from it because Python’s bool does not
allow itself to be inherited from, and on the C-level the size of the actual bool data is not the same as a Python Boolean
scalar.

Warning: The int_ type does not inherit from the int built-in under Python 3, because type int is no longer a
fixed-width integer type.

Tip: The default data type in NumPy is double.

class numpy.generic

Base class for numpy scalar types.
Class fromwhich most (all?) numpy scalar types are derived. For consistency, exposes the same API as ndarray,
despite many consequent attributes being either “get-only,” or completely irrelevant. This is the class from which
it is strongly suggested users should derive custom scalar types.

class numpy.number

Abstract base class of all numeric scalar types.

Integer types
class numpy.integer

Abstract base class of all integer scalar types.

Note: The numpy integer types mirror the behavior of C integers, and can therefore be subject to overflow-errors.

Signed integer types

class numpy.signedinteger

Abstract base class of all signed integer scalar types.
class numpy.byte

Signed integer type, compatible with C char.
Character code

'b'

Canonical name
numpy.byte

1.2. Array objects 899

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

NumPy Reference, Release 2.2.0

Alias on this platform (Linux x86_64)
numpy.int8: 8-bit signed integer (-128 to 127).

class numpy.short

Signed integer type, compatible with C short.
Character code

'h'

Canonical name
numpy.short

Alias on this platform (Linux x86_64)
numpy.int16: 16-bit signed integer (-32_768 to 32_767).

class numpy.intc

Signed integer type, compatible with C int.
Character code

'i'

Canonical name
numpy.intc

Alias on this platform (Linux x86_64)
numpy.int32: 32-bit signed integer (-2_147_483_648 to 2_147_483_647).

class numpy.int_

Default signed integer type, 64bit on 64bit systems and 32bit on 32bit systems.
Character code

'l'

Canonical name
numpy.int_

Alias on this platform (Linux x86_64)
numpy.int64: 64-bit signed integer (-9_223_372_036_854_775_808 to
9_223_372_036_854_775_807).

Alias on this platform (Linux x86_64)
numpy.intp: Signed integer large enough to fit pointer, compatible with C intptr_t.

numpy.long

alias of int_
class numpy.longlong

Signed integer type, compatible with C long long.
Character code

'q'

900 1. Python API

NumPy Reference, Release 2.2.0

Unsigned integer types

class numpy.unsignedinteger

Abstract base class of all unsigned integer scalar types.
class numpy.ubyte

Unsigned integer type, compatible with C unsigned char.
Character code

'B'

Canonical name
numpy.ubyte

Alias on this platform (Linux x86_64)
numpy.uint8: 8-bit unsigned integer (0 to 255).

class numpy.ushort

Unsigned integer type, compatible with C unsigned short.
Character code

'H'

Canonical name
numpy.ushort

Alias on this platform (Linux x86_64)
numpy.uint16: 16-bit unsigned integer (0 to 65_535).

class numpy.uintc

Unsigned integer type, compatible with C unsigned int.
Character code

'I'

Canonical name
numpy.uintc

Alias on this platform (Linux x86_64)
numpy.uint32: 32-bit unsigned integer (0 to 4_294_967_295).

class numpy.uint

Unsigned signed integer type, 64bit on 64bit systems and 32bit on 32bit systems.
Character code

'L'

Canonical name
numpy.uint

Alias on this platform (Linux x86_64)
numpy.uint64: 64-bit unsigned integer (0 to 18_446_744_073_709_551_615).

Alias on this platform (Linux x86_64)
numpy.uintp: Unsigned integer large enough to fit pointer, compatible with C uintptr_t.

numpy.ulong

alias of uint

1.2. Array objects 901

NumPy Reference, Release 2.2.0

class numpy.ulonglong

Signed integer type, compatible with C unsigned long long.
Character code

'Q'

Inexact types
class numpy.inexact

Abstract base class of all numeric scalar types with a (potentially) inexact representation of the values in its range,
such as floating-point numbers.

Note: Inexact scalars are printed using the fewest decimal digits needed to distinguish their value from other values
of the same datatype, by judicious rounding. See the unique parameter of format_float_positional and
format_float_scientific.
This means that variables with equal binary values but whose datatypes are of different precisions may display differently:

>>> import numpy as np

>>> f16 = np.float16("0.1")
>>> f32 = np.float32(f16)
>>> f64 = np.float64(f32)
>>> f16 == f32 == f64
True
>>> f16, f32, f64
(0.1, 0.099975586, 0.0999755859375)

Note that none of these floats hold the exact value 1
10 ; f16 prints as 0.1 because it is as close to that value

as possible, whereas the other types do not as they have more precision and therefore have closer values.
Conversely, floating-point scalars of different precisions which approximate the same decimal value may
compare unequal despite printing identically:

>>> f16 = np.float16("0.1")
>>> f32 = np.float32("0.1")
>>> f64 = np.float64("0.1")
>>> f16 == f32 == f64
False
>>> f16, f32, f64
(0.1, 0.1, 0.1)

Floating-point types

class numpy.floating

Abstract base class of all floating-point scalar types.
class numpy.half

Half-precision floating-point number type.
Character code

'e'

Canonical name
numpy.half

902 1. Python API

NumPy Reference, Release 2.2.0

Alias on this platform (Linux x86_64)
numpy.float16: 16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits
mantissa.

class numpy.single

Single-precision floating-point number type, compatible with C float.
Character code

'f'

Canonical name
numpy.single

Alias on this platform (Linux x86_64)
numpy.float32: 32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits
mantissa.

class numpy.double(x=0, /)
Double-precision floating-point number type, compatible with Python float and C double.

Character code
'd'

Canonical name
numpy.double

Alias on this platform (Linux x86_64)
numpy.float64: 64-bit precision floating-point number type: sign bit, 11 bits exponent, 52
bits mantissa.

class numpy.longdouble

Extended-precision floating-point number type, compatible with C long double but not necessarily with IEEE
754 quadruple-precision.

Character code
'g'

Alias on this platform (Linux x86_64)
numpy.float128: 128-bit extended-precision floating-point number type.

Complex floating-point types

class numpy.complexfloating

Abstract base class of all complex number scalar types that are made up of floating-point numbers.
class numpy.csingle

Complex number type composed of two single-precision floating-point numbers.
Character code

'F'

Canonical name
numpy.csingle

Alias on this platform (Linux x86_64)
numpy.complex64: Complex number type composed of 2 32-bit-precision floating-point num-
bers.

1.2. Array objects 903

https://docs.python.org/3/library/functions.html#float

NumPy Reference, Release 2.2.0

class numpy.cdouble(real=0, imag=0)
Complex number type composed of two double-precision floating-point numbers, compatible with Python com-
plex.

Character code
'D'

Canonical name
numpy.cdouble

Alias on this platform (Linux x86_64)
numpy.complex128: Complex number type composed of 2 64-bit-precision floating-point
numbers.

class numpy.clongdouble

Complex number type composed of two extended-precision floating-point numbers.
Character code

'G'

Alias on this platform (Linux x86_64)
numpy.complex256: Complex number type composed of 2 128-bit extended-precision
floating-point numbers.

Other types
numpy.bool_

alias of bool
class numpy.bool

Boolean type (True or False), stored as a byte.

Warning: The bool type is not a subclass of the int_ type (the bool is not even a number type). This is
different than Python’s default implementation of bool as a sub-class of int.

Character code
'?'

class numpy.datetime64

If created from a 64-bit integer, it represents an offset from 1970-01-01T00:00:00. If created from string,
the string can be in ISO 8601 date or datetime format.
When parsing a string to create a datetime object, if the string contains a trailing timezone (A ‘Z’ or a timezone
offset), the timezone will be dropped and a User Warning is given.
Datetime64 objects should be considered to be UTC and therefore have an offset of +0000.

>>> np.datetime64(10, 'Y')
np.datetime64('1980')
>>> np.datetime64('1980', 'Y')
np.datetime64('1980')
>>> np.datetime64(10, 'D')
np.datetime64('1970-01-11')

See Datetimes and timedeltas for more information.
Character code

'M'

904 1. Python API

https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#int

NumPy Reference, Release 2.2.0

class numpy.timedelta64

A timedelta stored as a 64-bit integer.
See Datetimes and timedeltas for more information.

Character code
'm'

class numpy.object_

Any Python object.
Character code

'O'

Note: The data actually stored in object arrays (i.e., arrays having dtype object_) are references to Python objects,
not the objects themselves. Hence, object arrays behave more like usual Python lists, in the sense that their contents
need not be of the same Python type.
The object type is also special because an array containing object_ items does not return an object_ object on item
access, but instead returns the actual object that the array item refers to.

The following data types are flexible: they have no predefined size and the data they describe can be of different length
in different arrays. (In the character codes # is an integer denoting how many elements the data type consists of.)
class numpy.flexible

Abstract base class of all scalar types without predefined length. The actual size of these types depends on the
specific numpy.dtype instantiation.

class numpy.character

Abstract base class of all character string scalar types.
class numpy.bytes_

A byte string.
When used in arrays, this type strips trailing null bytes.

Character code
'S'

class numpy.str_

A unicode string.
This type strips trailing null codepoints.

>>> s = np.str_("abc\x00")
>>> s
'abc'

Unlike the builtin str, this supports the Buffer Protocol, exposing its contents as UCS4:

>>> m = memoryview(np.str_("abc"))
>>> m.format
'3w'
>>> m.tobytes()
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'

Character code
'U'

1.2. Array objects 905

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/c-api/buffer.html#bufferobjects

NumPy Reference, Release 2.2.0

class numpy.void(length_or_data, / , dtype=None)
Create a new structured or unstructured void scalar.

Parameters
length_or_data

[int, array-like, bytes-like, object] One of multiple meanings (see notes). The length or bytes
data of an unstructured void. Or alternatively, the data to be stored in the new scalar when
dtype is provided. This can be an array-like, in which case an array may be returned.

dtype
[dtype, optional] If provided the dtype of the new scalar. This dtype must be “void” dtype (i.e.
a structured or unstructured void, see also defining-structured-types).
New in version 1.24.

Notes

For historical reasons and because void scalars can represent both arbitrary byte data and structured dtypes, the
void constructor has three calling conventions:
1. np.void(5) creates a dtype="V5" scalar filled with five \0 bytes. The 5 can be a Python or NumPy

integer.
2. np.void(b"bytes-like") creates a void scalar from the byte string. The dtype itemsize will match

the byte string length, here "V10".
3. When a dtype= is passed the call is roughly the same as an array creation. However, a void scalar rather

than array is returned.
Please see the examples which show all three different conventions.

Examples

>>> np.void(5)
np.void(b'\x00\x00\x00\x00\x00')
>>> np.void(b'abcd')
np.void(b'\x61\x62\x63\x64')
>>> np.void((3.2, b'eggs'), dtype="d,S5")
np.void((3.2, b'eggs'), dtype=[('f0', '<f8'), ('f1', 'S5')])
>>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
np.void((3, 3), dtype=[('x', 'i1'), ('y', 'i1')])

Character code
'V'

Warning: See Note on string types.
Numeric Compatibility: If you used old typecode characters in your Numeric code (which was never recommended),
you will need to change some of them to the new characters. In particular, the needed changes are c -> S1, b ->
B, 1 -> b, s -> h, w -> H, and u -> I. These changes make the type character convention more consistent
with other Python modules such as the struct module.

906 1. Python API

https://docs.python.org/3/library/struct.html#module-struct

NumPy Reference, Release 2.2.0

Sized aliases
Along with their (mostly) C-derived names, the integer, float, and complex data-types are also available using a bit-width
convention so that an array of the right size can always be ensured. Two aliases (numpy.intp and numpy.uintp)
pointing to the integer type that is sufficiently large to hold a C pointer are also provided.
numpy.int8

numpy.int16

numpy.int32

numpy.int64

Aliases for the signed integer types (one of numpy.byte, numpy.short, numpy.intc, numpy.int_,
numpy.long and numpy.longlong) with the specified number of bits.
Compatible with the C99 int8_t, int16_t, int32_t, and int64_t, respectively.

numpy.uint8

numpy.uint16

numpy.uint32

numpy.uint64

Alias for the unsigned integer types (one of numpy.ubyte, numpy.ushort, numpy.uintc, numpy.
uint, numpy.ulong and numpy.ulonglong) with the specified number of bits.
Compatible with the C99 uint8_t, uint16_t, uint32_t, and uint64_t, respectively.

numpy.intp

Alias for the signed integer type (one of numpy.byte, numpy.short, numpy.intc, numpy.int_,
numpy.long and numpy.longlong) that is used as a default integer and for indexing.
Compatible with the C Py_ssize_t.

Character code
'n'

Changed in version 2.0: Before NumPy 2, this had the same size as a pointer. In practice this is almost always
identical, but the character code 'p' maps to the C intptr_t. The character code 'n' was added in NumPy
2.0.

numpy.uintp

Alias for the unsigned integer type that is the same size as intp.
Compatible with the C size_t.

Character code
'N'

Changed in version 2.0: Before NumPy 2, this had the same size as a pointer. In practice this is almost always
identical, but the character code 'P' maps to the C uintptr_t. The character code 'N' was added in NumPy
2.0.

numpy.float16

alias of half
numpy.float32

alias of single
numpy.float64

alias of double
numpy.float96

1.2. Array objects 907

NumPy Reference, Release 2.2.0

numpy.float128

Alias for numpy.longdouble, named after its size in bits. The existence of these aliases depends on the
platform.

numpy.complex64

alias of csingle
numpy.complex128

alias of cdouble
numpy.complex192

numpy.complex256

Alias for numpy.clongdouble, named after its size in bits. The existence of these aliases depends on the
platform.

Attributes

The array scalar objects have an array priority of NPY_SCALAR_PRIORITY (-1,000,000.0). They also do not
(yet) have a ctypes attribute. Otherwise, they share the same attributes as arrays:

generic.flags The integer value of flags.
generic.shape Tuple of array dimensions.
generic.strides Tuple of bytes steps in each dimension.
generic.ndim The number of array dimensions.
generic.data Pointer to start of data.
generic.size The number of elements in the gentype.
generic.itemsize The length of one element in bytes.
generic.base Scalar attribute identical to the corresponding array at-

tribute.
generic.dtype Get array data-descriptor.
generic.real The real part of the scalar.
generic.imag The imaginary part of the scalar.
generic.flat A 1-D view of the scalar.
generic.T Scalar attribute identical to the corresponding array at-

tribute.
generic.__array_interface__ Array protocol: Python side
generic.__array_struct__ Array protocol: struct
generic.__array_priority__ Array priority.
generic.__array_wrap__ __array_wrap__ implementation for scalar types

attribute
generic.flags

The integer value of flags.
attribute
generic.shape

Tuple of array dimensions.
attribute
generic.strides

Tuple of bytes steps in each dimension.

908 1. Python API

NumPy Reference, Release 2.2.0

attribute
generic.ndim

The number of array dimensions.
attribute
generic.data

Pointer to start of data.
attribute
generic.size

The number of elements in the gentype.
attribute
generic.itemsize

The length of one element in bytes.
attribute
generic.base

Scalar attribute identical to the corresponding array attribute.
Please see ndarray.base.

attribute
generic.dtype

Get array data-descriptor.
attribute
generic.real

The real part of the scalar.
attribute
generic.imag

The imaginary part of the scalar.
attribute
generic.flat

A 1-D view of the scalar.
attribute
generic.T

Scalar attribute identical to the corresponding array attribute.
Please see ndarray.T.

attribute
generic.__array_interface__

Array protocol: Python side
attribute

1.2. Array objects 909

NumPy Reference, Release 2.2.0

generic.__array_struct__

Array protocol: struct
attribute
generic.__array_priority__

Array priority.
method
generic.__array_wrap__()

__array_wrap__ implementation for scalar types

Indexing

See also:
Indexing routines, Data type objects (dtype)

Array scalars can be indexed like 0-dimensional arrays: if x is an array scalar,
• x[()] returns a copy of array scalar
• x[...] returns a 0-dimensional ndarray
• x['field-name'] returns the array scalar in the field field-name. (x can have fields, for example, when it
corresponds to a structured data type.)

Methods

Array scalars have exactly the same methods as arrays. The default behavior of these methods is to internally convert the
scalar to an equivalent 0-dimensional array and to call the corresponding array method. In addition, math operations on
array scalars are defined so that the same hardware flags are set and used to interpret the results as for ufunc, so that the
error state used for ufuncs also carries over to the math on array scalars.
The exceptions to the above rules are given below:

generic.__array__ sc.__array__(dtype) return 0-dim array from scalar with
specified dtype

generic.__array_wrap__ __array_wrap__ implementation for scalar types
generic.squeeze Scalar method identical to the corresponding array at-

tribute.
generic.byteswap Scalar method identical to the corresponding array at-

tribute.
generic.__reduce__ Helper for pickle.
generic.__setstate__

generic.setflags Scalar method identical to the corresponding array at-
tribute.

method
generic.__array__()

sc.__array__(dtype) return 0-dim array from scalar with specified dtype
method

910 1. Python API

NumPy Reference, Release 2.2.0

generic.squeeze()

Scalar method identical to the corresponding array attribute.
Please see ndarray.squeeze.

method
generic.byteswap()

Scalar method identical to the corresponding array attribute.
Please see ndarray.byteswap.

method
generic.__reduce__()

Helper for pickle.
method
generic.__setstate__()

method
generic.setflags()

Scalar method identical to the corresponding array attribute.
Please see ndarray.setflags.

Utility method for typing:

number.__class_getitem__(item, /) Return a parametrized wrapper around thenumber type.

method
number.__class_getitem__(item, /)

Return a parametrized wrapper around the number type.
New in version 1.22.

Returns
alias

[types.GenericAlias] A parametrized number type.
See also:

PEP 585
Type hinting generics in standard collections.

Examples

>>> from typing import Any
>>> import numpy as np

>>> np.signedinteger[Any]
numpy.signedinteger[typing.Any]

1.2. Array objects 911

https://peps.python.org/pep-0585/

NumPy Reference, Release 2.2.0

Defining new types

There are two ways to effectively define a new array scalar type (apart from composing structured types dtypes from the
built-in scalar types): One way is to simply subclass the ndarray and overwrite the methods of interest. This will work
to a degree, but internally certain behaviors are fixed by the data type of the array. To fully customize the data type of an
array you need to define a new data-type, and register it with NumPy. Such new types can only be defined in C, using the
NumPy C-API.

1.2.3 Data type objects (dtype)

A data type object (an instance of numpy.dtype class) describes how the bytes in the fixed-size block of memory
corresponding to an array item should be interpreted. It describes the following aspects of the data:

1. Type of the data (integer, float, Python object, etc.)
2. Size of the data (how many bytes is in e.g. the integer)
3. Byte order of the data (little-endian or big-endian)
4. If the data type is structured data type, an aggregate of other data types, (e.g., describing an array item consisting

of an integer and a float),
1. what are the names of the “fields” of the structure, by which they can be accessed,
2. what is the data-type of each field, and
3. which part of the memory block each field takes.

5. If the data type is a sub-array, what is its shape and data type.
To describe the type of scalar data, there are several built-in scalar types in NumPy for various precision of integers,
floating-point numbers, etc. An item extracted from an array, e.g., by indexing, will be a Python object whose type is the
scalar type associated with the data type of the array.
Note that the scalar types are not dtype objects, even though they can be used in place of one whenever a data type
specification is needed in NumPy.
Structured data types are formed by creating a data type whose field contain other data types. Each field has a name by
which it can be accessed. The parent data type should be of sufficient size to contain all its fields; the parent is nearly always
based on the void type which allows an arbitrary item size. Structured data types may also contain nested structured
sub-array data types in their fields.
Finally, a data type can describe items that are themselves arrays of items of another data type. These sub-arrays must,
however, be of a fixed size.
If an array is created using a data-type describing a sub-array, the dimensions of the sub-array are appended to the shape of
the array when the array is created. Sub-arrays in a field of a structured type behave differently, see arrays.indexing.fields.
Sub-arrays always have a C-contiguous memory layout.

Example
A simple data type containing a 32-bit big-endian integer: (see Specifying and constructing data types for details on
construction)

>>> import numpy as np

912 1. Python API

NumPy Reference, Release 2.2.0

>>> dt = np.dtype('>i4')
>>> dt.byteorder
'>'
>>> dt.itemsize
4
>>> dt.name
'int32'
>>> dt.type is np.int32
True

The corresponding array scalar type is int32.

Example
A structured data type containing a 16-character string (in field ‘name’) and a sub-array of two 64-bit floating-point number
(in field ‘grades’):

>>> import numpy as np

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt['name']
dtype('<U16')
>>> dt['grades']
dtype(('<f8', (2,)))

Items of an array of this data type are wrapped in an array scalar type that also has two fields:

>>> import numpy as np

>>> x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
>>> x[1]
('John', [6., 7.])
>>> x[1]['grades']
array([6., 7.])
>>> type(x[1])
<class 'numpy.void'>
>>> type(x[1]['grades'])
<class 'numpy.ndarray'>

Specifying and constructing data types

Whenever a data-type is required in a NumPy function or method, either a dtype object or something that can be
converted to one can be supplied. Such conversions are done by the dtype constructor:

dtype(dtype[, align, copy]) Create a data type object.

class numpy.dtype(dtype, align=False, copy=False[, metadata])
Create a data type object.
A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be con-
structed from different combinations of fundamental numeric types.

1.2. Array objects 913

NumPy Reference, Release 2.2.0

Parameters
dtype

Object to be converted to a data type object.
align

[bool, optional] Add padding to the fields to match what a C compiler would output for a
similar C-struct. Can be True only if obj is a dictionary or a comma-separated string. If a
struct dtype is being created, this also sets a sticky alignment flag isalignedstruct.

copy
[bool, optional] Make a new copy of the data-type object. If False, the result may just be a
reference to a built-in data-type object.

metadata
[dict, optional] An optional dictionary with dtype metadata.

See also:

result_type

Examples

Using array-scalar type:

>>> import numpy as np
>>> np.dtype(np.int16)
dtype('int16')

Structured type, one field name ‘f1’, containing int16:

>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])

Structured type, one field named ‘f1’, in itself containing a structured type with one field:

>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])

Structured type, two fields: the first field contains an unsigned int, the second an int32:

>>> np.dtype([('f1', np.uint64), ('f2', np.int32)])
dtype([('f1', '<u8'), ('f2', '<i4')])

Using array-protocol type strings:

>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', 'S10')])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:

>>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)])
dtype([('hello', '<i8', (3,)), ('world', 'V10')])

914 1. Python API

NumPy Reference, Release 2.2.0

Subdivide int16 into 2 int8’s, called x and y. 0 and 1 are the offsets in bytes:

>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')]))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', 'S1'), ('age', 'u1')])

Offsets in bytes, here 0 and 25:

>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', 'S25'), ('age', 'u1')])

Attributes
alignment

The required alignment (bytes) of this data-type according to the compiler.
base

Returns dtype for the base element of the subarrays, regardless of their dimension or shape.
byteorder

A character indicating the byte-order of this data-type object.
char

A unique character code for each of the 21 different built-in types.
descr

__array_interface__ description of the data-type.
fields

Dictionary of named fields defined for this data type, or None.
flags

Bit-flags describing how this data type is to be interpreted.
hasobject

Boolean indicating whether this dtype contains any reference-counted objects in any fields or
sub-dtypes.

isalignedstruct
Boolean indicating whether the dtype is a struct which maintains field alignment.

isbuiltin
Integer indicating how this dtype relates to the built-in dtypes.

isnative
Boolean indicating whether the byte order of this dtype is native to the platform.

itemsize
The element size of this data-type object.

kind
A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.

metadata
Either None or a readonly dictionary of metadata (mappingproxy).

name
A bit-width name for this data-type.

1.2. Array objects 915

NumPy Reference, Release 2.2.0

names
Ordered list of field names, or None if there are no fields.

ndim
Number of dimensions of the sub-array if this data type describes a sub-array, and 0 otherwise.

num
A unique number for each of the 21 different built-in types.

shape
Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

str
The array-protocol typestring of this data-type object.

subdtype
Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.

type

Methods

newbyteorder([new_order]) Return a new dtype with a different byte order.

method
dtype.newbyteorder(new_order='S', /)

Return a new dtype with a different byte order.
Changes are also made in all fields and sub-arrays of the data type.

Parameters
new_order
[string, optional] Byte order to force; a value from the byte order specifications below. The
default value (‘S’) results in swapping the current byte order. new_order codes can be any of:
• ‘S’ - swap dtype from current to opposite endian
• {‘<’, ‘little’} - little endian
• {‘>’, ‘big’} - big endian
• {‘=’, ‘native’} - native order
• {‘|’, ‘I’} - ignore (no change to byte order)

Returns
new_dtype
[dtype] New dtype object with the given change to the byte order.

916 1. Python API

NumPy Reference, Release 2.2.0

Notes

Changes are also made in all fields and sub-arrays of the data type.

Examples

>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = '<' if sys_is_le else '>'
>>> swapped_code = '>' if sys_is_le else '<'
>>> import numpy as np
>>> native_dt = np.dtype(native_code+'i2')
>>> swapped_dt = np.dtype(swapped_code+'i2')
>>> native_dt.newbyteorder('S') == swapped_dt
True
>>> native_dt.newbyteorder() == swapped_dt
True
>>> native_dt == swapped_dt.newbyteorder('S')
True
>>> native_dt == swapped_dt.newbyteorder('=')
True
>>> native_dt == swapped_dt.newbyteorder('N')
True
>>> native_dt == native_dt.newbyteorder('|')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('<')
True
>>> np.dtype('<i2') == native_dt.newbyteorder('L')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('>')
True
>>> np.dtype('>i2') == native_dt.newbyteorder('B')
True

What can be converted to a data-type object is described below:
dtype object

Used as-is.
None

The default data type: float64.
Array-scalar types

The 24 built-in array scalar type objects all convert to an associated data-type object. This is true for their sub-
classes as well.
Note that not all data-type information can be supplied with a type-object: for example, flexible data-types
have a default itemsize of 0, and require an explicitly given size to be useful.

Example

>>> import numpy as np

>>> dt = np.dtype(np.int32) # 32-bit integer
>>> dt = np.dtype(np.complex128) # 128-bit complex floating-point number

1.2. Array objects 917

NumPy Reference, Release 2.2.0

Generic types
The generic hierarchical type objects convert to corresponding type objects according to the associations:

number, inexact, floating float64
complexfloating complex128
integer, signedinteger int_
unsignedinteger uint
generic, flexible void

Deprecated since version 1.19: This conversion of generic scalar types is deprecated. This is because it can be
unexpected in a context such as arr.astype(dtype=np.floating), which casts an array of float32
to an array of float64, even though float32 is a subdtype of np.floating.

Built-in Python types
Several python types are equivalent to a corresponding array scalar when used to generate a dtype object:

int int_
bool bool_
float float64
complex complex128
bytes bytes_
str str_
memoryview void
(all others) object_

Note that str_ corresponds to UCS4 encoded unicode strings.

Example

>>> import numpy as np

>>> dt = np.dtype(float) # Python-compatible floating-point number
>>> dt = np.dtype(int) # Python-compatible integer
>>> dt = np.dtype(object) # Python object

Note: All other types map to object_ for convenience. Code should expect that such types may map to a
specific (new) dtype in the future.

Types with .dtype
Any type object with a dtype attribute: The attribute will be accessed and used directly. The attribute must return
something that is convertible into a dtype object.

Several kinds of strings can be converted. Recognized strings can be prepended with '>' (big-endian), '<' (little-
endian), or '=' (hardware-native, the default), to specify the byte order.
One-character strings

Each built-in data-type has a character code (the updated Numeric typecodes), that uniquely identifies it.

Example

918 1. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#memoryview

NumPy Reference, Release 2.2.0

>>> import numpy as np

>>> dt = np.dtype('b') # byte, native byte order
>>> dt = np.dtype('>H') # big-endian unsigned short
>>> dt = np.dtype('<f') # little-endian single-precision float
>>> dt = np.dtype('d') # double-precision floating-point number

Array-protocol type strings (see The array interface protocol)
The first character specifies the kind of data and the remaining characters specify the number of bytes per item,
except for Unicode, where it is interpreted as the number of characters. The item size must correspond to an
existing type, or an error will be raised. The supported kinds are

'?' boolean
'b' (signed) byte
'B' unsigned byte
'i' (signed) integer
'u' unsigned integer
'f' floating-point
'c' complex-floating point
'm' timedelta
'M' datetime
'O' (Python) objects
'S', 'a' zero-terminated bytes (not recommended)
'U' Unicode string
'V' raw data (void)

Example

>>> import numpy as np

>>> dt = np.dtype('i4') # 32-bit signed integer
>>> dt = np.dtype('f8') # 64-bit floating-point number
>>> dt = np.dtype('c16') # 128-bit complex floating-point number
>>> dt = np.dtype('S25') # 25-length zero-terminated bytes
>>> dt = np.dtype('U25') # 25-character string

Note on string types
For backward compatibility with existing code originally written to support Python 2, S and a typestrings are zero-
terminated bytes. For unicode strings, use U, numpy.str_. For signed bytes that do not need zero-termination
b or i1 can be used.

String with comma-separated fields
A short-hand notation for specifying the format of a structured data type is a comma-separated string of basic
formats.
A basic format in this context is an optional shape specifier followed by an array-protocol type string. Parenthesis
are required on the shape if it has more than one dimension. NumPy allows a modification on the format in that any
string that can uniquely identify the type can be used to specify the data-type in a field. The generated data-type

1.2. Array objects 919

NumPy Reference, Release 2.2.0

fields are named 'f0', 'f1', …, 'f<N-1>' where N (>1) is the number of comma-separated basic formats
in the string. If the optional shape specifier is provided, then the data-type for the corresponding field describes a
sub-array.

Example
• field named f0 containing a 32-bit integer
• field named f1 containing a 2 x 3 sub-array of 64-bit floating-point numbers
• field named f2 containing a 32-bit floating-point number

>>> import numpy as np
>>> dt = np.dtype("i4, (2,3)f8, f4")

• field named f0 containing a 3-character string
• field named f1 containing a sub-array of shape (3,) containing 64-bit unsigned integers
• field named f2 containing a 3 x 4 sub-array containing 10-character strings

>>> import numpy as np
>>> dt = np.dtype("S3, 3u8, (3,4)S10")

Type strings
Any string name of a NumPy dtype, e.g.:

Example

>>> import numpy as np

>>> dt = np.dtype('uint32') # 32-bit unsigned integer
>>> dt = np.dtype('float64') # 64-bit floating-point number

(flexible_dtype, itemsize)
The first argument must be an object that is converted to a zero-sized flexible data-type object, the second argument
is an integer providing the desired itemsize.

Example

>>> import numpy as np

>>> dt = np.dtype((np.void, 10)) # 10-byte wide data block
>>> dt = np.dtype(('U', 10)) # 10-character unicode string

(fixed_dtype, shape)
The first argument is any object that can be converted into a fixed-size data-type object. The second argument is
the desired shape of this type. If the shape parameter is 1, then the data-type object used to be equivalent to fixed
dtype. This behaviour is deprecated since NumPy 1.17 and will raise an error in the future. If shape is a tuple,
then the new dtype defines a sub-array of the given shape.

Example

920 1. Python API

NumPy Reference, Release 2.2.0

>>> import numpy as np

>>> dt = np.dtype((np.int32, (2,2))) # 2 x 2 integer sub-array
>>> dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2 x 3 structured sub-array

[(field_name, field_dtype, field_shape), ...]
obj should be a list of fields where each field is described by a tuple of length 2 or 3. (Equivalent to the descr
item in the __array_interface__ attribute.)
The first element, field_name, is the field name (if this is '' then a standard field name, 'f#', is assigned). The
field name may also be a 2-tuple of strings where the first string is either a “title” (which may be any string or
unicode string) or meta-data for the field which can be any object, and the second string is the “name” which must
be a valid Python identifier.
The second element, field_dtype, can be anything that can be interpreted as a data-type.
The optional third element field_shape contains the shape if this field represents an array of the data-type in the
second element. Note that a 3-tuple with a third argument equal to 1 is equivalent to a 2-tuple.
This style does not accept align in the dtype constructor as it is assumed that all of the memory is accounted for
by the array interface description.

Example
Data-type with fields big (big-endian 32-bit integer) and little (little-endian 32-bit integer):

>>> import numpy as np

>>> dt = np.dtype([('big', '>i4'), ('little', '<i4')])

Data-type with fields R, G, B, A, each being an unsigned 8-bit integer:

>>> dt = np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')])

{'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize':
...}

This style has two required and three optional keys. The names and formats keys are required. Their respective
values are equal-length lists with the field names and the field formats. The field names must be strings and the field
formats can be any object accepted by dtype constructor.
When the optional keys offsets and titles are provided, their values must each be lists of the same length as the names
and formats lists. The offsets value is a list of byte offsets (limited to ctypes.c_int) for each field, while the
titles value is a list of titles for each field (None can be used if no title is desired for that field). The titles can be
any object, but when a str object will add another entry to the fields dictionary keyed by the title and referencing
the same field tuple which will contain the title as an additional tuple member.
The itemsize key allows the total size of the dtype to be set, and must be an integer large enough so all the fields
are within the dtype. If the dtype being constructed is aligned, the itemsize must also be divisible by the struct
alignment. Total dtype itemsize is limited to ctypes.c_int.

Example
Data type with fields r, g, b, a, each being an 8-bit unsigned integer:

1.2. Array objects 921

https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ctypes.html#ctypes.c_int

NumPy Reference, Release 2.2.0

>>> import numpy as np

>>> dt = np.dtype({'names': ['r','g','b','a'],
... 'formats': [np.uint8, np.uint8, np.uint8, np.uint8]})

Data type with fields r and b (with the given titles), both being 8-bit unsigned integers, the first at byte position 0
from the start of the field and the second at position 2:

>>> dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'],
... 'offsets': [0, 2],
... 'titles': ['Red pixel', 'Blue pixel']})

{'field1': ..., 'field2': ..., ...}
This usage is discouraged, because it is ambiguous with the other dict-based construction method. If you have a
field called ‘names’ and a field called ‘formats’ there will be a conflict.
This style allows passing in the fields attribute of a data-type object.
obj should contain string or unicode keys that refer to (data-type, offset) or (data-type, offset,
title) tuples.

Example
Data type containing field col1 (10-character string at byte position 0), col2 (32-bit float at byte position 10),
and col3 (integers at byte position 14):

>>> import numpy as np

>>> dt = np.dtype({'col1': ('U10', 0), 'col2': (np.float32, 10),
... 'col3': (int, 14)})

(base_dtype, new_dtype)
In NumPy 1.7 and later, this form allows base_dtype to be interpreted as a structured dtype. Arrays created with
this dtype will have underlying dtype base_dtype but will have fields and flags taken from new_dtype. This is useful
for creating custom structured dtypes, as done in record arrays.
This form also makes it possible to specify struct dtypes with overlapping fields, functioning like the ‘union’ type
in C. This usage is discouraged, however, and the union mechanism is preferred.
Both arguments must be convertible to data-type objects with the same total size.

Example
32-bit integer, whose first two bytes are interpreted as an integer via field real, and the following two bytes via
field imag.

>>> import numpy as np

>>> dt = np.dtype((np.int32,{'real':(np.int16, 0),'imag':(np.int16, 2)}))

32-bit integer, which is interpreted as consisting of a sub-array of shape (4,) containing 8-bit integers:

>>> dt = np.dtype((np.int32, (np.int8, 4)))

922 1. Python API

NumPy Reference, Release 2.2.0

32-bit integer, containing fields r, g, b, a that interpret the 4 bytes in the integer as four unsigned integers:

>>> dt = np.dtype(('i4', [('r','u1'),('g','u1'),('b','u1'),('a','u1')]))

Checking the data type

When checking for a specific data type, use == comparison.

Example

>>> import numpy as np

>>> a = np.array([1, 2], dtype=np.float32)
>>> a.dtype == np.float32
True

As opposed to Python types, a comparison using is should not be used.
First, NumPy treats data type specifications (everything that can be passed to the dtype constructor) as equivalent to
the data type object itself. This equivalence can only be handled through ==, not through is.

Example
A dtype object is equal to all data type specifications that are equivalent to it.

>>> import numpy as np

>>> a = np.array([1, 2], dtype=float)
>>> a.dtype == np.dtype(np.float64)
True
>>> a.dtype == np.float64
True
>>> a.dtype == float
True
>>> a.dtype == "float64"
True
>>> a.dtype == "d"
True

Second, there is no guarantee that data type objects are singletons.

Example
Do not use is because data type objects may or may not be singletons.

>>> import numpy as np

>>> np.dtype(float) is np.dtype(float)
True
>>> np.dtype([('a', float)]) is np.dtype([('a', float)])
False

1.2. Array objects 923

NumPy Reference, Release 2.2.0

dtype

NumPy data type descriptions are instances of the dtype class.

Attributes
The type of the data is described by the following dtype attributes:

dtype.type

dtype.kind A character code (one of 'biufcmMOSUV') identifying
the general kind of data.

dtype.char A unique character code for each of the 21 different built-
in types.

dtype.num A unique number for each of the 21 different built-in
types.

dtype.str The array-protocol typestring of this data-type object.

attribute
dtype.type = None

attribute
dtype.kind

A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.

b boolean
i signed integer
u unsigned integer
f floating-point
c complex floating-point
m timedelta
M datetime
O object
S (byte-)string
U Unicode
V void

Examples

>>> import numpy as np
>>> dt = np.dtype('i4')
>>> dt.kind
'i'
>>> dt = np.dtype('f8')
>>> dt.kind
'f'
>>> dt = np.dtype([('field1', 'f8')])

(continues on next page)

924 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> dt.kind
'V'

attribute
dtype.char

A unique character code for each of the 21 different built-in types.

Examples

>>> import numpy as np
>>> x = np.dtype(float)
>>> x.char
'd'

attribute
dtype.num

A unique number for each of the 21 different built-in types.
These are roughly ordered from least-to-most precision.

Examples

>>> import numpy as np
>>> dt = np.dtype(str)
>>> dt.num
19

>>> dt = np.dtype(float)
>>> dt.num
12

attribute
dtype.str

The array-protocol typestring of this data-type object.
Size of the data is in turn described by:

dtype.name A bit-width name for this data-type.
dtype.itemsize The element size of this data-type object.

attribute
dtype.name

A bit-width name for this data-type.
Un-sized flexible data-type objects do not have this attribute.

1.2. Array objects 925

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.dtype(float)
>>> x.name
'float64'
>>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
>>> x.name
'void640'

attribute
dtype.itemsize

The element size of this data-type object.
For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this number can be
anything.

Examples

>>> import numpy as np
>>> arr = np.array([[1, 2], [3, 4]])
>>> arr.dtype
dtype('int64')
>>> arr.itemsize
8

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.itemsize
80

Endianness of this data:

dtype.byteorder A character indicating the byte-order of this data-type ob-
ject.

attribute
dtype.byteorder

A character indicating the byte-order of this data-type object.
One of:

‘=’ native
‘<’ little-endian
‘>’ big-endian
‘|’ not applicable

All built-in data-type objects have byteorder either ‘=’ or ‘|’.

926 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> dt = np.dtype('i2')
>>> dt.byteorder
'='
>>> # endian is not relevant for 8 bit numbers
>>> np.dtype('i1').byteorder
'|'
>>> # or ASCII strings
>>> np.dtype('S2').byteorder
'|'
>>> # Even if specific code is given, and it is native
>>> # '=' is the byteorder
>>> import sys
>>> sys_is_le = sys.byteorder == 'little'
>>> native_code = '<' if sys_is_le else '>'
>>> swapped_code = '>' if sys_is_le else '<'
>>> dt = np.dtype(native_code + 'i2')
>>> dt.byteorder
'='
>>> # Swapped code shows up as itself
>>> dt = np.dtype(swapped_code + 'i2')
>>> dt.byteorder == swapped_code
True

Information about sub-data-types in a structured data type:

dtype.fields Dictionary of named fields defined for this data type, or
None.

dtype.names Ordered list of field names, or None if there are no fields.

attribute
dtype.fields

Dictionary of named fields defined for this data type, or None.
The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple fully
describing the field:

(dtype, offset[, title])

Offset is limited to C int, which is signed and usually 32 bits. If present, the optional title can be any object (if
it is a string or unicode then it will also be a key in the fields dictionary, otherwise it’s meta-data). Notice also
that the first two elements of the tuple can be passed directly as arguments to the ndarray.getfield and
ndarray.setfield methods.
See also:

ndarray.getfield, ndarray.setfield

1.2. Array objects 927

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print(dt.fields)
{'grades': (dtype(('float64',(2,))), 16), 'name': (dtype('|S16'), 0)}

attribute
dtype.names

Ordered list of field names, or None if there are no fields.
The names are ordered according to increasing byte offset. This can be used, for example, to walk through all of
the named fields in offset order.

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
('name', 'grades')

For data types that describe sub-arrays:

dtype.subdtype Tuple (item_dtype, shape) if this dtype de-
scribes a sub-array, and None otherwise.

dtype.shape Shape tuple of the sub-array if this data type describes a
sub-array, and () otherwise.

attribute
dtype.subdtype

Tuple (item_dtype, shape) if this dtype describes a sub-array, and None otherwise.
The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of the array.
If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are tacked
on to the end of the retrieved array.
See also:

dtype.base

Examples

>>> import numpy as np
>>> x = numpy.dtype('8f')
>>> x.subdtype
(dtype('float32'), (8,))

>>> x = numpy.dtype('i2')
>>> x.subdtype
>>>

attribute

928 1. Python API

NumPy Reference, Release 2.2.0

dtype.shape

Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

Examples

>>> import numpy as np
>>> dt = np.dtype(('i4', 4))
>>> dt.shape
(4,)

>>> dt = np.dtype(('i4', (2, 3)))
>>> dt.shape
(2, 3)

Attributes providing additional information:

dtype.hasobject Boolean indicating whether this dtype contains any
reference-counted objects in any fields or sub-dtypes.

dtype.flags Bit-flags describing how this data type is to be interpreted.
dtype.isbuiltin Integer indicating how this dtype relates to the built-in

dtypes.
dtype.isnative Boolean indicating whether the byte order of this dtype is

native to the platform.
dtype.descr __array_interface__ description of the data-type.
dtype.alignment The required alignment (bytes) of this data-type accord-

ing to the compiler.
dtype.base Returns dtype for the base element of the subarrays, re-

gardless of their dimension or shape.

attribute
dtype.hasobject

Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.
Recall that what is actually in the ndarray memory representing the Python object is the memory address of that
object (a pointer). Special handling may be required, and this attribute is useful for distinguishing data types that
may contain arbitrary Python objects and data-types that won’t.

attribute
dtype.flags

Bit-flags describing how this data type is to be interpreted.
Bit-masks are in numpy._core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE,
ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of these
flags is in C-API documentation; they are largely useful for user-defined data-types.
The following example demonstrates that operations on this particular dtype requires Python C-API.

1.2. Array objects 929

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
>>> x.flags
16
>>> np._core.multiarray.NEEDS_PYAPI
16

attribute
dtype.isbuiltin

Integer indicating how this dtype relates to the built-in dtypes.
Read-only.

0 if this is a structured array type, with fields
1 if this is a dtype compiled into numpy (such as ints, floats etc)
2 if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to

extend numpy to handle a new array type. See user.user-defined-data-types in the NumPy manual.

Examples

>>> import numpy as np
>>> dt = np.dtype('i2')
>>> dt.isbuiltin
1
>>> dt = np.dtype('f8')
>>> dt.isbuiltin
1
>>> dt = np.dtype([('field1', 'f8')])
>>> dt.isbuiltin
0

attribute
dtype.isnative

Boolean indicating whether the byte order of this dtype is native to the platform.
attribute
dtype.descr

__array_interface__ description of the data-type.
The format is that required by the ‘descr’ key in the __array_interface__ attribute.
Warning: This attribute exists specifically for __array_interface__, and passing it directly to numpy.dtype will
not accurately reconstruct some dtypes (e.g., scalar and subarray dtypes).

930 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.dtype(float)
>>> x.descr
[('', '<f8')]

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.descr
[('name', '<U16'), ('grades', '<f8', (2,))]

attribute
dtype.alignment

The required alignment (bytes) of this data-type according to the compiler.
More information is available in the C-API section of the manual.

Examples

>>> import numpy as np
>>> x = np.dtype('i4')
>>> x.alignment
4

>>> x = np.dtype(float)
>>> x.alignment
8

attribute
dtype.base

Returns dtype for the base element of the subarrays, regardless of their dimension or shape.
See also:

dtype.subdtype

Examples

>>> import numpy as np
>>> x = numpy.dtype('8f')
>>> x.base
dtype('float32')

>>> x = numpy.dtype('i2')
>>> x.base
dtype('int16')

Metadata attached by the user:

dtype.metadata Either None or a readonly dictionary of metadata (map-
pingproxy).

1.2. Array objects 931

NumPy Reference, Release 2.2.0

attribute
dtype.metadata

Either None or a readonly dictionary of metadata (mappingproxy).
The metadata field can be set using any dictionary at data-type creation. NumPy currently has no uniform approach
to propagating metadata; although some array operations preserve it, there is no guarantee that others will.

Warning: Although used in certain projects, this feature was long undocumented and is not well supported.
Some aspects of metadata propagation are expected to change in the future.

Examples

>>> import numpy as np
>>> dt = np.dtype(float, metadata={"key": "value"})
>>> dt.metadata["key"]
'value'
>>> arr = np.array([1, 2, 3], dtype=dt)
>>> arr.dtype.metadata
mappingproxy({'key': 'value'})

Adding arrays with identical datatypes currently preserves the metadata:

>>> (arr + arr).dtype.metadata
mappingproxy({'key': 'value'})

But if the arrays have different dtype metadata, the metadata may be dropped:

>>> dt2 = np.dtype(float, metadata={"key2": "value2"})
>>> arr2 = np.array([3, 2, 1], dtype=dt2)
>>> (arr + arr2).dtype.metadata is None
True # The metadata field is cleared so None is returned

Methods
Data types have the following method for changing the byte order:

dtype.newbyteorder([new_order]) Return a new dtype with a different byte order.

The following methods implement the pickle protocol:

dtype.__reduce__ Helper for pickle.
dtype.__setstate__

method
dtype.__reduce__()

Helper for pickle.
method

932 1. Python API

NumPy Reference, Release 2.2.0

dtype.__setstate__()

Utility method for typing:

dtype.__class_getitem__(item, /) Return a parametrized wrapper around the dtype type.

method
dtype.__class_getitem__(item, /)

Return a parametrized wrapper around the dtype type.
New in version 1.22.

Returns
alias

[types.GenericAlias] A parametrized dtype type.
See also:

PEP 585
Type hinting generics in standard collections.

Examples

>>> import numpy as np

>>> np.dtype[np.int64]
numpy.dtype[numpy.int64]

Comparison operations:

dtype.__ge__(value, /) Return self>=value.
dtype.__gt__(value, /) Return self>value.
dtype.__le__(value, /) Return self<=value.
dtype.__lt__(value, /) Return self<value.

method
dtype.__ge__(value, /)

Return self>=value.
method
dtype.__gt__(value, /)

Return self>value.
method
dtype.__le__(value, /)

Return self<=value.
method
dtype.__lt__(value, /)

Return self<value.

1.2. Array objects 933

https://peps.python.org/pep-0585/

NumPy Reference, Release 2.2.0

1.2.4 Data type promotion in NumPy

When mixing two different data types, NumPy has to determine the appropriate dtype for the result of the operation.
This step is referred to as promotion or finding the common dtype.
In typical cases, the user does not need to worry about the details of promotion, since the promotion step usually ensures
that the result will either match or exceed the precision of the input.
For example, when the inputs are of the same dtype, the dtype of the result matches the dtype of the inputs:

>>> np.int8(1) + np.int8(1)
np.int8(2)

Mixing two different dtypes normally produces a result with the dtype of the higher precision input:

>>> np.int8(4) + np.int64(8) # 64 > 8
np.int64(12)
>>> np.float32(3) + np.float16(3) # 32 > 16
np.float32(6.0)

In typical cases, this does not lead to surprises. However, if you work with non-default dtypes like unsigned integers and
low-precision floats, or if you mix NumPy integers, NumPy floats, and Python scalars, some details of NumPy promotion
rules may be relevant. Note that these detailed rules do not always match those of other languages1.
Numerical dtypes come in four “kinds” with a natural hierarchy.

1. unsigned integers (uint)
2. signed integers (int)
3. float (float)
4. complex (complex)

In addition to kind, NumPy numerical dtypes also have an associated precision, specified in bits. Together, the kind and
precision specify the dtype. For example, a uint8 is an unsigned integer stored using 8 bits.
The result of an operation will always be of an equal or higher kind of any of the inputs. Furthermore, the result will
always have a precision greater than or equal to those of the inputs. Already, this can lead to some examples which may
be unexpected:

1. When mixing floating point numbers and integers, the precision of the integer may force the result to a higher
precision floating point. For example, the result of an operation involving int64 and float16 is float64.

2. When mixing unsigned and signed integers with the same precision, the result will have higher precision than either
inputs. Additionally, if one of them has 64bit precision already, no higher precision integer is available and for
example an operation involving int64 and uint64 gives float64.

Please see the Numerical promotion section and image below for details on both.
1 To a large degree, this may just be for choices made early on in NumPy’s predecessors. For more details, see NEP 50.

934 1. Python API

https://numpy.org/neps/nep-0050-scalar-promotion.html#nep50

NumPy Reference, Release 2.2.0

Detailed behavior of Python scalars

Since NumPy 2.02, an important point in our promotion rules is that although operations involving two NumPy dtypes
never lose precision, operations involving a NumPy dtype and a Python scalar (int, float, or complex) can lose
precision. For instance, it is probably intuitive that the result of an operation between a Python integer and a NumPy
integer should be a NumPy integer. However, Python integers have arbitrary precision whereas all NumPy dtypes have
fixed precision, so the arbitrary precision of Python integers cannot be preserved.
More generally, NumPy considers the “kind” of Python scalars, but ignores their precision when determining the result
dtype. This is often convenient. For instance, when working with arrays of a low precision dtype, it is usually desirable
for simple operations with Python scalars to preserve the dtype.

>>> arr_float32 = np.array([1, 2.5, 2.1], dtype="float32")
>>> arr_float32 + 10.0 # undesirable to promote to float64
array([11. , 12.5, 12.1], dtype=float32)
>>> arr_int16 = np.array([3, 5, 7], dtype="int16")
>>> arr_int16 + 10 # undesirable to promote to int64
array([13, 15, 17], dtype=int16)

In both cases, the result precision is dictated by the NumPy dtype. Because of this, arr_float32 + 3.0 behaves
the same as arr_float32 + np.float32(3.0), and arr_int16 + 10 behaves as arr_int16 + np.
int16(10.).
As another example, when mixing NumPy integers with a Python float or complex, the result always has type
float64 or complex128:

>> np.int16(1) + 1.0 np.float64(2.0)
However, these rules can also lead to surprising behavior when working with low precision dtypes.
First, since the Python value is converted to a NumPy one before the operation can by performed, operations can fail with
an error when the result seems obvious. For instance, np.int8(1) + 1000 cannot continue because 1000 exceeds
the maximum value of an int8. When the Python scalar cannot be coerced to the NumPy dtype, an error is raised:

>>> np.int8(1) + 1000
Traceback (most recent call last):
...

OverflowError: Python integer 1000 out of bounds for int8
>>> np.int64(1) * 10**100
Traceback (most recent call last):
...
OverflowError: Python int too large to convert to C long
>>> np.float32(1) + 1e300
np.float32(inf)
... RuntimeWarning: overflow encountered in cast

Second, since the Python float or integer precision is always ignored, a low precision NumPy scalar will keep using its lower
precision unless explicitly converted to a higher precision NumPy dtype or Python scalar (e.g. via int(), float(), or
scalar.item()). This lower precision may be detrimental to some calculations or lead to incorrect results, especially
in the case of integer overflows:

>>> np.int8(100) + 100 # the result exceeds the capacity of int8
np.int8(-56)
... RuntimeWarning: overflow encountered in scalar add

2 See also NEP 50 which changed the rules for NumPy 2.0. Previous versions of NumPy would sometimes return higher precision results based on
the input value of Python scalars. Further, previous versions of NumPy would typically ignore the higher precision of NumPy scalars or 0-D arrays for
promotion purposes.

1.2. Array objects 935

https://numpy.org/neps/nep-0050-scalar-promotion.html#nep50

NumPy Reference, Release 2.2.0

Note that NumPy warns when overflows occur for scalars, but not for arrays; e.g., np.array(100,
dtype="uint8") + 100 will not warn.

Numerical promotion

The following image shows the numerical promotion rules with the kinds on the vertical axis and the precision on the
horizontal axis.

The input dtype with the higher kind determines the kind of the result dtype. The result dtype has a precision as low as
possible without appearing to the left of either input dtype in the diagram.
Note the following specific rules and observations:

1. When a Pythonfloat orcomplex interacts with aNumPy integer the result will befloat64 orcomplex128
(yellow border). NumPy booleans will also be cast to the default integer3. This is not relevant when additionally
NumPy floating point values are involved.

2. The precision is drawn such that float16 < int16 < uint16 because large uint16 do not fit int16 and
large int16 will lose precision when stored in a float16. This pattern however is broken since NumPy always
considers float64 and complex128 to be acceptable promotion results for any integer value.

3. A special case is that NumPy promotes many combinations of signed and unsigned integers to float64. A higher
kind is used here because no signed integer dtype is sufficiently precise to hold a uint64.

Exceptions to the general promotion rules

In NumPy promotion refers to what specific functions do with the result and in some cases, this means that NumPy may
deviate from what the np.result_type would give.

3 The default integer is marked as int64 in the schema but is int32 on 32bit platforms. However, normal PCs are 64bit.

936 1. Python API

NumPy Reference, Release 2.2.0

Behavior of sum and prod
np.sum and np.prod will always return the default integer type when summing over integer values (or booleans).
This is usually an int64. The reason for this is that integer summations are otherwise very likely to overflow and give
confusing results. This rule also applies to the underlying np.add.reduce and np.multiply.reduce.

Notable behavior with NumPy or Python integer scalars
NumPy promotion refers to the result dtype and operation precision, but the operation will sometimes dictate that result.
Division always returns floating point values and comparison always booleans.
This leads to what may appear as “exceptions” to the rules:

• NumPy comparisons with Python integers or mixed precision integers always return the correct result. The inputs
will never be cast in a way which loses precision.

• Equality comparisons between types which cannot be promoted will be considered all False (equality) or all
True (not-equal).

• Unary math functions like np.sin that always return floating point values, accept any Python integer input by
converting it to float64.

• Division always returns floating point values and thus also allows divisions between any NumPy integer with any
Python integer value by casting both to float64.

In principle, some of these exceptions may make sense for other functions. Please raise an issue if you feel this is the
case.

Promotion of non-numerical datatypes

NumPy extends the promotion to non-numerical types, although in many cases promotion is not well defined and simply
rejected.
The following rules apply:

• NumPy byte strings (np.bytes_) can be promoted to unicode strings (np.str_). However, casting the bytes
to unicode will fail for non-ascii characters.

• For some purposes NumPy will promote almost any other datatype to strings. This applies to array creation or
concatenation.

• The array constructors like np.array() will use object dtype when there is no viable promotion.
• Structured dtypes can promote when their field names and order matches. In that case all fields are promoted
individually.

• NumPy timedelta can in some cases promote with integers.

Note: Some of these rules are somewhat surprising, and are being considered for change in the future. However, any
backward-incompatible changes have to be weighed against the risks of breaking existing code. Please raise an issue if
you have particular ideas about how promotion should work.

1.2. Array objects 937

NumPy Reference, Release 2.2.0

Details of promoted dtype instances

The above discussion hasmainly dealt with the behavior whenmixing different DType classes. Adtype instance attached
to an array can carry additional information such as byte-order, metadata, string length, or exact structured dtype layout.
While the string length or field names of a structured dtype are important, NumPy considers byte-order, metadata, and
the exact layout of a structured dtype as storage details. During promotion NumPy does not take these storage details into
account: * Byte-order is converted to native byte-order. * Metadata attached to the dtype may or may not be preserved.
* Resulting structured dtypes will be packed (but aligned if inputs were).
This behaviors is the best behavior for most programs where storage details are not relevant to the final results and where
the use of incorrect byte-order could drastically slow down evaluation.

1.2.5 Iterating over arrays

Note: Arrays support the iterator protocol and can be iterated over like Python lists. See the quickstart.indexing-slicing-
and-iterating section in the Quickstart guide for basic usage and examples. The remainder of this document presents the
nditer object and covers more advanced usage.

The iterator object nditer, introduced in NumPy 1.6, provides many flexible ways to visit all the elements of one or
more arrays in a systematic fashion. This page introduces some basic ways to use the object for computations on arrays
in Python, then concludes with how one can accelerate the inner loop in Cython. Since the Python exposure of nditer
is a relatively straightforward mapping of the C array iterator API, these ideas will also provide help working with array
iteration from C or C++.

Single array iteration

The most basic task that can be done with the nditer is to visit every element of an array. Each element is provided
one by one using the standard Python iterator interface.

Example

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a):
... print(x, end=' ')
...
0 1 2 3 4 5

An important thing to be aware of for this iteration is that the order is chosen to match the memory layout of the array
instead of using a standard C or Fortran ordering. This is done for access efficiency, reflecting the idea that by default
one simply wants to visit each element without concern for a particular ordering. We can see this by iterating over the
transpose of our previous array, compared to taking a copy of that transpose in C order.

Example

>>> import numpy as np

938 1. Python API

NumPy Reference, Release 2.2.0

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a.T):
... print(x, end=' ')
...
0 1 2 3 4 5

>>> for x in np.nditer(a.T.copy(order='C')):
... print(x, end=' ')
...
0 3 1 4 2 5

The elements of both a and a.T get traversed in the same order, namely the order they are stored in memory, whereas
the elements of a.T.copy(order=’C’) get visited in a different order because they have been put into a different memory
layout.

Controlling iteration order
There are times when it is important to visit the elements of an array in a specific order, irrespective of the layout of the
elements in memory. The nditer object provides an order parameter to control this aspect of iteration. The default,
having the behavior described above, is order=’K’ to keep the existing order. This can be overridden with order=’C’ for
C order and order=’F’ for Fortran order.

Example

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, order='F'):
... print(x, end=' ')
...
0 3 1 4 2 5
>>> for x in np.nditer(a.T, order='C'):
... print(x, end=' ')
...
0 3 1 4 2 5

Modifying array values
By default, the nditer treats the input operand as a read-only object. To be able to modify the array elements, you must
specify either read-write or write-only mode using the ‘readwrite’ or ‘writeonly’ per-operand flags.
The nditer will then yield writeable buffer arrays which you may modify. However, because the nditer must copy this
buffer data back to the original array once iteration is finished, you must signal when the iteration is ended, by one of two
methods. You may either:

• used the nditer as a context manager using the with statement, and the temporary data will be written back when
the context is exited.

• call the iterator’s close method once finished iterating, which will trigger the write-back.
The nditer can no longer be iterated once either close is called or its context is exited.

Example

1.2. Array objects 939

https://docs.python.org/3/reference/compound_stmts.html#with

NumPy Reference, Release 2.2.0

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> with np.nditer(a, op_flags=['readwrite']) as it:
... for x in it:
... x[...] = 2 * x
...
>>> a
array([[0, 2, 4],

[6, 8, 10]])

If you are writing code that needs to support older versions of numpy, note that prior to 1.15, nditer was not a context
manager and did not have a close method. Instead it relied on the destructor to initiate the writeback of the buffer.

Using an external loop
In all the examples so far, the elements of a are provided by the iterator one at a time, because all the looping logic is
internal to the iterator. While this is simple and convenient, it is not very efficient. A better approach is to move the
one-dimensional innermost loop into your code, external to the iterator. This way, NumPy’s vectorized operations can be
used on larger chunks of the elements being visited.
The nditer will try to provide chunks that are as large as possible to the inner loop. By forcing ‘C’ and ‘F’ order, we
get different external loop sizes. This mode is enabled by specifying an iterator flag.
Observe that with the default of keeping native memory order, the iterator is able to provide a single one-dimensional
chunk, whereas when forcing Fortran order, it has to provide three chunks of two elements each.

Example

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop']):
... print(x, end=' ')
...
[0 1 2 3 4 5]

>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print(x, end=' ')
...
[0 3] [1 4] [2 5]

940 1. Python API

NumPy Reference, Release 2.2.0

Tracking an index or multi-index
During iteration, you may want to use the index of the current element in a computation. For example, you may want to
visit the elements of an array in memory order, but use a C-order, Fortran-order, or multidimensional index to look up
values in a different array.
The index is tracked by the iterator object itself, and accessible through the index or multi_index properties, depending
on what was requested. The examples below show printouts demonstrating the progression of the index:

Example

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3)
>>> it = np.nditer(a, flags=['f_index'])
>>> for x in it:
... print("%d <%d>" % (x, it.index), end=' ')
...
0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

>>> it = np.nditer(a, flags=['multi_index'])
>>> for x in it:
... print("%d <%s>" % (x, it.multi_index), end=' ')
...
0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> with np.nditer(a, flags=['multi_index'], op_flags=['writeonly']) as it:
... for x in it:
... x[...] = it.multi_index[1] - it.multi_index[0]
...
>>> a
array([[0, 1, 2],

[-1, 0, 1]])

Tracking an index or multi-index is incompatible with using an external loop, because it requires a different index value
per element. If you try to combine these flags, the nditer object will raise an exception.

Example

>>> import numpy as np

>>> a = np.zeros((2,3))
>>> it = np.nditer(a, flags=['c_index', 'external_loop'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Iterator flag EXTERNAL_LOOP cannot be used if an index or multi-index is␣
↪→being tracked

1.2. Array objects 941

NumPy Reference, Release 2.2.0

Alternative looping and element access
To make its properties more readily accessible during iteration, nditer has an alternative syntax for iterating, which
works explicitly with the iterator object itself. With this looping construct, the current value is accessible by indexing into
the iterator. Other properties, such as tracked indices remain as before. The examples below produce identical results to
the ones in the previous section.

Example

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3)
>>> it = np.nditer(a, flags=['f_index'])
>>> while not it.finished:
... print("%d <%d>" % (it[0], it.index), end=' ')
... is_not_finished = it.iternext()
...
0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

>>> it = np.nditer(a, flags=['multi_index'])
>>> while not it.finished:
... print("%d <%s>" % (it[0], it.multi_index), end=' ')
... is_not_finished = it.iternext()
...
0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> with np.nditer(a, flags=['multi_index'], op_flags=['writeonly']) as it:
... while not it.finished:
... it[0] = it.multi_index[1] - it.multi_index[0]
... is_not_finished = it.iternext()
...
>>> a
array([[0, 1, 2],

[-1, 0, 1]])

Buffering the array elements
When forcing an iteration order, we observed that the external loop option may provide the elements in smaller chunks
because the elements can’t be visited in the appropriate order with a constant stride. When writing C code, this is generally
fine, however in pure Python code this can cause a significant reduction in performance.
By enabling bufferingmode, the chunks provided by the iterator to the inner loop can bemade larger, significantly reducing
the overhead of the Python interpreter. In the example forcing Fortran iteration order, the inner loop gets to see all the
elements in one go when buffering is enabled.

Example

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3)
>>> for x in np.nditer(a, flags=['external_loop'], order='F'):
... print(x, end=' ')
...
[0 3] [1 4] [2 5]

942 1. Python API

NumPy Reference, Release 2.2.0

>>> for x in np.nditer(a, flags=['external_loop','buffered'], order='F'):
... print(x, end=' ')
...
[0 3 1 4 2 5]

Iterating as a specific data type
There are times when it is necessary to treat an array as a different data type than it is stored as. For instance, one may
want to do all computations on 64-bit floats, even if the arrays being manipulated are 32-bit floats. Except when writing
low-level C code, it’s generally better to let the iterator handle the copying or buffering instead of casting the data type
yourself in the inner loop.
There are two mechanisms which allow this to be done, temporary copies and buffering mode. With temporary copies,
a copy of the entire array is made with the new data type, then iteration is done in the copy. Write access is permitted
through a mode which updates the original array after all the iteration is complete. The major drawback of temporary
copies is that the temporary copy may consume a large amount of memory, particularly if the iteration data type has a
larger itemsize than the original one.
Buffering mode mitigates the memory usage issue and is more cache-friendly than making temporary copies. Except for
special cases, where the whole array is needed at once outside the iterator, buffering is recommended over temporary
copying. Within NumPy, buffering is used by the ufuncs and other functions to support flexible inputs with minimal
memory overhead.
In our examples, we will treat the input array with a complex data type, so that we can take square roots of negative
numbers. Without enabling copies or buffering mode, the iterator will raise an exception if the data type doesn’t match
precisely.

Example

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3) - 3
>>> for x in np.nditer(a, op_dtypes=['complex128']):
... print(np.sqrt(x), end=' ')
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Iterator operand required copying or buffering, but neither copying nor␣
↪→buffering was enabled

In copying mode, ‘copy’ is specified as a per-operand flag. This is done to provide control in a per-operand fashion.
Buffering mode is specified as an iterator flag.

Example

>>> import numpy as np

>>> a = np.arange(6).reshape(2,3) - 3
>>> for x in np.nditer(a, op_flags=['readonly','copy'],
... op_dtypes=['complex128']):
... print(np.sqrt(x), end=' ')
...
1.7320508075688772j 1.4142135623730951j 1j 0j (1+0j) (1.4142135623730951+0j)

1.2. Array objects 943

NumPy Reference, Release 2.2.0

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['complex128']):
... print(np.sqrt(x), end=' ')
...
1.7320508075688772j 1.4142135623730951j 1j 0j (1+0j) (1.4142135623730951+0j)

The iterator uses NumPy’s casting rules to determine whether a specific conversion is permitted. By default, it enforces
‘safe’ casting. This means, for example, that it will raise an exception if you try to treat a 64-bit float array as a 32-bit
float array. In many cases, the rule ‘same_kind’ is the most reasonable rule to use, since it will allow conversion from 64
to 32-bit float, but not from float to int or from complex to float.

Example

>>> import numpy as np

>>> a = np.arange(6.)
>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32']):
... print(x, end=' ')
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype(
↪→'float32') according to the rule 'safe'

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32'],
... casting='same_kind'):
... print(x, end=' ')
...
0.0 1.0 2.0 3.0 4.0 5.0

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['int32'], casting='same_kind
↪→'):
... print(x, end=' ')
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype(
↪→'int32') according to the rule 'same_kind'

One thing to watch out for is conversions back to the original data type when using a read-write or write-only operand.
A common case is to implement the inner loop in terms of 64-bit floats, and use ‘same_kind’ casting to allow the other
floating-point types to be processed as well. While in read-only mode, an integer array could be provided, read-write
mode will raise an exception because conversion back to the array would violate the casting rule.

Example

>>> import numpy as np

>>> a = np.arange(6)
>>> for x in np.nditer(a, flags=['buffered'], op_flags=['readwrite'],
... op_dtypes=['float64'], casting='same_kind'):
... x[...] = x / 2.0
...

(continues on next page)

944 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

TypeError: Iterator requested dtype could not be cast from dtype('float64') to dtype(
↪→'int64'), the operand 0 dtype, according to the rule 'same_kind'

Broadcasting array iteration

NumPy has a set of rules for dealing with arrays that have differing shapes which are applied whenever functions take
multiple operands which combine element-wise. This is called broadcasting. The nditer object can apply these rules
for you when you need to write such a function.
As an example, we print out the result of broadcasting a one and a two dimensional array together.

Example

>>> import numpy as np

>>> a = np.arange(3)
>>> b = np.arange(6).reshape(2,3)
>>> for x, y in np.nditer([a,b]):
... print("%d:%d" % (x,y), end=' ')
...
0:0 1:1 2:2 0:3 1:4 2:5

When a broadcasting error occurs, the iterator raises an exception which includes the input shapes to help diagnose the
problem.

Example

>>> import numpy as np

>>> a = np.arange(2)
>>> b = np.arange(6).reshape(2,3)
>>> for x, y in np.nditer([a,b]):
... print("%d:%d" % (x,y), end=' ')
...
Traceback (most recent call last):
...
ValueError: operands could not be broadcast together with shapes (2,) (2,3)

1.2. Array objects 945

NumPy Reference, Release 2.2.0

Iterator-allocated output arrays
A common case in NumPy functions is to have outputs allocated based on the broadcasting of the input, and additionally
have an optional parameter called ‘out’ where the result will be placed when it is provided. The nditer object provides
a convenient idiom that makes it very easy to support this mechanism.
We’ll show how this works by creating a function square which squares its input. Let’s start with a minimal function
definition excluding ‘out’ parameter support.

Example

>>> import numpy as np

>>> def square(a):
... with np.nditer([a, None]) as it:
... for x, y in it:
... y[...] = x*x
... return it.operands[1]
...
>>> square([1,2,3])
array([1, 4, 9])

By default, the nditer uses the flags ‘allocate’ and ‘writeonly’ for operands that are passed in as None. This means we
were able to provide just the two operands to the iterator, and it handled the rest.
When adding the ‘out’ parameter, we have to explicitly provide those flags, because if someone passes in an array as ‘out’,
the iterator will default to ‘readonly’, and our inner loop would fail. The reason ‘readonly’ is the default for input arrays is to
prevent confusion about unintentionally triggering a reduction operation. If the default were ‘readwrite’, any broadcasting
operation would also trigger a reduction, a topic which is covered later in this document.
While we’re at it, let’s also introduce the ‘no_broadcast’ flag, which will prevent the output from being broadcast. This is
important, because we only want one input value for each output. Aggregating more than one input value is a reduction
operation which requires special handling. It would already raise an error because reductions must be explicitly enabled in
an iterator flag, but the error message that results from disabling broadcasting is much more understandable for end-users.
To see how to generalize the square function to a reduction, look at the sum of squares function in the section about
Cython.
For completeness, we’ll also add the ‘external_loop’ and ‘buffered’ flags, as these are what you will typically want for
performance reasons.

Example

>>> import numpy as np

>>> def square(a, out=None):
... it = np.nditer([a, out],
... flags = ['external_loop', 'buffered'],
... op_flags = [['readonly'],
... ['writeonly', 'allocate', 'no_broadcast']])
... with it:
... for x, y in it:
... y[...] = x*x
... return it.operands[1]
...

946 1. Python API

NumPy Reference, Release 2.2.0

>>> square([1,2,3])
array([1, 4, 9])

>>> b = np.zeros((3,))
>>> square([1,2,3], out=b)
array([1., 4., 9.])
>>> b
array([1., 4., 9.])

>>> square(np.arange(6).reshape(2,3), out=b)
Traceback (most recent call last):
...

ValueError: non-broadcastable output operand with shape (3,) doesn't
match the broadcast shape (2,3)

Outer product iteration
Any binary operation can be extended to an array operation in an outer product fashion like in outer, and the nditer
object provides a way to accomplish this by explicitly mapping the axes of the operands. It is also possible to do this with
newaxis indexing, but we will show you how to directly use the nditer op_axes parameter to accomplish this with no
intermediate views.
We’ll do a simple outer product, placing the dimensions of the first operand before the dimensions of the second operand.
The op_axes parameter needs one list of axes for each operand, and provides a mapping from the iterator’s axes to the
axes of the operand.
Suppose the first operand is one dimensional and the second operand is two dimensional. The iterator will have three
dimensions, so op_axes will have two 3-element lists. The first list picks out the one axis of the first operand, and is -1 for
the rest of the iterator axes, with a final result of [0, -1, -1]. The second list picks out the two axes of the second operand,
but shouldn’t overlap with the axes picked out in the first operand. Its list is [-1, 0, 1]. The output operand maps onto the
iterator axes in the standard manner, so we can provide None instead of constructing another list.
The operation in the inner loop is a straightforward multiplication. Everything to do with the outer product is handled by
the iterator setup.

Example

>>> import numpy as np

>>> a = np.arange(3)
>>> b = np.arange(8).reshape(2,4)
>>> it = np.nditer([a, b, None], flags=['external_loop'],
... op_axes=[[0, -1, -1], [-1, 0, 1], None])
>>> with it:
... for x, y, z in it:
... z[...] = x*y
... result = it.operands[2] # same as z
...
>>> result
array([[[0, 0, 0, 0],

[0, 0, 0, 0]],
[[0, 1, 2, 3],
[4, 5, 6, 7]],
[[0, 2, 4, 6],
[8, 10, 12, 14]]])

1.2. Array objects 947

NumPy Reference, Release 2.2.0

Note that once the iterator is closed we can not access operands and must use a reference created inside the context
manager.

Reduction iteration
Whenever a writeable operand has fewer elements than the full iteration space, that operand is undergoing a reduction. The
nditer object requires that any reduction operand be flagged as read-write, and only allows reductions when ‘reduce_ok’
is provided as an iterator flag.
For a simple example, consider taking the sum of all elements in an array.

Example

>>> import numpy as np

>>> a = np.arange(24).reshape(2,3,4)
>>> b = np.array(0)
>>> with np.nditer([a, b], flags=['reduce_ok'],
... op_flags=[['readonly'], ['readwrite']]) as it:
... for x,y in it:
... y[...] += x
...
>>> b
array(276)
>>> np.sum(a)
276

Things are a little bit more tricky when combining reduction and allocated operands. Before iteration is started, any
reduction operand must be initialized to its starting values. Here’s how we can do this, taking sums along the last axis of
a.

Example

>>> import numpy as np

>>> a = np.arange(24).reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, [0,1,-1]])
>>> with it:
... it.operands[1][...] = 0
... for x, y in it:
... y[...] += x
... result = it.operands[1]
...
>>> result
array([[6, 22, 38],

[54, 70, 86]])
>>> np.sum(a, axis=2)
array([[6, 22, 38],

[54, 70, 86]])

948 1. Python API

NumPy Reference, Release 2.2.0

To do buffered reduction requires yet another adjustment during the setup. Normally the iterator construction involves
copying the first buffer of data from the readable arrays into the buffer. Any reduction operand is readable, so it may
be read into a buffer. Unfortunately, initialization of the operand after this buffering operation is complete will not be
reflected in the buffer that the iteration starts with, and garbage results will be produced.
The iterator flag “delay_bufalloc” is there to allow iterator-allocated reduction operands to exist together with buffering.
When this flag is set, the iterator will leave its buffers uninitialized until it receives a reset, after which it will be ready for
regular iteration. Here’s how the previous example looks if we also enable buffering.

Example

>>> import numpy as np

>>> a = np.arange(24).reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok',
... 'buffered', 'delay_bufalloc'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, [0,1,-1]])
>>> with it:
... it.operands[1][...] = 0
... it.reset()
... for x, y in it:
... y[...] += x
... result = it.operands[1]
...
>>> result
array([[6, 22, 38],

[54, 70, 86]])

Putting the inner loop in Cython

Those who want really good performance out of their low level operations should strongly consider directly using the
iteration API provided in C, but for those who are not comfortable with C or C++, Cython is a good middle ground with
reasonable performance tradeoffs. For the nditer object, this means letting the iterator take care of broadcasting, dtype
conversion, and buffering, while giving the inner loop to Cython.
For our example, we’ll create a sum of squares function. To start, let’s implement this function in straightforward Python.
We want to support an ‘axis’ parameter similar to the numpy sum function, so we will need to construct a list for the
op_axes parameter. Here’s how this looks.

Example

>>> def axis_to_axeslist(axis, ndim):
... if axis is None:
... return [-1] * ndim
... else:
... if type(axis) is not tuple:
... axis = (axis,)
... axeslist = [1] * ndim
... for i in axis:
... axeslist[i] = -1
... ax = 0
... for i in range(ndim):

(continues on next page)

1.2. Array objects 949

NumPy Reference, Release 2.2.0

(continued from previous page)
... if axeslist[i] != -1:
... axeslist[i] = ax
... ax += 1
... return axeslist
...
>>> def sum_squares_py(arr, axis=None, out=None):
... axeslist = axis_to_axeslist(axis, arr.ndim)
... it = np.nditer([arr, out], flags=['reduce_ok',
... 'buffered', 'delay_bufalloc'],
... op_flags=[['readonly'], ['readwrite', 'allocate']],
... op_axes=[None, axeslist],
... op_dtypes=['float64', 'float64'])
... with it:
... it.operands[1][...] = 0
... it.reset()
... for x, y in it:
... y[...] += x*x
... return it.operands[1]
...
>>> a = np.arange(6).reshape(2,3)
>>> sum_squares_py(a)
array(55.)
>>> sum_squares_py(a, axis=-1)
array([5., 50.])

To Cython-ize this function, we replace the inner loop (y[…] += x*x) with Cython code that’s specialized for the float64
dtype. With the ‘external_loop’ flag enabled, the arrays provided to the inner loop will always be one-dimensional, so very
little checking needs to be done.
Here’s the listing of sum_squares.pyx:

import numpy as np
cimport numpy as np
cimport cython

def axis_to_axeslist(axis, ndim):
if axis is None:

return [-1] * ndim
else:

if type(axis) is not tuple:
axis = (axis,)

axeslist = [1] * ndim
for i in axis:

axeslist[i] = -1
ax = 0
for i in range(ndim):

if axeslist[i] != -1:
axeslist[i] = ax
ax += 1

return axeslist

@cython.boundscheck(False)
def sum_squares_cy(arr, axis=None, out=None):

cdef np.ndarray[double] x
cdef np.ndarray[double] y
cdef int size

(continues on next page)

950 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
cdef double value

axeslist = axis_to_axeslist(axis, arr.ndim)
it = np.nditer([arr, out], flags=['reduce_ok', 'external_loop',

'buffered', 'delay_bufalloc'],
op_flags=[['readonly'], ['readwrite', 'allocate']],
op_axes=[None, axeslist],
op_dtypes=['float64', 'float64'])

with it:
it.operands[1][...] = 0
it.reset()
for xarr, yarr in it:

x = xarr
y = yarr
size = x.shape[0]
for i in range(size):

value = x[i]
y[i] = y[i] + value * value

return it.operands[1]

On this machine, building the .pyx file into a module looked like the following, but you may have to find some Cython
tutorials to tell you the specifics for your system configuration.:

$ cython sum_squares.pyx
$ gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -I/usr/include/python2.7 -fno-strict-
↪→aliasing -o sum_squares.so sum_squares.c

Running this from the Python interpreter produces the same answers as our native Python/NumPy code did.

Example

>>> from sum_squares import sum_squares_cy
>>> a = np.arange(6).reshape(2,3)
>>> sum_squares_cy(a)
array(55.0)
>>> sum_squares_cy(a, axis=-1)
array([5., 50.])

Doing a little timing in IPython shows that the reduced overhead and memory allocation of the Cython inner loop is
providing a very nice speedup over both the straightforward Python code and an expression using NumPy’s built-in sum
function.:

>>> a = np.random.rand(1000,1000)

>>> timeit sum_squares_py(a, axis=-1)
10 loops, best of 3: 37.1 ms per loop

>>> timeit np.sum(a*a, axis=-1)
10 loops, best of 3: 20.9 ms per loop

>>> timeit sum_squares_cy(a, axis=-1)
100 loops, best of 3: 11.8 ms per loop

>>> np.all(sum_squares_cy(a, axis=-1) == np.sum(a*a, axis=-1))

(continues on next page)

1.2. Array objects 951

NumPy Reference, Release 2.2.0

(continued from previous page)
True

>>> np.all(sum_squares_py(a, axis=-1) == np.sum(a*a, axis=-1))
True

1.2.6 Standard array subclasses

Note: Subclassing a numpy.ndarray is possible but if your goal is to create an array with modified behavior, as do
dask arrays for distributed computation and cupy arrays for GPU-based computation, subclassing is discouraged. Instead,
using numpy’s dispatch mechanism is recommended.

The ndarray can be inherited from (in Python or in C) if desired. Therefore, it can form a foundation for many useful
classes. Often whether to sub-class the array object or to simply use the core array component as an internal part of a
new class is a difficult decision, and can be simply a matter of choice. NumPy has several tools for simplifying how your
new object interacts with other array objects, and so the choice may not be significant in the end. One way to simplify the
question is by asking yourself if the object you are interested in can be replaced as a single array or does it really require
two or more arrays at its core.
Note that asarray always returns the base-class ndarray. If you are confident that your use of the array object can
handle any subclass of an ndarray, then asanyarray can be used to allow subclasses to propagate more cleanly through
your subroutine. In principal a subclass could redefine any aspect of the array and therefore, under strict guidelines,
asanyarray would rarely be useful. However, most subclasses of the array object will not redefine certain aspects of
the array object such as the buffer interface, or the attributes of the array. One important example, however, of why your
subroutine may not be able to handle an arbitrary subclass of an array is that matrices redefine the “*” operator to be
matrix-multiplication, rather than element-by-element multiplication.

Special attributes and methods

See also:
Subclassing ndarray
NumPy provides several hooks that classes can customize:
class.__array_ufunc__(ufunc, method, *inputs, **kwargs)

Any class, ndarray subclass or not, can define this method or set it to None in order to override the behavior of
NumPy’s ufuncs. This works quite similarly to Python’s __mul__ and other binary operation routines.

• ufunc is the ufunc object that was called.
• method is a string indicating which Ufunc method was called (one of "__call__", "reduce", "re-
duceat", "accumulate", "outer", "inner").

• inputs is a tuple of the input arguments to the ufunc.
• kwargs is a dictionary containing the optional input arguments of the ufunc. If given, any out arguments,
both positional and keyword, are passed as a tuple in kwargs. See the discussion in Universal functions
(ufunc) for details.

The method should return either the result of the operation, or NotImplemented if the operation requested is
not implemented.
If one of the input, output, or where arguments has a __array_ufunc__method, it is executed instead of the
ufunc. If more than one of the arguments implements __array_ufunc__, they are tried in the order: subclasses

952 1. Python API

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#NotImplemented

NumPy Reference, Release 2.2.0

before superclasses, inputs before outputs, outputs before where, otherwise left to right. The first routine returning
something other than NotImplemented determines the result. If all of the __array_ufunc__ operations
return NotImplemented, a TypeError is raised.

Note: We intend to re-implement numpy functions as (generalized) Ufunc, in which case it will become possible
for them to be overridden by the __array_ufunc__ method. A prime candidate is matmul, which currently
is not a Ufunc, but could be relatively easily be rewritten as a (set of) generalized Ufuncs. The same may happen
with functions such as median, amin, and argsort.

Like with some other special methods in python, such as __hash__ and __iter__, it is possible to indicate that
your class does not support ufuncs by setting __array_ufunc__ = None. Ufuncs always raise TypeError
when called on an object that sets __array_ufunc__ = None.
The presence of __array_ufunc__ also influences how ndarray handles binary operations like arr +
obj and arr < obj when arr is an ndarray and obj is an instance of a custom class. There are two
possibilities. If obj.__array_ufunc__ is present and not None, then ndarray.__add__ and friends will
delegate to the ufunc machinery, meaning that arr + obj becomes np.add(arr, obj), and then add
invokes obj.__array_ufunc__. This is useful if you want to define an object that acts like an array.
Alternatively, if obj.__array_ufunc__ is set to None, then as a special case, special methods like
ndarray.__add__ will notice this and unconditionally raise TypeError. This is useful if you want to create
objects that interact with arrays via binary operations, but are not themselves arrays. For example, a units handling
systemmight have an object m representing the “meters” unit, and want to support the syntax arr * m to represent
that the array has units of “meters”, but not want to otherwise interact with arrays via ufuncs or otherwise. This can
be done by setting __array_ufunc__ = None and defining __mul__ and __rmul__methods. (Note that
this means that writing an __array_ufunc__ that always returns NotImplemented is not quite the same
as setting __array_ufunc__ = None: in the former case, arr + obj will raise TypeError, while in
the latter case it is possible to define a __radd__ method to prevent this.)
The above does not hold for in-place operators, for which ndarray never returns NotImplemented. Hence,
arr += obj would always lead to a TypeError. This is because for arrays in-place operations cannot gener-
ically be replaced by a simple reverse operation. (For instance, by default, arr += obj would be translated to
arr = arr + obj, i.e., arr would be replaced, contrary to what is expected for in-place array operations.)

Note: If you define __array_ufunc__:
• If you are not a subclass of ndarray, we recommend your class define special methods like __add__
and __lt__ that delegate to ufuncs just like ndarray does. An easy way to do this is to subclass from
NDArrayOperatorsMixin.

• If you subclass ndarray, we recommend that you put all your override logic in __array_ufunc__ and
not also override special methods. This ensures the class hierarchy is determined in only one place rather than
separately by the ufuncmachinery and by the binary operation rules (which gives preference to special methods
of subclasses; the alternative way to enforce a one-place only hierarchy, of setting __array_ufunc__ to
None, would seem very unexpected and thus confusing, as then the subclass would not work at all with ufuncs).

• ndarray defines its own __array_ufunc__, which, evaluates the ufunc if no arguments have over-
rides, and returns NotImplemented otherwise. This may be useful for subclasses for which __ar-
ray_ufunc__ converts any instances of its own class to ndarray: it can then pass these on to its su-
perclass using super().__array_ufunc__(*inputs, **kwargs), and finally return the results
after possible back-conversion. The advantage of this practice is that it ensures that it is possible to have a
hierarchy of subclasses that extend the behaviour. See Subclassing ndarray for details.

class.__array_function__(func, types, args, kwargs)

1.2. Array objects 953

https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#NotImplemented
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#NotImplemented

NumPy Reference, Release 2.2.0

• func is an arbitrary callable exposed by NumPy’s public API, which was called in the form func(*args,
**kwargs).

• types is a collection collections.abc.Collection of unique argument types from the original
NumPy function call that implement __array_function__.

• The tuple args and dict kwargs are directly passed on from the original call.
As a convenience for __array_function__ implementers, types provides all argument types with an
'__array_function__' attribute. This allows implementers to quickly identify cases where they should
defer to __array_function__ implementations on other arguments. Implementations should not rely on the
iteration order of types.
Most implementations of __array_function__ will start with two checks:
1. Is the given function something that we know how to overload?
2. Are all arguments of a type that we know how to handle?

If these conditions hold, __array_function__ should return the result from calling its implementation for
func(*args, **kwargs). Otherwise, it should return the sentinel value NotImplemented, indicating
that the function is not implemented by these types.
There are no general requirements on the return value from __array_function__, although most sensible
implementations should probably return array(s) with the same type as one of the function’s arguments.
It may also be convenient to define a custom decorators (implements below) for registering __ar-
ray_function__ implementations.

HANDLED_FUNCTIONS = {}

class MyArray:
def __array_function__(self, func, types, args, kwargs):

if func not in HANDLED_FUNCTIONS:
return NotImplemented

Note: this allows subclasses that don't override
__array_function__ to handle MyArray objects
if not all(issubclass(t, MyArray) for t in types):

return NotImplemented
return HANDLED_FUNCTIONS[func](*args, **kwargs)

def implements(numpy_function):
"""Register an __array_function__ implementation for MyArray objects."""
def decorator(func):

HANDLED_FUNCTIONS[numpy_function] = func
return func

return decorator

@implements(np.concatenate)
def concatenate(arrays, axis=0, out=None):

... # implementation of concatenate for MyArray objects

@implements(np.broadcast_to)
def broadcast_to(array, shape):

... # implementation of broadcast_to for MyArray objects

Note that it is not required for __array_function__ implementations to include all of the corresponding
NumPy function’s optional arguments (e.g., broadcast_to above omits the irrelevant subok argument). Op-
tional arguments are only passed in to __array_function__ if they were explicitly used in the NumPy func-
tion call.

954 1. Python API

https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection

NumPy Reference, Release 2.2.0

Just like the case for builtin special methods like __add__, properly written __array_function__methods
should always return NotImplemented when an unknown type is encountered. Otherwise, it will be impossible
to correctly override NumPy functions from another object if the operation also includes one of your objects.
For the most part, the rules for dispatch with __array_function__ match those for __array_ufunc__.
In particular:

• NumPy will gather implementations of __array_function__ from all specified inputs and call them
in order: subclasses before superclasses, and otherwise left to right. Note that in some edge cases involving
subclasses, this differs slightly from the current behavior of Python.

• Implementations of __array_function__ indicate that they can handle the operation by returning any
value other than NotImplemented.

• If all __array_function__ methods return NotImplemented, NumPy will raise TypeError.
If no __array_function__ methods exists, NumPy will default to calling its own implementation, intended
for use on NumPy arrays. This case arises, for example, when all array-like arguments are Python numbers or
lists. (NumPy arrays do have a __array_function__ method, given below, but it always returns NotIm-
plemented if any argument other than a NumPy array subclass implements __array_function__.)
One deviation from the current behavior of __array_ufunc__ is that NumPy will only call __ar-
ray_function__ on the first argument of each unique type. This matches Python’s rule for calling reflected
methods, and this ensures that checking overloads has acceptable performance even when there are a large number
of overloaded arguments.

class.__array_finalize__(obj)
Thismethod is called whenever the system internally allocates a new array from obj, where obj is a subclass (subtype)
of the ndarray. It can be used to change attributes of self after construction (so as to ensure a 2-d matrix for
example), or to update meta-information from the “parent.” Subclasses inherit a default implementation of this
method that does nothing.

class.__array_wrap__(array, context=None, return_scalar=False)
At the end of every ufunc, this method is called on the input object with the highest array priority, or the output
object if one was specified. The ufunc-computed array is passed in and whatever is returned is passed to the user.
Subclasses inherit a default implementation of this method, which transforms the array into a new instance of the
object’s class. Subclasses may opt to use this method to transform the output array into an instance of the subclass
and update metadata before returning the array to the user.
NumPy may also call this function without a context from non-ufuncs to allow preserving subclass information.
Changed in version 2.0: return_scalar is now passed as either False (usually) or True indicating that
NumPywould return a scalar. Subclassesmay ignore the value, or returnarray[()] to behavemore likeNumPy.

Note: It is hoped to eventually deprecate this method in favour of __array_ufunc__ for ufuncs (and __ar-
ray_function__ for a few other functions like numpy.squeeze).

class.__array_priority__

The value of this attribute is used to determine what type of object to return in situations where there is more than
one possibility for the Python type of the returned object. Subclasses inherit a default value of 0.0 for this attribute.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of __array_ufunc__.

class.__array__(dtype=None, copy=None)
If defined on an object, should return an ndarray. This method is called by array-coercion functions like
np.array() if an object implementing this interface is passed to those functions. The third-party implementations

1.2. Array objects 955

https://bugs.python.org/issue30140
https://docs.python.org/3/reference/datamodel.html#object.__ror__
https://docs.python.org/3/reference/datamodel.html#object.__ror__

NumPy Reference, Release 2.2.0

of __array__ must take dtype and copy keyword arguments, as ignoring them might break third-party code
or NumPy itself.

• dtype is a data type of the returned array.
• copy is an optional boolean that indicates whether a copy should be returned. For True a copy should
always be made, for None only if required (e.g. due to passed dtype value), and for False a copy should
never be made (if a copy is still required, an appropriate exception should be raised).

Please refer to Interoperability with NumPy for the protocol hierarchy, of which __array__ is the oldest and
least desirable.

Note: If a class (ndarray subclass or not) having the __array__method is used as the output object of an ufunc,
results will not be written to the object returned by __array__. This practice will return TypeError.

Matrix objects

Note: It is strongly advised not to use the matrix subclass. As described below, it makes writing functions that deal
consistently with matrices and regular arrays very difficult. Currently, they are mainly used for interacting with scipy.
sparse. We hope to provide an alternative for this use, however, and eventually remove the matrix subclass.

matrix objects inherit from the ndarray and therefore, they have the same attributes and methods of ndarrays. There
are six important differences of matrix objects, however, that may lead to unexpected results when you use matrices but
expect them to act like arrays:

1. Matrix objects can be created using a string notation to allow Matlab-style syntax where spaces separate columns
and semicolons (‘;’) separate rows.

2. Matrix objects are always two-dimensional. This has far-reaching implications, in that m.ravel() is still two-
dimensional (with a 1 in the first dimension) and item selection returns two-dimensional objects so that sequence
behavior is fundamentally different than arrays.

3. Matrix objects over-ridemultiplication to bematrix-multiplication. Make sure you understand this for functions
that you may want to receive matrices. Especially in light of the fact that asanyarray(m) returns a matrix
when m is a matrix.

4. Matrix objects over-ride power to be matrix raised to a power. The same warning about using power inside a
function that uses asanyarray(…) to get an array object holds for this fact.

5. The default __array_priority__ of matrix objects is 10.0, and therefore mixed operations with ndarrays always
produce matrices.

6. Matrices have special attributes which make calculations easier. These are

matrix.T Returns the transpose of the matrix.
matrix.H Returns the (complex) conjugate transpose of self.
matrix.I Returns the (multiplicative) inverse of invertible self.
matrix.A Return self as an ndarray object.

property
property matrix.T

Returns the transpose of the matrix.
Does not conjugate! For the complex conjugate transpose, use .H.

956 1. Python API

NumPy Reference, Release 2.2.0

Parameters
None

Returns
ret
[matrix object] The (non-conjugated) transpose of the matrix.

See also:

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],

[3, 4]])
>>> m.getT()
matrix([[1, 3],

[2, 4]])

property
property matrix.H

Returns the (complex) conjugate transpose of self.
Equivalent to np.transpose(self) if self is real-valued.

Parameters
None

Returns
ret
[matrix object] complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],

[4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
[8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])

>>> z.getH()
matrix([[0. -0.j, 4. +4.j, 8. +8.j],

[1. +1.j, 5. +5.j, 9. +9.j],
[2. +2.j, 6. +6.j, 10.+10.j],
[3. +3.j, 7. +7.j, 11.+11.j]])

property
property matrix.I

Returns the (multiplicative) inverse of invertible self.
Parameters

1.2. Array objects 957

NumPy Reference, Release 2.2.0

None
Returns

ret
[matrix object] If self is non-singular, ret is such that ret * self == self * ret ==
np.matrix(np.eye(self[0,:].size)) all return True.

Raises
numpy.linalg.LinAlgError: Singular matrix
If self is singular.

See also:

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],

[3, 4]])
>>> m.getI()
matrix([[-2. , 1.],

[1.5, -0.5]])
>>> m.getI() * m
matrix([[1., 0.], # may vary

[0., 1.]])

property
property matrix.A

Return self as an ndarray object.
Equivalent to np.asarray(self).

Parameters
None

Returns
ret
[ndarray] self as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.getA()
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

958 1. Python API

NumPy Reference, Release 2.2.0

Warning: Matrix objects over-ride multiplication, ‘*’, and power, ‘**’, to be matrix-multiplication and matrix power,
respectively. If your subroutine can accept sub-classes and you do not convert to base- class arrays, then you must use
the ufuncs multiply and power to be sure that you are performing the correct operation for all inputs.

The matrix class is a Python subclass of the ndarray and can be used as a reference for how to construct your own subclass
of the ndarray. Matrices can be created from other matrices, strings, and anything else that can be converted to an
ndarray . The name “mat “is an alias for “matrix “in NumPy.

matrix(data[, dtype, copy]) Returns a matrix from an array-like object, or from a
string of data.

asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or

array.

class numpy.matrix(data, dtype=None, copy=True)
Returns a matrix from an array-like object, or from a string of data.
A matrix is a specialized 2-D array that retains its 2-D nature through operations. It has certain special operators,
such as * (matrix multiplication) and ** (matrix power).

Note: It is no longer recommended to use this class, even for linear algebra. Instead use regular arrays. The class
may be removed in the future.

Parameters
data

[array_like or string] If data is a string, it is interpreted as a matrix with commas or spaces
separating columns, and semicolons separating rows.

dtype
[data-type] Data-type of the output matrix.

copy
[bool] If data is already an ndarray, then this flag determines whether the data is copied
(the default), or whether a view is constructed.

See also:

array

Examples

>>> import numpy as np
>>> a = np.matrix('1 2; 3 4')
>>> a
matrix([[1, 2],

[3, 4]])

>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],

[3, 4]])

1.2. Array objects 959

NumPy Reference, Release 2.2.0

Attributes
A

Return self as an ndarray object.
A1

Return self as a flattened ndarray.
H

Returns the (complex) conjugate transpose of self.
I

Returns the (multiplicative) inverse of invertible self.
T

Returns the transpose of the matrix.
base

Base object if memory is from some other object.
ctypes

An object to simplify the interaction of the array with the ctypes module.
data

Python buffer object pointing to the start of the array’s data.
device
dtype

Data-type of the array’s elements.
flags

Information about the memory layout of the array.
flat

A 1-D iterator over the array.
imag

The imaginary part of the array.
itemset
itemsize

Length of one array element in bytes.
mT

View of the matrix transposed array.
nbytes

Total bytes consumed by the elements of the array.
ndim

Number of array dimensions.
newbyteorder
real

The real part of the array.
shape

Tuple of array dimensions.
size

Number of elements in the array.
strides

Tuple of bytes to step in each dimension when traversing an array.

960 1. Python API

NumPy Reference, Release 2.2.0

Methods

all([axis, out]) Test whether all matrix elements along a given axis
evaluate to True.

any([axis, out]) Test whether any array element along a given axis eval-
uates to True.

argmax([axis, out]) Indexes of the maximum values along an axis.
argmin([axis, out]) Indexes of the minimum values along an axis.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set

of choices.
clip([min, max, out]) Return an array whose values are limited to [min,

max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along

the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a flattened copy of the matrix.
getA() Return self as an ndarray object.
getA1() Return self as a flattened ndarray.
getH() Returns the (complex) conjugate transpose of self.
getI() Returns the (multiplicative) inverse of invertible self.
getT() Returns the transpose of the matrix.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python

scalar and return it.
max([axis, out]) Return the maximum value along an axis.
mean([axis, dtype, out]) Returns the average of the matrix elements along the

given axis.
min([axis, out]) Return the minimum value along an axis.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Partially sorts the elements in the array in such a way

that the value of the element in k-th position is in the
position it would be in a sorted array.

prod([axis, dtype, out]) Return the product of the array elements over the given
axis.

ptp([axis, out]) Peak-to-peak (maximum - minimum) value along the
given axis.

put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened matrix.
repeat(repeats[, axis]) Repeat elements of an array.

continues on next page

1.2. Array objects 961

NumPy Reference, Release 2.2.0

Table 7 – continued from previous page
reshape(shape, /, *[, order, copy]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given num-

ber of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in

a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by

a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, WRITE-

BACKIFCOPY, respectively.
sort([axis, kind, order]) Sort an array in-place.
squeeze([axis]) Return a possibly reshaped matrix.
std([axis, dtype, out, ddof]) Return the standard deviation of the array elements

along the given axis.
sum([axis, dtype, out]) Returns the sum of the matrix elements, along the

given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the

given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes

in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the matrix as a (possibly nested) list.
tostring([order]) A compatibility alias for tobytes, with exactly the

same behavior.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof]) Returns the variance of the matrix elements, along the

given axis.
view([dtype][, type]) New view of array with the same data.

method
matrix.all(axis=None, out=None)

Test whether all matrix elements along a given axis evaluate to True.
Parameters

See `numpy.all` for complete descriptions
See also:

numpy.all

962 1. Python API

NumPy Reference, Release 2.2.0

Notes

This is the same as ndarray.all, but it returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> y = x[0]; y
matrix([[0, 1, 2, 3]])
>>> (x == y)
matrix([[True, True, True, True],

[False, False, False, False],
[False, False, False, False]])

>>> (x == y).all()
False
>>> (x == y).all(0)
matrix([[False, False, False, False]])
>>> (x == y).all(1)
matrix([[True],

[False],
[False]])

method
matrix.any(axis=None, out=None)

Test whether any array element along a given axis evaluates to True.
Refer to numpy.any for full documentation.

Parameters
axis
[int, optional] Axis along which logical OR is performed

out
[ndarray, optional] Output to existing array instead of creating new one, must have same
shape as expected output

Returns
any
[bool, ndarray] Returns a single bool if axis is None; otherwise, returns ndarray

method
matrix.argmax(axis=None, out=None)

Indexes of the maximum values along an axis.
Return the indexes of the first occurrences of the maximum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters
See `numpy.argmax` for complete descriptions

See also:

numpy.argmax

1.2. Array objects 963

NumPy Reference, Release 2.2.0

Notes

This is the same as ndarray.argmax, but returns a matrix object where ndarray.argmax would
return an ndarray.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.argmax()
11
>>> x.argmax(0)
matrix([[2, 2, 2, 2]])
>>> x.argmax(1)
matrix([[3],

[3],
[3]])

method
matrix.argmin(axis=None, out=None)

Indexes of the minimum values along an axis.
Return the indexes of the first occurrences of the minimum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters
See `numpy.argmin` for complete descriptions.

See also:

numpy.argmin

Notes

This is the same as ndarray.argmin, but returns a matrix object where ndarray.argmin would
return an ndarray.

Examples

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, -1, -2, -3],

[-4, -5, -6, -7],
[-8, -9, -10, -11]])

>>> x.argmin()
11
>>> x.argmin(0)
matrix([[2, 2, 2, 2]])
>>> x.argmin(1)
matrix([[3],

[3],
[3]])

964 1. Python API

NumPy Reference, Release 2.2.0

method
matrix.argpartition(kth, axis=-1, kind='introselect', order=None)

Returns the indices that would partition this array.
Refer to numpy.argpartition for full documentation.
See also:

numpy.argpartition
equivalent function

method
matrix.argsort(axis=-1, kind=None, order=None)

Returns the indices that would sort this array.
Refer to numpy.argsort for full documentation.
See also:

numpy.argsort
equivalent function

method
matrix.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.
Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. Default is ‘K’.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.
• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.

subok
[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

copy
[bool, optional] By default, astype always returns a newly allocated array. If this is set to
false, and the dtype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

1.2. Array objects 965

NumPy Reference, Release 2.2.0

Returns
arr_t
[ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning
When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

method
matrix.byteswap(inplace=False)

Swap the bytes of the array elements
Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number
are swapped individually.

Parameters
inplace
[bool, optional] If True, swap bytes in-place, default is False.

Returns
out
[ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> import numpy as np
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

966 1. Python API

NumPy Reference, Release 2.2.0

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

A.view(A.dtype.newbyteorder()).byteswap() produces an array with the same values but
different representation in memory

>>> A = np.array([1, 2, 3],dtype=np.int64)
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0], dtype=uint8)
>>> A.view(A.dtype.newbyteorder()).byteswap(inplace=True)
array([1, 2, 3], dtype='>i8')
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 3], dtype=uint8)

method
matrix.choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.
Refer to numpy.choose for full documentation.
See also:

numpy.choose
equivalent function

method
matrix.clip(min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy.clip for full documentation.
See also:

numpy.clip
equivalent function

method
matrix.compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.
Refer to numpy.compress for full documentation.
See also:

numpy.compress
equivalent function

method

1.2. Array objects 967

NumPy Reference, Release 2.2.0

matrix.conj()

Complex-conjugate all elements.
Refer to numpy.conjugate for full documentation.
See also:

numpy.conjugate
equivalent function

method
matrix.conjugate()

Return the complex conjugate, element-wise.
Refer to numpy.conjugate for full documentation.
See also:

numpy.conjugate
equivalent function

method
matrix.copy(order='C')

Return a copy of the array.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match
the layout of a as closely as possible. (Note that this function and numpy.copy are very
similar but have different default values for their order= arguments, and this function always
passes sub-classes through.)

See also:

numpy.copy
Similar function with different default behavior

numpy.copyto

Notes

This function is the preferred method for creating an array copy. The function numpy.copy is similar, but
it defaults to using order ‘K’, and will not pass sub-classes through by default.

968 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

For arrays containing Python objects (e.g. dtype=object), the copy is a shallow one. The new array will
contain the same object which may lead to surprises if that object can be modified (is mutable):

>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> b = a.copy()
>>> b[2][0] = 10
>>> a
array([1, 'm', list([10, 3, 4])], dtype=object)

To ensure all elements within an object array are copied, use copy.deepcopy:

>>> import copy
>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> c = copy.deepcopy(a)
>>> c[2][0] = 10
>>> c
array([1, 'm', list([10, 3, 4])], dtype=object)
>>> a
array([1, 'm', list([2, 3, 4])], dtype=object)

method
matrix.cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.
Refer to numpy.cumprod for full documentation.
See also:

numpy.cumprod
equivalent function

method

1.2. Array objects 969

https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

matrix.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to numpy.cumsum for full documentation.
See also:

numpy.cumsum
equivalent function

method
matrix.diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.
Refer to numpy.diagonal for full documentation.
See also:

numpy.diagonal
equivalent function

method
matrix.dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.
Parameters

file
[str or Path] A string naming the dump file.

method
matrix.dumps()

Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.
Parameters

None
method
matrix.fill(value)

Fill the array with a scalar value.
Parameters

value
[scalar] All elements of a will be assigned this value.

970 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

Fill expects a scalar value and always behaves the same as assigning to a single array element. The following
is a rare example where this distinction is important:

>>> a = np.array([None, None], dtype=object)
>>> a[0] = np.array(3)
>>> a
array([array(3), None], dtype=object)
>>> a.fill(np.array(3))
>>> a
array([array(3), array(3)], dtype=object)

Where other forms of assignments will unpack the array being assigned:

>>> a[...] = np.array(3)
>>> a
array([3, 3], dtype=object)

method
matrix.flatten(order='C')

Return a flattened copy of the matrix.
All N elements of the matrix are placed into a single row.

Parameters
order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran-style) order. ‘A’ means to flatten in column-major order if
m is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten m in the
order the elements occur in memory. The default is ‘C’.

Returns
y
[matrix] A copy of the matrix, flattened to a (1, N)matrix whereN is the number of elements
in the original matrix.

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the matrix.

1.2. Array objects 971

NumPy Reference, Release 2.2.0

Examples

>>> m = np.matrix([[1,2], [3,4]])
>>> m.flatten()
matrix([[1, 2, 3, 4]])
>>> m.flatten('F')
matrix([[1, 3, 2, 4]])

method
matrix.getA()

Return self as an ndarray object.
Equivalent to np.asarray(self).

Parameters
None

Returns
ret
[ndarray] self as an ndarray

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.getA()
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

method
matrix.getA1()

Return self as a flattened ndarray.
Equivalent to np.asarray(x).ravel()

Parameters
None

Returns
ret
[ndarray] self, 1-D, as an ndarray

972 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.getA1()
array([0, 1, 2, ..., 9, 10, 11])

method
matrix.getH()

Returns the (complex) conjugate transpose of self.
Equivalent to np.transpose(self) if self is real-valued.

Parameters
None

Returns
ret
[matrix object] complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4)))
>>> z = x - 1j*x; z
matrix([[0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j],

[4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
[8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])

>>> z.getH()
matrix([[0. -0.j, 4. +4.j, 8. +8.j],

[1. +1.j, 5. +5.j, 9. +9.j],
[2. +2.j, 6. +6.j, 10.+10.j],
[3. +3.j, 7. +7.j, 11.+11.j]])

method
matrix.getI()

Returns the (multiplicative) inverse of invertible self.
Parameters

None
Returns

ret
[matrix object] If self is non-singular, ret is such that ret * self == self * ret ==
np.matrix(np.eye(self[0,:].size)) all return True.

Raises
numpy.linalg.LinAlgError: Singular matrix
If self is singular.

See also:

linalg.inv

1.2. Array objects 973

NumPy Reference, Release 2.2.0

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix([[1, 2],

[3, 4]])
>>> m.getI()
matrix([[-2. , 1.],

[1.5, -0.5]])
>>> m.getI() * m
matrix([[1., 0.], # may vary

[0., 1.]])

method
matrix.getT()

Returns the transpose of the matrix.
Does not conjugate! For the complex conjugate transpose, use .H.

Parameters
None

Returns
ret
[matrix object] The (non-conjugated) transpose of the matrix.

See also:

transpose, getH

Examples

>>> m = np.matrix('[1, 2; 3, 4]')
>>> m
matrix([[1, 2],

[3, 4]])
>>> m.getT()
matrix([[1, 3],

[2, 4]])

method
matrix.getfield(dtype, offset=0)

Returns a field of the given array as a certain type.
A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit
integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype
[str or dtype] The data type of the view. The dtype size of the view can not be larger than
that of the array itself.

974 1. Python API

NumPy Reference, Release 2.2.0

offset
[int] Number of bytes to skip before beginning the element view.

Examples

>>> import numpy as np
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

method
matrix.item(*args)

Copy an element of an array to a standard Python scalar and return it.
Parameters

*args
[Arguments (variable number and type)]
• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z
[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.
item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

1.2. Array objects 975

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

For an array with object dtype, elements are returned as-is.

>>> a = np.array([np.int64(1)], dtype=object)
>>> a.item() #return np.int64
np.int64(1)

method
matrix.max(axis=None, out=None)

Return the maximum value along an axis.
Parameters

See `amax` for complete descriptions
See also:

amax, ndarray.max

Notes

This is the same as ndarray.max, but returns a matrix object where ndarray.max would return an
ndarray.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.max()
11
>>> x.max(0)
matrix([[8, 9, 10, 11]])
>>> x.max(1)
matrix([[3],

[7],
[11]])

976 1. Python API

NumPy Reference, Release 2.2.0

method
matrix.mean(axis=None, dtype=None, out=None)

Returns the average of the matrix elements along the given axis.
Refer to numpy.mean for full documentation.
See also:

numpy.mean

Notes

Same as ndarray.mean except that, where that returns an ndarray, this returns a matrix object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.mean()
5.5
>>> x.mean(0)
matrix([[4., 5., 6., 7.]])
>>> x.mean(1)
matrix([[1.5],

[5.5],
[9.5]])

method
matrix.min(axis=None, out=None)

Return the minimum value along an axis.
Parameters

See `amin` for complete descriptions.
See also:

amin, ndarray.min

Notes

This is the same as ndarray.min, but returns a matrix object where ndarray.min would return an
ndarray.

1.2. Array objects 977

NumPy Reference, Release 2.2.0

Examples

>>> x = -np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, -1, -2, -3],

[-4, -5, -6, -7],
[-8, -9, -10, -11]])

>>> x.min()
-11
>>> x.min(0)
matrix([[-8, -9, -10, -11]])
>>> x.min(1)
matrix([[-3],

[-7],
[-11]])

method
matrix.nonzero()

Return the indices of the elements that are non-zero.
Refer to numpy.nonzero for full documentation.
See also:

numpy.nonzero
equivalent function

method
matrix.partition(kth, axis=-1, kind='introselect', order=None)

Partially sorts the elements in the array in such a way that the value of the element in k-th position is in the
position it would be in a sorted array. In the output array, all elements smaller than the k-th element are
located to the left of this element and all equal or greater are located to its right. The ordering of the elements
in the two partitions on the either side of the k-th element in the output array is undefined.

Parameters
kth
[int or sequence of ints] Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it and all equal or greater
elements behind it. The order of all elements in the partitions is undefined. If provided with a
sequence of kth it will partition all elements indexed by kth of them into their sorted position
at once.
Deprecated since version 1.22.0: Passing booleans as index is deprecated.

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind
[{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need to be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See also:

978 1. Python API

NumPy Reference, Release 2.2.0

numpy.partition
Return a partitioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> import numpy as np
>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4]) # may vary

>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])

method
matrix.prod(axis=None, dtype=None, out=None)

Return the product of the array elements over the given axis.
Refer to prod for full documentation.
See also:

prod, ndarray.prod

Notes

Same as ndarray.prod, except, where that returns an ndarray, this returns a matrix object instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.prod()
0
>>> x.prod(0)
matrix([[0, 45, 120, 231]])
>>> x.prod(1)
matrix([[0],

[840],
[7920]])

1.2. Array objects 979

NumPy Reference, Release 2.2.0

method
matrix.ptp(axis=None, out=None)

Peak-to-peak (maximum - minimum) value along the given axis.
Refer to numpy.ptp for full documentation.
See also:

numpy.ptp

Notes

Same as ndarray.ptp, except, where that would return an ndarray object, this returns a matrix
object.

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.ptp()
11
>>> x.ptp(0)
matrix([[8, 8, 8, 8]])
>>> x.ptp(1)
matrix([[3],

[3],
[3]])

method
matrix.put(indices, values, mode='raise')

Set a.flat[n] = values[n] for all n in indices.
Refer to numpy.put for full documentation.
See also:

numpy.put
equivalent function

method
matrix.ravel(order='C')

Return a flattened matrix.
Refer to numpy.ravel for more documentation.

Parameters
order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] The elements of m are read using this index order. ‘C’ means
to index the elements in C-like order, with the last axis index changing fastest, back to the
first axis index changing slowest. ‘F’ means to index the elements in Fortran-like index order,
with the first index changing fastest, and the last index changing slowest. Note that the ‘C’

980 1. Python API

NumPy Reference, Release 2.2.0

and ‘F’ options take no account of the memory layout of the underlying array, and only refer
to the order of axis indexing. ‘A’ means to read the elements in Fortran-like index order if m
is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read the elements in
the order they occur in memory, except for reversing the data when strides are negative. By
default, ‘C’ index order is used.

Returns
ret
[matrix] Return the matrix flattened to shape (1, N) where N is the number of elements in
the original matrix. A copy is made only if necessary.

See also:

matrix.flatten
returns a similar output matrix but always a copy

matrix.flat
a flat iterator on the array.

numpy.ravel
related function which returns an ndarray

method
matrix.repeat(repeats, axis=None)

Repeat elements of an array.
Refer to numpy.repeat for full documentation.
See also:

numpy.repeat
equivalent function

method
matrix.reshape(shape, / , *, order='C', copy=None)

Returns an array containing the same data with a new shape.
Refer to numpy.reshape for full documentation.
See also:

numpy.reshape
equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

method
matrix.resize(new_shape, refcheck=True)

Change shape and size of array in-place.
Parameters

1.2. Array objects 981

NumPy Reference, Release 2.2.0

new_shape
[tuple of ints, or n ints] Shape of resized array.

refcheck
[bool, optional] If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError
If a does not own its own data or references or views to it exist, and the data memory must
be changed. PyPy only: will always raise if the data memory must be changed, since there
is no reliable way to determine if references or views to it exist.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.
The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> import numpy as np

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

982 1. Python API

NumPy Reference, Release 2.2.0

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

method
matrix.round(decimals=0, out=None)

Return a with each element rounded to the given number of decimals.
Refer to numpy.around for full documentation.
See also:

numpy.around
equivalent function

method
matrix.searchsorted(v, side='left', sorter=None)

Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy.searchsorted
See also:

numpy.searchsorted
equivalent function

method
matrix.setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.
Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters
val
[object] Value to be placed in field.

dtype
[dtype object] Data-type of the field in which to place val.

1.2. Array objects 983

NumPy Reference, Release 2.2.0

offset
[int, optional] The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

Examples

>>> import numpy as np
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]], dtype=int32)

>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],

[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

method
matrix.setflags(write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.
These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string.
(The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write
[bool, optional] Describes whether or not a can be written to.

align
[bool, optional] Describes whether or not a is aligned properly for its type.

uic
[bool, optional] Describes whether or not a is a copy of another “base” array.

984 1. Python API

NumPy Reference, Release 2.2.0

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7
Boolean flags in use, only three of which can be changed by the user: WRITEBACKIFCOPY,WRITEABLE,
and ALIGNED.
WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);
WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this
array.
All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> import numpy as np
>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

method
matrix.sort(axis=-1, kind=None, order=None)

Sort an array in-place. Refer to numpy.sort for full documentation.
Parameters

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is

1.2. Array objects 985

NumPy Reference, Release 2.2.0

‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with datatype. The ‘mergesort’ option is retained
for backwards compatibility.

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

See also:

numpy.sort
Return a sorted copy of an array.

numpy.argsort
Indirect sort.

numpy.lexsort
Indirect stable sort on multiple keys.

numpy.searchsorted
Find elements in sorted array.

numpy.partition
Partial sort.

Notes

See numpy.sort for notes on the different sorting algorithms.

Examples

>>> import numpy as np
>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],

dtype=[('x', 'S1'), ('y', '<i8')])

method

986 1. Python API

NumPy Reference, Release 2.2.0

matrix.squeeze(axis=None)
Return a possibly reshaped matrix.
Refer to numpy.squeeze for more documentation.

Parameters
axis
[None or int or tuple of ints, optional] Selects a subset of the axes of length one in the shape.
If an axis is selected with shape entry greater than one, an error is raised.

Returns
squeezed
[matrix] The matrix, but as a (1, N) matrix if it had shape (N, 1).

See also:

numpy.squeeze
related function

Notes

If m has a single column then that column is returned as the single row of a matrix. Otherwise m is returned.
The returned matrix is always either m itself or a view into m. Supplying an axis keyword argument will not
affect the returned matrix but it may cause an error to be raised.

Examples

>>> c = np.matrix([[1], [2]])
>>> c
matrix([[1],

[2]])
>>> c.squeeze()
matrix([[1, 2]])
>>> r = c.T
>>> r
matrix([[1, 2]])
>>> r.squeeze()
matrix([[1, 2]])
>>> m = np.matrix([[1, 2], [3, 4]])
>>> m.squeeze()
matrix([[1, 2],

[3, 4]])

method
matrix.std(axis=None, dtype=None, out=None, ddof=0)

Return the standard deviation of the array elements along the given axis.
Refer to numpy.std for full documentation.
See also:

numpy.std

1.2. Array objects 987

NumPy Reference, Release 2.2.0

Notes

This is the same as ndarray.std, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.std()
3.4520525295346629 # may vary
>>> x.std(0)
matrix([[3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary
>>> x.std(1)
matrix([[1.11803399],

[1.11803399],
[1.11803399]])

method
matrix.sum(axis=None, dtype=None, out=None)

Returns the sum of the matrix elements, along the given axis.
Refer to numpy.sum for full documentation.
See also:

numpy.sum

Notes

This is the same as ndarray.sum, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix([[1, 2], [4, 3]])
>>> x.sum()
10
>>> x.sum(axis=1)
matrix([[3],

[7]])
>>> x.sum(axis=1, dtype='float')
matrix([[3.],

[7.]])
>>> out = np.zeros((2, 1), dtype='float')
>>> x.sum(axis=1, dtype='float', out=np.asmatrix(out))
matrix([[3.],

[7.]])

method

988 1. Python API

NumPy Reference, Release 2.2.0

matrix.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See also:

numpy.swapaxes
equivalent function

method
matrix.take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of a at the given indices.
Refer to numpy.take for full documentation.
See also:

numpy.take
equivalent function

method
matrix.tobytes(order='C')

Construct Python bytes containing the raw data bytes in the array.
Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced
in C-order by default. This behavior is controlled by the order parameter.

Parameters
order
[{‘C’, ‘F’, ‘A’}, optional] Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise.
Default is ‘C’.

Returns
s
[bytes] Python bytes exhibiting a copy of a’s raw data.

See also:

frombuffer
Inverse of this operation, construct a 1-dimensional array from Python bytes.

Examples

>>> import numpy as np
>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'

method

1.2. Array objects 989

NumPy Reference, Release 2.2.0

matrix.tofile(fid, sep='', format='%s')
Write array to a file as text or binary (default).
Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters
fid
[file or str or Path] An open file object, or a string containing a filename.

sep
[str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format
[str] Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at the
expense of speed and file size.
When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-
like objects that do not support fileno() (e.g., BytesIO).

method
matrix.tolist()

Return the matrix as a (possibly nested) list.
See ndarray.tolist for full documentation.
See also:

ndarray.tolist

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

method
matrix.tostring(order='C')

A compatibility alias for tobytes, with exactly the same behavior.
Despite its name, it returns bytes not strs.
Deprecated since version 1.19.0.

990 1. Python API

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 2.2.0

method
matrix.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.
Refer to numpy.trace for full documentation.
See also:

numpy.trace
equivalent function

method
matrix.transpose(*axes)

Returns a view of the array with axes transposed.
Refer to numpy.transpose for full documentation.

Parameters
axes
[None, tuple of ints, or n ints]
• None or no argument: reverses the order of the axes.
• tuple of ints: i in the j-th place in the tuple means that the array’s i-th axis becomes the
transposed array’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form).

Returns
p
[ndarray] View of the array with its axes suitably permuted.

See also:

transpose
Equivalent function.

ndarray.T
Array property returning the array transposed.

ndarray.reshape
Give a new shape to an array without changing its data.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

(continues on next page)

1.2. Array objects 991

NumPy Reference, Release 2.2.0

(continued from previous page)
[2, 4]])

>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.transpose()
array([1, 2, 3, 4])

method
matrix.var(axis=None, dtype=None, out=None, ddof=0)

Returns the variance of the matrix elements, along the given axis.
Refer to numpy.var for full documentation.
See also:

numpy.var

Notes

This is the same as ndarray.var, except that where an ndarray would be returned, a matrix object
is returned instead.

Examples

>>> x = np.matrix(np.arange(12).reshape((3, 4)))
>>> x
matrix([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x.var()
11.916666666666666
>>> x.var(0)
matrix([[10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary
>>> x.var(1)
matrix([[1.25],

[1.25],
[1.25]])

method
matrix.view([dtype][, type])

New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype(None) which is an alias for dtype('float64').

Parameters

992 1. Python API

NumPy Reference, Release 2.2.0

dtype
[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. Omitting it results in the view having the same data-type as a. This argument
can also be specified as an ndarray sub-class, which then specifies the type of the returned
object (this is equivalent to setting the type parameter).

type
[Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view() is used two different ways:
a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.
a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpre-
tation of the memory.
For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis ofamust be contiguous.
This axis will be resized in the result.
Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

Examples

>>> import numpy as np
>>> x = np.array([(-1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> nonneg = np.dtype([("a", np.uint8), ("b", np.uint8)])
>>> y = x.view(dtype=nonneg, type=np.recarray)
>>> x["a"]
array([-1], dtype=int8)
>>> y.a
array([255], dtype=uint8)

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

1.2. Array objects 993

NumPy Reference, Release 2.2.0

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
np.record((9, 10), dtype=[('a', 'i1'), ('b', 'i1')])

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
>>> y = x[:, ::2]
>>> y
array([[1, 3],

[4, 6]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):

...
ValueError: To change to a dtype of a different size, the last axis must be␣
↪→contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 3)],

[(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the
axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
>>> x.transpose(1, 0, 2).view(np.int16)
array([[[256, 770],

[3340, 3854]],

[[1284, 1798],
[4368, 4882]],

[[2312, 2826],
[5396, 5910]]], dtype=int16)

dot
to_device

numpy.asmatrix(data, dtype=None)
Interpret the input as a matrix.
Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix(data, copy=False).

994 1. Python API

NumPy Reference, Release 2.2.0

Parameters
data

[array_like] Input data.
dtype

[data-type] Data-type of the output matrix.
Returns

mat
[matrix] data interpreted as a matrix.

Examples

>>> import numpy as np
>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],

[3, 4]])

numpy.bmat(obj, ldict=None, gdict=None)
Build a matrix object from a string, nested sequence, or array.

Parameters
obj

[str or array_like] Input data. If a string, variables in the current scope may be referenced by
name.

ldict
[dict, optional] A dictionary that replaces local operands in current frame. Ignored if obj is not
a string or gdict is None.

gdict
[dict, optional] A dictionary that replaces global operands in current frame. Ignored if obj is
not a string.

Returns
out

[matrix] Returns a matrix object, which is a specialized 2-D array.
See also:

block
A generalization of this function for N-d arrays, that returns normal ndarrays.

1.2. Array objects 995

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> A = np.asmatrix('1 1; 1 1')
>>> B = np.asmatrix('2 2; 2 2')
>>> C = np.asmatrix('3 4; 5 6')
>>> D = np.asmatrix('7 8; 9 0')

All the following expressions construct the same block matrix:

>>> np.bmat([[A, B], [C, D]])
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

>>> np.bmat('A,B; C,D')
matrix([[1, 1, 2, 2],

[1, 1, 2, 2],
[3, 4, 7, 8],
[5, 6, 9, 0]])

Example 1: Matrix creation from a string

>>> import numpy as np
>>> a = np.asmatrix('1 2 3; 4 5 3')
>>> print((a*a.T).I)
[[0.29239766 -0.13450292]
[-0.13450292 0.08187135]]

Example 2: Matrix creation from a nested sequence

>>> import numpy as np
>>> np.asmatrix([[1,5,10],[1.0,3,4j]])
matrix([[1.+0.j, 5.+0.j, 10.+0.j],

[1.+0.j, 3.+0.j, 0.+4.j]])

Example 3: Matrix creation from an array

>>> import numpy as np
>>> np.asmatrix(np.random.rand(3,3)).T
matrix([[4.17022005e-01, 3.02332573e-01, 1.86260211e-01],

[7.20324493e-01, 1.46755891e-01, 3.45560727e-01],
[1.14374817e-04, 9.23385948e-02, 3.96767474e-01]])

996 1. Python API

NumPy Reference, Release 2.2.0

Memory-mapped file arrays

Memory-mapped files are useful for reading and/or modifying small segments of a large file with regular layout, without
reading the entire file into memory. A simple subclass of the ndarray uses a memory-mapped file for the data buffer of
the array. For small files, the over-head of reading the entire file into memory is typically not significant, however for
large files using memory mapping can save considerable resources.
Memory-mapped-file arrays have one additional method (besides those they inherit from the ndarray): .flush()which
must be called manually by the user to ensure that any changes to the array actually get written to disk.

memmap(filename[, dtype, mode, offset, ...]) Create a memory-map to an array stored in a binary file
on disk.

memmap.flush() Write any changes in the array to the file on disk.

class numpy.memmap(filename, dtype=<class 'numpy.ubyte'>, mode='r+', offset=0, shape=None, order='C')
Create a memory-map to an array stored in a binary file on disk.
Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire file
into memory. NumPy’s memmap’s are array-like objects. This differs from Python’s mmap module, which uses
file-like objects.
This subclass of ndarray has some unpleasant interactions with some operations, because it doesn’t quite fit properly
as a subclass. An alternative to using this subclass is to create the mmap object yourself, then create an ndarray
with ndarray.__new__ directly, passing the object created in its ‘buffer=’ parameter.
This class may at some point be turned into a factory function which returns a view into an mmap buffer.
Flush the memmap instance to write the changes to the file. Currently there is no API to close the underlying mmap.
It is tricky to ensure the resource is actually closed, since it may be shared between different memmap instances.

Parameters
filename

[str, file-like object, or pathlib.Path instance] The file name or file object to be used as the array
data buffer.

dtype
[data-type, optional] The data-type used to interpret the file contents. Default is uint8.

mode
[{‘r+’, ‘r’, ‘w+’, ‘c’}, optional] The file is opened in this mode:

‘r’ Open existing file for reading only.
‘r+’ Open existing file for reading and writing.
‘w+’ Create or overwrite existing file for reading and writing. If mode == 'w+' then

shape must also be specified.
‘c’ Copy-on-write: assignments affect data in memory, but changes are not saved to

disk. The file on disk is read-only.

Default is ‘r+’.
offset

[int, optional] In the file, array data starts at this offset. Since offset is measured in bytes, it
should normally be a multiple of the byte-size of dtype. When mode != 'r', even positive
offsets beyond end of file are valid; The file will be extended to accommodate the additional
data. By default, memmap will start at the beginning of the file, even if filename is a file
pointer fp and fp.tell() != 0.

1.2. Array objects 997

NumPy Reference, Release 2.2.0

shape
[int or sequence of ints, optional] The desired shape of the array. If mode == 'r' and
the number of remaining bytes after offset is not a multiple of the byte-size of dtype, you
must specify shape. By default, the returned array will be 1-D with the number of elements
determined by file size and data-type.
Changed in version 2.0: The shape parameter can now be any integer sequence type, previously
types were limited to tuple and int.

order
[{‘C’, ‘F’}, optional] Specify the order of the ndarray memory layout: row-major, C-style or
column-major, Fortran-style. This only has an effect if the shape is greater than 1-D. The
default order is ‘C’.

See also:

lib.format.open_memmap
Create or load a memory-mapped .npy file.

Notes

The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp, isinstance(fp,
numpy.ndarray) returns True.
Memory-mapped files cannot be larger than 2GB on 32-bit systems.
When a memmap causes a file to be created or extended beyond its current size in the filesystem, the contents of
the new part are unspecified. On systems with POSIX filesystem semantics, the extended part will be filled with
zero bytes.

Examples

>>> import numpy as np
>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))

This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’
filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
memmap([[0., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 0., 0.]], dtype=float32)

Write data to memmap array:

>>> fp[:] = data[:]
>>> fp
memmap([[0., 1., 2., 3.],

(continues on next page)

998 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

>>> fp.filename == path.abspath(filename)
True

Flushes memory changes to disk in order to read them back

>>> fp.flush()

Load the memmap and verify data was stored:

>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> newfp
memmap([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

Read-only memmap:

>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and
not written to disk:

>>> fpc
memmap([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

>>> fpc[0,:] = 0
>>> fpc
memmap([[0., 0., 0., 0.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
>>> fpo
memmap([4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)

1.2. Array objects 999

NumPy Reference, Release 2.2.0

Attributes
filename

[str or pathlib.Path instance] Path to the mapped file.
offset

[int] Offset position in the file.
mode

[str] File mode.

Methods

flush() Write any changes in the array to the file on disk.

method
memmap.flush()

Write any changes in the array to the file on disk.
For further information, see memmap.

Parameters
None

See also:

memmap

Example:

>>> import numpy as np

>>> a = np.memmap('newfile.dat', dtype=float, mode='w+', shape=1000)
>>> a[10] = 10.0
>>> a[30] = 30.0
>>> del a

>>> b = np.fromfile('newfile.dat', dtype=float)
>>> print(b[10], b[30])
10.0 30.0

>>> a = np.memmap('newfile.dat', dtype=float)
>>> print(a[10], a[30])
10.0 30.0

1000 1. Python API

NumPy Reference, Release 2.2.0

Character arrays (numpy.char)

See also:
Creating character arrays (numpy.char)

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new devel-
opment. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dtype object_,
bytes_ or str_, and use the free functions in the numpy.char module for fast vectorized string operations.

These are enhanced arrays of either str_ type or bytes_ type. These arrays inherit from the ndarray, but specially-
define the operations +, *, and % on a (broadcasting) element-by-element basis. These operations are not available on
the standard ndarray of character type. In addition, the chararray has all of the standard str (and bytes)
methods, executing them on an element-by-element basis. Perhaps the easiest way to create a chararray is to use self.
view(chararray) where self is an ndarray of str or unicode data-type. However, a chararray can also be created
using the chararray constructor, or via the numpy.char.array function:

char.chararray(shape[, itemsize, unicode, ...]) Provides a convenient view on arrays of string and unicode
values.

char.array(obj[, itemsize, copy, unicode, order]) Create a chararray.

Another difference with the standard ndarray of str data-type is that the chararray inherits the feature introduced by
Numarray that white-space at the end of any element in the array will be ignored on item retrieval and comparison
operations.

Record arrays

See also:
Creating record arrays, Data type routines, Data type objects (dtype).
NumPy provides the recarray class which allows accessing the fields of a structured array as attributes, and a corre-
sponding scalar data type object record.

recarray(shape[, dtype, buf, offset, ...]) Construct an ndarray that allows field access using at-
tributes.

record A data-type scalar that allows field access as attribute
lookup.

class numpy.recarray(shape, dtype=None, buf=None, offset=0, strides=None, formats=None, names=None,
titles=None, byteorder=None, aligned=False, order='C')

Construct an ndarray that allows field access using attributes.
Arrays may have a data-types containing fields, analogous to columns in a spread sheet. An example is [(x,
int), (y, float)], where each entry in the array is a pair of (int, float). Normally, these attributes
are accessed using dictionary lookups such as arr['x'] and arr['y']. Record arrays allow the fields to be
accessed as members of the array, using arr.x and arr.y.

Parameters
shape

[tuple] Shape of output array.

1.2. Array objects 1001

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

NumPy Reference, Release 2.2.0

dtype
[data-type, optional] The desired data-type. By default, the data-type is determined from for-
mats, names, titles, aligned and byteorder.

formats
[list of data-types, optional] A list containing the data-types for the different columns, e.g.
['i4', 'f8', 'i4']. formats does not support the new convention of using types
directly, i.e. (int, float, int). Note that formats must be a list, not a tuple. Given
that formats is somewhat limited, we recommend specifying dtype instead.

names
[tuple of str, optional] The name of each column, e.g. ('x', 'y', 'z').

buf
[buffer, optional] By default, a new array is created of the given shape and data-type. If buf
is specified and is an object exposing the buffer interface, the array will use the memory from
the existing buffer. In this case, the offset and strides keywords are available.

Returns
rec

[recarray] Empty array of the given shape and type.
Other Parameters

titles
[tuple of str, optional] Aliases for column names. For example, if names were ('x', 'y',
'z') and titles is ('x_coordinate', 'y_coordinate', 'z_coordinate'),
then arr['x'] is equivalent to both arr.x and arr.x_coordinate.

byteorder
[{‘<’, ‘>’, ‘=’}, optional] Byte-order for all fields.

aligned
[bool, optional] Align the fields in memory as the C-compiler would.

strides
[tuple of ints, optional] Buffer (buf) is interpreted according to these strides (strides define
how many bytes each array element, row, column, etc. occupy in memory).

offset
[int, optional] Start reading buffer (buf) from this offset onwards.

order
[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

numpy.rec.fromrecords
Construct a record array from data.

numpy.record
fundamental data-type for recarray.

numpy.rec.format_parser
determine data-type from formats, names, titles.

1002 1. Python API

NumPy Reference, Release 2.2.0

Notes

This constructor can be compared to empty: it creates a new record array but does not fill it with data. To create
a record array from data, use one of the following methods:
1. Create a standard ndarray and convert it to a record array, using arr.view(np.recarray)
2. Use the buf keyword.
3. Use np.rec.fromrecords.

Examples

Create an array with two fields, x and y:

>>> import numpy as np
>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', '<f8'), ('y', '<i8')])
>>> x
array([(1., 2), (3., 4)], dtype=[('x', '<f8'), ('y', '<i8')])

>>> x['x']
array([1., 3.])

View the array as a record array:

>>> x = x.view(np.recarray)

>>> x.x
array([1., 3.])

>>> x.y
array([2, 4])

Create a new, empty record array:

>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)])
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),

(3471280, 1.2134086255804012e-316, 0)],
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])

Attributes
T

View of the transposed array.
base

Base object if memory is from some other object.
ctypes

An object to simplify the interaction of the array with the ctypes module.
data

Python buffer object pointing to the start of the array’s data.
device
dtype

Data-type of the array’s elements.

1.2. Array objects 1003

NumPy Reference, Release 2.2.0

flags
Information about the memory layout of the array.

flat
A 1-D iterator over the array.

imag
The imaginary part of the array.

itemset
itemsize

Length of one array element in bytes.
mT

View of the matrix transposed array.
nbytes

Total bytes consumed by the elements of the array.
ndim

Number of array dimensions.
newbyteorder
ptp
real

The real part of the array.
shape

Tuple of array dimensions.
size

Number of elements in the array.
strides

Tuple of bytes to step in each dimension when traversing an array.

Methods

all([axis, out, keepdims, where]) Returns True if all elements evaluate to True.
any([axis, out, keepdims, where]) Returns True if any of the elements of a evaluate to

True.
argmax([axis, out, keepdims]) Return indices of the maximum values along the given

axis.
argmin([axis, out, keepdims]) Return indices of the minimum values along the given

axis.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set

of choices.
clip([min, max, out]) Return an array whose values are limited to [min,

max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.

continues on next page

1004 1. Python API

NumPy Reference, Release 2.2.0

Table 8 – continued from previous page
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along

the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimen-

sion.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python

scalar and return it.
max([axis, out, keepdims, initial, where]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims, where]) Returns the average of the array elements along given

axis.
min([axis, out, keepdims, initial, where]) Return the minimum along a given axis.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Partially sorts the elements in the array in such a way

that the value of the element in k-th position is in the
position it would be in a sorted array.

prod([axis, dtype, out, keepdims, initial, ...]) Return the product of the array elements over the given
axis

put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape, /, *[, order, copy]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given num-

ber of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in

a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by

a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, WRITE-

BACKIFCOPY, respectively.
sort([axis, kind, order]) Sort an array in-place.
squeeze([axis]) Remove axes of length one from a.
std([axis, dtype, out, ddof, keepdims, where]) Returns the standard deviation of the array elements

along given axis.
sum([axis, dtype, out, keepdims, initial, where]) Return the sum of the array elements over the given

axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the

given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes

in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).

continues on next page

1.2. Array objects 1005

NumPy Reference, Release 2.2.0

Table 8 – continued from previous page
tolist() Return the array as an a.ndim-levels deep nested list

of Python scalars.
tostring([order]) A compatibility alias for tobytes, with exactly the

same behavior.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims, where]) Returns the variance of the array elements, along given

axis.
view([dtype][, type]) New view of array with the same data.

method
recarray.all(axis=None, out=None, keepdims=False, *, where=True)

Returns True if all elements evaluate to True.
Refer to numpy.all for full documentation.
See also:

numpy.all
equivalent function

method
recarray.any(axis=None, out=None, keepdims=False, *, where=True)

Returns True if any of the elements of a evaluate to True.
Refer to numpy.any for full documentation.
See also:

numpy.any
equivalent function

method
recarray.argmax(axis=None, out=None, *, keepdims=False)

Return indices of the maximum values along the given axis.
Refer to numpy.argmax for full documentation.
See also:

numpy.argmax
equivalent function

method
recarray.argmin(axis=None, out=None, *, keepdims=False)

Return indices of the minimum values along the given axis.
Refer to numpy.argmin for detailed documentation.
See also:

numpy.argmin
equivalent function

1006 1. Python API

NumPy Reference, Release 2.2.0

method
recarray.argpartition(kth, axis=-1, kind='introselect', order=None)

Returns the indices that would partition this array.
Refer to numpy.argpartition for full documentation.
See also:

numpy.argpartition
equivalent function

method
recarray.argsort(axis=-1, kind=None, order=None)

Returns the indices that would sort this array.
Refer to numpy.argsort for full documentation.
See also:

numpy.argsort
equivalent function

method
recarray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.
Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in memory
as possible. Default is ‘K’.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.
• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.

subok
[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

copy
[bool, optional] By default, astype always returns a newly allocated array. If this is set to
false, and the dtype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

1.2. Array objects 1007

NumPy Reference, Release 2.2.0

Returns
arr_t
[ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning
When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

method
recarray.byteswap(inplace=False)

Swap the bytes of the array elements
Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number
are swapped individually.

Parameters
inplace
[bool, optional] If True, swap bytes in-place, default is False.

Returns
out
[ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> import numpy as np
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

1008 1. Python API

NumPy Reference, Release 2.2.0

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

A.view(A.dtype.newbyteorder()).byteswap() produces an array with the same values but
different representation in memory

>>> A = np.array([1, 2, 3],dtype=np.int64)
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0], dtype=uint8)
>>> A.view(A.dtype.newbyteorder()).byteswap(inplace=True)
array([1, 2, 3], dtype='>i8')
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 3], dtype=uint8)

method
recarray.choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.
Refer to numpy.choose for full documentation.
See also:

numpy.choose
equivalent function

method
recarray.clip(min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.
Refer to numpy.clip for full documentation.
See also:

numpy.clip
equivalent function

method
recarray.compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.
Refer to numpy.compress for full documentation.
See also:

numpy.compress
equivalent function

method

1.2. Array objects 1009

NumPy Reference, Release 2.2.0

recarray.conj()

Complex-conjugate all elements.
Refer to numpy.conjugate for full documentation.
See also:

numpy.conjugate
equivalent function

method
recarray.conjugate()

Return the complex conjugate, element-wise.
Refer to numpy.conjugate for full documentation.
See also:

numpy.conjugate
equivalent function

method
recarray.copy(order='C')

Return a copy of the array.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match
the layout of a as closely as possible. (Note that this function and numpy.copy are very
similar but have different default values for their order= arguments, and this function always
passes sub-classes through.)

See also:

numpy.copy
Similar function with different default behavior

numpy.copyto

Notes

This function is the preferred method for creating an array copy. The function numpy.copy is similar, but
it defaults to using order ‘K’, and will not pass sub-classes through by default.

1010 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

For arrays containing Python objects (e.g. dtype=object), the copy is a shallow one. The new array will
contain the same object which may lead to surprises if that object can be modified (is mutable):

>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> b = a.copy()
>>> b[2][0] = 10
>>> a
array([1, 'm', list([10, 3, 4])], dtype=object)

To ensure all elements within an object array are copied, use copy.deepcopy:

>>> import copy
>>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
>>> c = copy.deepcopy(a)
>>> c[2][0] = 10
>>> c
array([1, 'm', list([10, 3, 4])], dtype=object)
>>> a
array([1, 'm', list([2, 3, 4])], dtype=object)

method
recarray.cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.
Refer to numpy.cumprod for full documentation.
See also:

numpy.cumprod
equivalent function

method

1.2. Array objects 1011

https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

recarray.cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.
Refer to numpy.cumsum for full documentation.
See also:

numpy.cumsum
equivalent function

method
recarray.diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.
Refer to numpy.diagonal for full documentation.
See also:

numpy.diagonal
equivalent function

method
recarray.dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.
Parameters

file
[str or Path] A string naming the dump file.

method
recarray.dumps()

Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.
Parameters

None
method
recarray.fill(value)

Fill the array with a scalar value.
Parameters

value
[scalar] All elements of a will be assigned this value.

1012 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

Fill expects a scalar value and always behaves the same as assigning to a single array element. The following
is a rare example where this distinction is important:

>>> a = np.array([None, None], dtype=object)
>>> a[0] = np.array(3)
>>> a
array([array(3), None], dtype=object)
>>> a.fill(np.array(3))
>>> a
array([array(3), array(3)], dtype=object)

Where other forms of assignments will unpack the array being assigned:

>>> a[...] = np.array(3)
>>> a
array([3, 3], dtype=object)

method
recarray.flatten(order='C')

Return a copy of the array collapsed into one dimension.
Parameters

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’ means to
flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order if
a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten a in the
order the elements occur in memory. The default is ‘C’.

Returns
y
[ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel
Return a flattened array.

flat
A 1-D flat iterator over the array.

1.2. Array objects 1013

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

method
recarray.getfield(dtype, offset=0)

Returns a field of the given array as a certain type.
A field is a view of the array data with a given data-type. The values in the view are determined by the given
type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit
integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype
[str or dtype] The data type of the view. The dtype size of the view can not be larger than
that of the array itself.

offset
[int] Number of bytes to skip before beginning the element view.

Examples

>>> import numpy as np
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

method
recarray.item(*args)

Copy an element of an array to a standard Python scalar and return it.
Parameters

*args
[Arguments (variable number and type)]
• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

1014 1. Python API

NumPy Reference, Release 2.2.0

• int_type: this argument is interpreted as a flat index into the array, specifying which ele-
ment to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z
[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.
item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples

>>> import numpy as np
>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

For an array with object dtype, elements are returned as-is.

>>> a = np.array([np.int64(1)], dtype=object)
>>> a.item() #return np.int64
np.int64(1)

method
recarray.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the maximum along a given axis.
Refer to numpy.amax for full documentation.
See also:

numpy.amax
equivalent function

1.2. Array objects 1015

NumPy Reference, Release 2.2.0

method
recarray.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)

Returns the average of the array elements along given axis.
Refer to numpy.mean for full documentation.
See also:

numpy.mean
equivalent function

method
recarray.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the minimum along a given axis.
Refer to numpy.amin for full documentation.
See also:

numpy.amin
equivalent function

method
recarray.nonzero()

Return the indices of the elements that are non-zero.
Refer to numpy.nonzero for full documentation.
See also:

numpy.nonzero
equivalent function

method
recarray.partition(kth, axis=-1, kind='introselect', order=None)

Partially sorts the elements in the array in such a way that the value of the element in k-th position is in the
position it would be in a sorted array. In the output array, all elements smaller than the k-th element are
located to the left of this element and all equal or greater are located to its right. The ordering of the elements
in the two partitions on the either side of the k-th element in the output array is undefined.

Parameters
kth
[int or sequence of ints] Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it and all equal or greater
elements behind it. The order of all elements in the partitions is undefined. If provided with a
sequence of kth it will partition all elements indexed by kth of them into their sorted position
at once.
Deprecated since version 1.22.0: Passing booleans as index is deprecated.

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind
[{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

1016 1. Python API

NumPy Reference, Release 2.2.0

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need to be specified, but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See also:

numpy.partition
Return a partitioned copy of an array.

argpartition
Indirect partition.

sort
Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> import numpy as np
>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4]) # may vary

>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])

method
recarray.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)

Return the product of the array elements over the given axis
Refer to numpy.prod for full documentation.
See also:

numpy.prod
equivalent function

method
recarray.put(indices, values, mode='raise')

Set a.flat[n] = values[n] for all n in indices.
Refer to numpy.put for full documentation.
See also:

numpy.put
equivalent function

1.2. Array objects 1017

NumPy Reference, Release 2.2.0

method
recarray.ravel([order])

Return a flattened array.
Refer to numpy.ravel for full documentation.
See also:

numpy.ravel
equivalent function

ndarray.flat
a flat iterator on the array.

method
recarray.repeat(repeats, axis=None)

Repeat elements of an array.
Refer to numpy.repeat for full documentation.
See also:

numpy.repeat
equivalent function

method
recarray.reshape(shape, / , *, order='C', copy=None)

Returns an array containing the same data with a new shape.
Refer to numpy.reshape for full documentation.
See also:

numpy.reshape
equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

method
recarray.resize(new_shape, refcheck=True)

Change shape and size of array in-place.
Parameters

new_shape
[tuple of ints, or n ints] Shape of resized array.

refcheck
[bool, optional] If False, reference count will not be checked. Default is True.

Returns
None

1018 1. Python API

NumPy Reference, Release 2.2.0

Raises
ValueError
If a does not own its own data or references or views to it exist, and the data memory must
be changed. PyPy only: will always raise if the data memory must be changed, since there
is no reliable way to determine if references or views to it exist.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize
Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.
The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> import numpy as np

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing…

1.2. Array objects 1019

NumPy Reference, Release 2.2.0

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

method
recarray.round(decimals=0, out=None)

Return a with each element rounded to the given number of decimals.
Refer to numpy.around for full documentation.
See also:

numpy.around
equivalent function

method
recarray.searchsorted(v, side='left', sorter=None)

Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy.searchsorted
See also:

numpy.searchsorted
equivalent function

method
recarray.setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.
Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters
val
[object] Value to be placed in field.

dtype
[dtype object] Data-type of the field in which to place val.

offset
[int, optional] The number of bytes into the field at which to place val.

Returns
None

See also:

1020 1. Python API

NumPy Reference, Release 2.2.0

getfield

Examples

>>> import numpy as np
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]], dtype=int32)

>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],

[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

method
recarray.setflags(write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.
These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array
owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string.
(The exception for string is made so that unpickling can be done without copying memory.)

Parameters
write
[bool, optional] Describes whether or not a can be written to.

align
[bool, optional] Describes whether or not a is aligned properly for its type.

uic
[bool, optional] Describes whether or not a is a copy of another “base” array.

1.2. Array objects 1021

NumPy Reference, Release 2.2.0

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There are 7
Boolean flags in use, only three of which can be changed by the user: WRITEBACKIFCOPY,WRITEABLE,
and ALIGNED.
WRITEABLE (W) the data area can be written to;
ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);
WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this
array.
All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> import numpy as np
>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

method
recarray.sort(axis=-1, kind=None, order=None)

Sort an array in-place. Refer to numpy.sort for full documentation.
Parameters

axis
[int, optional] Axis along which to sort. Default is -1, which means sort along the last axis.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is

1022 1. Python API

NumPy Reference, Release 2.2.0

‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with datatype. The ‘mergesort’ option is retained
for backwards compatibility.

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can be specified as a string, and not
all fields need be specified, but unspecified fields will still be used, in the order in which they
come up in the dtype, to break ties.

See also:

numpy.sort
Return a sorted copy of an array.

numpy.argsort
Indirect sort.

numpy.lexsort
Indirect stable sort on multiple keys.

numpy.searchsorted
Find elements in sorted array.

numpy.partition
Partial sort.

Notes

See numpy.sort for notes on the different sorting algorithms.

Examples

>>> import numpy as np
>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],

dtype=[('x', 'S1'), ('y', '<i8')])

method

1.2. Array objects 1023

NumPy Reference, Release 2.2.0

recarray.squeeze(axis=None)
Remove axes of length one from a.
Refer to numpy.squeeze for full documentation.
See also:

numpy.squeeze
equivalent function

method
recarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the standard deviation of the array elements along given axis.
Refer to numpy.std for full documentation.
See also:

numpy.std
equivalent function

method
recarray.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)

Return the sum of the array elements over the given axis.
Refer to numpy.sum for full documentation.
See also:

numpy.sum
equivalent function

method
recarray.swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See also:

numpy.swapaxes
equivalent function

method
recarray.take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of a at the given indices.
Refer to numpy.take for full documentation.
See also:

numpy.take
equivalent function

method

1024 1. Python API

NumPy Reference, Release 2.2.0

recarray.tobytes(order='C')
Construct Python bytes containing the raw data bytes in the array.
Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced
in C-order by default. This behavior is controlled by the order parameter.

Parameters
order
[{‘C’, ‘F’, ‘A’}, optional] Controls the memory layout of the bytes object. ‘C’ means C-order,
‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise.
Default is ‘C’.

Returns
s
[bytes] Python bytes exhibiting a copy of a’s raw data.

See also:

frombuffer
Inverse of this operation, construct a 1-dimensional array from Python bytes.

Examples

>>> import numpy as np
>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'

method
recarray.tofile(fid, sep='', format='%s')

Write array to a file as text or binary (default).
Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be
recovered using the function fromfile().

Parameters
fid
[file or str or Path] An open file object, or a string containing a filename.

sep
[str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format
[str] Format string for text file output. Each entry in the array is formatted to text by first
converting it to the closest Python type, and then using “format” % item.

1.2. Array objects 1025

NumPy Reference, Release 2.2.0

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at the
expense of speed and file size.
When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-
like objects that do not support fileno() (e.g., BytesIO).

method
recarray.tolist()

Return the array as an a.ndim-levels deep nested list of Python scalars.
Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the item function.
If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none

Returns
y
[object, or list of object, or list of list of object, or …] The possibly nested list of array
elements.

Notes

The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose
precision.

Examples

For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars
to Python scalars:

>>> import numpy as np
>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[np.uint32(1), np.uint32(2)]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

1026 1. Python API

NumPy Reference, Release 2.2.0

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
...

TypeError: iteration over a 0-d array
>>> a.tolist()
1

method
recarray.tostring(order='C')

A compatibility alias for tobytes, with exactly the same behavior.
Despite its name, it returns bytes not strs.
Deprecated since version 1.19.0.

method
recarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.
Refer to numpy.trace for full documentation.
See also:

numpy.trace
equivalent function

method
recarray.transpose(*axes)

Returns a view of the array with axes transposed.
Refer to numpy.transpose for full documentation.

Parameters
axes
[None, tuple of ints, or n ints]
• None or no argument: reverses the order of the axes.
• tuple of ints: i in the j-th place in the tuple means that the array’s i-th axis becomes the
transposed array’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form).

Returns
p
[ndarray] View of the array with its axes suitably permuted.

1.2. Array objects 1027

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

NumPy Reference, Release 2.2.0

See also:

transpose
Equivalent function.

ndarray.T
Array property returning the array transposed.

ndarray.reshape
Give a new shape to an array without changing its data.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.transpose()
array([1, 2, 3, 4])

method
recarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the variance of the array elements, along given axis.
Refer to numpy.var for full documentation.
See also:

numpy.var
equivalent function

method
recarray.view([dtype][, type])

New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype(None) which is an alias for dtype('float64').

Parameters

1028 1. Python API

NumPy Reference, Release 2.2.0

dtype
[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. Omitting it results in the view having the same data-type as a. This argument
can also be specified as an ndarray sub-class, which then specifies the type of the returned
object (this is equivalent to setting the type parameter).

type
[Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, omission
of the parameter results in type preservation.

Notes

a.view() is used two different ways:
a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.
a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpre-
tation of the memory.
For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the last axis ofamust be contiguous.
This axis will be resized in the result.
Changed in version 1.23.0: Only the last axis needs to be contiguous. Previously, the entire array had to be
C-contiguous.

Examples

>>> import numpy as np
>>> x = np.array([(-1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> nonneg = np.dtype([("a", np.uint8), ("b", np.uint8)])
>>> y = x.view(dtype=nonneg, type=np.recarray)
>>> x["a"]
array([-1], dtype=int8)
>>> y.a
array([255], dtype=uint8)

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

1.2. Array objects 1029

NumPy Reference, Release 2.2.0

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
np.record((9, 10), dtype=[('a', 'i1'), ('b', 'i1')])

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
>>> y = x[:, ::2]
>>> y
array([[1, 3],

[4, 6]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):

...
ValueError: To change to a dtype of a different size, the last axis must be␣
↪→contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 3)],

[(4, 6)]], dtype=[('width', '<i2'), ('length', '<i2')])

However, views that change dtype are totally fine for arrays with a contiguous last axis, even if the rest of the
axes are not C-contiguous:

>>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4)
>>> x.transpose(1, 0, 2).view(np.int16)
array([[[256, 770],

[3340, 3854]],

[[1284, 1798],
[4368, 4882]],

[[2312, 2826],
[5396, 5910]]], dtype=int16)

dot
field
to_device

class numpy.record

A data-type scalar that allows field access as attribute lookup.
Attributes

1030 1. Python API

NumPy Reference, Release 2.2.0

T
Scalar attribute identical to the corresponding array attribute.

base
base object

data
Pointer to start of data.

device
dtype

dtype object
flags

integer value of flags
flat

A 1-D view of the scalar.
imag

The imaginary part of the scalar.
itemset
itemsize

The length of one element in bytes.
nbytes
ndim

The number of array dimensions.
newbyteorder
ptp
real

The real part of the scalar.
shape

Tuple of array dimensions.
size

The number of elements in the gentype.
strides

Tuple of bytes steps in each dimension.

Methods

all Scalar method identical to the corresponding array at-
tribute.

any Scalar method identical to the corresponding array at-
tribute.

argmax Scalar method identical to the corresponding array at-
tribute.

argmin Scalar method identical to the corresponding array at-
tribute.

argsort Scalar method identical to the corresponding array at-
tribute.

continues on next page

1.2. Array objects 1031

NumPy Reference, Release 2.2.0

Table 9 – continued from previous page
astype Scalar method identical to the corresponding array at-

tribute.
byteswap Scalar method identical to the corresponding array at-

tribute.
choose Scalar method identical to the corresponding array at-

tribute.
clip Scalar method identical to the corresponding array at-

tribute.
compress Scalar method identical to the corresponding array at-

tribute.
conjugate Scalar method identical to the corresponding array at-

tribute.
copy Scalar method identical to the corresponding array at-

tribute.
cumprod Scalar method identical to the corresponding array at-

tribute.
cumsum Scalar method identical to the corresponding array at-

tribute.
diagonal Scalar method identical to the corresponding array at-

tribute.
dump Scalar method identical to the corresponding array at-

tribute.
dumps Scalar method identical to the corresponding array at-

tribute.
fill Scalar method identical to the corresponding array at-

tribute.
flatten Scalar method identical to the corresponding array at-

tribute.
getfield Scalar method identical to the corresponding array at-

tribute.
item Scalar method identical to the corresponding array at-

tribute.
max Scalar method identical to the corresponding array at-

tribute.
mean Scalar method identical to the corresponding array at-

tribute.
min Scalar method identical to the corresponding array at-

tribute.
nonzero Scalar method identical to the corresponding array at-

tribute.
pprint() Pretty-print all fields.
prod Scalar method identical to the corresponding array at-

tribute.
put Scalar method identical to the corresponding array at-

tribute.
ravel Scalar method identical to the corresponding array at-

tribute.
repeat Scalar method identical to the corresponding array at-

tribute.
reshape Scalar method identical to the corresponding array at-

tribute.
continues on next page

1032 1. Python API

NumPy Reference, Release 2.2.0

Table 9 – continued from previous page
resize Scalar method identical to the corresponding array at-

tribute.
round Scalar method identical to the corresponding array at-

tribute.
searchsorted Scalar method identical to the corresponding array at-

tribute.
setfield Scalar method identical to the corresponding array at-

tribute.
setflags Scalar method identical to the corresponding array at-

tribute.
sort Scalar method identical to the corresponding array at-

tribute.
squeeze Scalar method identical to the corresponding array at-

tribute.
std Scalar method identical to the corresponding array at-

tribute.
sum Scalar method identical to the corresponding array at-

tribute.
swapaxes Scalar method identical to the corresponding array at-

tribute.
take Scalar method identical to the corresponding array at-

tribute.
tofile Scalar method identical to the corresponding array at-

tribute.
tolist Scalar method identical to the corresponding array at-

tribute.
tostring Scalar method identical to the corresponding array at-

tribute.
trace Scalar method identical to the corresponding array at-

tribute.
transpose Scalar method identical to the corresponding array at-

tribute.
var Scalar method identical to the corresponding array at-

tribute.
view Scalar method identical to the corresponding array at-

tribute.

method
record.all()

Scalar method identical to the corresponding array attribute.
Please see ndarray.all.

method
record.any()

Scalar method identical to the corresponding array attribute.
Please see ndarray.any.

method
record.argmax()

Scalar method identical to the corresponding array attribute.

1.2. Array objects 1033

NumPy Reference, Release 2.2.0

Please see ndarray.argmax.
method
record.argmin()

Scalar method identical to the corresponding array attribute.
Please see ndarray.argmin.

method
record.argsort()

Scalar method identical to the corresponding array attribute.
Please see ndarray.argsort.

method
record.astype()

Scalar method identical to the corresponding array attribute.
Please see ndarray.astype.

method
record.byteswap()

Scalar method identical to the corresponding array attribute.
Please see ndarray.byteswap.

method
record.choose()

Scalar method identical to the corresponding array attribute.
Please see ndarray.choose.

method
record.clip()

Scalar method identical to the corresponding array attribute.
Please see ndarray.clip.

method
record.compress()

Scalar method identical to the corresponding array attribute.
Please see ndarray.compress.

method
record.conjugate()

Scalar method identical to the corresponding array attribute.
Please see ndarray.conjugate.

method
record.copy()

Scalar method identical to the corresponding array attribute.
Please see ndarray.copy.

method

1034 1. Python API

NumPy Reference, Release 2.2.0

record.cumprod()

Scalar method identical to the corresponding array attribute.
Please see ndarray.cumprod.

method
record.cumsum()

Scalar method identical to the corresponding array attribute.
Please see ndarray.cumsum.

method
record.diagonal()

Scalar method identical to the corresponding array attribute.
Please see ndarray.diagonal.

method
record.dump()

Scalar method identical to the corresponding array attribute.
Please see ndarray.dump.

method
record.dumps()

Scalar method identical to the corresponding array attribute.
Please see ndarray.dumps.

method
record.fill()

Scalar method identical to the corresponding array attribute.
Please see ndarray.fill.

method
record.flatten()

Scalar method identical to the corresponding array attribute.
Please see ndarray.flatten.

method
record.getfield()

Scalar method identical to the corresponding array attribute.
Please see ndarray.getfield.

method
record.item()

Scalar method identical to the corresponding array attribute.
Please see ndarray.item.

method

1.2. Array objects 1035

NumPy Reference, Release 2.2.0

record.max()

Scalar method identical to the corresponding array attribute.
Please see ndarray.max.

method
record.mean()

Scalar method identical to the corresponding array attribute.
Please see ndarray.mean.

method
record.min()

Scalar method identical to the corresponding array attribute.
Please see ndarray.min.

method
record.nonzero()

Scalar method identical to the corresponding array attribute.
Please see ndarray.nonzero.

method
record.pprint()

Pretty-print all fields.
method
record.prod()

Scalar method identical to the corresponding array attribute.
Please see ndarray.prod.

method
record.put()

Scalar method identical to the corresponding array attribute.
Please see ndarray.put.

method
record.ravel()

Scalar method identical to the corresponding array attribute.
Please see ndarray.ravel.

method
record.repeat()

Scalar method identical to the corresponding array attribute.
Please see ndarray.repeat.

method
record.reshape()

Scalar method identical to the corresponding array attribute.
Please see ndarray.reshape.

1036 1. Python API

NumPy Reference, Release 2.2.0

method
record.resize()

Scalar method identical to the corresponding array attribute.
Please see ndarray.resize.

method
record.round()

Scalar method identical to the corresponding array attribute.
Please see ndarray.round.

method
record.searchsorted()

Scalar method identical to the corresponding array attribute.
Please see ndarray.searchsorted.

method
record.setfield()

Scalar method identical to the corresponding array attribute.
Please see ndarray.setfield.

method
record.setflags()

Scalar method identical to the corresponding array attribute.
Please see ndarray.setflags.

method
record.sort()

Scalar method identical to the corresponding array attribute.
Please see ndarray.sort.

method
record.squeeze()

Scalar method identical to the corresponding array attribute.
Please see ndarray.squeeze.

method
record.std()

Scalar method identical to the corresponding array attribute.
Please see ndarray.std.

method
record.sum()

Scalar method identical to the corresponding array attribute.
Please see ndarray.sum.

method

1.2. Array objects 1037

NumPy Reference, Release 2.2.0

record.swapaxes()

Scalar method identical to the corresponding array attribute.
Please see ndarray.swapaxes.

method
record.take()

Scalar method identical to the corresponding array attribute.
Please see ndarray.take.

method
record.tofile()

Scalar method identical to the corresponding array attribute.
Please see ndarray.tofile.

method
record.tolist()

Scalar method identical to the corresponding array attribute.
Please see ndarray.tolist.

method
record.tostring()

Scalar method identical to the corresponding array attribute.
Please see ndarray.tostring.

method
record.trace()

Scalar method identical to the corresponding array attribute.
Please see ndarray.trace.

method
record.transpose()

Scalar method identical to the corresponding array attribute.
Please see ndarray.transpose.

method
record.var()

Scalar method identical to the corresponding array attribute.
Please see ndarray.var.

method
record.view()

Scalar method identical to the corresponding array attribute.
Please see ndarray.view.

conj
to_device
tobytes

1038 1. Python API

NumPy Reference, Release 2.2.0

Note: The pandas DataFrame is more powerful than record array. If possible, please use pandas DataFrame instead.

Masked arrays (numpy.ma)

See also:
Masked arrays

Standard container class

For backward compatibility and as a standard “container “class, the UserArray from Numeric has been brought over to
NumPy and named numpy.lib.user_array.container The container class is a Python class whose self.array
attribute is an ndarray. Multiple inheritance is probably easier with numpy.lib.user_array.container than with the ndar-
ray itself and so it is included by default. It is not documented here beyond mentioning its existence because you are
encouraged to use the ndarray class directly if you can.

numpy.lib.user_array.container(data[, ...]) Standard container-class for easy multiple-inheritance.

class numpy.lib.user_array.container(data, dtype=None, copy=True)
Standard container-class for easy multiple-inheritance.

Methods

copy
tostring
byteswap
astype

Array iterators

Iterators are a powerful concept for array processing. Essentially, iterators implement a generalized for-loop. If myiter is
an iterator object, then the Python code:

for val in myiter:
...
some code involving val
...

calls val = next(myiter) repeatedly until StopIteration is raised by the iterator. There are several ways to
iterate over an array that may be useful: default iteration, flat iteration, and N -dimensional enumeration.

1.2. Array objects 1039

https://docs.python.org/3/library/exceptions.html#StopIteration

NumPy Reference, Release 2.2.0

Default iteration
The default iterator of an ndarray object is the default Python iterator of a sequence type. Thus, when the array object
itself is used as an iterator. The default behavior is equivalent to:

for i in range(arr.shape[0]):
val = arr[i]

This default iterator selects a sub-array of dimension N − 1 from the array. This can be a useful construct for defining
recursive algorithms. To loop over the entire array requires N for-loops.

>>> import numpy as np
>>> a = np.arange(24).reshape(3,2,4) + 10
>>> for val in a:
... print('item:', val)
item: [[10 11 12 13]
[14 15 16 17]]
item: [[18 19 20 21]
[22 23 24 25]]
item: [[26 27 28 29]
[30 31 32 33]]

Flat iteration

ndarray.flat A 1-D iterator over the array.

As mentioned previously, the flat attribute of ndarray objects returns an iterator that will cycle over the entire array in
C-style contiguous order.

>>> import numpy as np
>>> a = np.arange(24).reshape(3,2,4) + 10
>>> for i, val in enumerate(a.flat):
... if i%5 == 0: print(i, val)
0 10
5 15
10 20
15 25
20 30

Here, I’ve used the built-in enumerate iterator to return the iterator index as well as the value.

N-dimensional enumeration

ndenumerate(arr) Multidimensional index iterator.

class numpy.ndenumerate(arr)
Multidimensional index iterator.
Return an iterator yielding pairs of array coordinates and values.

Parameters
arr

[ndarray] Input array.
See also:

1040 1. Python API

NumPy Reference, Release 2.2.0

ndindex, flatiter

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> for index, x in np.ndenumerate(a):
... print(index, x)
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4

Sometimes it may be useful to get the N-dimensional index while iterating. The ndenumerate iterator can achieve this.

>>> import numpy as np
>>> for i, val in np.ndenumerate(a):
... if sum(i)%5 == 0: print(i, val)
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
(2, 1, 2) 32

Iterator for broadcasting

broadcast Produce an object that mimics broadcasting.

class numpy.broadcast

Produce an object that mimics broadcasting.
Parameters

in1, in2, …
[array_like] Input parameters.

Returns
b

[broadcast object] Broadcast the input parameters against one another, and return an object
that encapsulates the result. Amongst others, it has shape and nd properties, and may be
used as an iterator.

See also:

broadcast_arrays
broadcast_to
broadcast_shapes

1.2. Array objects 1041

NumPy Reference, Release 2.2.0

Examples

Manually adding two vectors, using broadcasting:

>>> import numpy as np
>>> x = np.array([[1], [2], [3]])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast(x, y)

>>> out = np.empty(b.shape)
>>> out.flat = [u+v for (u,v) in b]
>>> out
array([[5., 6., 7.],

[6., 7., 8.],
[7., 8., 9.]])

Compare against built-in broadcasting:

>>> x + y
array([[5, 6, 7],

[6, 7, 8],
[7, 8, 9]])

Attributes
index

current index in broadcasted result
iters

tuple of iterators along self’s “components.”
nd

Number of dimensions of broadcasted result.
ndim

Number of dimensions of broadcasted result.
numiter

Number of iterators possessed by the broadcasted result.
shape

Shape of broadcasted result.
size

Total size of broadcasted result.

Methods

reset() Reset the broadcasted result's iterator(s).

method
broadcast.reset()

Reset the broadcasted result’s iterator(s).
Parameters

1042 1. Python API

NumPy Reference, Release 2.2.0

None
Returns

None

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.index
0
>>> next(b), next(b), next(b)
((1, 4), (2, 4), (3, 4))
>>> b.index
3
>>> b.reset()
>>> b.index
0

The general concept of broadcasting is also available from Python using the broadcast iterator. This object takes N
objects as inputs and returns an iterator that returns tuples providing each of the input sequence elements in the broadcasted
result.

>>> import numpy as np
>>> for val in np.broadcast([[1, 0], [2, 3]], [0, 1]):
... print(val)
(np.int64(1), np.int64(0))
(np.int64(0), np.int64(1))
(np.int64(2), np.int64(0))
(np.int64(3), np.int64(1))

1.2.7 Masked arrays

Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-alike
replacement for numpy that supports data arrays with masks.

The numpy.ma module

Rationale
Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-alike
replacement for numpy that supports data arrays with masks.

1.2. Array objects 1043

NumPy Reference, Release 2.2.0

What is a masked array?
In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may
have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address
this issue, by introducing masked arrays.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating
that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated
array whether the value is valid or not. When an element of the mask is False, the corresponding element of the
associated array is valid and is said to be unmasked. When an element of the mask is True, the corresponding element
of the associated array is said to be masked (invalid).
The package ensures that masked entries are not used in computations.

As an illustration, let’s consider the following dataset:

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([1, 2, 3, -1, 5])

We wish to mark the fourth entry as invalid. The easiest is to create a masked array:

>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])

We can now compute the mean of the dataset, without taking the invalid data into account:

>>> mx.mean()
2.75

The numpy.ma module
The main feature of the numpy.ma module is the MaskedArray class, which is a subclass of numpy.ndarray.
The class, its attributes and methods are described in more details in the MaskedArray class section.
The numpy.ma module can be used as an addition to numpy:

>>> import numpy as np
>>> import numpy.ma as ma

To create an array with the second element invalid, we would do:

>>> y = ma.array([1, 2, 3], mask = [0, 1, 0])

To create a masked array where all values close to 1.e20 are invalid, we would do:

>>> z = ma.masked_values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see section Constructing masked arrays.

1044 1. Python API

NumPy Reference, Release 2.2.0

Using numpy.ma

Constructing masked arrays
There are several ways to construct a masked array.

• A first possibility is to directly invoke the MaskedArray class.
• A second possibility is to use the two masked array constructors, array and masked_array.

array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
masked_array alias of MaskedArray

• A third option is to take the view of an existing array. In that case, the mask of the view is set to nomask if the
array has no named fields, or an array of boolean with the same structure as the array otherwise.

>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> x.view(ma.MaskedArray)
masked_array(data=[1, 2, 3],

mask=False,
fill_value=999999)

>>> x = np.array([(1, 1.), (2, 2.)], dtype=[('a',int), ('b', float)])
>>> x.view(ma.MaskedArray)
masked_array(data=[(1, 1.0), (2, 2.0)],

mask=[(False, False), (False, False)],
fill_value=(999999, 1e+20),

dtype=[('a', '<i8'), ('b', '<f8')])

• Yet another possibility is to use any of the following functions:

asarray(a[, dtype, order]) Convert the input to a masked array of the given data-
type.

asanyarray(a[, dtype]) Convert the input to a masked array, conserving sub-
classes.

fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by
a fill value.

masked_equal(x, value[, copy]) Mask an array where equal to a given value.
masked_greater(x, value[, copy]) Mask an array where greater than a given value.
masked_greater_equal(x, value[, copy]) Mask an array where greater than or equal to a given

value.
masked_inside(x, v1, v2[, copy]) Mask an array inside a given interval.
masked_invalid(a[, copy]) Mask an array where invalid values occur (NaNs or

infs).
masked_less(x, value[, copy]) Mask an array where less than a given value.
masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
masked_object(x, value[, copy, shrink]) Mask the array x where the data are exactly equal to

value.
masked_outside(x, v1, v2[, copy]) Mask an array outside a given interval.
masked_values(x, value[, rtol, atol, copy, ...]) Mask using floating point equality.
masked_where(condition, a[, copy]) Mask an array where a condition is met.

1.2. Array objects 1045

NumPy Reference, Release 2.2.0

Accessing the data
The underlying data of a masked array can be accessed in several ways:

• through the data attribute. The output is a view of the array as a numpy.ndarray or one of its subclasses,
depending on the type of the underlying data at the masked array creation.

• through the __array__ method. The output is then a numpy.ndarray.
• by directly taking a view of the masked array as a numpy.ndarray or one of its subclass (which is actually what
using the data attribute does).

• by using the getdata function.
None of these methods is completely satisfactory if some entries have been marked as invalid. As a general rule, where a
representation of the array is required without any masked entries, it is recommended to fill the array with the filled
method.

Accessing the mask
The mask of a masked array is accessible through its mask attribute. We must keep in mind that a True entry in the
mask indicates an invalid data.
Another possibility is to use the getmask and getmaskarray functions. getmask(x) outputs the mask of x if
x is a masked array, and the special value nomask otherwise. getmaskarray(x) outputs the mask of x if x is a
masked array. If x has no invalid entry or is not a masked array, the function outputs a boolean array of False with as
many elements as x.

Accessing only the valid entries
To retrieve only the valid entries, we can use the inverse of the mask as an index. The inverse of the mask can be calculated
with the numpy.logical_not function or simply with the ~ operator:

>>> import numpy as np
>>> x = ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
>>> x[~x.mask]
masked_array(data=[1, 4],

mask=[False, False],
fill_value=999999)

Another way to retrieve the valid data is to use the compressed method, which returns a one-dimensional
ndarray (or one of its subclasses, depending on the value of the baseclass attribute):

>>> x.compressed()
array([1, 4])

Note that the output of compressed is always 1D.

Modifying the mask
Masking an entry

The recommended way to mark one or several specific entries of a masked array as invalid is to assign the special value
masked to them:

>>> x = ma.array([1, 2, 3])
>>> x[0] = ma.masked
>>> x
masked_array(data=[--, 2, 3],

mask=[True, False, False],

(continues on next page)

1046 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
fill_value=999999)

>>> y = ma.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
>>> y
masked_array(
data=[[1, --, 3],

[4, 5, --],
[--, 8, 9]],

mask=[[False, True, False],
[False, False, True],
[True, False, False]],

fill_value=999999)
>>> z = ma.array([1, 2, 3, 4])
>>> z[:-2] = ma.masked
>>> z
masked_array(data=[--, --, 3, 4],

mask=[True, True, False, False],
fill_value=999999)

A second possibility is to modify the mask directly, but this usage is discouraged.

Note: When creating a new masked array with a simple, non-structured datatype, the mask is initially set to the special
value nomask, that corresponds roughly to the boolean False. Trying to set an element of nomask will fail with a
TypeError exception, as a boolean does not support item assignment.

All the entries of an array can be masked at once by assigning True to the mask:

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x.mask = True
>>> x
masked_array(data=[--, --, --],

mask=[True, True, True],
fill_value=999999,

dtype=int64)

Finally, specific entries can be masked and/or unmasked by assigning to the mask a sequence of booleans:

>>> x = ma.array([1, 2, 3])
>>> x.mask = [0, 1, 0]
>>> x
masked_array(data=[1, --, 3],

mask=[False, True, False],
fill_value=999999)

1.2. Array objects 1047

https://docs.python.org/3/library/exceptions.html#TypeError

NumPy Reference, Release 2.2.0

Unmasking an entry

To unmask one or several specific entries, we can just assign one or several new valid values to them:

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x
masked_array(data=[1, 2, --],

mask=[False, False, True],
fill_value=999999)

>>> x[-1] = 5
>>> x
masked_array(data=[1, 2, 5],

mask=[False, False, False],
fill_value=999999)

Note: Unmasking an entry by direct assignment will silently fail if the masked array has a hard mask, as shown by
the hardmask attribute. This feature was introduced to prevent overwriting the mask. To force the unmasking of an
entry where the array has a hard mask, the mask must first to be softened using the soften_mask method before the
allocation. It can be re-hardened with harden_mask as follows:

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 3], mask=[0, 0, 1], hard_mask=True)
>>> x
masked_array(data=[1, 2, --],

mask=[False, False, True],
fill_value=999999)

>>> x[-1] = 5
>>> x
masked_array(data=[1, 2, --],

mask=[False, False, True],
fill_value=999999)

>>> x.soften_mask()
masked_array(data=[1, 2, --],

mask=[False, False, True],
fill_value=999999)

>>> x[-1] = 5
>>> x
masked_array(data=[1, 2, 5],

mask=[False, False, False],
fill_value=999999)

>>> x.harden_mask()
masked_array(data=[1, 2, 5],

mask=[False, False, False],
fill_value=999999)

To unmask all masked entries of a masked array (provided the mask isn’t a hard mask), the simplest solution is to assign
the constant nomask to the mask:

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x
masked_array(data=[1, 2, --],

mask=[False, False, True],
fill_value=999999)

(continues on next page)

1048 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> x.mask = ma.nomask
>>> x
masked_array(data=[1, 2, 3],

mask=[False, False, False],
fill_value=999999)

Indexing and slicing
As a MaskedArray is a subclass of numpy.ndarray, it inherits its mechanisms for indexing and slicing.
When accessing a single entry of a masked array with no named fields, the output is either a scalar (if the corresponding
entry of the mask is False) or the special value masked (if the corresponding entry of the mask is True):

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 3], mask=[0, 0, 1])
>>> x[0]
1
>>> x[-1]
masked
>>> x[-1] is ma.masked
True

If the masked array has named fields, accessing a single entry returns a numpy.void object if none of the fields are
masked, or a 0d masked array with the same dtype as the initial array if at least one of the fields is masked.

>>> import numpy.ma as ma
>>> y = ma.masked_array([(1,2), (3, 4)],
... mask=[(0, 0), (0, 1)],
... dtype=[('a', int), ('b', int)])
>>> y[0]
(1, 2)
>>> y[-1]
(3, --)

When accessing a slice, the output is a masked array whose data attribute is a view of the original data, and whose mask
is either nomask (if there was no invalid entries in the original array) or a view of the corresponding slice of the original
mask. The view is required to ensure propagation of any modification of the mask to the original.

>>> import numpy.ma as ma
>>> x = ma.array([1, 2, 3, 4, 5], mask=[0, 1, 0, 0, 1])
>>> mx = x[:3]
>>> mx
masked_array(data=[1, --, 3],

mask=[False, True, False],
fill_value=999999)

>>> mx[1] = -1
>>> mx
masked_array(data=[1, -1, 3],

mask=[False, False, False],
fill_value=999999)

>>> x.mask
array([False, False, False, False, True])
>>> x.data
array([1, -1, 3, 4, 5])

Accessing a field of a masked array with structured datatype returns a MaskedArray.

1.2. Array objects 1049

NumPy Reference, Release 2.2.0

Operations on masked arrays
Arithmetic and comparison operations are supported by masked arrays. As much as possible, invalid entries of a masked
array are not processed, meaning that the corresponding data entries should be the same before and after the operation.

Warning: We need to stress that this behavior may not be systematic, that masked data may be affected by the
operation in some cases and therefore users should not rely on this data remaining unchanged.

The numpy.ma module comes with a specific implementation of most ufuncs. Unary and binary functions that have a
validity domain (such as log or divide) return the masked constant whenever the input is masked or falls outside the
validity domain:

>>> import numpy.ma as ma
>>> ma.log([-1, 0, 1, 2])
masked_array(data=[--, --, 0.0, 0.6931471805599453],

mask=[True, True, False, False],
fill_value=1e+20)

Masked arrays also support standard numpy ufuncs. The output is then a masked array. The result of a unary ufunc is
masked wherever the input is masked. The result of a binary ufunc is masked wherever any of the input is masked. If the
ufunc also returns the optional context output (a 3-element tuple containing the name of the ufunc, its arguments and its
domain), the context is processed and entries of the output masked array are masked wherever the corresponding input
fall outside the validity domain:

>>> import numpy.ma as ma
>>> x = ma.array([-1, 1, 0, 2, 3], mask=[0, 0, 0, 0, 1])
>>> np.log(x)
masked_array(data=[--, 0.0, --, 0.6931471805599453, --],

mask=[True, False, True, False, True],
fill_value=1e+20)

Examples

Data with a given value representing missing data
Let’s consider a list of elements, x, where values of -9999. represent missing data. We wish to compute the average value
of the data and the vector of anomalies (deviations from the average):

>>> import numpy.ma as ma
>>> x = [0.,1.,-9999.,3.,4.]
>>> mx = ma.masked_values (x, -9999.)
>>> print(mx.mean())
2.0
>>> print(mx - mx.mean())
[-2.0 -1.0 -- 1.0 2.0]
>>> print(mx.anom())
[-2.0 -1.0 -- 1.0 2.0]

1050 1. Python API

NumPy Reference, Release 2.2.0

Filling in the missing data
Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> import numpy.ma as ma
>>> mx = ma.masked_values (x, -9999.)
>>> print(mx.filled(mx.mean()))
[0. 1. 2. 3. 4.]

Numerical operations
Numerical operations can be easily performed without worrying about missing values, dividing by zero, square roots of
negative numbers, etc.:

>>> import numpy.ma as ma
>>> x = ma.array([1., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,0])
>>> y = ma.array([1., 2., 0., 4., 5., 6.], mask=[0,0,0,0,0,1])
>>> print(ma.sqrt(x/y))
[1.0 -- -- 1.0 -- --]

Four values of the output are invalid: the first one comes from taking the square root of a negative number, the second
from the division by zero, and the last two where the inputs were masked.

Ignoring extreme values
Let’s consider an array d of floats between 0 and 1. We wish to compute the average of the values of d while ignoring
any data outside the range [0.2, 0.9]:

>>> import numpy as np
>>> import numpy.ma as ma
>>> d = np.linspace(0, 1, 20)
>>> print(d.mean() - ma.masked_outside(d, 0.2, 0.9).mean())
-0.05263157894736836

Constants of the numpy.ma module

In addition to the MaskedArray class, the numpy.ma module defines several constants.
numpy.ma.masked

The masked constant is a special case of MaskedArray, with a float datatype and a null shape. It is used to test
whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:

>>> import numpy as np

>>> x = ma.array([1, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked
True
>>> x[-1] = ma.masked
>>> x
masked_array(data=[1, --, --],

mask=[False, True, True],
fill_value=999999)

numpy.ma.nomask

Value indicating that a masked array has no invalid entry. nomask is used internally to speed up computations
when the mask is not needed. It is represented internally as np.False_.

1.2. Array objects 1051

NumPy Reference, Release 2.2.0

numpy.ma.masked_print_option

String used in lieu of missing data when a masked array is printed. By default, this string is '--'.
Use set_display() to change the default string. Example usage: numpy.ma.masked_print_option.
set_display('X') replaces missing data with 'X'.

The MaskedArray class

class numpy.ma.MaskedArray

A subclass of ndarray designed to manipulate numerical arrays with missing data.
An instance of MaskedArray can be thought as the combination of several elements:

• The data, as a regular numpy.ndarray of any shape or datatype (the data).
• A boolean mask with the same shape as the data, where a True value indicates that the corresponding element
of the data is invalid. The special value nomask is also acceptable for arrays without named fields, and indicates
that no data is invalid.

• A fill_value, a value that may be used to replace the invalid entries in order to return a standard numpy.
ndarray.

Attributes and properties of masked arrays
See also:
Array Attributes

ma.MaskedArray.data

Returns the underlying data, as a view of the masked array.
If the underlying data is a subclass of numpy.ndarray, it is returned as such.

>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.data
matrix([[1, 2],

[3, 4]])

The type of the data can be accessed through the baseclass attribute.
ma.MaskedArray.mask

Current mask.
ma.MaskedArray.recordmask

Get or set the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans where
entries are True if all the fields are masked, False otherwise:

>>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
... dtype=[('a', int), ('b', int)])
>>> x.recordmask
array([False, False, True, False, False])

ma.MaskedArray.fill_value

The filling value of the masked array is a scalar. When setting, None will set to a default based on the data type.

1052 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
... np.ma.array([0, 1], dtype=dt).get_fill_value()
...
np.int64(999999)
np.int64(999999)
np.float64(1e+20)
np.complex128(1e+20+0j)

>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
np.float64(-inf)
>>> x.fill_value = np.pi
>>> x.fill_value
np.float64(3.1415926535897931)

Reset to default:

>>> x.fill_value = None
>>> x.fill_value
np.float64(1e+20)

ma.MaskedArray.baseclass

Class of the underlying data (read-only).
ma.MaskedArray.sharedmask

Share status of the mask (read-only).
ma.MaskedArray.hardmask

Specifies whether values can be unmasked through assignments.
By default, assigning definite values to masked array entries will unmask them. When hardmask is True, the
mask will not change through assignments.
See also:

ma.MaskedArray.harden_mask
ma.MaskedArray.soften_mask

Examples

>>> import numpy as np
>>> x = np.arange(10)
>>> m = np.ma.masked_array(x, x>5)
>>> assert not m.hardmask

Since m has a soft mask, assigning an element value unmasks that element:

>>> m[8] = 42
>>> m
masked_array(data=[0, 1, 2, 3, 4, 5, --, --, 42, --],

mask=[False, False, False, False, False, False,
True, True, False, True],

fill_value=999999)

1.2. Array objects 1053

NumPy Reference, Release 2.2.0

After hardening, the mask is not affected by assignments:

>>> hardened = np.ma.harden_mask(m)
>>> assert m.hardmask and hardened is m
>>> m[:] = 23
>>> m
masked_array(data=[23, 23, 23, 23, 23, 23, --, --, 23, --],

mask=[False, False, False, False, False, False,
True, True, False, True],

fill_value=999999)

As MaskedArray is a subclass of ndarray, a masked array also inherits all the attributes and properties of a ndar-
ray instance.

MaskedArray.base Base object if memory is from some other object.
MaskedArray.ctypes An object to simplify the interaction of the array with the

ctypes module.
MaskedArray.dtype Data-type of the array's elements.
MaskedArray.flags Information about the memory layout of the array.
MaskedArray.itemsize Length of one array element in bytes.
MaskedArray.nbytes Total bytes consumed by the elements of the array.
MaskedArray.ndim Number of array dimensions.
MaskedArray.shape Tuple of array dimensions.
MaskedArray.size Number of elements in the array.
MaskedArray.strides Tuple of bytes to step in each dimension when traversing

an array.
MaskedArray.imag The imaginary part of the masked array.
MaskedArray.real The real part of the masked array.
MaskedArray.flat Return a flat iterator, or set a flattened version of self to

value.
MaskedArray.__array_priority__

attribute
ma.MaskedArray.base

Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> import numpy as np
>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

attribute

1054 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.ctypes

An object to simplify the interaction of the array with the ctypes module.
This attribute creates an object thatmakes it easier to use arrays when calling shared libraries with the ctypesmodule.
The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return
ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
c

[Python object] Possessing attributes data, shape, strides, etc.
See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):
_ctypes.data

A pointer to the memory area of the array as a Python integer. This memory area may contain data that is
not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and
data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble
that can include Python crashing. User Beware! The value of this attribute is exactly the same as: self.
_array_interface_['data'][0].
Note that unlike data_as, a reference won’t be kept to the array: code like ctypes.c_void_p((a
+ b).ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + b).
ctypes.data_as(ctypes.c_void_p)

_ctypes.shape

(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding
to dtype('p') on this platform (see c_intp). This base-type could be ctypes.c_int, ctypes.
c_long, or ctypes.c_longlong depending on the platform. The ctypes array contains the shape of
the underlying array.

_ctypes.strides

(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape at-
tribute. This ctypes array contains the strides information from the underlying array. This strides information
is important for showing how many bytes must be jumped to get to the next element in the array.

_ctypes.data_as(obj)
Return the data pointer cast to a particular c-types object. For example, calling self._as_parameter_
is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a pointer to
a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).
The returned pointer will keep a reference to the array.

_ctypes.shape_as(obj)
Return the shape tuple as an array of some other c-types type. For example: self.shape_as(ctypes.
c_short).

1.2. Array objects 1055

https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_longlong

NumPy Reference, Release 2.2.0

_ctypes.strides_as(obj)
Return the strides tuple as an array of some other c-types type. For example: self.
strides_as(ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the
as_parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import numpy as np
>>> import ctypes
>>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
>>> x
array([[0, 1],

[2, 3]], dtype=int32)
>>> x.ctypes.data
31962608 # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
<__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
c_uint(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
c_ulong(4294967296)
>>> x.ctypes.shape
<numpy._core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
>>> x.ctypes.strides
<numpy._core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary

property
property ma.MaskedArray.dtype

Data-type of the array’s elements.

Warning: Setting arr.dtype is discouraged and may be deprecated in the future. Setting will replace the
dtype without modifying the memory (see also ndarray.view and ndarray.astype).

Parameters
None

Returns
d

[numpy dtype object]

See also:

ndarray.astype
Cast the values contained in the array to a new data-type.

ndarray.view
Create a view of the same data but a different data-type.

numpy.dtype

1056 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

attribute
ma.MaskedArray.flags

Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased
attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.
Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be changed by the user, via direct
assignment to the attribute or dictionary entry, or by calling ndarray.setflags.
The array flags cannot be set arbitrarily:

• WRITEBACKIFCOPY can only be set False.
• ALIGNED can only be set True if the data is truly aligned.
• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays, but
can also be true for higher dimensional arrays.
Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1]
== self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes
C_CONTIGUOUS (C)

The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F)

The data is in a single, Fortran-style contiguous segment.
OWNDATA (O)

The array owns the memory it uses or borrows it from another object.
WRITEABLE (W)

The data area can be written to. Setting this to False locks the data, making it read-only. A
view (slice, etc.) inherits WRITEABLE from its base array at creation time, but a view of
a writeable array may be subsequently locked while the base array remains writeable. (The
opposite is not true, in that a view of a locked array may not be made writeable. However,
currently, locking a base object does not lock any views that already reference it, so under
that circumstance it is possible to alter the contents of a locked array via a previously created
writeable view onto it.) Attempting to change a non-writeable array raises a RuntimeError
exception.

1.2. Array objects 1057

NumPy Reference, Release 2.2.0

ALIGNED (A)
The data and all elements are aligned appropriately for the hardware.

WRITEBACKIFCOPY (X)
This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array
will be updated with the contents of this array.

FNC
F_CONTIGUOUS and not C_CONTIGUOUS.

FORC
F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B)
ALIGNED and WRITEABLE.

CARRAY (CA)
BEHAVED and C_CONTIGUOUS.

FARRAY (FA)
BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

attribute
ma.MaskedArray.itemsize

Length of one array element in bytes.

Examples

>>> import numpy as np
>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

attribute
ma.MaskedArray.nbytes

Total bytes consumed by the elements of the array.
See also:

sys.getsizeof
Memory consumed by the object itself without parents in case view. This does include memory consumed
by non-element attributes.

1058 1. Python API

https://docs.python.org/3/library/sys.html#sys.getsizeof

NumPy Reference, Release 2.2.0

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> import numpy as np
>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

attribute
ma.MaskedArray.ndim

Number of array dimensions.

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

property
property ma.MaskedArray.shape

Tuple of array dimensions.
The shape property is usually used to get the current shape of an array, but may also be used to reshape the array in-
place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new shape dimensions
can be -1, in which case its value is inferred from the size of the array and the remaining dimensions. Reshaping
an array in-place will fail if a copy is required.

Warning: Setting arr.shape is discouraged and may be deprecated in the future. Using ndarray.
reshape is the preferred approach.

See also:

numpy.shape
Equivalent getter function.

numpy.reshape
Function similar to setting shape.

ndarray.reshape
Method similar to setting shape.

1.2. Array objects 1059

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: Incompatible shape for in-place modification. Use
`.reshape()` to make a copy with the desired shape.

attribute
ma.MaskedArray.size

Number of elements in the array.
Equal to np.prod(a.shape), i.e., the product of the array’s dimensions.

Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of ob-
taining the same value (like the suggested np.prod(a.shape), which returns an instance of np.int_), and
may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> import numpy as np
>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

attribute
ma.MaskedArray.strides

Tuple of bytes to step in each dimension when traversing an array.
The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

1060 1. Python API

NumPy Reference, Release 2.2.0

A more detailed explanation of strides can be found in The N-dimensional array (ndarray).

Warning: Setting arr.strides is discouraged and may be deprecated in the future. numpy.lib.
stride_tricks.as_strided should be preferred to create a new view of the same data in a safer way.

See also:

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to
the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> import numpy as np
>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

property

1.2. Array objects 1061

NumPy Reference, Release 2.2.0

property ma.MaskedArray.imag

The imaginary part of the masked array.
This property is a view on the imaginary part of this MaskedArray.
See also:

real

Examples

>>> import numpy as np
>>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
>>> x.imag
masked_array(data=[1.0, --, 1.6],

mask=[False, True, False],
fill_value=1e+20)

property
property ma.MaskedArray.real

The real part of the masked array.
This property is a view on the real part of this MaskedArray.
See also:

imag

Examples

>>> import numpy as np
>>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
>>> x.real
masked_array(data=[1.0, --, 3.45],

mask=[False, True, False],
fill_value=1e+20)

property
property ma.MaskedArray.flat

Return a flat iterator, or set a flattened version of self to value.
attribute
ma.MaskedArray.__array_priority__ = 15

1062 1. Python API

NumPy Reference, Release 2.2.0

MaskedArray methods

See also:
Array methods

Conversion

MaskedArray.__float__() Convert to float.
MaskedArray.__int__() Convert to int.
MaskedArray.view([dtype, type, fill_value]) Return a view of the MaskedArray data.
MaskedArray.astype(dtype[, order, casting, ...]) Copy of the array, cast to a specified type.
MaskedArray.byteswap([inplace]) Swap the bytes of the array elements
MaskedArray.compressed() Return all the non-masked data as a 1-D array.
MaskedArray.filled([fill_value]) Return a copy of self, with masked values filled with a

given value.
MaskedArray.tofile(fid[, sep, format]) Save a masked array to a file in binary format.
MaskedArray.toflex() Transforms a masked array into a flexible-type array.
MaskedArray.tolist([fill_value]) Return the data portion of the masked array as a hierar-

chical Python list.
MaskedArray.torecords() Transforms a masked array into a flexible-type array.
MaskedArray.tostring([fill_value, order]) A compatibility alias for tobytes, with exactly the same

behavior.
MaskedArray.tobytes([fill_value, order]) Return the array data as a string containing the raw bytes

in the array.

method
ma.MaskedArray.__float__()

Convert to float.
method
ma.MaskedArray.__int__()

Convert to int.
method
ma.MaskedArray.view(dtype=None, type=None, fill_value=None)

Return a view of the MaskedArray data.
Parameters

dtype
[data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. The default, None, results in the view having the same data-type as a. As with
ndarray.view, dtype can also be specified as an ndarray sub-class, which then specifies
the type of the returned object (this is equivalent to setting the type parameter).

type
[Python type, optional] Type of the returned view, either ndarray or a subclass. The default
None results in type preservation.

fill_value
[scalar, optional] The value to use for invalid entries (None by default). If None, then this
argument is inferred from the passed dtype, or in its absence the original array, as discussed
in the notes below.

1.2. Array objects 1063

NumPy Reference, Release 2.2.0

See also:

numpy.ndarray.view
Equivalent method on ndarray object.

Notes

a.view() is used two different ways:
a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with
a different data-type. This can cause a reinterpretation of the bytes of memory.
a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of
ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.
If fill_value is not specified, but dtype is specified (and is not an ndarray sub-class), the fill_value
of the MaskedArray will be reset. If neither fill_value nor dtype are specified (or if dtype is an ndarray
sub-class), then the fill value is preserved. Finally, if fill_value is specified, but dtype is not, the fill value
is set to the specified value.
For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous dtype
(for example, converting a regular array to a structured array), then the behavior of the view cannot be predicted
just from the superficial appearance of a (shown by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose, etc., the view
may give different results.

method
ma.MaskedArray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.
Parameters

dtype
[str or dtype] Typecode or data-type to which the array is cast.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’ means C
order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’
order otherwise, and ‘K’ means as close to the order the array elements appear in memory as
possible. Default is ‘K’.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘unsafe’ for backwards compatibility.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.
• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.

subok
[bool, optional] If True, then sub-classes will be passed-through (default), otherwise the re-
turned array will be forced to be a base-class array.

1064 1. Python API

NumPy Reference, Release 2.2.0

copy
[bool, optional] By default, astype always returns a newly allocated array. If this is set to false,
and the dtype, order, and subok requirements are satisfied, the input array is returned instead
of a copy.

Returns
arr_t

[ndarray] Unless copy is False and the other conditions for returning the input array are sat-
isfied (see description for copy input parameter), arr_t is a new array of the same shape as
the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning

When casting from complex to float or int. To avoid this, one should use a.real.
astype(t).

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

method
ma.MaskedArray.byteswap(inplace=False)

Swap the bytes of the array elements
Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number
are swapped individually.

Parameters
inplace

[bool, optional] If True, swap bytes in-place, default is False.
Returns

out
[ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> import numpy as np
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

1.2. Array objects 1065

NumPy Reference, Release 2.2.0

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

A.view(A.dtype.newbyteorder()).byteswap() produces an array with the same values but differ-
ent representation in memory

>>> A = np.array([1, 2, 3],dtype=np.int64)
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0], dtype=uint8)
>>> A.view(A.dtype.newbyteorder()).byteswap(inplace=True)
array([1, 2, 3], dtype='>i8')
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 3], dtype=uint8)

method
ma.MaskedArray.toflex()

Transforms a masked array into a flexible-type array.
The flexible type array that is returned will have two fields:

• the _data field stores the _data part of the array.
• the _mask field stores the _mask part of the array.

Parameters
None

Returns
record

[ndarray] A new flexible-type ndarray with two fields: the first element containing a value,
the second element containing the corresponding mask boolean. The returned record shape
matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (fill_value,
…) will be lost.

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> x
masked_array(
data=[[1, --, 3],

[--, 5, --],
[7, --, 9]],

mask=[[False, True, False],
[True, False, True],

(continues on next page)

1066 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[False, True, False]],

fill_value=999999)
>>> x.toflex()
array([[(1, False), (2, True), (3, False)],

[(4, True), (5, False), (6, True)],
[(7, False), (8, True), (9, False)]],
dtype=[('_data', '<i8'), ('_mask', '?')])

method
ma.MaskedArray.tostring(fill_value=None, order='C')

A compatibility alias for tobytes, with exactly the same behavior.
Despite its name, it returns bytes not strs.
Deprecated since version 1.19.0.

Shape manipulation
For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted
as an n-tuple.

MaskedArray.flatten([order]) Return a copy of the array collapsed into one dimension.
MaskedArray.ravel([order]) Returns a 1D version of self, as a view.
MaskedArray.reshape(*s, **kwargs) Give a new shape to the array without changing its data.
MaskedArray.resize(newshape[, refcheck, order])

MaskedArray.squeeze([axis]) Remove axes of length one from a.
MaskedArray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.
MaskedArray.T View of the transposed array.

property
property ma.MaskedArray.T

View of the transposed array.
Same as self.transpose().
See also:

transpose

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.T
array([[1, 3],

[2, 4]])

1.2. Array objects 1067

NumPy Reference, Release 2.2.0

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> a.T
array([1, 2, 3, 4])

Item selection and manipulation
For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

MaskedArray.argmax([axis, fill_value, out, ...]) Returns array of indices of the maximum values along the
given axis.

MaskedArray.argmin([axis, fill_value, out, ...]) Return array of indices to the minimum values along the
given axis.

MaskedArray.argsort([axis, kind, order, ...]) Return an ndarray of indices that sort the array along the
specified axis.

MaskedArray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of
choices.

MaskedArray.compress(condition[, axis, out]) Return a where condition is True.
MaskedArray.diagonal([offset, axis1, axis2]) Return specified diagonals.
MaskedArray.fill(value) Fill the array with a scalar value.
MaskedArray.item(*args) Copy an element of an array to a standard Python scalar

and return it.
MaskedArray.nonzero() Return the indices of unmasked elements that are not

zero.
MaskedArray.put(indices, values[, mode]) Set storage-indexed locations to corresponding values.
MaskedArray.repeat(repeats[, axis]) Repeat elements of an array.
MaskedArray.searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a

to maintain order.
MaskedArray.sort([axis, kind, order, ...]) Sort the array, in-place
MaskedArray.take(indices[, axis, out, mode]) Take elements from a masked array along an axis.

method
ma.MaskedArray.choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.
Refer to numpy.choose for full documentation.
See also:

numpy.choose
equivalent function

method
ma.MaskedArray.compress(condition, axis=None, out=None)

Return a where condition is True.
If condition is a MaskedArray, missing values are considered as False.

Parameters

1068 1. Python API

NumPy Reference, Release 2.2.0

condition
[var] Boolean 1-d array selecting which entries to return. If len(condition) is less than the size
of a along the axis, then output is truncated to length of condition array.

axis
[{None, int}, optional] Axis along which the operation must be performed.

out
[{None, ndarray}, optional] Alternative output array in which to place the result. It must have
the same shape as the expected output but the type will be cast if necessary.

Returns
result

[MaskedArray] A MaskedArray object.

Notes

Please note the difference with compressed ! The output of compress has a mask, the output of com-
pressed does not.

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> x
masked_array(
data=[[1, --, 3],

[--, 5, --],
[7, --, 9]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)
>>> x.compress([1, 0, 1])
masked_array(data=[1, 3],

mask=[False, False],
fill_value=999999)

>>> x.compress([1, 0, 1], axis=1)
masked_array(
data=[[1, 3],

[--, --],
[7, 9]],

mask=[[False, False],
[True, True],
[False, False]],

fill_value=999999)

method
ma.MaskedArray.diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous
NumPy versions. In a future version the read-only restriction will be removed.
Refer to numpy.diagonal for full documentation.

1.2. Array objects 1069

NumPy Reference, Release 2.2.0

See also:

numpy.diagonal
equivalent function

method
ma.MaskedArray.fill(value)

Fill the array with a scalar value.
Parameters

value
[scalar] All elements of a will be assigned this value.

Examples

>>> import numpy as np
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

Fill expects a scalar value and always behaves the same as assigning to a single array element. The following is a
rare example where this distinction is important:

>>> a = np.array([None, None], dtype=object)
>>> a[0] = np.array(3)
>>> a
array([array(3), None], dtype=object)
>>> a.fill(np.array(3))
>>> a
array([array(3), array(3)], dtype=object)

Where other forms of assignments will unpack the array being assigned:

>>> a[...] = np.array(3)
>>> a
array([3, 3], dtype=object)

method
ma.MaskedArray.item(*args)

Copy an element of an array to a standard Python scalar and return it.
Parameters

*args
[Arguments (variable number and type)]
• none: in this case, the method only works for arrays with one element (a.size == 1), which
element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which element
to copy and return.

1070 1. Python API

NumPy Reference, Release 2.2.0

• tuple of int_types: functions as does a single int_type argument, except that the argument is
interpreted as an nd-index into the array.

Returns
z

[Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields
are defined, in which case a tuple is returned.
item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can be
useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python’s
optimized math.

Examples

>>> import numpy as np
>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

For an array with object dtype, elements are returned as-is.

>>> a = np.array([np.int64(1)], dtype=object)
>>> a.item() #return np.int64
np.int64(1)

method
ma.MaskedArray.put(indices, values, mode='raise')

Set storage-indexed locations to corresponding values.
Sets self._data.flat[n] = values[n] for each n in indices. If values is shorter than indices then it will repeat.
If values has some masked values, the initial mask is updated in consequence, else the corresponding values are
unmasked.

Parameters
indices

[1-D array_like] Target indices, interpreted as integers.

1.2. Array objects 1071

NumPy Reference, Release 2.2.0

values
[array_like] Values to place in self._data copy at target indices.

mode
[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave. ‘raise’ :
raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range.

Notes

values can be a scalar or length 1 array.

Examples

>>> import numpy as np
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
>>> x
masked_array(
data=[[1, --, 3],

[--, 5, --],
[7, --, 9]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)
>>> x.put([0,4,8],[10,20,30])
>>> x
masked_array(
data=[[10, --, 3],

[--, 20, --],
[7, --, 30]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)

>>> x.put(4,999)
>>> x
masked_array(
data=[[10, --, 3],

[--, 999, --],
[7, --, 30]],

mask=[[False, True, False],
[True, False, True],
[False, True, False]],

fill_value=999999)

method
ma.MaskedArray.repeat(repeats, axis=None)

Repeat elements of an array.
Refer to numpy.repeat for full documentation.
See also:

1072 1. Python API

NumPy Reference, Release 2.2.0

numpy.repeat
equivalent function

method
ma.MaskedArray.searchsorted(v, side='left', sorter=None)

Find indices where elements of v should be inserted in a to maintain order.
For full documentation, see numpy.searchsorted
See also:

numpy.searchsorted
equivalent function

method
ma.MaskedArray.take(indices, axis=None, out=None, mode='raise')

Take elements from a masked array along an axis.
This function does the same thing as “fancy” indexing (indexing arrays using arrays) for masked arrays. It can be
easier to use if you need elements along a given axis.

Parameters
a

[masked_array] The source masked array.
indices

[array_like] The indices of the values to extract. Also allow scalars for indices.
axis

[int, optional] The axis over which to select values. By default, the flattened input array is used.
out

[MaskedArray, optional] If provided, the result will be placed in this array. It should be of
the appropriate shape and dtype. Note that out is always buffered if mode=’raise’ ; use other
modes for better performance.

mode
[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
• ‘raise’ – raise an error (default)
• ‘wrap’ – wrap around
• ‘clip’ – clip to the range
‘clip’ mode means that all indices that are too large are replaced by the index that addresses the
last element along that axis. Note that this disables indexing with negative numbers.

Returns
out

[MaskedArray] The returned array has the same type as a.
See also:

numpy.take
Equivalent function for ndarrays.

compress
Take elements using a boolean mask.

1.2. Array objects 1073

NumPy Reference, Release 2.2.0

take_along_axis
Take elements by matching the array and the index arrays.

Notes

This function behaves similarly to numpy.take, but it handles masked values. The mask is retained in the output
array, and masked values in the input array remain masked in the output.

Examples

>>> import numpy as np
>>> a = np.ma.array([4, 3, 5, 7, 6, 8], mask=[0, 0, 1, 0, 1, 0])
>>> indices = [0, 1, 4]
>>> np.ma.take(a, indices)
masked_array(data=[4, 3, --],

mask=[False, False, True],
fill_value=999999)

When indices is not one-dimensional, the output also has these dimensions:

>>> np.ma.take(a, [[0, 1], [2, 3]])
masked_array(data=[[4, 3],

[--, 7]],
mask=[[False, False],

[True, False]],
fill_value=999999)

Pickling and copy

MaskedArray.copy([order]) Return a copy of the array.
MaskedArray.dump(file) Dump a pickle of the array to the specified file.
MaskedArray.dumps() Returns the pickle of the array as a string.

method
ma.MaskedArray.dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.
Parameters

file
[str or Path] A string naming the dump file.

method
ma.MaskedArray.dumps()

Returns the pickle of the array as a string. pickle.loads will convert the string back to an array.
Parameters

None

1074 1. Python API

NumPy Reference, Release 2.2.0

Calculations

MaskedArray.all([axis, out, keepdims]) Returns True if all elements evaluate to True.
MaskedArray.anom([axis, dtype]) Compute the anomalies (deviations from the arithmetic

mean) along the given axis.
MaskedArray.any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min,

max].
MaskedArray.conj() Complex-conjugate all elements.
MaskedArray.conjugate() Return the complex conjugate, element-wise.
MaskedArray.cumprod([axis, dtype, out]) Return the cumulative product of the array elements over

the given axis.
MaskedArray.cumsum([axis, dtype, out]) Return the cumulative sum of the array elements over the

given axis.
MaskedArray.max([axis, out, fill_value, ...]) Return the maximum along a given axis.
MaskedArray.mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
MaskedArray.min([axis, out, fill_value, ...]) Return the minimum along a given axis.
MaskedArray.prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given

axis.
MaskedArray.product([axis, dtype, out, keep-
dims])

Return the product of the array elements over the given
axis.

MaskedArray.ptp([axis, out, fill_value, ...]) Return (maximum -minimum) along the given dimension
(i.e. peak-to-peak value).

MaskedArray.round([decimals, out]) Return each element rounded to the given number of dec-
imals.

MaskedArray.std([axis, dtype, out, ddof, ...]) Returns the standard deviation of the array elements along
given axis.

MaskedArray.sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
MaskedArray.trace([offset, axis1, axis2, ...]) Return the sum along diagonals of the array.
MaskedArray.var([axis, dtype, out, ddof, ...]) Compute the variance along the specified axis.

method
ma.MaskedArray.conj()

Complex-conjugate all elements.
Refer to numpy.conjugate for full documentation.
See also:

numpy.conjugate
equivalent function

method
ma.MaskedArray.conjugate()

Return the complex conjugate, element-wise.
Refer to numpy.conjugate for full documentation.
See also:

numpy.conjugate
equivalent function

method

1.2. Array objects 1075

NumPy Reference, Release 2.2.0

ma.MaskedArray.product(axis=None, dtype=None, out=None, keepdims=<no value>)
Return the product of the array elements over the given axis.
Masked elements are set to 1 internally for computation.
Refer to numpy.prod for full documentation.
See also:

numpy.ndarray.prod
corresponding function for ndarrays

numpy.prod
equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Arithmetic and comparison operations
Comparison operators:

MaskedArray.__lt__(other) Return self<value.
MaskedArray.__le__(other) Return self<=value.
MaskedArray.__gt__(other) Return self>value.
MaskedArray.__ge__(other) Return self>=value.
MaskedArray.__eq__(other) Check whether other equals self elementwise.
MaskedArray.__ne__(other) Check whether other does not equal self elementwise.

method
ma.MaskedArray.__lt__(other)

Return self<value.
method
ma.MaskedArray.__le__(other)

Return self<=value.
method
ma.MaskedArray.__gt__(other)

Return self>value.
method
ma.MaskedArray.__ge__(other)

Return self>=value.
method
ma.MaskedArray.__eq__(other)

Check whether other equals self elementwise.
When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set,
with self and other considered equal if both are masked, and unequal otherwise.

1076 1. Python API

NumPy Reference, Release 2.2.0

For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were
masked, with self and other considered equal only if both were fully masked.

method
ma.MaskedArray.__ne__(other)

Check whether other does not equal self elementwise.
When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set,
with self and other considered equal if both are masked, and unequal otherwise.
For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields were
masked, with self and other considered equal only if both were fully masked.

Truth value of an array (bool()):

MaskedArray.__bool__(/) True if self else False

method
ma.MaskedArray.__bool__(/)

True if self else False

1.2. Array objects 1077

NumPy Reference, Release 2.2.0

Arithmetic:

MaskedArray.__abs__(self)

MaskedArray.__add__(other) Add self to other, and return a new masked array.
MaskedArray.__radd__(other) Add other to self, and return a new masked array.
MaskedArray.__sub__(other) Subtract other from self, and return a new masked array.
MaskedArray.__rsub__(other) Subtract self from other, and return a new masked array.
MaskedArray.__mul__(other) Multiply self by other, and return a new masked array.
MaskedArray.__rmul__(other) Multiply other by self, and return a new masked array.
MaskedArray.__div__(other) Divide other into self, and return a new masked array.
MaskedArray.__truediv__(other) Divide other into self, and return a new masked array.
MaskedArray.__rtruediv__(other) Divide self into other, and return a new masked array.
MaskedArray.__floordiv__(other) Divide other into self, and return a new masked array.
MaskedArray.__rfloordiv__(other) Divide self into other, and return a new masked array.
MaskedArray.__mod__(value, /) Return self%value.
MaskedArray.__rmod__(value, /) Return value%self.
MaskedArray.__divmod__(value, /) Return divmod(self, value).
MaskedArray.__rdivmod__(value, /) Return divmod(value, self).
MaskedArray.__pow__(other) Raise self to the power other, masking the potential

NaNs/Infs
MaskedArray.__rpow__(other) Raise other to the power self, masking the potential

NaNs/Infs
MaskedArray.__lshift__(value, /) Return self<<value.
MaskedArray.__rlshift__(value, /) Return value<<self.
MaskedArray.__rshift__(value, /) Return self>>value.
MaskedArray.__rrshift__(value, /) Return value>>self.
MaskedArray.__and__(value, /) Return self&value.
MaskedArray.__rand__(value, /) Return value&self.
MaskedArray.__or__(value, /) Return self|value.
MaskedArray.__ror__(value, /) Return value|self.
MaskedArray.__xor__(value, /) Return self^value.
MaskedArray.__rxor__(value, /) Return value^self.

method
ma.MaskedArray.__abs__(self)

method
ma.MaskedArray.__add__(other)

Add self to other, and return a new masked array.
method
ma.MaskedArray.__radd__(other)

Add other to self, and return a new masked array.
method
ma.MaskedArray.__sub__(other)

Subtract other from self, and return a new masked array.
method

1078 1. Python API

NumPy Reference, Release 2.2.0

ma.MaskedArray.__rsub__(other)
Subtract self from other, and return a new masked array.

method
ma.MaskedArray.__mul__(other)

Multiply self by other, and return a new masked array.
method
ma.MaskedArray.__rmul__(other)

Multiply other by self, and return a new masked array.
method
ma.MaskedArray.__div__(other)

Divide other into self, and return a new masked array.
method
ma.MaskedArray.__truediv__(other)

Divide other into self, and return a new masked array.
method
ma.MaskedArray.__rtruediv__(other)

Divide self into other, and return a new masked array.
method
ma.MaskedArray.__floordiv__(other)

Divide other into self, and return a new masked array.
method
ma.MaskedArray.__rfloordiv__(other)

Divide self into other, and return a new masked array.
method
ma.MaskedArray.__mod__(value, /)

Return self%value.
method
ma.MaskedArray.__rmod__(value, /)

Return value%self.
method
ma.MaskedArray.__divmod__(value, /)

Return divmod(self, value).
method
ma.MaskedArray.__rdivmod__(value, /)

Return divmod(value, self).
method

1.2. Array objects 1079

NumPy Reference, Release 2.2.0

ma.MaskedArray.__pow__(other)
Raise self to the power other, masking the potential NaNs/Infs

method
ma.MaskedArray.__rpow__(other)

Raise other to the power self, masking the potential NaNs/Infs
method
ma.MaskedArray.__lshift__(value, /)

Return self<<value.
method
ma.MaskedArray.__rlshift__(value, /)

Return value<<self.
method
ma.MaskedArray.__rshift__(value, /)

Return self>>value.
method
ma.MaskedArray.__rrshift__(value, /)

Return value>>self.
method
ma.MaskedArray.__and__(value, /)

Return self&value.
method
ma.MaskedArray.__rand__(value, /)

Return value&self.
method
ma.MaskedArray.__or__(value, /)

Return self|value.
method
ma.MaskedArray.__ror__(value, /)

Return value|self.
method
ma.MaskedArray.__xor__(value, /)

Return self^value.
method
ma.MaskedArray.__rxor__(value, /)

Return value^self.

1080 1. Python API

NumPy Reference, Release 2.2.0

Arithmetic, in-place:

MaskedArray.__iadd__(other) Add other to self in-place.
MaskedArray.__isub__(other) Subtract other from self in-place.
MaskedArray.__imul__(other) Multiply self by other in-place.
MaskedArray.__idiv__(other) Divide self by other in-place.
MaskedArray.__itruediv__(other) True divide self by other in-place.
MaskedArray.__ifloordiv__(other) Floor divide self by other in-place.
MaskedArray.__imod__(value, /) Return self%=value.
MaskedArray.__ipow__(other) Raise self to the power other, in place.
MaskedArray.__ilshift__(value, /) Return self<<=value.
MaskedArray.__irshift__(value, /) Return self>>=value.
MaskedArray.__iand__(value, /) Return self&=value.
MaskedArray.__ior__(value, /) Return self|=value.
MaskedArray.__ixor__(value, /) Return self^=value.

method
ma.MaskedArray.__iadd__(other)

Add other to self in-place.
method
ma.MaskedArray.__isub__(other)

Subtract other from self in-place.
method
ma.MaskedArray.__imul__(other)

Multiply self by other in-place.
method
ma.MaskedArray.__idiv__(other)

Divide self by other in-place.
method
ma.MaskedArray.__itruediv__(other)

True divide self by other in-place.
method
ma.MaskedArray.__ifloordiv__(other)

Floor divide self by other in-place.
method
ma.MaskedArray.__imod__(value, /)

Return self%=value.
method
ma.MaskedArray.__ipow__(other)

Raise self to the power other, in place.
method

1.2. Array objects 1081

NumPy Reference, Release 2.2.0

ma.MaskedArray.__ilshift__(value, /)
Return self<<=value.

method
ma.MaskedArray.__irshift__(value, /)

Return self>>=value.
method
ma.MaskedArray.__iand__(value, /)

Return self&=value.
method
ma.MaskedArray.__ior__(value, /)

Return self|=value.
method
ma.MaskedArray.__ixor__(value, /)

Return self^=value.

Representation

MaskedArray.__repr__() Literal string representation.
MaskedArray.__str__() Return str(self).
MaskedArray.ids() Return the addresses of the data and mask areas.
MaskedArray.iscontiguous() Return a boolean indicating whether the data is contigu-

ous.

method
ma.MaskedArray.__repr__()

Literal string representation.
method
ma.MaskedArray.__str__()

Return str(self).
method
ma.MaskedArray.ids()

Return the addresses of the data and mask areas.
Parameters

None

1082 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
>>> x.ids()
(166670640, 166659832) # may vary

If the array has no mask, the address of nomask is returned. This address is typically not close to the data in
memory:

>>> x = np.ma.array([1, 2, 3])
>>> x.ids()
(166691080, 3083169284) # may vary

method
ma.MaskedArray.iscontiguous()

Return a boolean indicating whether the data is contiguous.
Parameters

None

Examples

>>> import numpy as np
>>> x = np.ma.array([1, 2, 3])
>>> x.iscontiguous()
True

iscontiguous returns one of the flags of the masked array:

>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

Special methods
For standard library functions:

MaskedArray.__copy__() Used if copy.copy is called on an array.
MaskedArray.__deepcopy__(memo, /) Used if copy.deepcopy is called on an array.
MaskedArray.__getstate__() Return the internal state of the masked array, for pickling

purposes.
MaskedArray.__reduce__() Return a 3-tuple for pickling a MaskedArray.
MaskedArray.__setstate__(state) Restore the internal state of the masked array, for pickling

purposes.

method

1.2. Array objects 1083

https://docs.python.org/3/library/copy.html#copy.copy
https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

ma.MaskedArray.__copy__()

Used if copy.copy is called on an array. Returns a copy of the array.
Equivalent to a.copy(order='K').

method
ma.MaskedArray.__deepcopy__(memo, /)

Used if copy.deepcopy is called on an array.
method
ma.MaskedArray.__getstate__()

Return the internal state of the masked array, for pickling purposes.
method
ma.MaskedArray.__reduce__()

Return a 3-tuple for pickling a MaskedArray.
method
ma.MaskedArray.__setstate__(state)

Restore the internal state of the masked array, for pickling purposes. state is typically the output of the __get-
state__ output, and is a 5-tuple:

• class name
• a tuple giving the shape of the data
• a typecode for the data
• a binary string for the data
• a binary string for the mask.

Basic customization:

MaskedArray.__new__(cls[, data, mask, ...]) Create a new masked array from scratch.
MaskedArray.__array__([dtype], *[, copy]) For dtype parameter it returns a new reference to self if

dtype is not given or it matches array's data type.
MaskedArray.__array_wrap__(obj[, context,
...])

Special hook for ufuncs.

method
static ma.MaskedArray.__new__(cls, data=None, mask=np.False_, dtype=None, copy=False, subok=True,

ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
shrink=True, order=None)

Create a new masked array from scratch.

1084 1. Python API

https://docs.python.org/3/library/copy.html#copy.copy
https://docs.python.org/3/library/copy.html#copy.deepcopy

NumPy Reference, Release 2.2.0

Notes

A masked array can also be created by taking a .view(MaskedArray).
method
ma.MaskedArray.__array__([dtype,]*, copy=None)

For dtype parameter it returns a new reference to self if dtype is not given or it matches array’s data type. A
new array of provided data type is returned if dtype is different from the current data type of the array. For
copy parameter it returns a new reference to self if copy=False or copy=None and copying isn’t enforced
by dtype parameter. The method returns a new array for copy=True, regardless of dtype parameter.
A more detailed explanation of the __array__ interface can be found in dunder_array.interface.

method
ma.MaskedArray.__array_wrap__(obj, context=None, return_scalar=False)

Special hook for ufuncs.
Wraps the numpy array and sets the mask according to context.

Container customization: (see Indexing)

MaskedArray.__len__(/) Return len(self).
MaskedArray.__getitem__(indx) x.__getitem__(y) <==> x[y]
MaskedArray.__setitem__(indx, value) x.__setitem__(i, y) <==> x[i]=y
MaskedArray.__delitem__(key, /) Delete self[key].
MaskedArray.__contains__(key, /) Return key in self.

method
ma.MaskedArray.__len__(/)

Return len(self).
method
ma.MaskedArray.__getitem__(indx)

x.__getitem__(y) <==> x[y]
Return the item described by i, as a masked array.

method
ma.MaskedArray.__setitem__(indx, value)

x.__setitem__(i, y) <==> x[i]=y
Set item described by index. If value is masked, masks those locations.

method
ma.MaskedArray.__delitem__(key, /)

Delete self[key].
method
ma.MaskedArray.__contains__(key, /)

Return key in self.

1.2. Array objects 1085

NumPy Reference, Release 2.2.0

Specific methods
Handling the mask

The following methods can be used to access information about the mask or to manipulate the mask.

MaskedArray.__setmask__(mask[, copy]) Set the mask.
MaskedArray.harden_mask() Force the mask to hard, preventing unmasking by assign-

ment.
MaskedArray.soften_mask() Force the mask to soft (default), allowing unmasking by

assignment.
MaskedArray.unshare_mask() Copy the mask and set the sharedmask flag to False.
MaskedArray.shrink_mask() Reduce a mask to nomask when possible.

method
ma.MaskedArray.__setmask__(mask, copy=False)

Set the mask.

Handling the fill_value

MaskedArray.get_fill_value() The filling value of the masked array is a scalar.
MaskedArray.set_fill_value([value])

Counting the missing elements

MaskedArray.count([axis, keepdims]) Count the non-masked elements of the array along the
given axis.

1.2.8 The array interface protocol

Note: This page describes the NumPy-specific API for accessing the contents of a NumPy array from other C extensions.
PEP 3118 – The Revised Buffer Protocol introduces similar, standardized API to Python 2.6 and 3.0 for
any extension module to use. Cython’s buffer array support uses the PEP 3118 API; see the Cython NumPy tutorial.
Cython provides a way to write code that supports the buffer protocol with Python versions older than 2.6 because it has
a backward-compatible implementation utilizing the array interface described here.

version
3

The array interface (sometimes called array protocol) was created in 2005 as a means for array-like Python objects to
reuse each other’s data buffers intelligently whenever possible. The homogeneous N-dimensional array interface is a
default mechanism for objects to share N-dimensional array memory and information. The interface consists of a Python-
side and a C-side using two attributes. Objects wishing to be considered an N-dimensional array in application code should

1086 1. Python API

https://peps.python.org/pep-3118/
https://docs.python.org/3/c-api/buffer.html#c.PyObject_GetBuffer
https://cython.org/
https://peps.python.org/pep-3118/
https://github.com/cython/cython/wiki/tutorials-numpy

NumPy Reference, Release 2.2.0

support at least one of these attributes. Objects wishing to support an N-dimensional array in application code should look
for at least one of these attributes and use the information provided appropriately.
This interface describes homogeneous arrays in the sense that each item of the array has the same “type”. This type can
be very simple or it can be a quite arbitrary and complicated C-like structure.
There are two ways to use the interface: A Python side and a C-side. Both are separate attributes.

Python side

This approach to the interface consists of the object having an __array_interface__ attribute.
object.__array_interface__

A dictionary of items (3 required and 5 optional). The optional keys in the dictionary have implied defaults if they
are not provided.
The keys are:
shape (required)

Tuple whose elements are the array size in each dimension. Each entry is an integer (a Python int). Note
that these integers could be larger than the platform int or long could hold (a Python int is a C long).
It is up to the code using this attribute to handle this appropriately; either by raising an error when overflow
is possible, or by using long long as the C type for the shapes.

typestr (required)
A string providing the basic type of the homogeneous array The basic string format consists of 3 parts: a
character describing the byteorder of the data (<: little-endian, >: big-endian, |: not-relevant), a character
code giving the basic type of the array, and an integer providing the number of bytes the type uses.
The basic type character codes are:

t Bit field (following integer gives the number of bits in the bit field).
b Boolean (integer type where all values are only True or False)
i Integer
u Unsigned integer
f Floating point
c Complex floating point
m Timedelta
M Datetime
O Object (i.e. the memory contains a pointer to PyObject)
S String (fixed-length sequence of char)
U Unicode (fixed-length sequence of Py_UCS4)
V Other (void * – each item is a fixed-size chunk of memory)

descr (optional)
A list of tuples providing a more detailed description of the memory layout for each item in the homogeneous
array. Each tuple in the list has two or three elements. Normally, this attribute would be used when typestr
is V[0-9]+, but this is not a requirement. The only requirement is that the number of bytes represented in
the typestr key is the same as the total number of bytes represented here. The idea is to support descriptions
of C-like structs that make up array elements. The elements of each tuple in the list are
1. A string providing a name associated with this portion of the datatype. This could also be a tuple of

('full name', 'basic_name') where basic name would be a valid Python variable name
representing the full name of the field.

2. Either a basic-type description string as in typestr or another list (for nested structured types)

1.2. Array objects 1087

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/unicode.html#c.Py_UCS4

NumPy Reference, Release 2.2.0

3. An optional shape tuple providing how many times this part of the structure should be repeated. No
repeats are assumed if this is not given. Very complicated structures can be described using this generic
interface. Notice, however, that each element of the array is still of the same data-type. Some examples
of using this interface are given below.

Default: [('', typestr)]

data (optional)
A 2-tuple whose first argument is a Python integer that points to the data-area storing the array contents.

Note: When converting from C/C++ via PyLong_From* or high-level bindings such as Cython or py-
bind11, make sure to use an integer of sufficiently large bitness.

This pointer must point to the first element of data (in other words any offset is always ignored in this case).
The second entry in the tuple is a read-only flag (true means the data area is read-only).
This attribute can also be an object exposing the buffer interface which will be used to share the data. If this
key is not present (or returns None), then memory sharing will be done through the buffer interface of the
object itself. In this case, the offset key can be used to indicate the start of the buffer. A reference to the
object exposing the array interface must be stored by the new object if the memory area is to be secured.
Default: None

strides (optional)
Either None to indicate a C-style contiguous array or a tuple of strides which provides the number of bytes
needed to jump to the next array element in the corresponding dimension. Each entry must be an integer (a
Python int). As with shape, the values may be larger than can be represented by a C int or long; the
calling code should handle this appropriately, either by raising an error, or by using long long in C. The
default is None which implies a C-style contiguous memory buffer. In this model, the last dimension of the
array varies the fastest. For example, the default strides tuple for an object whose array entries are 8 bytes
long and whose shape is (10, 20, 30) would be (4800, 240, 8).
Default: None (C-style contiguous)

mask (optional)
None or an object exposing the array interface. All elements of the mask array should be interpreted only
as true or not true indicating which elements of this array are valid. The shape of this object should be
“broadcastable” to the shape of the original array.
Default: None (All array values are valid)

offset (optional)
An integer offset into the array data region. This can only be used when data is None or returns a memo-
ryview object.
Default: 0.

version (required)
An integer showing the version of the interface (i.e. 3 for this version). Be careful not to use this to invalidate
objects exposing future versions of the interface.

1088 1. Python API

https://docs.python.org/3/c-api/long.html
https://docs.python.org/3/c-api/buffer.html#bufferobjects
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/stdtypes.html#memoryview

NumPy Reference, Release 2.2.0

C-struct access

This approach to the array interface allows for faster access to an array using only one attribute lookup and a well-defined
C-structure.
object.__array_struct__

A PyCapsule whose pointermember contains a pointer to a filled PyArrayInterface structure. Mem-
ory for the structure is dynamically created and the PyCapsule is also created with an appropriate destructor so
the retriever of this attribute simply has to apply Py_DECREF to the object returned by this attribute when it is
finished. Also, either the data needs to be copied out, or a reference to the object exposing this attribute must be
held to ensure the data is not freed. Objects exposing the __array_struct__ interface must also not reallocate
their memory if other objects are referencing them.

The PyArrayInterface structure is defined in numpy/ndarrayobject.h as:

typedef struct {
int two; /* contains the integer 2 -- simple sanity check */
int nd; /* number of dimensions */
char typekind; /* kind in array --- character code of typestr */
int itemsize; /* size of each element */
int flags; /* flags indicating how the data should be interpreted */

/* must set ARR_HAS_DESCR bit to validate descr */
Py_ssize_t *shape; /* A length-nd array of shape information */
Py_ssize_t *strides; /* A length-nd array of stride information */
void *data; /* A pointer to the first element of the array */
PyObject *descr; /* NULL or data-description (same as descr key

of __array_interface__) -- must set ARR_HAS_DESCR
flag or this will be ignored. */

} PyArrayInterface;

The flags member may consist of 5 bits showing how the data should be interpreted and one bit showing how the Inter-
face should be interpreted. The data-bits are NPY_ARRAY_C_CONTIGUOUS (0x1), NPY_ARRAY_F_CONTIGUOUS
(0x2), NPY_ARRAY_ALIGNED (0x100), NPY_ARRAY_NOTSWAPPED (0x200), and NPY_ARRAY_WRITEABLE
(0x400). A final flag NPY_ARR_HAS_DESCR (0x800) indicates whether or not this structure has the arrdescr field.
The field should not be accessed unless this flag is present.
NPY_ARR_HAS_DESCR

New since June 16, 2006:
In the past most implementations used the descmember of the PyCObject (now PyCapsule) itself (do not confuse
this with the “descr” member of the PyArrayInterface structure above — they are two separate things) to hold the
pointer to the object exposing the interface. This is now an explicit part of the interface. Be sure to take a reference to
the object and call PyCapsule_SetContext before returning the PyCapsule, and configure a destructor to decref
this reference.

Note: __array_struct__ is considered legacy and should not be used for new code. Use the buffer protocol or the
DLPack protocol numpy.from_dlpack instead.

1.2. Array objects 1089

https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://docs.python.org/3/c-api/refcounting.html#c.Py_DECREF
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule_SetContext
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://docs.python.org/3/c-api/buffer.html

NumPy Reference, Release 2.2.0

Type description examples

For clarity it is useful to provide some examples of the type description and corresponding __array_interface__
‘descr’ entries. Thanks to Scott Gilbert for these examples:
In every case, the ‘descr’ key is optional, but of course provides more information which may be important for various
applications:

* Float data
typestr == '>f4'
descr == [('','>f4')]

* Complex double
typestr == '>c8'
descr == [('real','>f4'), ('imag','>f4')]

* RGB Pixel data
typestr == '|V3'
descr == [('r','|u1'), ('g','|u1'), ('b','|u1')]

* Mixed endian (weird but could happen).
typestr == '|V8' (or '>u8')
descr == [('big','>i4'), ('little','<i4')]

* Nested structure
struct {

int ival;
struct {

unsigned short sval;
unsigned char bval;
unsigned char cval;

} sub;
}
typestr == '|V8' (or '<u8' if you want)
descr == [('ival','<i4'), ('sub', [('sval','<u2'), ('bval','|u1'), ('cval','|u1')␣

↪→])]

* Nested array
struct {

int ival;
double data[16*4];

}
typestr == '|V516'
descr == [('ival','>i4'), ('data','>f8',(16,4))]

* Padded structure
struct {

int ival;
double dval;

}
typestr == '|V16'
descr == [('ival','>i4'),('','|V4'),('dval','>f8')]

It should be clear that any structured type could be described using this interface.

1090 1. Python API

NumPy Reference, Release 2.2.0

Differences with array interface (version 2)

The version 2 interface was very similar. The differences were largely aesthetic. In particular:
1. The PyArrayInterface structure had no descr member at the end (and therefore no flag ARR_HAS_DESCR)
2. The context member of the PyCapsule (formally the desc member of the PyCObject) returned from

__array_struct__ was not specified. Usually, it was the object exposing the array (so that a reference to it
could be kept and destroyed when the C-object was destroyed). It is now an explicit requirement that this field be
used in some way to hold a reference to the owning object.

Note: Until August 2020, this said:
Now it must be a tuple whose first element is a string with “PyArrayInterface Version #” and whose
second element is the object exposing the array.

This design was retracted almost immediately after it was proposed, in <https://mail.python.org/pipermail/
numpy-discussion/2006-June/020995.html>. Despite 14 years of documentation to the contrary, at no point was
it valid to assume that __array_interface__ capsules held this tuple content.

3. The tuple returned from __array_interface__['data'] used to be a hex-string (now it is an integer or
a long integer).

4. There was no __array_interface__ attribute instead all of the keys (except for version) in the __ar-
ray_interface__ dictionary were their own attribute: Thus to obtain the Python-side information you had to
access separately the attributes:

• __array_data__

• __array_shape__

• __array_strides__

• __array_typestr__

• __array_descr__

• __array_offset__

• __array_mask__

1.2.9 Datetimes and timedeltas

Starting in NumPy 1.7, there are core array data types which natively support datetime functionality. The data type is
called datetime64, so named because datetime is already taken by the Python standard library.

Datetime64 conventions and assumptions

Similar to the Python date class, dates are expressed in the current Gregorian Calendar, indefinitely extended both
in the future and in the past.1 Contrary to Python date, which supports only years in the 1 AD — 9999 AD range,
datetime64 allows also for dates BC; years BC follow the Astronomical year numbering convention, i.e. year 2 BC is
numbered −1, year 1 BC is numbered 0, year 1 AD is numbered 1.
Time instants, say 16:23:32.234, are represented counting hours, minutes, seconds and fractions from midnight: i.e.
00:00:00.000 is midnight, 12:00:00.000 is noon, etc. Each calendar day has exactly 86400 seconds. This is a “naive”
time, with no explicit notion of timezones or specific time scales (UT1, UTC, TAI, etc.).2

1 The calendar obtained by extending the Gregorian calendar before its official adoption on Oct. 15, 1582 is called Proleptic Gregorian Calendar
2 The assumption of 86400 seconds per calendar day is not valid for UTC, the present day civil time scale. In fact due to the presence of leap

1.2. Array objects 1091

https://docs.python.org/3/c-api/capsule.html#c.PyCapsule
https://mail.python.org/pipermail/numpy-discussion/2006-June/020995.html
https://mail.python.org/pipermail/numpy-discussion/2006-June/020995.html
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.date
https://en.wikipedia.org/wiki/Astronomical_year_numbering
https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second

NumPy Reference, Release 2.2.0

Basic datetimes

The most basic way to create datetimes is from strings in ISO 8601 date or datetime format. It is also possible to create
datetimes from an integer by offset relative to the Unix epoch (00:00:00 UTC on 1 January 1970). The unit for internal
storage is automatically selected from the form of the string, and can be either a date unit or a time unit. The date units
are years (‘Y’), months (‘M’), weeks (‘W’), and days (‘D’), while the time units are hours (‘h’), minutes (‘m’), seconds (‘s’),
milliseconds (‘ms’), and some additional SI-prefix seconds-based units. The datetime64 data type also accepts the
string “NAT”, in any combination of lowercase/uppercase letters, for a “Not A Time” value.

Example
A simple ISO date:

>>> import numpy as np

>>> np.datetime64('2005-02-25')
np.datetime64('2005-02-25')

From an integer and a date unit, 1 year since the UNIX epoch:

>>> np.datetime64(1, 'Y')
np.datetime64('1971')

Using months for the unit:

>>> np.datetime64('2005-02')
np.datetime64('2005-02')

Specifying just the month, but forcing a ‘days’ unit:

>>> np.datetime64('2005-02', 'D')
np.datetime64('2005-02-01')

From a date and time:

>>> np.datetime64('2005-02-25T03:30')
np.datetime64('2005-02-25T03:30')

NAT (not a time):

>>> np.datetime64('nat')
np.datetime64('NaT')

When creating an array of datetimes from a string, it is still possible to automatically select the unit from the inputs, by
using the datetime type with generic units.

Example

>>> import numpy as np

>>> np.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64')
array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]')

seconds on rare occasions a day may be 86401 or 86399 seconds long. On the contrary the 86400s day assumption holds for the TAI timescale. An
explicit support for TAI and TAI to UTC conversion, accounting for leap seconds, is proposed but not yet implemented. See also the shortcomings
section below.

1092 1. Python API

https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second

NumPy Reference, Release 2.2.0

>>> np.array(['2001-01-01T12:00', '2002-02-03T13:56:03.172'], dtype='datetime64')
array(['2001-01-01T12:00:00.000', '2002-02-03T13:56:03.172'],

dtype='datetime64[ms]')

An array of datetimes can be constructed from integers representing POSIX timestamps with the given unit.

Example

>>> import numpy as np

>>> np.array([0, 1577836800], dtype='datetime64[s]')
array(['1970-01-01T00:00:00', '2020-01-01T00:00:00'],

dtype='datetime64[s]')

>>> np.array([0, 1577836800000]).astype('datetime64[ms]')
array(['1970-01-01T00:00:00.000', '2020-01-01T00:00:00.000'],

dtype='datetime64[ms]')

The datetime type works with many common NumPy functions, for example arange can be used to generate ranges of
dates.

Example
All the dates for one month:

>>> import numpy as np

>>> np.arange('2005-02', '2005-03', dtype='datetime64[D]')
array(['2005-02-01', '2005-02-02', '2005-02-03', '2005-02-04',

'2005-02-05', '2005-02-06', '2005-02-07', '2005-02-08',
'2005-02-09', '2005-02-10', '2005-02-11', '2005-02-12',
'2005-02-13', '2005-02-14', '2005-02-15', '2005-02-16',
'2005-02-17', '2005-02-18', '2005-02-19', '2005-02-20',
'2005-02-21', '2005-02-22', '2005-02-23', '2005-02-24',
'2005-02-25', '2005-02-26', '2005-02-27', '2005-02-28'],
dtype='datetime64[D]')

The datetime object represents a singlemoment in time. If two datetimes have different units, theymay still be representing
the same moment of time, and converting from a bigger unit like months to a smaller unit like days is considered a ‘safe’
cast because the moment of time is still being represented exactly.

Example

>>> import numpy as np

>>> np.datetime64('2005') == np.datetime64('2005-01-01')
True

>>> np.datetime64('2010-03-14T15') == np.datetime64('2010-03-14T15:00:00.00')
True

1.2. Array objects 1093

NumPy Reference, Release 2.2.0

Deprecated since version 1.11.0: NumPy does not store timezone information. For backwards compatibility, datetime64
still parses timezone offsets, which it handles by converting to UTC±00:00 (Zulu time). This behaviour is deprecated and
will raise an error in the future.

Datetime and timedelta arithmetic

NumPy allows the subtraction of two datetime values, an operation which produces a number with a time unit. Because
NumPy doesn’t have a physical quantities system in its core, the timedelta64 data type was created to complement
datetime64. The arguments for timedelta64 are a number, to represent the number of units, and a date/time
unit, such as (D)ay, (M)onth, (Y)ear, (h)ours, (m)inutes, or (s)econds. The timedelta64 data type also accepts the
string “NAT” in place of the number for a “Not A Time” value.

Example

>>> import numpy as np

>>> np.timedelta64(1, 'D')
np.timedelta64(1,'D')

>>> np.timedelta64(4, 'h')
np.timedelta64(4,'h')

>>> np.timedelta64('nAt')
np.timedelta64('NaT')

Datetimes and Timedeltas work together to provide ways for simple datetime calculations.

Example

>>> import numpy as np

>>> np.datetime64('2009-01-01') - np.datetime64('2008-01-01')
np.timedelta64(366,'D')

>>> np.datetime64('2009') + np.timedelta64(20, 'D')
np.datetime64('2009-01-21')

>>> np.datetime64('2011-06-15T00:00') + np.timedelta64(12, 'h')
np.datetime64('2011-06-15T12:00')

>>> np.timedelta64(1,'W') / np.timedelta64(1,'D')
7.0

>>> np.timedelta64(1,'W') % np.timedelta64(10,'D')
np.timedelta64(7,'D')

>>> np.datetime64('nat') - np.datetime64('2009-01-01')
np.timedelta64('NaT','D')

1094 1. Python API

NumPy Reference, Release 2.2.0

>>> np.datetime64('2009-01-01') + np.timedelta64('nat')
np.datetime64('NaT')

There are two Timedelta units (‘Y’, years and ‘M’, months) which are treated specially, because how much time they
represent changes depending on when they are used. While a timedelta day unit is equivalent to 24 hours, month and year
units cannot be converted directly into days without using ‘unsafe’ casting.
The numpy.ndarray.astype method can be used for unsafe conversion of months/years to days. The conversion
follows calculating the averaged values from the 400 year leap-year cycle.

Example

>>> import numpy as np

>>> a = np.timedelta64(1, 'Y')

>>> np.timedelta64(a, 'M')
numpy.timedelta64(12,'M')

>>> np.timedelta64(a, 'D')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Cannot cast NumPy timedelta64 scalar from metadata [Y] to [D] according to␣
↪→the rule 'same_kind'

Datetime units

The Datetime and Timedelta data types support a large number of time units, as well as generic units which can be coerced
into any of the other units based on input data.
Datetimes are always stored with an epoch of 1970-01-01T00:00. This means the supported dates are always a symmetric
interval around the epoch, called “time span” in the table below.
The length of the span is the range of a 64-bit integer times the length of the date or unit. For example, the time span for
‘W’ (week) is exactly 7 times longer than the time span for ‘D’ (day), and the time span for ‘D’ (day) is exactly 24 times
longer than the time span for ‘h’ (hour).
Here are the date units:

Code Meaning Time span (relative) Time span (absolute)
Y year +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
M month +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
W week +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
D day +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]

And here are the time units:

1.2. Array objects 1095

NumPy Reference, Release 2.2.0

Code Meaning Time span (relative) Time span (absolute)
h hour +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
m minute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
s second +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
ms millisecond +/- 2.9e8 years [2.9e8 BC, 2.9e8 AD]
us / μs microsecond +/- 2.9e5 years [290301 BC, 294241 AD]
ns nanosecond +/- 292 years [1678 AD, 2262 AD]
ps picosecond +/- 106 days [1969 AD, 1970 AD]
fs femtosecond +/- 2.6 hours [1969 AD, 1970 AD]
as attosecond +/- 9.2 seconds [1969 AD, 1970 AD]

Business day functionality

To allow the datetime to be used in contexts where only certain days of the week are valid, NumPy includes a set of
“busday” (business day) functions.
The default for busday functions is that the only valid days are Monday through Friday (the usual business days). The
implementation is based on a “weekmask” containing 7 Boolean flags to indicate valid days; custom weekmasks are
possible that specify other sets of valid days.
The “busday” functions can additionally check a list of “holiday” dates, specific dates that are not valid days.
The function busday_offset allows you to apply offsets specified in business days to datetimes with a unit of ‘D’
(day).

Example

>>> import numpy as np

>>> np.busday_offset('2011-06-23', 1)
np.datetime64('2011-06-24')

>>> np.busday_offset('2011-06-23', 2)
np.datetime64('2011-06-27')

When an input date falls on the weekend or a holiday, busday_offset first applies a rule to roll the date to a valid
business day, then applies the offset. The default rule is ‘raise’, which simply raises an exception. The rules most typically
used are ‘forward’ and ‘backward’.

Example

>>> import numpy as np

>>> np.busday_offset('2011-06-25', 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Non-business day date in busday_offset

>>> np.busday_offset('2011-06-25', 0, roll='forward')
np.datetime64('2011-06-27')

1096 1. Python API

NumPy Reference, Release 2.2.0

>>> np.busday_offset('2011-06-25', 2, roll='forward')
np.datetime64('2011-06-29')

>>> np.busday_offset('2011-06-25', 0, roll='backward')
np.datetime64('2011-06-24')

>>> np.busday_offset('2011-06-25', 2, roll='backward')
np.datetime64('2011-06-28')

In some cases, an appropriate use of the roll and the offset is necessary to get a desired answer.

Example
The first business day on or after a date:

>>> import numpy as np

>>> np.busday_offset('2011-03-20', 0, roll='forward')
np.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
np.datetime64('2011-03-22')

The first business day strictly after a date:

>>> np.busday_offset('2011-03-20', 1, roll='backward')
np.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
np.datetime64('2011-03-23')

The function is also useful for computing some kinds of days like holidays. In Canada and the U.S., Mother’s day is on
the second Sunday in May, which can be computed with a custom weekmask.

Example

>>> import numpy as np

>>> np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
np.datetime64('2012-05-13')

When performance is important for manipulating many business dates with one particular choice of weekmask and holi-
days, there is an object busdaycalendar which stores the data necessary in an optimized form.

1.2. Array objects 1097

NumPy Reference, Release 2.2.0

np.is_busday():
To test a datetime64 value to see if it is a valid day, use is_busday.

Example

>>> import numpy as np

>>> np.is_busday(np.datetime64('2011-07-15')) # a Friday
True
>>> np.is_busday(np.datetime64('2011-07-16')) # a Saturday
False
>>> np.is_busday(np.datetime64('2011-07-16'), weekmask="Sat Sun")
True
>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
>>> np.is_busday(a)
array([True, True, True, True, True, False, False])

np.busday_count():
To find how many valid days there are in a specified range of datetime64 dates, use busday_count:

Example

>>> import numpy as np

>>> np.busday_count(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
5
>>> np.busday_count(np.datetime64('2011-07-18'), np.datetime64('2011-07-11'))
-5

If you have an array of datetime64 day values, and you want a count of how many of them are valid dates, you can do
this:

Example

>>> import numpy as np

>>> a = np.arange(np.datetime64('2011-07-11'), np.datetime64('2011-07-18'))
>>> np.count_nonzero(np.is_busday(a))
5

1098 1. Python API

NumPy Reference, Release 2.2.0

Custom weekmasks
Here are several examples of custom weekmask values. These examples specify the “busday” default of Monday through
Friday being valid days.
Some examples:

Positional sequences; positions are Monday through Sunday.
Length of the sequence must be exactly 7.
weekmask = [1, 1, 1, 1, 1, 0, 0]
list or other sequence; 0 == invalid day, 1 == valid day
weekmask = "1111100"
string '0' == invalid day, '1' == valid day

string abbreviations from this list: Mon Tue Wed Thu Fri Sat Sun
weekmask = "Mon Tue Wed Thu Fri"
any amount of whitespace is allowed; abbreviations are case-sensitive.
weekmask = "MonTue Wed Thu\tFri"

Datetime64 shortcomings

The assumption that all days are exactly 86400 seconds long makes datetime64 largely compatible with Python
datetime and “POSIX time” semantics; therefore they all share the same well known shortcomings with respect to
the UTC timescale and historical time determination. A brief non exhaustive summary is given below.

• It is impossible to parse valid UTC timestamps occurring during a positive leap second.

Example
“2016-12-31 23:59:60 UTC” was a leap second, therefore “2016-12-31 23:59:60.450 UTC” is a valid timestamp
which is not parseable by datetime64:

>>> import numpy as np

>>> np.datetime64("2016-12-31 23:59:60.450")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Seconds out of range in datetime string "2016-12-31 23:59:60.450"

• Timedelta64 computations between two UTC dates can be wrong by an integer number of SI seconds.

Example
Compute the number of SI seconds between “2021-01-01 12:56:23.423 UTC” and “2001-01-01 00:00:00.000
UTC”:

>>> import numpy as np

>>> (
... np.datetime64("2021-01-01 12:56:23.423")
... - np.datetime64("2001-01-01")
...) / np.timedelta64(1, "s")
631198583.423

1.2. Array objects 1099

https://docs.python.org/3/library/datetime.html#module-datetime

NumPy Reference, Release 2.2.0

However, the correct answer is 631198588.423 SI seconds, because there were 5 leap seconds between
2001 and 2021.

• Timedelta64 computations for dates in the past do not return SI seconds, as one would expect.

Example
Compute the number of seconds between “000-01-01 UT” and “1600-01-01 UT”, where UT is universal time:

>>> import numpy as np

>>> a = np.datetime64("0000-01-01", "us")
>>> b = np.datetime64("1600-01-01", "us")
>>> b - a
numpy.timedelta64(50491123200000000,'us')

The computed results, 50491123200 seconds, are obtained as the elapsed number of days (584388)
times 86400 seconds; this is the number of seconds of a clock in sync with the Earth’s rotation. The
exact value in SI seconds can only be estimated, e.g., using data published in Measurement of the
Earth’s rotation: 720 BC to AD 2015, 2016, Royal Society’s Proceedings A 472, by Stephenson et.al..
A sensible estimate is 50491112870 ± 90 seconds, with a difference of 10330 seconds.

1.3 Universal functions (ufunc)

See also:
ufuncs-basics
A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion,
supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized” wrapper
for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs. For detailed
information on universal functions, see ufuncs-basics.

1.3.1 ufunc

numpy.ufunc() Functions that operate element by element on whole ar-
rays.

class numpy.ufunc

Functions that operate element by element on whole arrays.
To see the documentation for a specific ufunc, use info. For example, np.info(np.sin). Because ufuncs
are written in C (for speed) and linked into Python with NumPy’s ufunc facility, Python’s help() function finds this
page whenever help() is called on a ufunc.
A detailed explanation of ufuncs can be found in the docs for Universal functions (ufunc).
Calling ufuncs: op(*x[, out], where=True, **kwargs)

Apply op to the arguments *x elementwise, broadcasting the arguments.
The broadcasting rules are:

1100 1. Python API

https://en.wikipedia.org/wiki/Universal_Time
https://doi.org/10.1098/rspa.2016.0404
https://doi.org/10.1098/rspa.2016.0404

NumPy Reference, Release 2.2.0

• Dimensions of length 1 may be prepended to either array.
• Arrays may be repeated along dimensions of length 1.

Parameters
*x

[array_like] Input arrays.
out

[ndarray, None, or tuple of ndarray and None, optional] Alternate array object(s) in which to
put the result; if provided, it must have a shape that the inputs broadcast to. A tuple of arrays
(possible only as a keyword argument) must have length equal to the number of outputs; use
None for uninitialized outputs to be allocated by the ufunc.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
r

[ndarray or tuple of ndarray] r will have the shape that the arrays in x broadcast to; if out is
provided, it will be returned. If not, r will be allocated and may contain uninitialized values.
If the function has more than one output, then the result will be a tuple of arrays.

Attributes
identity

The identity value.
nargs

The number of arguments.
nin

The number of inputs.
nout

The number of outputs.
ntypes

The number of types.
signature

Definition of the core elements a generalized ufunc operates on.
types

Returns a list with types grouped input->output.

1.3. Universal functions (ufunc) 1101

NumPy Reference, Release 2.2.0

Methods

__call__(*args, **kwargs) Call self as a function.
accumulate(array[, axis, dtype, out]) Accumulate the result of applying the operator to all

elements.
at(a, indices[, b]) Performs unbuffered in place operation on operand 'a'

for elements specified by 'indices'.
outer(A, B, /, **kwargs) Apply the ufunc op to all pairs (a, b) with a in A and b

in B.
reduce(array[, axis, dtype, out, keepdims, ...]) Reduces array's dimension by one, by applying

ufunc along one axis.
reduceat(array, indices[, axis, dtype, out]) Performs a (local) reduce with specified slices over a

single axis.
resolve_dtypes(dtypes, *[, signature, ...]) Find the dtypes NumPy will use for the operation.

method
ufunc.__call__(*args, **kwargs)

Call self as a function.
method
ufunc.accumulate(array, axis=0, dtype=None, out=None)

Accumulate the result of applying the operator to all elements.
For a one-dimensional array, accumulate produces results equivalent to:

r = np.empty(len(A))
t = op.identity # op = the ufunc being applied to A's elements
for i in range(len(A)):

t = op(t, A[i])
r[i] = t

return r

For example, add.accumulate() is equivalent to np.cumsum().
For a multi-dimensional array, accumulate is applied along only one axis (axis zero by default; see Examples
below) so repeated use is necessary if one wants to accumulate over multiple axes.

Parameters
array
[array_like] The array to act on.

axis
[int, optional] The axis along which to apply the accumulation; default is zero.

dtype
[data-type code, optional] The data-type used to represent the intermediate results. Defaults
to the data-type of the output array if such is provided, or the data-type of the input array if
no output array is provided.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

Returns

1102 1. Python API

NumPy Reference, Release 2.2.0

r
[ndarray] The accumulated values. If out was supplied, r is a reference to out.

Examples

1-D array examples:

>>> import numpy as np
>>> np.add.accumulate([2, 3, 5])
array([2, 5, 10])
>>> np.multiply.accumulate([2, 3, 5])
array([2, 6, 30])

2-D array examples:

>>> I = np.eye(2)
>>> I
array([[1., 0.],

[0., 1.]])

Accumulate along axis 0 (rows), down columns:

>>> np.add.accumulate(I, 0)
array([[1., 0.],

[1., 1.]])
>>> np.add.accumulate(I) # no axis specified = axis zero
array([[1., 0.],

[1., 1.]])

Accumulate along axis 1 (columns), through rows:

>>> np.add.accumulate(I, 1)
array([[1., 1.],

[0., 1.]])

method
ufunc.at(a, indices, b=None, /)

Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’. For addition ufunc,
this method is equivalent to a[indices] += b, except that results are accumulated for elements that are
indexed more than once. For example, a[[0,0]] += 1 will only increment the first element once because
of buffering, whereas add.at(a, [0,0], 1) will increment the first element twice.

Parameters
a
[array_like] The array to perform in place operation on.

indices
[array_like or tuple] Array like index object or slice object for indexing into first operand. If
first operand has multiple dimensions, indices can be a tuple of array like index objects or
slice objects.

b
[array_like] Second operand for ufuncs requiring two operands. Operand must be broad-
castable over first operand after indexing or slicing.

1.3. Universal functions (ufunc) 1103

NumPy Reference, Release 2.2.0

Examples

Set items 0 and 1 to their negative values:

>>> import numpy as np
>>> a = np.array([1, 2, 3, 4])
>>> np.negative.at(a, [0, 1])
>>> a
array([-1, -2, 3, 4])

Increment items 0 and 1, and increment item 2 twice:

>>> a = np.array([1, 2, 3, 4])
>>> np.add.at(a, [0, 1, 2, 2], 1)
>>> a
array([2, 3, 5, 4])

Add items 0 and 1 in first array to second array, and store results in first array:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([1, 2])
>>> np.add.at(a, [0, 1], b)
>>> a
array([2, 4, 3, 4])

method
ufunc.outer(A, B, / , **kwargs)

Apply the ufunc op to all pairs (a, b) with a in A and b in B.
Let M = A.ndim, N = B.ndim. Then the result, C, of op.outer(A, B) is an array of dimension M
+ N such that:

C[i0, ..., iM−1, j0, ..., jN−1] = op(A[i0, ..., iM−1], B[j0, ..., jN−1])

For A and B one-dimensional, this is equivalent to:

r = empty(len(A),len(B))
for i in range(len(A)):

for j in range(len(B)):
r[i,j] = op(A[i], B[j]) # op = ufunc in question

Parameters
A
[array_like] First array

B
[array_like] Second array

kwargs
[any] Arguments to pass on to the ufunc. Typically dtype or out. See ufunc for a com-
prehensive overview of all available arguments.

Returns
r
[ndarray] Output array

1104 1. Python API

NumPy Reference, Release 2.2.0

See also:

numpy.outer
A less powerful version of np.multiply.outer that ravels all inputs to 1D. This exists primarily
for compatibility with old code.

tensordot
np.tensordot(a, b, axes=((), ())) and np.multiply.outer(a, b) behave same
for all dimensions of a and b.

Examples

>>> np.multiply.outer([1, 2, 3], [4, 5, 6])
array([[4, 5, 6],

[8, 10, 12],
[12, 15, 18]])

A multi-dimensional example:

>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A.shape
(2, 3)
>>> B = np.array([[1, 2, 3, 4]])
>>> B.shape
(1, 4)
>>> C = np.multiply.outer(A, B)
>>> C.shape; C
(2, 3, 1, 4)
array([[[[1, 2, 3, 4]],

[[2, 4, 6, 8]],
[[3, 6, 9, 12]]],
[[[4, 8, 12, 16]],
[[5, 10, 15, 20]],
[[6, 12, 18, 24]]]])

method
ufunc.reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=<no value>, where=True)

Reduces array’s dimension by one, by applying ufunc along one axis.
Let array.shape = (N0, ..., Ni, ..., NM−1). Then ufunc.reduce(array, axis =
i)[k0, .., ki−1, ki+1, .., kM−1] = the result of iterating j over range(Ni), cumulatively applying ufunc
to each array[k0, .., ki−1, j, ki+1, .., kM−1]. For a one-dimensional array, reduce produces results
equivalent to:

r = op.identity # op = ufunc
for i in range(len(A)):
r = op(r, A[i])

return r

For example, add.reduce() is equivalent to sum().
Parameters

array
[array_like] The array to act on.

1.3. Universal functions (ufunc) 1105

NumPy Reference, Release 2.2.0

axis
[None or int or tuple of ints, optional] Axis or axes along which a reduction is performed.
The default (axis = 0) is perform a reduction over the first dimension of the input array. axis
may be negative, in which case it counts from the last to the first axis.
If this is None, a reduction is performed over all the axes. If this is a tuple of ints, a reduction
is performed on multiple axes, instead of a single axis or all the axes as before.
For operations which are either not commutative or not associative, doing a reduction over
multiple axes is not well-defined. The ufuncs do not currently raise an exception in this case,
but will likely do so in the future.

dtype
[data-type code, optional] The data type used to perform the operation. Defaults to that of
out if given, and the data type of array otherwise (though upcast to conserve precision
for some cases, such as numpy.add.reduce for integer or boolean input).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will broadcast correctly against the
original array.

initial
[scalar, optional] The value with which to start the reduction. If the ufunc has no identity or
the dtype is object, this defaults to None - otherwise it defaults to ufunc.identity. If None
is given, the first element of the reduction is used, and an error is thrown if the reduction is
empty.

where
[array_like of bool, optional] A boolean array which is broadcasted to match the dimen-
sions of array, and selects elements to include in the reduction. Note that for ufuncs like
minimum that do not have an identity defined, one has to pass in also initial.

Returns
r
[ndarray] The reduced array. If out was supplied, r is a reference to it.

Examples

>>> import numpy as np
>>> np.multiply.reduce([2,3,5])
30

A multi-dimensional array example:

>>> X = np.arange(8).reshape((2,2,2))
>>> X
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.add.reduce(X, 0)
(continues on next page)

1106 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
array([[4, 6],

[8, 10]])
>>> np.add.reduce(X) # confirm: default axis value is 0
array([[4, 6],

[8, 10]])
>>> np.add.reduce(X, 1)
array([[2, 4],

[10, 12]])
>>> np.add.reduce(X, 2)
array([[1, 5],

[9, 13]])

You can use the initial keyword argument to initialize the reduction with a different value, and where
to select specific elements to include:

>>> np.add.reduce([10], initial=5)
15
>>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10)
array([14., 14.])
>>> a = np.array([10., np.nan, 10])
>>> np.add.reduce(a, where=~np.isnan(a))
20.0

Allows reductions of empty arrays where they would normally fail, i.e. for ufuncs without an identity.

>>> np.minimum.reduce([], initial=np.inf)
inf
>>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False])
array([1., 10.])
>>> np.minimum.reduce([])
Traceback (most recent call last):

...
ValueError: zero-size array to reduction operation minimum which has no␣
↪→identity

method
ufunc.reduceat(array, indices, axis=0, dtype=None, out=None)

Performs a (local) reduce with specified slices over a single axis.
For i in range(len(indices)), reduceat computes ufunc.
reduce(array[indices[i]:indices[i+1]]), which becomes the i-th generalized “row”
parallel to axis in the final result (i.e., in a 2-D array, for example, if axis = 0, it becomes the i-th row, but if
axis = 1, it becomes the i-th column). There are three exceptions to this:
• when i = len(indices) - 1 (so for the last index), indices[i+1] = array.
shape[axis].

• if indices[i] >= indices[i + 1], the i-th generalized “row” is simply ar-
ray[indices[i]].

• if indices[i] >= len(array) or indices[i] < 0, an error is raised.
The shape of the output depends on the size of indices, and may be larger than array (this happens if
len(indices) > array.shape[axis]).

Parameters

1.3. Universal functions (ufunc) 1107

NumPy Reference, Release 2.2.0

array
[array_like] The array to act on.

indices
[array_like] Paired indices, comma separated (not colon), specifying slices to reduce.

axis
[int, optional] The axis along which to apply the reduceat.

dtype
[data-type code, optional] The data type used to perform the operation. Defaults to that of
out if given, and the data type of array otherwise (though upcast to conserve precision
for some cases, such as numpy.add.reduce for integer or boolean input).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__, if given as a keyword, this may be wrapped in a 1-element tuple.

Returns
r
[ndarray] The reduced values. If out was supplied, r is a reference to out.

Notes

A descriptive example:
If array is 1-D, the function ufunc.accumulate(array) is the same as ufunc.reduceat(array, in-
dices)[::2] where indices is range(len(array) - 1) with a zero placed in every other
element: indices = zeros(2 * len(array) - 1), indices[1::2] = range(1,
len(array)).
Don’t be fooled by this attribute’s name: reduceat(array) is not necessarily smaller than array.

Examples

To take the running sum of four successive values:

>>> import numpy as np
>>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2]
array([6, 10, 14, 18])

A 2-D example:

>>> x = np.linspace(0, 15, 16).reshape(4,4)
>>> x
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]])

reduce such that the result has the following five rows:
[row1 + row2 + row3]
[row4]
[row2]

(continues on next page)

1108 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[row3]
[row1 + row2 + row3 + row4]

>>> np.add.reduceat(x, [0, 3, 1, 2, 0])
array([[12., 15., 18., 21.],

[12., 13., 14., 15.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[24., 28., 32., 36.]])

reduce such that result has the following two columns:
[col1 * col2 * col3, col4]

>>> np.multiply.reduceat(x, [0, 3], 1)
array([[0., 3.],

[120., 7.],
[720., 11.],
[2184., 15.]])

method
ufunc.resolve_dtypes(dtypes, *, signature=None, casting=None, reduction=False)

Find the dtypes NumPy will use for the operation. Both input and output dtypes are returned and may differ
from those provided.

Note: This function always applies NEP 50 rules since it is not provided any actual values. The Python types
int, float, and complex thus behave weak and should be passed for “untyped” Python input.

Parameters
dtypes
[tuple of dtypes, None, or literal int, float, complex] The input dtypes for each operand.
Output operands can be None, indicating that the dtype must be found.

signature
[tuple of DTypes or None, optional] If given, enforces exact DType (classes) of the specific
operand. The ufunc dtype argument is equivalent to passing a tuple with only output dtypes
set.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] The casting mode when casting is nec-
essary. This is identical to the ufunc call casting modes.

reduction
[boolean] If given, the resolution assumes a reduce operation is happening which slightly
changes the promotion and type resolution rules. dtypes is usually something like(None,
np.dtype("i2"), None) for reductions (first input is also the output).

Note: The default casting mode is “same_kind”, however, as of NumPy 1.24, NumPy uses
“unsafe” for reductions.

Returns

1.3. Universal functions (ufunc) 1109

NumPy Reference, Release 2.2.0

dtypes
[tuple of dtypes] The dtypes which NumPy would use for the calculation. Note that dtypes
may not match the passed in ones (casting is necessary).

Examples

This API requires passing dtypes, define them for convenience:

>>> import numpy as np
>>> int32 = np.dtype("int32")
>>> float32 = np.dtype("float32")

The typical ufunc call does not pass an output dtype. numpy.add has two inputs and one output, so leave
the output as None (not provided):

>>> np.add.resolve_dtypes((int32, float32, None))
(dtype('float64'), dtype('float64'), dtype('float64'))

The loop found uses “float64” for all operands (including the output), the first input would be cast.
resolve_dtypes supports “weak” handling for Python scalars by passing int, float, or complex:

>>> np.add.resolve_dtypes((float32, float, None))
(dtype('float32'), dtype('float32'), dtype('float32'))

Where the Python float behaves similar to a Python value 0.0 in a ufunc call. (See NEP 50 for details.)

Optional keyword arguments

All ufuncs take optional keyword arguments. Most of these represent advanced usage and will not typically be used.

out

The first output can be provided as either a positional or a keyword parameter. Keyword ‘out’ arguments are incompatible
with positional ones.
The ‘out’ keyword argument is expected to be a tuple with one entry per output (which can be None for arrays to be
allocated by the ufunc). For ufuncs with a single output, passing a single array (instead of a tuple holding a single array)
is also valid.
Passing a single array in the ‘out’ keyword argument to a ufunc with multiple outputs is deprecated, and will raise a warning
in numpy 1.10, and an error in a future release.
If ‘out’ is None (the default), a uninitialized return array is created. The output array is then filled with the results of the
ufunc in the places that the broadcast ‘where’ is True. If ‘where’ is the scalar True (the default), then this corresponds to
the entire output being filled. Note that outputs not explicitly filled are left with their uninitialized values.
Operations where ufunc input and output operands have memory overlap are defined to be the same as for equivalent
operations where there is no memory overlap. Operations affected make temporary copies as needed to eliminate data
dependency. As detecting these cases is computationally expensive, a heuristic is used, which may in rare cases result
in needless temporary copies. For operations where the data dependency is simple enough for the heuristic to analyze,
temporary copies will not be made even if the arrays overlap, if it can be deduced copies are not necessary. As an example,
np.add(a, b, out=a) will not involve copies.

1110 1. Python API

https://numpy.org/neps/nep-0050-scalar-promotion.html#nep50

NumPy Reference, Release 2.2.0

where

Accepts a boolean array which is broadcast together with the operands. Values of True indicate to calculate the ufunc at
that position, values of False indicate to leave the value in the output alone. This argument cannot be used for generalized
ufuncs as those take non-scalar input.
Note that if an uninitialized return array is created, values of False will leave those values uninitialized.

axes

A list of tuples with indices of axes a generalized ufunc should operate on. For instance, for a signature of (i,j),
(j,k)->(i,k) appropriate for matrix multiplication, the base elements are two-dimensional matrices and these are
taken to be stored in the two last axes of each argument. The corresponding axes keyword would be [(-2, -1),
(-2, -1), (-2, -1)]. For simplicity, for generalized ufuncs that operate on 1-dimensional arrays (vectors), a
single integer is accepted instead of a single-element tuple, and for generalized ufuncs for which all outputs are scalars,
the output tuples can be omitted.

axis

A single axis over which a generalized ufunc should operate. This is a short-cut for ufuncs that operate over a single,
shared core dimension, equivalent to passing in axeswith entries of (axis,) for each single-core-dimension argument
and () for all others. For instance, for a signature (i),(i)->(), it is equivalent to passing in axes=[(axis,),
(axis,), ()].

keepdims

If this is set to True, axes which are reduced over will be left in the result as a dimension with size one, so that the result
will broadcast correctly against the inputs. This option can only be used for generalized ufuncs that operate on inputs that
all have the same number of core dimensions and with outputs that have no core dimensions, i.e., with signatures like
(i),(i)->() or (m,m)->(). If used, the location of the dimensions in the output can be controlled with axes and
axis.

casting

May be ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, or ‘unsafe’. See can_cast for explanations of the parameter values.
Provides a policy for what kind of casting is permitted. For compatibility with previous versions of NumPy, this defaults to
‘unsafe’ for numpy < 1.7. In numpy 1.7 a transition to ‘same_kind’ was begunwhere ufuncs produce aDeprecationWarning
for calls which are allowed under the ‘unsafe’ rules, but not under the ‘same_kind’ rules. From numpy 1.10 and onwards,
the default is ‘same_kind’.

order

Specifies the calculation iteration order/memory layout of the output array. Defaults to ‘K’. ‘C’ means the output should
be C-contiguous, ‘F’ means F-contiguous, ‘A’ means F-contiguous if the inputs are F-contiguous and not also not C-
contiguous, C-contiguous otherwise, and ‘K’ means to match the element ordering of the inputs as closely as possible.

1.3. Universal functions (ufunc) 1111

NumPy Reference, Release 2.2.0

dtype

Overrides the DType of the output arrays the same way as the signature. This should ensure a matching precision of the
calculation. The exact calculation DTypes chosen may depend on the ufunc and the inputs may be cast to this DType to
perform the calculation.

subok

Defaults to true. If set to false, the output will always be a strict array, not a subtype.

signature

Either a Dtype, a tuple of DTypes, or a special signature string indicating the input and output types of a ufunc.
This argument allows the user to specify exact DTypes to be used for the calculation. Casting will be used as necessary.
The actual DType of the input arrays is not considered unless signature is None for that array.
When all DTypes are fixed, a specific loop is chosen or an error raised if no matching loop exists. If some DTypes are not
specified and left None, the behaviour may depend on the ufunc. At this time, a list of available signatures is provided
by the types attribute of the ufunc. (This list may be missing DTypes not defined by NumPy.)
The signature only specifies the DType class/type. For example, it can specify that the operation should be date-
time64 or float64 operation. It does not specify the datetime64 time-unit or the float64 byte-order.
For backwards compatibility this argument can also be provided as sig, although the long form is preferred. Note that this
should not be confused with the generalized ufunc signature that is stored in the signature attribute of the of the ufunc
object.

Attributes

There are some informational attributes that universal functions possess. None of the attributes can be set.

__doc__Adocstring for each ufunc. The first part of the docstring is dynamically generated from the number of outputs,
the name, and the number of inputs. The second part of the docstring is provided at creation time and stored
with the ufunc.

__name__The name of the ufunc.

ufunc.nin The number of inputs.
ufunc.nout The number of outputs.
ufunc.nargs The number of arguments.
ufunc.ntypes The number of types.
ufunc.types Returns a list with types grouped input->output.
ufunc.identity The identity value.
ufunc.signature Definition of the core elements a generalized ufunc oper-

ates on.

attribute
ufunc.nin

The number of inputs.
Data attribute containing the number of arguments the ufunc treats as input.

1112 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.add.nin
2
>>> np.multiply.nin
2
>>> np.power.nin
2
>>> np.exp.nin
1

attribute
ufunc.nout

The number of outputs.
Data attribute containing the number of arguments the ufunc treats as output.

Notes

Since all ufuncs can take output arguments, this will always be at least 1.

Examples

>>> import numpy as np
>>> np.add.nout
1
>>> np.multiply.nout
1
>>> np.power.nout
1
>>> np.exp.nout
1

attribute
ufunc.nargs

The number of arguments.
Data attribute containing the number of arguments the ufunc takes, including optional ones.

Notes

Typically this value will be one more than what you might expect because all ufuncs take the optional “out” argu-
ment.

1.3. Universal functions (ufunc) 1113

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.add.nargs
3
>>> np.multiply.nargs
3
>>> np.power.nargs
3
>>> np.exp.nargs
2

attribute
ufunc.ntypes

The number of types.
The number of numerical NumPy types - of which there are 18 total - on which the ufunc can operate.
See also:

numpy.ufunc.types

Examples

>>> import numpy as np
>>> np.add.ntypes
18
>>> np.multiply.ntypes
18
>>> np.power.ntypes
17
>>> np.exp.ntypes
7
>>> np.remainder.ntypes
14

attribute
ufunc.types

Returns a list with types grouped input->output.
Data attribute listing the data-type “Domain-Range” groupings the ufunc can deliver. The data-types are given
using the character codes.
See also:

numpy.ufunc.ntypes

1114 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.add.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']

>>> np.multiply.types
['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l',
'LL->L', 'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', 'OO->O']

>>> np.power.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
'OO->O']

>>> np.exp.types
['f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O']

>>> np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', 'LL->L',
'qq->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'OO->O']

attribute
ufunc.identity

The identity value.
Data attribute containing the identity element for the ufunc, if it has one. If it does not, the attribute value is None.

Examples

>>> import numpy as np
>>> np.add.identity
0
>>> np.multiply.identity
1
>>> np.power.identity
1
>>> print(np.exp.identity)
None

attribute
ufunc.signature

Definition of the core elements a generalized ufunc operates on.
The signature determines how the dimensions of each input/output array are split into core and loop dimensions:
1. Each dimension in the signature is matched to a dimension of the corresponding passed-in array, starting from

the end of the shape tuple.
2. Core dimensions assigned to the same label in the signature must have exactly matching sizes, no broadcasting

is performed.

1.3. Universal functions (ufunc) 1115

NumPy Reference, Release 2.2.0

3. The core dimensions are removed from all inputs and the remaining dimensions are broadcast together, defin-
ing the loop dimensions.

Notes

Generalized ufuncs are used internally in many linalg functions, and in the testing suite; the examples below are
taken from these. For ufuncs that operate on scalars, the signature is None, which is equivalent to ‘()’ for every
argument.

Examples

>>> import numpy as np
>>> np.linalg._umath_linalg.det.signature
'(m,m)->()'
>>> np.matmul.signature
'(n?,k),(k,m?)->(n?,m?)'
>>> np.add.signature is None
True # equivalent to '(),()->()'

Methods

ufunc.reduce(array[, axis, dtype, out, ...]) Reduces array's dimension by one, by applying ufunc
along one axis.

ufunc.accumulate(array[, axis, dtype, out]) Accumulate the result of applying the operator to all ele-
ments.

ufunc.reduceat(array, indices[, axis, ...]) Performs a (local) reduce with specified slices over a sin-
gle axis.

ufunc.outer(A, B, /, **kwargs) Apply the ufunc op to all pairs (a, b) with a in A and b in
B.

ufunc.at(a, indices[, b]) Performs unbuffered in place operation on operand 'a' for
elements specified by 'indices'.

Warning: A reduce-like operation on an array with a data-type that has a range “too small” to handle the result will
silently wrap. One should use dtype to increase the size of the data-type over which reduction takes place.

1.3.2 Available ufuncs

There are currently more than 60 universal functions defined in numpy on one or more types, covering a wide variety of
operations. Some of these ufuncs are called automatically on arrays when the relevant infix notation is used (e.g., add(a,
b) is called internally when a + b is written and a or b is an ndarray). Nevertheless, you may still want to use the
ufunc call in order to use the optional output argument(s) to place the output(s) in an object (or objects) of your choice.
Recall that each ufunc operates element-by-element. Therefore, each scalar ufunc will be described as if acting on a set
of scalar inputs to return a set of scalar outputs.

Note: The ufunc still returns its output(s) even if you use the optional output argument(s).

1116 1. Python API

NumPy Reference, Release 2.2.0

Math operations

add(x1, x2, /[, out, where, casting, order, ...]) Add arguments element-wise.
subtract(x1, x2, /[, out, where, casting, ...]) Subtract arguments, element-wise.
multiply(x1, x2, /[, out, where, casting, ...]) Multiply arguments element-wise.
matmul(x1, x2, /[, out, casting, order, ...]) Matrix product of two arrays.
divide(x1, x2, /[, out, where, casting, ...]) Divide arguments element-wise.
logaddexp(x1, x2, /[, out, where, casting, ...]) Logarithm of the sum of exponentiations of the inputs.
logaddexp2(x1, x2, /[, out, where, casting, ...]) Logarithm of the sum of exponentiations of the inputs in

base-2.
true_divide(x1, x2, /[, out, where, ...]) Divide arguments element-wise.
floor_divide(x1, x2, /[, out, where, ...]) Return the largest integer smaller or equal to the division

of the inputs.
negative(x, /[, out, where, casting, order, ...]) Numerical negative, element-wise.
positive(x, /[, out, where, casting, order, ...]) Numerical positive, element-wise.
power(x1, x2, /[, out, where, casting, ...]) First array elements raised to powers from second array,

element-wise.
float_power(x1, x2, /[, out, where, ...]) First array elements raised to powers from second array,

element-wise.
remainder(x1, x2, /[, out, where, casting, ...]) Returns the element-wise remainder of division.
mod(x1, x2, /[, out, where, casting, order, ...]) Returns the element-wise remainder of division.
fmod(x1, x2, /[, out, where, casting, ...]) Returns the element-wise remainder of division.
divmod(x1, x2[, out1, out2], / [[, out, ...]) Return element-wise quotient and remainder simultane-

ously.
absolute(x, /[, out, where, casting, order, ...]) Calculate the absolute value element-wise.
fabs(x, /[, out, where, casting, order, ...]) Compute the absolute values element-wise.
rint(x, /[, out, where, casting, order, ...]) Round elements of the array to the nearest integer.
sign(x, /[, out, where, casting, order, ...]) Returns an element-wise indication of the sign of a num-

ber.
heaviside(x1, x2, /[, out, where, casting, ...]) Compute the Heaviside step function.
conj(x, /[, out, where, casting, order, ...]) Return the complex conjugate, element-wise.
conjugate(x, /[, out, where, casting, ...]) Return the complex conjugate, element-wise.
exp(x, /[, out, where, casting, order, ...]) Calculate the exponential of all elements in the input ar-

ray.
exp2(x, /[, out, where, casting, order, ...]) Calculate 2**p for all p in the input array.
log(x, /[, out, where, casting, order, ...]) Natural logarithm, element-wise.
log2(x, /[, out, where, casting, order, ...]) Base-2 logarithm of x.
log10(x, /[, out, where, casting, order, ...]) Return the base 10 logarithm of the input array, element-

wise.
expm1(x, /[, out, where, casting, order, ...]) Calculate exp(x) - 1 for all elements in the array.
log1p(x, /[, out, where, casting, order, ...]) Return the natural logarithm of one plus the input array,

element-wise.
sqrt(x, /[, out, where, casting, order, ...]) Return the non-negative square-root of an array, element-

wise.
square(x, /[, out, where, casting, order, ...]) Return the element-wise square of the input.
cbrt(x, /[, out, where, casting, order, ...]) Return the cube-root of an array, element-wise.
reciprocal(x, /[, out, where, casting, ...]) Return the reciprocal of the argument, element-wise.
gcd(x1, x2, /[, out, where, casting, order, ...]) Returns the greatest common divisor of |x1| and |x2|
lcm(x1, x2, /[, out, where, casting, order, ...]) Returns the lowest common multiple of |x1| and |x2|

Tip: The optional output arguments can be used to help you save memory for large calculations. If your arrays are large,

1.3. Universal functions (ufunc) 1117

NumPy Reference, Release 2.2.0

complicated expressions can take longer than absolutely necessary due to the creation and (later) destruction of temporary
calculation spaces. For example, the expression G = A * B + C is equivalent to T1 = A * B; G = T1 + C;
del T1. It will be more quickly executed as G = A * B; add(G, C, G) which is the same as G = A * B;
G += C.

Trigonometric functions

All trigonometric functions use radians when an angle is called for. The ratio of degrees to radians is 180◦/π.

sin(x, /[, out, where, casting, order, ...]) Trigonometric sine, element-wise.
cos(x, /[, out, where, casting, order, ...]) Cosine element-wise.
tan(x, /[, out, where, casting, order, ...]) Compute tangent element-wise.
arcsin(x, /[, out, where, casting, order, ...]) Inverse sine, element-wise.
arccos(x, /[, out, where, casting, order, ...]) Trigonometric inverse cosine, element-wise.
arctan(x, /[, out, where, casting, order, ...]) Trigonometric inverse tangent, element-wise.
arctan2(x1, x2, /[, out, where, casting, ...]) Element-wise arc tangent of x1/x2 choosing the quad-

rant correctly.
hypot(x1, x2, /[, out, where, casting, ...]) Given the "legs" of a right triangle, return its hypotenuse.
sinh(x, /[, out, where, casting, order, ...]) Hyperbolic sine, element-wise.
cosh(x, /[, out, where, casting, order, ...]) Hyperbolic cosine, element-wise.
tanh(x, /[, out, where, casting, order, ...]) Compute hyperbolic tangent element-wise.
arcsinh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic sine element-wise.
arccosh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic cosine, element-wise.
arctanh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic tangent element-wise.
degrees(x, /[, out, where, casting, order, ...]) Convert angles from radians to degrees.
radians(x, /[, out, where, casting, order, ...]) Convert angles from degrees to radians.
deg2rad(x, /[, out, where, casting, order, ...]) Convert angles from degrees to radians.
rad2deg(x, /[, out, where, casting, order, ...]) Convert angles from radians to degrees.

Bit-twiddling functions

These function all require integer arguments and they manipulate the bit-pattern of those arguments.

bitwise_and(x1, x2, /[, out, where, ...]) Compute the bit-wise AND of two arrays element-wise.
bitwise_or(x1, x2, /[, out, where, casting, ...]) Compute the bit-wise OR of two arrays element-wise.
bitwise_xor(x1, x2, /[, out, where, ...]) Compute the bit-wise XOR of two arrays element-wise.
invert(x, /[, out, where, casting, order, ...]) Compute bit-wise inversion, or bit-wise NOT, element-

wise.
left_shift(x1, x2, /[, out, where, casting, ...]) Shift the bits of an integer to the left.
right_shift(x1, x2, /[, out, where, ...]) Shift the bits of an integer to the right.

1118 1. Python API

NumPy Reference, Release 2.2.0

Comparison functions

greater(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 > x2) element-wise.
greater_equal(x1, x2, /[, out, where, ...]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 < x2) element-wise.
less_equal(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 <= x2) element-wise.
not_equal(x1, x2, /[, out, where, casting, ...]) Return (x1 != x2) element-wise.
equal(x1, x2, /[, out, where, casting, ...]) Return (x1 == x2) element-wise.

Warning: Do not use the Python keywords and and or to combine logical array expressions. These keywords will
test the truth value of the entire array (not element-by-element as you might expect). Use the bitwise operators & and
| instead.

logical_and(x1, x2, /[, out, where, ...]) Compute the truth value of x1 AND x2 element-wise.
logical_or(x1, x2, /[, out, where, casting, ...]) Compute the truth value of x1 OR x2 element-wise.
logical_xor(x1, x2, /[, out, where, ...]) Compute the truth value of x1 XOR x2, element-wise.
logical_not(x, /[, out, where, casting, ...]) Compute the truth value of NOT x element-wise.

Warning: The bit-wise operators & and | are the proper way to perform element-by-element array comparisons. Be
sure you understand the operator precedence: (a > 2) & (a < 5) is the proper syntax because a > 2 & a
< 5 will result in an error due to the fact that 2 & a is evaluated first.

maximum(x1, x2, /[, out, where, casting, ...]) Element-wise maximum of array elements.

Tip: The Python function max() will find the maximum over a one-dimensional array, but it will do so using a slower
sequence interface. The reduce method of the maximum ufunc is much faster. Also, the max() method will not give
answers you might expect for arrays with greater than one dimension. The reduce method of minimum also allows you
to compute a total minimum over an array.

minimum(x1, x2, /[, out, where, casting, ...]) Element-wise minimum of array elements.

Warning: the behavior of maximum(a, b) is different than that of max(a, b). As a ufunc, maximum(a,
b) performs an element-by-element comparison of a and b and chooses each element of the result according to which
element in the two arrays is larger. In contrast, max(a, b) treats the objects a and b as a whole, looks at the
(total) truth value of a > b and uses it to return either a or b (as a whole). A similar difference exists between
minimum(a, b) and min(a, b).

fmax(x1, x2, /[, out, where, casting, ...]) Element-wise maximum of array elements.
fmin(x1, x2, /[, out, where, casting, ...]) Element-wise minimum of array elements.

1.3. Universal functions (ufunc) 1119

NumPy Reference, Release 2.2.0

Floating functions

Recall that all of these functions work element-by-element over an array, returning an array output. The description
details only a single operation.

isfinite(x, /[, out, where, casting, order, ...]) Test element-wise for finiteness (not infinity and not Not
a Number).

isinf(x, /[, out, where, casting, order, ...]) Test element-wise for positive or negative infinity.
isnan(x, /[, out, where, casting, order, ...]) Test element-wise for NaN and return result as a boolean

array.
isnat(x, /[, out, where, casting, order, ...]) Test element-wise for NaT (not a time) and return result

as a boolean array.
fabs(x, /[, out, where, casting, order, ...]) Compute the absolute values element-wise.
signbit(x, /[, out, where, casting, order, ...]) Returns element-wise True where signbit is set (less than

zero).
copysign(x1, x2, /[, out, where, casting, ...]) Change the sign of x1 to that of x2, element-wise.
nextafter(x1, x2, /[, out, where, casting, ...]) Return the next floating-point value after x1 towards x2,

element-wise.
spacing(x, /[, out, where, casting, order, ...]) Return the distance between x and the nearest adjacent

number.
modf(x[, out1, out2], / [[, out, where, ...]) Return the fractional and integral parts of an array,

element-wise.
ldexp(x1, x2, /[, out, where, casting, ...]) Returns x1 * 2**x2, element-wise.
frexp(x[, out1, out2], / [[, out, where, ...]) Decompose the elements of x into mantissa and twos ex-

ponent.
fmod(x1, x2, /[, out, where, casting, ...]) Returns the element-wise remainder of division.
floor(x, /[, out, where, casting, order, ...]) Return the floor of the input, element-wise.
ceil(x, /[, out, where, casting, order, ...]) Return the ceiling of the input, element-wise.
trunc(x, /[, out, where, casting, order, ...]) Return the truncated value of the input, element-wise.

1.4 Routines and objects by topic

In this chapter routine docstrings are presented, grouped by functionality. Many docstrings contain example code, which
demonstrates basic usage of the routine. The examples assume that NumPy is imported with:

>>> import numpy as np

A convenient way to execute examples is the %doctest_modemode of IPython, which allows for pasting of multi-line
examples and preserves indentation.

1.4.1 Constants

NumPy includes several constants:
numpy.e

Euler’s constant, base of natural logarithms, Napier’s constant.
e = 2.71828182845904523536028747135266249775724709369995...

1120 1. Python API

NumPy Reference, Release 2.2.0

See Also

exp : Exponential function log : Natural logarithm

References

https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
numpy.euler_gamma

γ = 0.5772156649015328606065120900824024310421...

References

https://en.wikipedia.org/wiki/Euler%27s_constant
numpy.inf

IEEE 754 floating point representation of (positive) infinity.

Returns

y
[float] A floating point representation of positive infinity.

See Also

isinf : Shows which elements are positive or negative infinity
isposinf : Shows which elements are positive infinity
isneginf : Shows which elements are negative infinity
isnan : Shows which elements are Not a Number
isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is
equivalent to positive infinity.

Examples

>>> import numpy as np
>>> np.inf
inf
>>> np.array([1]) / 0.
array([inf])

numpy.nan

IEEE 754 floating point representation of Not a Number (NaN).

1.4. Routines and objects by topic 1121

https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
https://en.wikipedia.org/wiki/Euler%27s_constant

NumPy Reference, Release 2.2.0

Returns

y : A floating point representation of Not a Number.

See Also

isnan : Shows which elements are Not a Number.
isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

Examples

>>> import numpy as np
>>> np.nan
nan
>>> np.log(-1)
np.float64(nan)
>>> np.log([-1, 1, 2])
array([nan, 0. , 0.69314718])

numpy.newaxis

A convenient alias for None, useful for indexing arrays.

Examples

>>> import numpy as np
>>> np.newaxis is None
True
>>> x = np.arange(3)
>>> x
array([0, 1, 2])
>>> x[:, np.newaxis]
array([[0],
[1],
[2]])
>>> x[:, np.newaxis, np.newaxis]
array([[[0]],
[[1]],
[[2]]])
>>> x[:, np.newaxis] * x
array([[0, 0, 0],

[0, 1, 2],
[0, 2, 4]])

Outer product, same as outer(x, y):

1122 1. Python API

NumPy Reference, Release 2.2.0

>>> y = np.arange(3, 6)
>>> x[:, np.newaxis] * y
array([[0, 0, 0],

[3, 4, 5],
[6, 8, 10]])

x[np.newaxis, :] is equivalent to x[np.newaxis] and x[None]:

>>> x[np.newaxis, :].shape
(1, 3)
>>> x[np.newaxis].shape
(1, 3)
>>> x[None].shape
(1, 3)
>>> x[:, np.newaxis].shape
(3, 1)

numpy.pi

pi = 3.1415926535897932384626433...

References

https://en.wikipedia.org/wiki/Pi

1.4.2 Array creation routines

See also:
Array creation

From shape or value

empty(shape[, dtype, order, device, like]) Return a new array of given shape and type, without ini-
tializing entries.

empty_like(prototype[, dtype, order, subok, ...]) Return a new array with the same shape and type as a
given array.

eye(N[, M, k, dtype, order, device, like]) Return a 2-D array with ones on the diagonal and zeros
elsewhere.

identity(n[, dtype, like]) Return the identity array.
ones(shape[, dtype, order, device, like]) Return a new array of given shape and type, filled with

ones.
ones_like(a[, dtype, order, subok, shape, ...]) Return an array of ones with the same shape and type as

a given array.
zeros(shape[, dtype, order, like]) Return a new array of given shape and type, filled with

zeros.
zeros_like(a[, dtype, order, subok, shape, ...]) Return an array of zeros with the same shape and type as

a given array.
full(shape, fill_value[, dtype, order, ...]) Return a new array of given shape and type, filled with

fill_value.
full_like(a, fill_value[, dtype, order, ...]) Return a full array with the same shape and type as a given

array.

1.4. Routines and objects by topic 1123

https://en.wikipedia.org/wiki/Pi

NumPy Reference, Release 2.2.0

numpy.empty(shape, dtype=float, order='C', *, device=None, like=None)
Return a new array of given shape and type, without initializing entries.

Parameters
shape

[int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.
dtype

[data-type, optional] Desired output data-type for the array, e.g, numpy.int8. Default is
numpy.float64.

order
[{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major (C-
style) or column-major (Fortran-style) order in memory.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object
arrays will be initialized to None.

See also:

empty_like
Return an empty array with shape and type of input.

ones
Return a new array setting values to one.

zeros
Return a new array setting values to zero.

full
Return a new array of given shape filled with value.

Notes

Unlike other array creation functions (e.g. zeros, ones, full), empty does not initialize the values of the
array, and may therefore be marginally faster. However, the values stored in the newly allocated array are arbitrary.
For reproducible behavior, be sure to set each element of the array before reading.

1124 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.empty([2, 2])
array([[-9.74499359e+001, 6.69583040e-309],

[2.13182611e-314, 3.06959433e-309]]) #uninitialized

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],

[496041986, 19249760]]) #uninitialized

numpy.empty_like(prototype, dtype=None, order='K', subok=True, shape=None, *, device=None)
Return a new array with the same shape and type as a given array.

Parameters
prototype

[array_like] The shape and data-type of prototype define these same attributes of the returned
array.

dtype
[data-type, optional] Overrides the data type of the result.

order
[{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if prototype is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of prototype as closely as possible.

subok
[bool, optional.] If True, then the newly created array will use the sub-class type of prototype,
otherwise it will be a base-class array. Defaults to True.

shape
[int or sequence of ints, optional.] Overrides the shape of the result. If order=’K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
out

[ndarray] Array of uninitialized (arbitrary) data with the same shape and type as prototype.
See also:

ones_like
Return an array of ones with shape and type of input.

zeros_like
Return an array of zeros with shape and type of input.

full_like
Return a new array with shape of input filled with value.

empty
Return a new uninitialized array.

1.4. Routines and objects by topic 1125

NumPy Reference, Release 2.2.0

Notes

Unlike other array creation functions (e.g. zeros_like, ones_like, full_like), empty_like does not
initialize the values of the array, and may therefore be marginally faster. However, the values stored in the newly
allocated array are arbitrary. For reproducible behavior, be sure to set each element of the array before reading.

Examples

>>> import numpy as np
>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
array([[-1073741821, -1073741821, 3], # uninitialized

[0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
array([[-2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized

[4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])

numpy.eye(N, M=None, k=0, dtype=<class 'float'>, order='C', *, device=None, like=None)
Return a 2-D array with ones on the diagonal and zeros elsewhere.

Parameters
N

[int] Number of rows in the output.
M

[int, optional] Number of columns in the output. If None, defaults to N.
k

[int, optional] Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value
refers to an upper diagonal, and a negative value to a lower diagonal.

dtype
[data-type, optional] Data-type of the returned array.

order
[{‘C’, ‘F’}, optional] Whether the output should be stored in row-major (C-style) or column-
major (Fortran-style) order in memory.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
I

[ndarray of shape (N,M)] An array where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.

1126 1. Python API

NumPy Reference, Release 2.2.0

See also:

identity
(almost) equivalent function

diag
diagonal 2-D array from a 1-D array specified by the user.

Examples

>>> import numpy as np
>>> np.eye(2, dtype=int)
array([[1, 0],

[0, 1]])
>>> np.eye(3, k=1)
array([[0., 1., 0.],

[0., 0., 1.],
[0., 0., 0.]])

numpy.identity(n, dtype=None, *, like=None)
Return the identity array.
The identity array is a square array with ones on the main diagonal.

Parameters
n

[int] Number of rows (and columns) in n x n output.
dtype

[data-type, optional] Data-type of the output. Defaults to float.
like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> import numpy as np
>>> np.identity(3)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

numpy.ones(shape, dtype=None, order='C', *, device=None, like=None)
Return a new array of given shape and type, filled with ones.

Parameters

1.4. Routines and objects by topic 1127

NumPy Reference, Release 2.2.0

shape
[int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype
[data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order
[{‘C’, ‘F’}, optional, default: C]Whether to storemulti-dimensional data in row-major (C-style)
or column-major (Fortran-style) order in memory.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] Array of ones with the given shape, dtype, and order.
See also:

ones_like
Return an array of ones with shape and type of input.

empty
Return a new uninitialized array.

zeros
Return a new array setting values to zero.

full
Return a new array of given shape filled with value.

Examples

>>> import numpy as np
>>> np.ones(5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[1.],

[1.]])

1128 1. Python API

NumPy Reference, Release 2.2.0

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],

[1., 1.]])

numpy.ones_like(a, dtype=None, order='K', subok=True, shape=None, *, device=None)
Return an array of ones with the same shape and type as a given array.

Parameters
a

[array_like] The shape and data-type of a define these same attributes of the returned array.
dtype

[data-type, optional] Overrides the data type of the result.
order

[{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.

subok
[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.

shape
[int or sequence of ints, optional.] Overrides the shape of the result. If order=’K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
out

[ndarray] Array of ones with the same shape and type as a.
See also:

empty_like
Return an empty array with shape and type of input.

zeros_like
Return an array of zeros with shape and type of input.

full_like
Return a new array with shape of input filled with value.

ones
Return a new array setting values to one.

1.4. Routines and objects by topic 1129

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],

[1, 1, 1]])

>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.])
>>> np.ones_like(y)
array([1., 1., 1.])

numpy.zeros(shape, dtype=float, order='C', *, like=None)
Return a new array of given shape and type, filled with zeros.

Parameters
shape

[int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.
dtype

[data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order
[{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major (C-
style) or column-major (Fortran-style) order in memory.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] Array of zeros with the given shape, dtype, and order.
See also:

zeros_like
Return an array of zeros with shape and type of input.

empty
Return a new uninitialized array.

ones
Return a new array setting values to one.

full
Return a new array of given shape filled with value.

1130 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[0.],

[0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[0., 0.],

[0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],

dtype=[('x', '<i4'), ('y', '<i4')])

numpy.zeros_like(a, dtype=None, order='K', subok=True, shape=None, *, device=None)
Return an array of zeros with the same shape and type as a given array.

Parameters
a

[array_like] The shape and data-type of a define these same attributes of the returned array.
dtype

[data-type, optional] Overrides the data type of the result.
order

[{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.

subok
[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.

shape
[int or sequence of ints, optional.] Overrides the shape of the result. If order=’K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
out

[ndarray] Array of zeros with the same shape and type as a.
See also:

1.4. Routines and objects by topic 1131

NumPy Reference, Release 2.2.0

empty_like
Return an empty array with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

full_like
Return a new array with shape of input filled with value.

zeros
Return a new array setting values to zero.

Examples

>>> import numpy as np
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],

[0, 0, 0]])

>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.])
>>> np.zeros_like(y)
array([0., 0., 0.])

numpy.full(shape, fill_value, dtype=None, order='C', *, device=None, like=None)
Return a new array of given shape and type, filled with fill_value.

Parameters
shape

[int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.
fill_value

[scalar or array_like] Fill value.
dtype

[data-type, optional]
The desired data-type for the array The default, None, means
np.array(fill_value).dtype.

order
[{‘C’, ‘F’}, optional] Whether to store multidimensional data in C- or Fortran-contiguous (row-
or column-wise) order in memory.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy

1132 1. Python API

NumPy Reference, Release 2.2.0

arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] Array of fill_value with the given shape, dtype, and order.
See also:

full_like
Return a new array with shape of input filled with value.

empty
Return a new uninitialized array.

ones
Return a new array setting values to one.

zeros
Return a new array setting values to zero.

Examples

>>> import numpy as np
>>> np.full((2, 2), np.inf)
array([[inf, inf],

[inf, inf]])
>>> np.full((2, 2), 10)
array([[10, 10],

[10, 10]])

>>> np.full((2, 2), [1, 2])
array([[1, 2],

[1, 2]])

numpy.full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None, *, device=None)
Return a full array with the same shape and type as a given array.

Parameters
a

[array_like] The shape and data-type of a define these same attributes of the returned array.
fill_value

[array_like] Fill value.
dtype

[data-type, optional] Overrides the data type of the result.
order

[{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible.

1.4. Routines and objects by topic 1133

NumPy Reference, Release 2.2.0

subok
[bool, optional.] If True, then the newly created array will use the sub-class type of a, otherwise
it will be a base-class array. Defaults to True.

shape
[int or sequence of ints, optional.] Overrides the shape of the result. If order=’K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order=’C’ is implied.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
out

[ndarray] Array of fill_value with the same shape and type as a.
See also:

empty_like
Return an empty array with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

zeros_like
Return an array of zeros with shape and type of input.

full
Return a new array of given shape filled with value.

Examples

>>> import numpy as np
>>> x = np.arange(6, dtype=int)
>>> np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1])
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
>>> np.full_like(x, 0.1, dtype=np.double)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
>>> np.full_like(x, np.nan, dtype=np.double)
array([nan, nan, nan, nan, nan, nan])

>>> y = np.arange(6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])

>>> y = np.zeros([2, 2, 3], dtype=int)
>>> np.full_like(y, [0, 0, 255])
array([[[0, 0, 255],

[0, 0, 255]],
[[0, 0, 255],
[0, 0, 255]]])

1134 1. Python API

NumPy Reference, Release 2.2.0

From existing data

array(object[, dtype, copy, order, subok, ...]) Create an array.
asarray(a[, dtype, order, device, copy, like]) Convert the input to an array.
asanyarray(a[, dtype, order, device, copy, like]) Convert the input to an ndarray, but pass ndarray sub-

classes through.
ascontiguousarray(a[, dtype, like]) Return a contiguous array (ndim >= 1) in memory (C or-

der).
asmatrix(data[, dtype]) Interpret the input as a matrix.
astype(x, dtype, /, *[, copy, device]) Copies an array to a specified data type.
copy(a[, order, subok]) Return an array copy of the given object.
frombuffer(buffer[, dtype, count, offset, like]) Interpret a buffer as a 1-dimensional array.
from_dlpack(x, /, *[, device, copy]) Create a NumPy array from an object implementing the

__dlpack__ protocol.
fromfile(file[, dtype, count, sep, offset, like]) Construct an array from data in a text or binary file.
fromfunction(function, shape, *[, dtype, like]) Construct an array by executing a function over each co-

ordinate.
fromiter(iter, dtype[, count, like]) Create a new 1-dimensional array from an iterable object.
fromstring(string[, dtype, count, like]) A new 1-D array initialized from text data in a string.
loadtxt(fname[, dtype, comments, delimiter, ...]) Load data from a text file.

numpy.array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, like=None)
Create an array.

Parameters
object

[array_like] An array, any object exposing the array interface, an object whose __array__
method returns an array, or any (nested) sequence. If object is a scalar, a 0-dimensional array
containing object is returned.

dtype
[data-type, optional] The desired data-type for the array. If not given, NumPy will try to use
a default dtype that can represent the values (by applying promotion rules when necessary.)

copy
[bool, optional] If True (default), then the array data is copied. If None, a copy will only
be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to
satisfy any of the other requirements (dtype, order, etc.). Note that any copy of the data
is shallow, i.e., for arrays with object dtype, the new array will point to the same objects. See
Examples for ndarray.copy. For False it raises a ValueError if a copy cannot be
avoided. Default: True.

order
[{‘K’, ‘A’, ‘C’, ‘F’}, optional] Specify the memory layout of the array. If object is not an array,
the newly created array will be in C order (row major) unless ‘F’ is specified, in which case it
will be in Fortran order (column major). If object is an array the following holds.

order no copy copy=True
‘K’ unchanged F & C order preserved, otherwise most similar order
‘A’ unchanged F order if input is F and not C, otherwise C order
‘C’ C order C order
‘F’ F order F order

1.4. Routines and objects by topic 1135

NumPy Reference, Release 2.2.0

When copy=None and a copy is made for other reasons, the result is the same as if
copy=True, with some exceptions for ‘A’, see the Notes section. The default order is ‘K’.

subok
[bool, optional] If True, then sub-classes will be passed-through, otherwise the returned array
will be forced to be a base-class array (default).

ndmin
[int, optional] Specifies the minimum number of dimensions that the resulting array should
have. Ones will be prepended to the shape as needed to meet this requirement.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] An array object satisfying the specified requirements.
See also:

empty_like
Return an empty array with shape and type of input.

ones_like
Return an array of ones with shape and type of input.

zeros_like
Return an array of zeros with shape and type of input.

full_like
Return a new array with shape of input filled with value.

empty
Return a new uninitialized array.

ones
Return a new array setting values to one.

zeros
Return a new array setting values to zero.

full
Return a new array of given shape filled with value.

copy
Return an array copy of the given object.

1136 1. Python API

NumPy Reference, Release 2.2.0

Notes

When order is ‘A’ and object is an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in dtype,
then the order of the result is not necessarily ‘C’ as expected. This is likely a bug.

Examples

>>> import numpy as np
>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0])
array([1., 2., 3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],

[3, 4]])

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex)
array([1.+0.j, 2.+0.j, 3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3], dtype=int32)

Creating an array from sub-classes:

>>> np.array(np.asmatrix('1 2; 3 4'))
array([[1, 2],

[3, 4]])

>>> np.array(np.asmatrix('1 2; 3 4'), subok=True)
matrix([[1, 2],

[3, 4]])

numpy.asarray(a, dtype=None, order=None, *, device=None, copy=None, like=None)
Convert the input to an array.

Parameters
a

[array_like] Input data, in any form that can be converted to an array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

1.4. Routines and objects by topic 1137

NumPy Reference, Release 2.2.0

dtype
[data-type, optional] By default, the data-type is inferred from the input data.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Memory layout. ‘A’ and ‘K’ depend on the order of input array
a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any)
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to
‘K’.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

copy
[bool, optional] If True, then the object is copied. If None then the object is copied only
if needed, i.e. if __array__ returns a copy, if obj is a nested sequence, or if a copy is
needed to satisfy any of the other requirements (dtype, order, etc.). For False it raises
a ValueError if a copy cannot be avoided. Default: None.
New in version 2.0.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] Array interpretation of a. No copy is performed if the input is already an ndarray
with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.

See also:

asanyarray
Similar function which passes through subclasses.

ascontiguousarray
Convert input to a contiguous array.

asfortranarray
Convert input to an ndarray with column-major memory order.

asarray_chkfinite
Similar function which checks input for NaNs and Infs.

fromiter
Create an array from an iterator.

fromfunction
Construct an array by executing a function on grid positions.

1138 1. Python API

NumPy Reference, Release 2.2.0

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> import numpy as np
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
>>> np.shares_memory(np.asarray(a, dtype=np.float32), a)
True
>>> np.shares_memory(np.asarray(a, dtype=np.float64), a)
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray)
True
>>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray)
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True

numpy.asanyarray(a, dtype=None, order=None, *, device=None, copy=None, like=None)
Convert the input to an ndarray, but pass ndarray subclasses through.

Parameters
a

[array_like] Input data, in any form that can be converted to an array. This includes scalars,
lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.

dtype
[data-type, optional] By default, the data-type is inferred from the input data.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Memory layout. ‘A’ and ‘K’ depend on the order of input array
a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any)
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to
‘C’.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.1.0.

copy
[bool, optional] If True, then the object is copied. If None then the object is copied only
if needed, i.e. if __array__ returns a copy, if obj is a nested sequence, or if a copy is

1.4. Routines and objects by topic 1139

NumPy Reference, Release 2.2.0

needed to satisfy any of the other requirements (dtype, order, etc.). For False it raises
a ValueError if a copy cannot be avoided. Default: None.
New in version 2.1.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray or an ndarray subclass] Array interpretation of a. If a is an ndarray or a subclass of
ndarray, it is returned as-is and no copy is performed.

See also:

asarray
Similar function which always returns ndarrays.

ascontiguousarray
Convert input to a contiguous array.

asfortranarray
Convert input to an ndarray with column-major memory order.

asarray_chkfinite
Similar function which checks input for NaNs and Infs.

fromiter
Create an array from an iterator.

fromfunction
Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> import numpy as np
>>> np.asanyarray(a)
array([1, 2])

Instances of ndarray subclasses are passed through as-is:

>>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray)
>>> np.asanyarray(a) is a
True

numpy.ascontiguousarray(a, dtype=None, *, like=None)
Return a contiguous array (ndim >= 1) in memory (C order).

Parameters

1140 1. Python API

NumPy Reference, Release 2.2.0

a
[array_like] Input array.

dtype
[str or dtype object, optional] Data-type of returned array.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] Contiguous array of same shape and content as a, with type dtype if specified.
See also:

asfortranarray
Convert input to an ndarray with column-major memory order.

require
Return an ndarray that satisfies requirements.

ndarray.flags
Information about the memory layout of the array.

Examples

Starting with a Fortran-contiguous array:

>>> import numpy as np
>>> x = np.ones((2, 3), order='F')
>>> x.flags['F_CONTIGUOUS']
True

Calling ascontiguousarray makes a C-contiguous copy:

>>> y = np.ascontiguousarray(x)
>>> y.flags['C_CONTIGUOUS']
True
>>> np.may_share_memory(x, y)
False

Now, starting with a C-contiguous array:

>>> x = np.ones((2, 3), order='C')
>>> x.flags['C_CONTIGUOUS']
True

Then, calling ascontiguousarray returns the same object:

>>> y = np.ascontiguousarray(x)
>>> x is y
True

1.4. Routines and objects by topic 1141

NumPy Reference, Release 2.2.0

Note: This function returns an array with at least one-dimension (1-d) so it will not preserve 0-d arrays.
numpy.astype(x, dtype, / , *, copy=True, device=None)

Copies an array to a specified data type.
This function is an Array API compatible alternative to numpy.ndarray.astype.

Parameters
x

[ndarray] Input NumPy array to cast. array_likes are explicitly not supported here.
dtype

[dtype] Data type of the result.
copy

[bool, optional] Specifies whether to copy an array when the specified dtype matches the data
type of the input array x. If True, a newly allocated array must always be returned. If
False and the specified dtype matches the data type of the input array, the input array must
be returned; otherwise, a newly allocated array must be returned. Defaults to True.

device
[str, optional] The device on which to place the returned array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.1.0.

Returns
out

[ndarray] An array having the specified data type.
See also:

ndarray.astype

Examples

>>> import numpy as np
>>> arr = np.array([1, 2, 3]); arr
array([1, 2, 3])
>>> np.astype(arr, np.float64)
array([1., 2., 3.])

Non-copy case:

>>> arr = np.array([1, 2, 3])
>>> arr_noncpy = np.astype(arr, arr.dtype, copy=False)
>>> np.shares_memory(arr, arr_noncpy)
True

numpy.copy(a, order='K', subok=False)
Return an array copy of the given object.

Parameters
a

[array_like] Input data.

1142 1. Python API

NumPy Reference, Release 2.2.0

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-order, ‘F’
means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the
layout of a as closely as possible. (Note that this function and ndarray.copy are very
similar, but have different default values for their order= arguments.)

subok
[bool, optional] If True, then sub-classes will be passed-through, otherwise the returned array
will be forced to be a base-class array (defaults to False).

Returns
arr

[ndarray] Array interpretation of a.
See also:

ndarray.copy
Preferred method for creating an array copy

Notes

This is equivalent to:

>>> np.array(a, copy=True)

The copy made of the data is shallow, i.e., for arrays with object dtype, the new array will point to the same objects.
See Examples from ndarray.copy.

Examples

>>> import numpy as np

Create an array x, with a reference y and a copy z:

>>> x = np.array([1, 2, 3])
>>> y = x
>>> z = np.copy(x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True
>>> x[0] == z[0]
False

Note that, np.copy clears previously set WRITEABLE=False flag.

>>> a = np.array([1, 2, 3])
>>> a.flags["WRITEABLE"] = False
>>> b = np.copy(a)
>>> b.flags["WRITEABLE"]
True
>>> b[0] = 3

(continues on next page)

1.4. Routines and objects by topic 1143

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> b
array([3, 2, 3])

numpy.frombuffer(buffer, dtype=float, count=-1, offset=0, *, like=None)
Interpret a buffer as a 1-dimensional array.

Parameters
buffer

[buffer_like] An object that exposes the buffer interface.
dtype

[data-type, optional] Data-type of the returned array; default: float.
count

[int, optional] Number of items to read. -1 means all data in the buffer.
offset

[int, optional] Start reading the buffer from this offset (in bytes); default: 0.
like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray]
See also:

ndarray.tobytes
Inverse of this operation, construct Python bytes from the raw data bytes in the array.

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
>>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.
This function creates a view into the original object. This should be safe in general, but it may make sense to copy
the result when the original object is mutable or untrusted.

1144 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> s = b'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')

>>> np.frombuffer(b'\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.frombuffer(b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

numpy.from_dlpack(x, / , *, device=None, copy=None)
Create a NumPy array from an object implementing the __dlpack__ protocol. Generally, the returned NumPy
array is a read-only view of the input object. See [1] and [2] for more details.

Parameters
x

[object] A Python object that implements the __dlpack__ and __dlpack_device__
methods.

device
[device, optional] Device on which to place the created array. Default: None. Must be "cpu"
if passed which may allow importing an array that is not already CPU available.

copy
[bool, optional] Boolean indicating whether or not to copy the input. If True, the copy will
be made. If False, the function will never copy, and will raise BufferError in case
a copy is deemed necessary. Passing it requests a copy from the exporter who may or may
not implement the capability. If None, the function will reuse the existing memory buffer if
possible and copy otherwise. Default: None.

Returns
out

[ndarray]

References

[1], [2]

Examples

>>> import torch
>>> x = torch.arange(10)
>>> # create a view of the torch tensor "x" in NumPy
>>> y = np.from_dlpack(x)

numpy.fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None)
Construct an array from data in a text or binary file.
A highly efficient way of reading binary data with a known data-type, as well as parsing simply formatted text files.
Data written using the tofile method can be read using this function.

Parameters

1.4. Routines and objects by topic 1145

NumPy Reference, Release 2.2.0

file
[file or str or Path] Open file object or filename.

dtype
[data-type] Data type of the returned array. For binary files, it is used to determine the size
and byte-order of the items in the file. Most builtin numeric types are supported and extension
types may be supported.

count
[int] Number of items to read. -1 means all items (i.e., the complete file).

sep
[str] Separator between items if file is a text file. Empty (“”) separator means the file should
be treated as binary. Spaces (” “) in the separator match zero or more whitespace characters.
A separator consisting only of spaces must match at least one whitespace.

offset
[int] The offset (in bytes) from the file’s current position. Defaults to 0. Only permitted for
binary files.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

See also:

load, save
ndarray.tofile
loadtxt

More flexible way of loading data from a text file.

Notes

Do not rely on the combination of tofile and fromfile for data storage, as the binary files generated are not
platform independent. In particular, no byte-order or data-type information is saved. Data can be stored in the
platform independent .npy format using save and load instead.

Examples

Construct an ndarray:

>>> import numpy as np
>>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]),
... ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])

Save the raw data to disk:

1146 1. Python API

NumPy Reference, Release 2.2.0

>>> import tempfile
>>> fname = tempfile.mkstemp()[1]
>>> x.tofile(fname)

Read the raw data from disk:

>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])

The recommended way to store and load data:

>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],

dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])

numpy.fromfunction(function, shape, *, dtype=<class 'float'>, like=None, **kwargs)
Construct an array by executing a function over each coordinate.
The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

Parameters
function

[callable] The function is called with N parameters, where N is the rank of shape. Each
parameter represents the coordinates of the array varying along a specific axis. For example,
if shape were (2, 2), then the parameters would be array([[0, 0], [1, 1]])
and array([[0, 1], [0, 1]])

shape
[(N,) tuple of ints] Shape of the output array, which also determines the shape of the coordinate
arrays passed to function.

dtype
[data-type, optional] Data-type of the coordinate arrays passed to function. By default, dtype
is float.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
fromfunction

[any] The result of the call to function is passed back directly. Therefore the shape of from-
function is completely determined by function. If function returns a scalar value, the shape
of fromfunction would not match the shape parameter.

See also:

indices, meshgrid

1.4. Routines and objects by topic 1147

NumPy Reference, Release 2.2.0

Notes

Keywords other than dtype and like are passed to function.

Examples

>>> import numpy as np
>>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float)
array([[0., 0.],

[1., 1.]])

>>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float)
array([[0., 1.],

[0., 1.]])

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[True, False, False],

[False, True, False],
[False, False, True]])

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4]])

numpy.fromiter(iter, dtype, count=-1, *, like=None)
Create a new 1-dimensional array from an iterable object.

Parameters
iter

[iterable object] An iterable object providing data for the array.
dtype

[data-type] The data-type of the returned array.
Changed in version 1.23: Object and subarray dtypes are now supported (note that the final
result is not 1-D for a subarray dtype).

count
[int, optional] The number of items to read from iterable. The default is -1, which means all
data is read.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] The output array.

1148 1. Python API

NumPy Reference, Release 2.2.0

Notes

Specify count to improve performance. It allows fromiter to pre-allocate the output array, instead of resizing
it on demand.

Examples

>>> import numpy as np
>>> iterable = (x*x for x in range(5))
>>> np.fromiter(iterable, float)
array([0., 1., 4., 9., 16.])

A carefully constructed subarray dtype will lead to higher dimensional results:

>>> iterable = ((x+1, x+2) for x in range(5))
>>> np.fromiter(iterable, dtype=np.dtype((int, 2)))
array([[1, 2],

[2, 3],
[3, 4],
[4, 5],
[5, 6]])

numpy.fromstring(string, dtype=float, count=-1, *, sep, like=None)
A new 1-D array initialized from text data in a string.

Parameters
string

[str] A string containing the data.
dtype

[data-type, optional] The data type of the array; default: float. For binary input data, the data
must be in exactly this format. Most builtin numeric types are supported and extension types
may be supported.

count
[int, optional] Read this number of dtype elements from the data. If this is negative (the
default), the count will be determined from the length of the data.

sep
[str, optional] The string separating numbers in the data; extra whitespace between elements
is also ignored.
Deprecated since version 1.14: Passing sep='', the default, is deprecated since it will
trigger the deprecated binary mode of this function. This mode interprets string as bi-
nary bytes, rather than ASCII text with decimal numbers, an operation which is better spelt
frombuffer(string, dtype, count). If string contains unicode text, the bi-
nary mode of fromstring will first encode it into bytes using utf-8, which will not produce
sane results.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

1.4. Routines and objects by topic 1149

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/string.html#module-string

NumPy Reference, Release 2.2.0

Returns
arr

[ndarray] The constructed array.
Raises

ValueError
If the string is not the correct size to satisfy the requested dtype and count.

See also:

frombuffer, fromfile, fromiter

Examples

>>> import numpy as np
>>> np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
>>> np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])

numpy.loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0,
usecols=None, unpack=False, ndmin=0, encoding=None, max_rows=None, *, quotechar=None,
like=None)

Load data from a text file.
Parameters

fname
[file, str, pathlib.Path, list of str, generator] File, filename, list, or generator to read. If the
filename extension is .gz or .bz2, the file is first decompressed. Note that generators must
return bytes or strings. The strings in a list or produced by a generator are treated as lines.

dtype
[data-type, optional] Data-type of the resulting array; default: float. If this is a structured data-
type, the resulting array will be 1-dimensional, and each row will be interpreted as an element
of the array. In this case, the number of columns used must match the number of fields in the
data-type.

comments
[str or sequence of str or None, optional] The characters or list of characters used to indicate
the start of a comment. None implies no comments. For backwards compatibility, byte strings
will be decoded as ‘latin1’. The default is ‘#’.

delimiter
[str, optional] The character used to separate the values. For backwards compatibility, byte
strings will be decoded as ‘latin1’. The default is whitespace.
Changed in version 1.23.0: Only single character delimiters are supported. Newline characters
cannot be used as the delimiter.

converters
[dict or callable, optional] Converter functions to customize value parsing. If converters is
callable, the function is applied to all columns, else it must be a dict that maps column number
to a parser function. See examples for further details. Default: None.
Changed in version 1.23.0: The ability to pass a single callable to be applied to all columns
was added.

1150 1. Python API

NumPy Reference, Release 2.2.0

skiprows
[int, optional] Skip the first skiprows lines, including comments; default: 0.

usecols
[int or sequence, optional] Which columns to read, with 0 being the first. For example, usec-
ols = (1,4,5) will extract the 2nd, 5th and 6th columns. The default, None, results in
all columns being read.

unpack
[bool, optional] If True, the returned array is transposed, so that arguments may be unpacked
using x, y, z = loadtxt(...). When used with a structured data-type, arrays are
returned for each field. Default is False.

ndmin
[int, optional] The returned array will have at least ndmin dimensions. Otherwise mono-
dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2.

encoding
[str, optional] Encoding used to decode the inputfile. Does not apply to input streams. The
special value ‘bytes’ enables backward compatibility workarounds that ensures you receive byte
arrays as results if possible and passes ‘latin1’ encoded strings to converters. Override this value
to receive unicode arrays and pass strings as input to converters. If set to None the system
default is used. The default value is ‘bytes’.
Changed in version 2.0: Before NumPy 2, the default was 'bytes' for Python 2 compati-
bility. The default is now None.

max_rows
[int, optional] Read max_rows rows of content after skiprows lines. The default is to read all
the rows. Note that empty rows containing no data such as empty lines and comment lines are
not counted towards max_rows, while such lines are counted in skiprows.
Changed in version 1.23.0: Lines containing no data, including comment lines (e.g., lines
starting with ‘#’ or as specified via comments) are not counted towards max_rows.

quotechar
[unicode character or None, optional] The character used to denote the start and end of a
quoted item. Occurrences of the delimiter or comment characters are ignored within a quoted
item. The default value is quotechar=None, which means quoting support is disabled.
If two consecutive instances of quotechar are found within a quoted field, the first is treated as
an escape character. See examples.
New in version 1.23.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] Data read from the text file.
See also:

1.4. Routines and objects by topic 1151

NumPy Reference, Release 2.2.0

load, fromstring, fromregex
genfromtxt

Load data with missing values handled as specified.
scipy.io.loadmat

reads MATLAB data files

Notes

This function aims to be a fast reader for simply formatted files. The genfromtxt function provides more
sophisticated handling of, e.g., lines with missing values.
Each row in the input text file must have the same number of values to be able to read all values. If all rows do not
have same number of values, a subset of up to n columns (where n is the least number of values present in all rows)
can be read by specifying the columns via usecols.
The strings produced by the Python float.hex method can be used as input for floats.

Examples

>>> import numpy as np
>>> from io import StringIO # StringIO behaves like a file object
>>> c = StringIO("0 1\n2 3")
>>> np.loadtxt(c)
array([[0., 1.],

[2., 3.]])

>>> d = StringIO("M 21 72\nF 35 58")
>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
... 'formats': ('S1', 'i4', 'f4')})
array([(b'M', 21, 72.), (b'F', 35, 58.)],

dtype=[('gender', 'S1'), ('age', '<i4'), ('weight', '<f4')])

>>> c = StringIO("1,0,2\n3,0,4")
>>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True)
>>> x
array([1., 3.])
>>> y
array([2., 4.])

The converters argument is used to specify functions to preprocess the text prior to parsing. converters can be a
dictionary that maps preprocessing functions to each column:

>>> s = StringIO("1.618, 2.296\n3.141, 4.669\n")
>>> conv = {
... 0: lambda x: np.floor(float(x)), # conversion fn for column 0
... 1: lambda x: np.ceil(float(x)), # conversion fn for column 1
... }
>>> np.loadtxt(s, delimiter=",", converters=conv)
array([[1., 3.],

[3., 5.]])

converters can be a callable instead of a dictionary, in which case it is applied to all columns:

1152 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html#scipy.io.loadmat

NumPy Reference, Release 2.2.0

>>> s = StringIO("0xDE 0xAD\n0xC0 0xDE")
>>> import functools
>>> conv = functools.partial(int, base=16)
>>> np.loadtxt(s, converters=conv)
array([[222., 173.],

[192., 222.]])

This example shows how converters can be used to convert a field with a trailing minus sign into a negative number.

>>> s = StringIO("10.01 31.25-\n19.22 64.31\n17.57- 63.94")
>>> def conv(fld):
... return -float(fld[:-1]) if fld.endswith("-") else float(fld)
...
>>> np.loadtxt(s, converters=conv)
array([[10.01, -31.25],

[19.22, 64.31],
[-17.57, 63.94]])

Using a callable as the converter can be particularly useful for handling values with different formatting, e.g. floats
with underscores:

>>> s = StringIO("1 2.7 100_000")
>>> np.loadtxt(s, converters=float)
array([1.e+00, 2.7e+00, 1.e+05])

This idea can be extended to automatically handle values specified in many different formats, such as hex values:

>>> def conv(val):
... try:
... return float(val)
... except ValueError:
... return float.fromhex(val)
>>> s = StringIO("1, 2.5, 3_000, 0b4, 0x1.4000000000000p+2")
>>> np.loadtxt(s, delimiter=",", converters=conv)
array([1.0e+00, 2.5e+00, 3.0e+03, 1.8e+02, 5.0e+00])

Or a format where the - sign comes after the number:

>>> s = StringIO("10.01 31.25-\n19.22 64.31\n17.57- 63.94")
>>> conv = lambda x: -float(x[:-1]) if x.endswith("-") else float(x)
>>> np.loadtxt(s, converters=conv)
array([[10.01, -31.25],

[19.22, 64.31],
[-17.57, 63.94]])

Support for quoted fields is enabled with the quotechar parameter. Comment and delimiter characters are ignored
when they appear within a quoted item delineated by quotechar:

>>> s = StringIO('"alpha, #42", 10.0\n"beta, #64", 2.0\n')
>>> dtype = np.dtype([("label", "U12"), ("value", float)])
>>> np.loadtxt(s, dtype=dtype, delimiter=",", quotechar='"')
array([('alpha, #42', 10.), ('beta, #64', 2.)],

dtype=[('label', '<U12'), ('value', '<f8')])

Quoted fields can be separated by multiple whitespace characters:

1.4. Routines and objects by topic 1153

NumPy Reference, Release 2.2.0

>>> s = StringIO('"alpha, #42" 10.0\n"beta, #64" 2.0\n')
>>> dtype = np.dtype([("label", "U12"), ("value", float)])
>>> np.loadtxt(s, dtype=dtype, delimiter=None, quotechar='"')
array([('alpha, #42', 10.), ('beta, #64', 2.)],

dtype=[('label', '<U12'), ('value', '<f8')])

Two consecutive quote characters within a quoted field are treated as a single escaped character:

>>> s = StringIO('"Hello, my name is ""Monty""!"')
>>> np.loadtxt(s, dtype="U", delimiter=",", quotechar='"')
array('Hello, my name is "Monty"!', dtype='<U26')

Read subset of columns when all rows do not contain equal number of values:

>>> d = StringIO("1 2\n2 4\n3 9 12\n4 16 20")
>>> np.loadtxt(d, usecols=(0, 1))
array([[1., 2.],

[2., 4.],
[3., 9.],
[4., 16.]])

Creating record arrays

Note: Please refer to Record arrays for record arrays.

rec.array(obj[, dtype, shape, offset, ...]) Construct a record array from a wide-variety of objects.
rec.fromarrays(arrayList[, dtype, shape, ...]) Create a record array from a (flat) list of arrays
rec.fromrecords(recList[, dtype, shape, ...]) Create a recarray from a list of records in text form.
rec.fromstring(datastring[, dtype, shape, ...]) Create a record array from binary data
rec.fromfile(fd[, dtype, shape, offset, ...]) Create an array from binary file data

Creating character arrays (numpy.char)

Note: numpy.char is used to create character arrays.

char.array(obj[, itemsize, copy, unicode, order]) Create a chararray.
char.asarray(obj[, itemsize, unicode, order]) Convert the input to a chararray, copying the data

only if necessary.

1154 1. Python API

NumPy Reference, Release 2.2.0

Numerical ranges

arange([start,] stop[, step,][, dtype, ...]) Return evenly spaced values within a given interval.
linspace(start, stop[, num, endpoint, ...]) Return evenly spaced numbers over a specified interval.
logspace(start, stop[, num, endpoint, base, ...]) Return numbers spaced evenly on a log scale.
geomspace(start, stop[, num, endpoint, ...]) Return numbers spaced evenly on a log scale (a geometric

progression).
meshgrid(*xi[, copy, sparse, indexing]) Return a tuple of coordinate matrices from coordinate

vectors.
mgrid An instance which returns a dense multi-dimensional

"meshgrid".
ogrid An instance which returns an open multi-dimensional

"meshgrid".

numpy.arange([start,]stop, [step,]dtype=None, *, device=None, like=None)
Return evenly spaced values within a given interval.
arange can be called with a varying number of positional arguments:

• arange(stop): Values are generated within the half-open interval [0, stop) (in other words, the
interval including start but excluding stop).

• arange(start, stop): Values are generated within the half-open interval [start, stop).
• arange(start, stop, step)Values are generated within the half-open interval [start, stop),
with spacing between values given by step.

For integer arguments the function is roughly equivalent to the Python built-in range, but returns an ndarray rather
than a range instance.
When using a non-integer step, such as 0.1, it is often better to use numpy.linspace.
See the Warning sections below for more information.

Parameters
start

[integer or real, optional] Start of interval. The interval includes this value. The default start
value is 0.

stop
[integer or real] End of interval. The interval does not include this value, except in some cases
where step is not an integer and floating point round-off affects the length of out.

step
[integer or real, optional] Spacing between values. For any output out, this is the distance
between two adjacent values, out[i+1] - out[i]. The default step size is 1. If step is
specified as a position argument, start must also be given.

dtype
[dtype, optional] The type of the output array. If dtype is not given, infer the data type from
the other input arguments.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

1.4. Routines and objects by topic 1155

https://docs.python.org/3/library/stdtypes.html#range

NumPy Reference, Release 2.2.0

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
arange

[ndarray] Array of evenly spaced values.
For floating point arguments, the length of the result is ceil((stop - start)/step).
Because of floating point overflow, this rule may result in the last element of out being greater
than stop.

Warning: The length of the output might not be numerically stable.
Another stability issue is due to the internal implementation of numpy.arange. The actual step value used
to populate the array is dtype(start + step) - dtype(start) and not step. Precision loss can
occur here, due to casting or due to using floating points when start is much larger than step. This can lead to
unexpected behaviour. For example:
>>> np.arange(0, 5, 0.5, dtype=int)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
>>> np.arange(-3, 3, 0.5, dtype=int)
array([-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

In such cases, the use of numpy.linspace should be preferred.
The built-in range generates Python built-in integers that have arbitrary size, while numpy.arange pro-
duces numpy.int32 or numpy.int64 numbers. This may result in incorrect results for large integer
values:
>>> power = 40
>>> modulo = 10000
>>> x1 = [(n ** power) % modulo for n in range(8)]
>>> x2 = [(n ** power) % modulo for n in np.arange(8)]
>>> print(x1)
[0, 1, 7776, 8801, 6176, 625, 6576, 4001] # correct
>>> print(x2)
[0, 1, 7776, 7185, 0, 5969, 4816, 3361] # incorrect

See also:

numpy.linspace
Evenly spaced numbers with careful handling of endpoints.

numpy.ogrid
Arrays of evenly spaced numbers in N-dimensions.

numpy.mgrid
Grid-shaped arrays of evenly spaced numbers in N-dimensions.

how-to-partition

1156 1. Python API

https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/c-api/long.html

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, *, device=None)
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Changed in version 1.20.0: Values are rounded towards -inf instead of 0 when an integer dtype is specified.
The old behavior can still be obtained with np.linspace(start, stop, num).astype(int)

Parameters
start

[array_like] The starting value of the sequence.
stop

[array_like] The end value of the sequence, unless endpoint is set to False. In that case, the
sequence consists of all but the last ofnum + 1 evenly spaced samples, so that stop is excluded.
Note that the step size changes when endpoint is False.

num
[int, optional] Number of samples to generate. Default is 50. Must be non-negative.

endpoint
[bool, optional] If True, stop is the last sample. Otherwise, it is not included. Default is True.

retstep
[bool, optional] If True, return (samples, step), where step is the spacing between samples.

dtype
[dtype, optional] The type of the output array. If dtype is not given, the data type is inferred
from start and stop. The inferred dtype will never be an integer; float is chosen even if the
arguments would produce an array of integers.

axis
[int, optional] The axis in the result to store the samples. Relevant only if start or stop are
array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use
-1 to get an axis at the end.

device
[str, optional] The device on which to place the created array. Default: None. For Array-API
interoperability only, so must be "cpu" if passed.
New in version 2.0.0.

Returns
samples

[ndarray] There are num equally spaced samples in the closed interval [start, stop] or
the half-open interval [start, stop) (depending on whether endpoint is True or False).

1.4. Routines and objects by topic 1157

NumPy Reference, Release 2.2.0

step
[float, optional] Only returned if retstep is True
Size of spacing between samples.

See also:

arange
Similar to linspace, but uses a step size (instead of the number of samples).

geomspace
Similar to linspace, but with numbers spaced evenly on a log scale (a geometric progression).

logspace
Similar to geomspace, but with the end points specified as logarithms.

how-to-partition

Examples

>>> import numpy as np
>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3.])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)
Return numbers spaced evenly on a log scale.
In linear space, the sequence starts at base ** start (base to the power of start) and ends with base **
stop (see endpoint below).
Changed in version 1.25.0: Non-scalar ‘base` is now supported

Parameters
start

[array_like] base ** start is the starting value of the sequence.
stop

[array_like] base ** stop is the final value of the sequence, unless endpoint is False. In
that case, num + 1 values are spaced over the interval in log-space, of which all but the last
(a sequence of length num) are returned.

1158 1. Python API

NumPy Reference, Release 2.2.0

0 2 4 6 8 10

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

num
[integer, optional] Number of samples to generate. Default is 50.

endpoint
[boolean, optional] If true, stop is the last sample. Otherwise, it is not included. Default is
True.

base
[array_like, optional] The base of the log space. The step size between the elements in
ln(samples) / ln(base) (or log_base(samples)) is uniform. Default is 10.0.

dtype
[dtype] The type of the output array. If dtype is not given, the data type is inferred from
start and stop. The inferred type will never be an integer; float is chosen even if the arguments
would produce an array of integers.

axis
[int, optional] The axis in the result to store the samples. Relevant only if start, stop, or base
are array-like. By default (0), the samples will be along a new axis inserted at the beginning.
Use -1 to get an axis at the end.

Returns
samples

[ndarray] num samples, equally spaced on a log scale.
See also:

arange
Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with
a float endpoint, the endpoint may or may not be included.

linspace
Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space.

geomspace
Similar to logspace, but with endpoints specified directly.

how-to-partition

1.4. Routines and objects by topic 1159

NumPy Reference, Release 2.2.0

Notes

If base is a scalar, logspace is equivalent to the code

>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
...
>>> power(base, y).astype(dtype)
...

Examples

>>> import numpy as np
>>> np.logspace(2.0, 3.0, num=4)
array([100. , 215.443469 , 464.15888336, 1000.])
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
array([100. , 177.827941 , 316.22776602, 562.34132519])
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
array([4. , 5.0396842 , 6.34960421, 8.])
>>> np.logspace(2.0, 3.0, num=4, base=[2.0, 3.0], axis=-1)
array([[4. , 5.0396842 , 6.34960421, 8.],

[9. , 12.98024613, 18.72075441, 27.]])

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 10
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
>>> y = np.zeros(N)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()

numpy.geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0)
Return numbers spaced evenly on a log scale (a geometric progression).
This is similar to logspace, but with endpoints specified directly. Each output sample is a constant multiple of
the previous.

Parameters
start

[array_like] The starting value of the sequence.
stop

[array_like] The final value of the sequence, unless endpoint is False. In that case, num + 1
values are spaced over the interval in log-space, of which all but the last (a sequence of length
num) are returned.

num
[integer, optional] Number of samples to generate. Default is 50.

1160 1. Python API

NumPy Reference, Release 2.2.0

2 4 6 8 10

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

endpoint
[boolean, optional] If true, stop is the last sample. Otherwise, it is not included. Default is
True.

dtype
[dtype] The type of the output array. If dtype is not given, the data type is inferred from start
and stop. The inferred dtype will never be an integer; float is chosen even if the arguments
would produce an array of integers.

axis
[int, optional] The axis in the result to store the samples. Relevant only if start or stop are
array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use
-1 to get an axis at the end.

Returns
samples

[ndarray] num samples, equally spaced on a log scale.
See also:

logspace
Similar to geomspace, but with endpoints specified using log and base.

linspace
Similar to geomspace, but with arithmetic instead of geometric progression.

arange
Similar to linspace, with the step size specified instead of the number of samples.

how-to-partition

1.4. Routines and objects by topic 1161

NumPy Reference, Release 2.2.0

Notes

If the inputs or dtype are complex, the output will follow a logarithmic spiral in the complex plane. (There are an
infinite number of spirals passing through two points; the output will follow the shortest such path.)

Examples

>>> import numpy as np
>>> np.geomspace(1, 1000, num=4)
array([1., 10., 100., 1000.])
>>> np.geomspace(1, 1000, num=3, endpoint=False)
array([1., 10., 100.])
>>> np.geomspace(1, 1000, num=4, endpoint=False)
array([1. , 5.62341325, 31.6227766 , 177.827941])
>>> np.geomspace(1, 256, num=9)
array([1., 2., 4., 8., 16., 32., 64., 128., 256.])

Note that the above may not produce exact integers:

>>> np.geomspace(1, 256, num=9, dtype=int)
array([1, 2, 4, 7, 16, 32, 63, 127, 256])
>>> np.around(np.geomspace(1, 256, num=9)).astype(int)
array([1, 2, 4, 8, 16, 32, 64, 128, 256])

Negative, decreasing, and complex inputs are allowed:

>>> np.geomspace(1000, 1, num=4)
array([1000., 100., 10., 1.])
>>> np.geomspace(-1000, -1, num=4)
array([-1000., -100., -10., -1.])
>>> np.geomspace(1j, 1000j, num=4) # Straight line
array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
>>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,

6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j,
1.00000000e+00+0.00000000e+00j])

Graphical illustration of endpoint parameter:

>>> import matplotlib.pyplot as plt
>>> N = 10
>>> y = np.zeros(N)
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.axis([0.5, 2000, 0, 3])
[0.5, 2000, 0, 3]
>>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
>>> plt.show()

numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy')
Return a tuple of coordinate matrices from coordinate vectors.
Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-
dimensional coordinate arrays x1, x2,…, xn.

1162 1. Python API

NumPy Reference, Release 2.2.0

100 101 102 103
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Parameters
x1, x2,…, xn

[array_like] 1-D arrays representing the coordinates of a grid.
indexing

[{‘xy’, ‘ij’}, optional] Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. See Notes for
more details.

sparse
[bool, optional] If True the shape of the returned coordinate array for dimension i is reduced
from (N1, ..., Ni, ... Nn) to (1, ..., 1, Ni, 1, ..., 1). These
sparse coordinate grids are intended to be use with basics.broadcasting. When all coordinates
are used in an expression, broadcasting still leads to a fully-dimensonal result array.
Default is False.

copy
[bool, optional] If False, a view into the original arrays are returned in order to conserve mem-
ory. Default is True. Please note that sparse=False, copy=False will likely return
non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to
a single memory location. If you need to write to the arrays, make copies first.

Returns
X1, X2,…, XN

[tuple of ndarrays] For vectors x1, x2,…, xn with lengths Ni=len(xi), returns (N1, N2,
N3,..., Nn) shaped arrays if indexing=’ij’ or (N2, N1, N3,..., Nn) shaped arrays
if indexing=’xy’ with the elements of xi repeated to fill the matrix along the first dimension for
x1, the second for x2 and so on.

See also:

mgrid
Construct a multi-dimensional “meshgrid” using indexing notation.

ogrid
Construct an open multi-dimensional “meshgrid” using indexing notation.

1.4. Routines and objects by topic 1163

NumPy Reference, Release 2.2.0

how-to-index

Notes

This function supports both indexing conventions through the indexing keyword argument. Giving the string ‘ij’
returns a meshgrid with matrix indexing, while ‘xy’ returns a meshgrid with Cartesian indexing. In the 2-D case
with inputs of length M and N, the outputs are of shape (N, M) for ‘xy’ indexing and (M, N) for ‘ij’ indexing. In
the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for ‘xy’ indexing and (M, N, P) for
‘ij’ indexing. The difference is illustrated by the following code snippet:

xv, yv = np.meshgrid(x, y, indexing='ij')
for i in range(nx):

for j in range(ny):
treat xv[i,j], yv[i,j]

xv, yv = np.meshgrid(x, y, indexing='xy')
for i in range(nx):

for j in range(ny):
treat xv[j,i], yv[j,i]

In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

Examples

>>> import numpy as np
>>> nx, ny = (3, 2)
>>> x = np.linspace(0, 1, nx)
>>> y = np.linspace(0, 1, ny)
>>> xv, yv = np.meshgrid(x, y)
>>> xv
array([[0. , 0.5, 1.],

[0. , 0.5, 1.]])
>>> yv
array([[0., 0., 0.],

[1., 1., 1.]])

The result of meshgrid is a coordinate grid:

>>> import matplotlib.pyplot as plt
>>> plt.plot(xv, yv, marker='o', color='k', linestyle='none')
>>> plt.show()

You can create sparse output arrays to save memory and computation time.

>>> xv, yv = np.meshgrid(x, y, sparse=True)
>>> xv
array([[0. , 0.5, 1.]])
>>> yv
array([[0.],

[1.]])

meshgrid is very useful to evaluate functions on a grid. If the function depends on all coordinates, both dense
and sparse outputs can be used.

1164 1. Python API

NumPy Reference, Release 2.2.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

>>> x = np.linspace(-5, 5, 101)
>>> y = np.linspace(-5, 5, 101)
>>> # full coordinate arrays
>>> xx, yy = np.meshgrid(x, y)
>>> zz = np.sqrt(xx**2 + yy**2)
>>> xx.shape, yy.shape, zz.shape
((101, 101), (101, 101), (101, 101))
>>> # sparse coordinate arrays
>>> xs, ys = np.meshgrid(x, y, sparse=True)
>>> zs = np.sqrt(xs**2 + ys**2)
>>> xs.shape, ys.shape, zs.shape
((1, 101), (101, 1), (101, 101))
>>> np.array_equal(zz, zs)
True

>>> h = plt.contourf(x, y, zs)
>>> plt.axis('scaled')
>>> plt.colorbar()
>>> plt.show()

numpy.mgrid = <numpy.lib._index_tricks_impl.MGridClass object>

An instance which returns a dense multi-dimensional “meshgrid”.
An instance which returns a dense (or fleshed out) mesh-grid when indexed, so that each returned argument has the
same shape. The dimensions and number of the output arrays are equal to the number of indexing dimensions. If
the step length is not a complex number, then the stop is not inclusive.
However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted as
specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns
mesh-grid

[ndarray] A single array, containing a set of ndarrays all of the same dimensions. stacked
along the first axis.

See also:

1.4. Routines and objects by topic 1165

NumPy Reference, Release 2.2.0

4 2 0 2 4

4

2

0

2

4

0

1

2

3

4

5

6

7

8

ogrid
like mgrid but returns open (not fleshed out) mesh grids

meshgrid
return coordinate matrices from coordinate vectors

r_
array concatenator

how-to-partition

Examples

>>> import numpy as np
>>> np.mgrid[0:5, 0:5]
array([[[0, 0, 0, 0, 0],

[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])

>>> np.mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])

>>> np.mgrid[0:4].shape
(4,)
>>> np.mgrid[0:4, 0:5].shape
(2, 4, 5)
>>> np.mgrid[0:4, 0:5, 0:6].shape
(3, 4, 5, 6)

1166 1. Python API

NumPy Reference, Release 2.2.0

numpy.ogrid = <numpy.lib._index_tricks_impl.OGridClass object>

An instance which returns an open multi-dimensional “meshgrid”.
An instance which returns an open (i.e. not fleshed out) mesh-grid when indexed, so that only one dimension of
each returned array is greater than 1. The dimension and number of the output arrays are equal to the number of
indexing dimensions. If the step length is not a complex number, then the stop is not inclusive.
However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted as
specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns
mesh-grid

[ndarray or tuple of ndarrays] If the input is a single slice, returns an array. If the input is
multiple slices, returns a tuple of arrays, with only one dimension not equal to 1.

See also:

mgrid
like ogrid but returns dense (or fleshed out) mesh grids

meshgrid
return coordinate matrices from coordinate vectors

r_
array concatenator

how-to-partition

Examples

>>> from numpy import ogrid
>>> ogrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1.])
>>> ogrid[0:5, 0:5]
(array([[0],

[1],
[2],
[3],
[4]]),

array([[0, 1, 2, 3, 4]]))

Building matrices

diag(v[, k]) Extract a diagonal or construct a diagonal array.
diagflat(v[, k]) Create a two-dimensional array with the flattened input as

a diagonal.
tri(N[, M, k, dtype, like]) An array with ones at and below the given diagonal and

zeros elsewhere.
tril(m[, k]) Lower triangle of an array.
triu(m[, k]) Upper triangle of an array.
vander(x[, N, increasing]) Generate a Vandermonde matrix.

1.4. Routines and objects by topic 1167

NumPy Reference, Release 2.2.0

numpy.diag(v, k=0)
Extract a diagonal or construct a diagonal array.
See the more detailed documentation for numpy.diagonal if you use this function to extract a diagonal and
wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are
using.

Parameters
v

[array_like] If v is a 2-D array, return a copy of its k-th diagonal. If v is a 1-D array, return a
2-D array with v on the k-th diagonal.

k
[int, optional] Diagonal in question. The default is 0. Use k>0 for diagonals above the main
diagonal, and k<0 for diagonals below the main diagonal.

Returns
out

[ndarray] The extracted diagonal or constructed diagonal array.
See also:

diagonal
Return specified diagonals.

diagflat
Create a 2-D array with the flattened input as a diagonal.

trace
Sum along diagonals.

triu
Upper triangle of an array.

tril
Lower triangle of an array.

Examples

>>> import numpy as np
>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x, k=1)
array([1, 5])
>>> np.diag(x, k=-1)
array([3, 7])

>>> np.diag(np.diag(x))
array([[0, 0, 0],

[0, 4, 0],
[0, 0, 8]])

1168 1. Python API

NumPy Reference, Release 2.2.0

numpy.diagflat(v, k=0)
Create a two-dimensional array with the flattened input as a diagonal.

Parameters
v

[array_like] Input data, which is flattened and set as the k-th diagonal of the output.
k

[int, optional] Diagonal to set; 0, the default, corresponds to the “main” diagonal, a positive
(negative) k giving the number of the diagonal above (below) the main.

Returns
out

[ndarray] The 2-D output array.
See also:

diag
MATLAB work-alike for 1-D and 2-D arrays.

diagonal
Return specified diagonals.

trace
Sum along diagonals.

Examples

>>> import numpy as np
>>> np.diagflat([[1,2], [3,4]])
array([[1, 0, 0, 0],

[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])

>>> np.diagflat([1,2], 1)
array([[0, 1, 0],

[0, 0, 2],
[0, 0, 0]])

numpy.tri(N, M=None, k=0, dtype=<class 'float'>, *, like=None)
An array with ones at and below the given diagonal and zeros elsewhere.

Parameters
N

[int] Number of rows in the array.
M

[int, optional] Number of columns in the array. By default, M is taken equal to N.
k

[int, optional] The sub-diagonal at and below which the array is filled. k = 0 is the main
diagonal, while k < 0 is below it, and k > 0 is above. The default is 0.

dtype
[dtype, optional] Data type of the returned array. The default is float.

1.4. Routines and objects by topic 1169

NumPy Reference, Release 2.2.0

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
tri

[ndarray of shape (N, M)] Array with its lower triangle filled with ones and zero elsewhere; in
other words T[i,j] == 1 for j <= i + k, 0 otherwise.

Examples

>>> import numpy as np
>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],

[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])

>>> np.tri(3, 5, -1)
array([[0., 0., 0., 0., 0.],

[1., 0., 0., 0., 0.],
[1., 1., 0., 0., 0.]])

numpy.tril(m, k=0)
Lower triangle of an array.
Return a copy of an array with elements above the k-th diagonal zeroed. For arrays with ndim exceeding 2, tril
will apply to the final two axes.

Parameters
m

[array_like, shape (…, M, N)] Input array.
k

[int, optional] Diagonal above which to zero elements. k = 0 (the default) is the main diagonal,
k < 0 is below it and k > 0 is above.

Returns
tril

[ndarray, shape (…, M, N)] Lower triangle of m, of same shape and data-type as m.
See also:

triu
same thing, only for the upper triangle

1170 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[0, 0, 0],

[4, 0, 0],
[7, 8, 0],
[10, 11, 12]])

>>> np.tril(np.arange(3*4*5).reshape(3, 4, 5))
array([[[0, 0, 0, 0, 0],

[5, 6, 0, 0, 0],
[10, 11, 12, 0, 0],
[15, 16, 17, 18, 0]],
[[20, 0, 0, 0, 0],
[25, 26, 0, 0, 0],
[30, 31, 32, 0, 0],
[35, 36, 37, 38, 0]],
[[40, 0, 0, 0, 0],
[45, 46, 0, 0, 0],
[50, 51, 52, 0, 0],
[55, 56, 57, 58, 0]]])

numpy.triu(m, k=0)
Upper triangle of an array.
Return a copy of an array with the elements below the k-th diagonal zeroed. For arrays with ndim exceeding 2,
triu will apply to the final two axes.
Please refer to the documentation for tril for further details.
See also:

tril
lower triangle of an array

Examples

>>> import numpy as np
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[1, 2, 3],

[4, 5, 6],
[0, 8, 9],
[0, 0, 12]])

>>> np.triu(np.arange(3*4*5).reshape(3, 4, 5))
array([[[0, 1, 2, 3, 4],

[0, 6, 7, 8, 9],
[0, 0, 12, 13, 14],
[0, 0, 0, 18, 19]],
[[20, 21, 22, 23, 24],
[0, 26, 27, 28, 29],
[0, 0, 32, 33, 34],
[0, 0, 0, 38, 39]],
[[40, 41, 42, 43, 44],

(continues on next page)

1.4. Routines and objects by topic 1171

NumPy Reference, Release 2.2.0

(continued from previous page)
[0, 46, 47, 48, 49],
[0, 0, 52, 53, 54],
[0, 0, 0, 58, 59]]])

numpy.vander(x, N=None, increasing=False)
Generate a Vandermonde matrix.
The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector raised
element-wise to the power of N - i - 1. Such a matrix with a geometric progression in each row is named for
Alexandre- Theophile Vandermonde.

Parameters
x

[array_like] 1-D input array.
N

[int, optional] Number of columns in the output. IfN is not specified, a square array is returned
(N = len(x)).

increasing
[bool, optional] Order of the powers of the columns. If True, the powers increase from left to
right, if False (the default) they are reversed.

Returns
out

[ndarray] Vandermonde matrix. If increasing is False, the first column is x^(N-1), the sec-
ond x^(N-2) and so forth. If increasing is True, the columns are x^0, x^1, ...,
x^(N-1).

See also:

polynomial.polynomial.polyvander

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[1, 1, 1],

[4, 2, 1],
[9, 3, 1],
[25, 5, 1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[1, 1, 1],

[4, 2, 1],
[9, 3, 1],
[25, 5, 1]])

>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[1, 1, 1, 1],

(continues on next page)

1172 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
[8, 4, 2, 1],
[27, 9, 3, 1],
[125, 25, 5, 1]])

>>> np.vander(x, increasing=True)
array([[1, 1, 1, 1],

[1, 2, 4, 8],
[1, 3, 9, 27],
[1, 5, 25, 125]])

The determinant of a square Vandermonde matrix is the product of the differences between the values of the input
vector:

>>> np.linalg.det(np.vander(x))
48.000000000000043 # may vary
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48

The matrix class

bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or
array.

1.4.3 Array manipulation routines

Basic operations

copyto(dst, src[, casting, where]) Copies values from one array to another, broadcasting as
necessary.

ndim(a) Return the number of dimensions of an array.
shape(a) Return the shape of an array.
size(a[, axis]) Return the number of elements along a given axis.

numpy.copyto(dst, src, casting='same_kind', where=True)
Copies values from one array to another, broadcasting as necessary.
Raises a TypeError if the casting rule is violated, and if where is provided, it selects which elements to copy.

Parameters
dst

[ndarray] The array into which values are copied.
src

[array_like] The array from which values are copied.
casting

[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur when copying.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.

1.4. Routines and objects by topic 1173

NumPy Reference, Release 2.2.0

• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.

where
[array_like of bool, optional] A boolean array which is broadcasted to match the dimensions
of dst, and selects elements to copy from src to dst wherever it contains the value True.

Examples

>>> import numpy as np
>>> A = np.array([4, 5, 6])
>>> B = [1, 2, 3]
>>> np.copyto(A, B)
>>> A
array([1, 2, 3])

>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> B = [[4, 5, 6], [7, 8, 9]]
>>> np.copyto(A, B)
>>> A
array([[4, 5, 6],

[7, 8, 9]])

numpy.ndim(a)
Return the number of dimensions of an array.

Parameters
a

[array_like] Input array. If it is not already an ndarray, a conversion is attempted.
Returns

number_of_dimensions
[int] The number of dimensions in a. Scalars are zero-dimensional.

See also:

ndarray.ndim
equivalent method

shape
dimensions of array

ndarray.shape
dimensions of array

1174 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.ndim([[1,2,3],[4,5,6]])
2
>>> np.ndim(np.array([[1,2,3],[4,5,6]]))
2
>>> np.ndim(1)
0

numpy.shape(a)
Return the shape of an array.

Parameters
a

[array_like] Input array.
Returns

shape
[tuple of ints] The elements of the shape tuple give the lengths of the corresponding array
dimensions.

See also:

len
len(a) is equivalent to np.shape(a)[0] for N-D arrays with N>=1.

ndarray.shape
Equivalent array method.

Examples

>>> import numpy as np
>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1, 3]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1, 2), (3, 4), (5, 6)],
... dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(3,)
>>> a.shape
(3,)

numpy.size(a, axis=None)
Return the number of elements along a given axis.

Parameters
a

[array_like] Input data.

1.4. Routines and objects by topic 1175

https://docs.python.org/3/library/functions.html#len

NumPy Reference, Release 2.2.0

axis
[int, optional] Axis along which the elements are counted. By default, give the total number
of elements.

Returns
element_count

[int] Number of elements along the specified axis.
See also:

shape
dimensions of array

ndarray.shape
dimensions of array

ndarray.size
number of elements in array

Examples

>>> import numpy as np
>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

Changing array shape

reshape(a, /[, shape, order, newshape, copy]) Gives a new shape to an array without changing its data.
ravel(a[, order]) Return a contiguous flattened array.
ndarray.flat A 1-D iterator over the array.
ndarray.flatten([order]) Return a copy of the array collapsed into one dimension.

numpy.reshape(a, / , shape=None, order='C', *, newshape=None, copy=None)
Gives a new shape to an array without changing its data.

Parameters
a

[array_like] Array to be reshaped.
shape

[int or tuple of ints] The new shape should be compatible with the original shape. If an integer,
then the result will be a 1-D array of that length. One shape dimension can be -1. In this case,
the value is inferred from the length of the array and remaining dimensions.

order
[{‘C’, ‘F’, ‘A’}, optional] Read the elements of a using this index order, and place the elements
into the reshaped array using this index order. ‘C’ means to read / write the elements using C-
like index order, with the last axis index changing fastest, back to the first axis index changing

1176 1. Python API

NumPy Reference, Release 2.2.0

slowest. ‘F’ means to read / write the elements using Fortran-like index order, with the first
index changing fastest, and the last index changing slowest. Note that the ‘C’ and ‘F’ options
take no account of the memory layout of the underlying array, and only refer to the order of
indexing. ‘A’ means to read / write the elements in Fortran-like index order if a is Fortran
contiguous in memory, C-like order otherwise.

newshape
[int or tuple of ints] Deprecated since version 2.1: Replaced by shape argument. Retained
for backward compatibility.

copy
[bool, optional] If True, then the array data is copied. If None, a copy will only be made if
it’s required by order. For False it raises a ValueError if a copy cannot be avoided.
Default: None.

Returns
reshaped_array

[ndarray] This will be a new view object if possible; otherwise, it will be a copy. Note there is
no guarantee of the memory layout (C- or Fortran- contiguous) of the returned array.

See also:

ndarray.reshape
Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data.
The order keyword gives the index ordering both for fetching the values from a, and then placing the values into
the output array. For example, let’s say you have an array:

>>> a = np.arange(6).reshape((3, 2))
>>> a
array([[0, 1],

[2, 3],
[4, 5]])

You can think of reshaping as first raveling the array (using the given index order), then inserting the elements from
the raveled array into the new array using the same kind of index ordering as was used for the raveling.

>>> np.reshape(a, (2, 3)) # C-like index ordering
array([[0, 1, 2],

[3, 4, 5]])
>>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
array([[0, 1, 2],

[3, 4, 5]])
>>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
array([[0, 4, 3],

[2, 1, 5]])
>>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
array([[0, 4, 3],

[2, 1, 5]])

1.4. Routines and objects by topic 1177

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)
array([1, 2, 3, 4, 5, 6])
>>> np.reshape(a, 6, order='F')
array([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array([[1, 2],

[3, 4],
[5, 6]])

numpy.ravel(a, order='C')
Return a contiguous flattened array.
A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.
As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array
will be returned for a masked array input)

Parameters
a

[array_like] Input array. The elements in a are read in the order specified by order, and packed
as a 1-D array.

order
[{‘C’,’F’, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’ means to
index the elements in row-major, C-style order, with the last axis index changing fastest, back
to the first axis index changing slowest. ‘F’ means to index the elements in column-major,
Fortran-style order, with the first index changing fastest, and the last index changing slowest.
Note that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array,
and only refer to the order of axis indexing. ‘A’ means to read the elements in Fortran-like
index order if a is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read
the elements in the order they occur in memory, except for reversing the data when strides are
negative. By default, ‘C’ index order is used.

Returns
y

[array_like] y is a contiguous 1-D array of the same subtype as a, with shape (a.size,).
Note that matrices are special cased for backward compatibility, if a is a matrix, then y is a
1-D ndarray.

See also:

ndarray.flat
1-D iterator over an array.

ndarray.flatten
1-D array copy of the elements of an array in row-major order.

ndarray.reshape
Change the shape of an array without changing its data.

1178 1. Python API

NumPy Reference, Release 2.2.0

Notes

In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the quickest.
This can be generalized to multiple dimensions, where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-style index
ordering.
When a view is desired in as many cases as possible, arr.reshape(-1) may be preferable. However, ravel
supports K in the optional order argument while reshape does not.

Examples

It is equivalent to reshape(-1, order=order).

>>> import numpy as np
>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.ravel(x)
array([1, 2, 3, 4, 5, 6])

>>> x.reshape(-1)
array([1, 2, 3, 4, 5, 6])

>>> np.ravel(x, order='F')
array([1, 4, 2, 5, 3, 6])

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> np.ravel(x.T)
array([1, 4, 2, 5, 3, 6])
>>> np.ravel(x.T, order='A')
array([1, 2, 3, 4, 5, 6])

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array([2, 1, 0])
>>> a.ravel(order='C')
array([2, 1, 0])
>>> a.ravel(order='K')
array([2, 1, 0])

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
array([[[0, 2, 4],

[1, 3, 5]],
[[6, 8, 10],
[7, 9, 11]]])

>>> a.ravel(order='C')
array([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
>>> a.ravel(order='K')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

1.4. Routines and objects by topic 1179

NumPy Reference, Release 2.2.0

Transpose-like operations

moveaxis(a, source, destination) Move axes of an array to new positions.
rollaxis(a, axis[, start]) Roll the specified axis backwards, until it lies in a given

position.
swapaxes(a, axis1, axis2) Interchange two axes of an array.
ndarray.T View of the transposed array.
transpose(a[, axes]) Returns an array with axes transposed.
permute_dims(a[, axes]) Returns an array with axes transposed.
matrix_transpose(x, /) Transposes a matrix (or a stack of matrices) x.

numpy.moveaxis(a, source, destination)
Move axes of an array to new positions.
Other axes remain in their original order.

Parameters
a

[np.ndarray] The array whose axes should be reordered.
source

[int or sequence of int] Original positions of the axes to move. These must be unique.
destination

[int or sequence of int] Destination positions for each of the original axes. These must also be
unique.

Returns
result

[np.ndarray] Array with moved axes. This array is a view of the input array.
See also:

transpose
Permute the dimensions of an array.

swapaxes
Interchange two axes of an array.

Examples

>>> import numpy as np
>>> x = np.zeros((3, 4, 5))
>>> np.moveaxis(x, 0, -1).shape
(4, 5, 3)
>>> np.moveaxis(x, -1, 0).shape
(5, 3, 4)

These all achieve the same result:

>>> np.transpose(x).shape
(5, 4, 3)
>>> np.swapaxes(x, 0, -1).shape
(5, 4, 3)

(continues on next page)

1180 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> np.moveaxis(x, [0, 1], [-1, -2]).shape
(5, 4, 3)
>>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
(5, 4, 3)

numpy.rollaxis(a, axis, start=0)
Roll the specified axis backwards, until it lies in a given position.
This function continues to be supported for backward compatibility, but you should prefer moveaxis. The
moveaxis function was added in NumPy 1.11.

Parameters
a

[ndarray] Input array.
axis

[int] The axis to be rolled. The positions of the other axes do not change relative to one another.
start

[int, optional] When start <= axis, the axis is rolled back until it lies in this position.
When start > axis, the axis is rolled until it lies before this position. The default, 0,
results in a “complete” roll. The following table describes how negative values of start are
interpreted:

start Normalized start
-(arr.ndim+1) raise AxisError
-arr.ndim 0
⋮ ⋮
-1 arr.ndim-1
0 0
⋮ ⋮
arr.ndim arr.ndim
arr.ndim + 1 raise AxisError

Returns
res

[ndarray] For NumPy >= 1.10.0 a view of a is always returned. For earlier NumPy versions
a view of a is returned only if the order of the axes is changed, otherwise the input array is
returned.

See also:

moveaxis
Move array axes to new positions.

roll
Roll the elements of an array by a number of positions along a given axis.

1.4. Routines and objects by topic 1181

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.ones((3,4,5,6))
>>> np.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> np.rollaxis(a, 2).shape
(5, 3, 4, 6)
>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)

numpy.swapaxes(a, axis1, axis2)
Interchange two axes of an array.

Parameters
a

[array_like] Input array.
axis1

[int] First axis.
axis2

[int] Second axis.
Returns

a_swapped
[ndarray] For NumPy >= 1.10.0, if a is an ndarray, then a view of a is returned; otherwise a
new array is created. For earlier NumPy versions a view of a is returned only if the order of
the axes is changed, otherwise the input array is returned.

Examples

>>> import numpy as np
>>> x = np.array([[1,2,3]])
>>> np.swapaxes(x,0,1)
array([[1],

[2],
[3]])

>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.swapaxes(x,0,2)
array([[[0, 4],

[2, 6]],
[[1, 5],
[3, 7]]])

numpy.transpose(a, axes=None)
Returns an array with axes transposed.

1182 1. Python API

NumPy Reference, Release 2.2.0

For a 1-D array, this returns an unchanged view of the original array, as a transposed vector is simply the same
vector. To convert a 1-D array into a 2-D column vector, an additional dimension must be added, e.g., np.
atleast_2d(a).T achieves this, as does a[:, np.newaxis]. For a 2-D array, this is the standard matrix
transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If
axes are not provided, then transpose(a).shape == a.shape[::-1].

Parameters
a

[array_like] Input array.
axes

[tuple or list of ints, optional] If specified, it must be a tuple or list which contains a permu-
tation of [0, 1, …, N-1] where N is the number of axes of a. Negative indices can also be
used to specify axes. The i-th axis of the returned array will correspond to the axis numbered
axes[i] of the input. If not specified, defaults to range(a.ndim)[::-1], which re-
verses the order of the axes.

Returns
p

[ndarray] a with its axes permuted. A view is returned whenever possible.
See also:

ndarray.transpose
Equivalent method.

moveaxis
Move axes of an array to new positions.

argsort
Return the indices that would sort an array.

Notes

Use transpose(a, argsort(axes)) to invert the transposition of tensors when using the axes keyword
argument.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> np.transpose(a)
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> np.transpose(a)
array([1, 2, 3, 4])

1.4. Routines and objects by topic 1183

NumPy Reference, Release 2.2.0

>>> a = np.ones((1, 2, 3))
>>> np.transpose(a, (1, 0, 2)).shape
(2, 1, 3)

>>> a = np.ones((2, 3, 4, 5))
>>> np.transpose(a).shape
(5, 4, 3, 2)

>>> a = np.arange(3*4*5).reshape((3, 4, 5))
>>> np.transpose(a, (-1, 0, -2)).shape
(5, 3, 4)

numpy.permute_dims(a, axes=None)
Returns an array with axes transposed.
For a 1-D array, this returns an unchanged view of the original array, as a transposed vector is simply the same
vector. To convert a 1-D array into a 2-D column vector, an additional dimension must be added, e.g., np.
atleast_2d(a).T achieves this, as does a[:, np.newaxis]. For a 2-D array, this is the standard matrix
transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If
axes are not provided, then transpose(a).shape == a.shape[::-1].

Parameters
a

[array_like] Input array.
axes

[tuple or list of ints, optional] If specified, it must be a tuple or list which contains a permu-
tation of [0, 1, …, N-1] where N is the number of axes of a. Negative indices can also be
used to specify axes. The i-th axis of the returned array will correspond to the axis numbered
axes[i] of the input. If not specified, defaults to range(a.ndim)[::-1], which re-
verses the order of the axes.

Returns
p

[ndarray] a with its axes permuted. A view is returned whenever possible.
See also:

ndarray.transpose
Equivalent method.

moveaxis
Move axes of an array to new positions.

argsort
Return the indices that would sort an array.

1184 1. Python API

NumPy Reference, Release 2.2.0

Notes

Use transpose(a, argsort(axes)) to invert the transposition of tensors when using the axes keyword
argument.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> np.transpose(a)
array([[1, 3],

[2, 4]])

>>> a = np.array([1, 2, 3, 4])
>>> a
array([1, 2, 3, 4])
>>> np.transpose(a)
array([1, 2, 3, 4])

>>> a = np.ones((1, 2, 3))
>>> np.transpose(a, (1, 0, 2)).shape
(2, 1, 3)

>>> a = np.ones((2, 3, 4, 5))
>>> np.transpose(a).shape
(5, 4, 3, 2)

>>> a = np.arange(3*4*5).reshape((3, 4, 5))
>>> np.transpose(a, (-1, 0, -2)).shape
(5, 3, 4)

numpy.matrix_transpose(x, /)
Transposes a matrix (or a stack of matrices) x.
This function is Array API compatible.

Parameters
x

[array_like] Input array having shape (…, M, N) and whose two innermost dimensions form
MxN matrices.

Returns
out

[ndarray] An array containing the transpose for each matrix and having shape (…, N, M).
See also:

transpose
Generic transpose method.

1.4. Routines and objects by topic 1185

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.matrix_transpose([[1, 2], [3, 4]])
array([[1, 3],

[2, 4]])

>>> np.matrix_transpose([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
array([[[1, 3],

[2, 4]],
[[5, 7],
[6, 8]]])

Changing number of dimensions

atleast_1d(*arys) Convert inputs to arrays with at least one dimension.
atleast_2d(*arys) View inputs as arrays with at least two dimensions.
atleast_3d(*arys) View inputs as arrays with at least three dimensions.
broadcast Produce an object that mimics broadcasting.
broadcast_to(array, shape[, subok]) Broadcast an array to a new shape.
broadcast_arrays(*args[, subok]) Broadcast any number of arrays against each other.
expand_dims(a, axis) Expand the shape of an array.
squeeze(a[, axis]) Remove axes of length one from a.

numpy.atleast_1d(*arys)
Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters
arys1, arys2, …

[array_like] One or more input arrays.
Returns

ret
[ndarray] An array, or tuple of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

See also:

atleast_2d, atleast_3d

1186 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.atleast_1d(1.0)
array([1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.]])

>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
(array([1]), array([3, 4]))

numpy.atleast_2d(*arys)
View inputs as arrays with at least two dimensions.

Parameters
arys1, arys2, …

[array_like] One or more array-like sequences. Non-array inputs are converted to arrays. Ar-
rays that already have two or more dimensions are preserved.

Returns
res, res2, …

[ndarray] An array, or tuple of arrays, each with a.ndim >= 2. Copies are avoided where
possible, and views with two or more dimensions are returned.

See also:

atleast_1d, atleast_3d

Examples

>>> import numpy as np
>>> np.atleast_2d(3.0)
array([[3.]])

>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
(array([[1]]), array([[1, 2]]), array([[1, 2]]))

numpy.atleast_3d(*arys)
View inputs as arrays with at least three dimensions.

Parameters

1.4. Routines and objects by topic 1187

NumPy Reference, Release 2.2.0

arys1, arys2, …
[array_like] One or more array-like sequences. Non-array inputs are converted to arrays. Ar-
rays that already have three or more dimensions are preserved.

Returns
res1, res2, …

[ndarray] An array, or tuple of arrays, each with a.ndim >= 3. Copies are avoided where
possible, and views with three or more dimensions are returned. For example, a 1-D array
of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape (M, N)
becomes a view of shape (M, N, 1).

See also:

atleast_1d, atleast_2d

Examples

>>> import numpy as np
>>> np.atleast_3d(3.0)
array([[[3.]]])

>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print(arr, arr.shape)
...
[[[1]
[2]]] (1, 2, 1)

[[[1]
[2]]] (1, 2, 1)

[[[1 2]]] (1, 1, 2)

numpy.broadcast_to(array, shape, subok=False)
Broadcast an array to a new shape.

Parameters
array

[array_like] The array to broadcast.
shape

[tuple or int] The shape of the desired array. A single integer i is interpreted as (i,).
subok

[bool, optional] If True, then sub-classes will be passed-through, otherwise the returned array
will be forced to be a base-class array (default).

Returns

1188 1. Python API

NumPy Reference, Release 2.2.0

broadcast
[array] A readonly view on the original array with the given shape. It is typically not contiguous.
Furthermore, more than one element of a broadcasted array may refer to a single memory
location.

Raises
ValueError

If the array is not compatible with the new shape according to NumPy’s broadcasting rules.
See also:

broadcast
broadcast_arrays
broadcast_shapes

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3])
>>> np.broadcast_to(x, (3, 3))
array([[1, 2, 3],

[1, 2, 3],
[1, 2, 3]])

numpy.broadcast_arrays(*args, subok=False)
Broadcast any number of arrays against each other.

Parameters
*args

[array_likes] The arrays to broadcast.
subok

[bool, optional] If True, then sub-classes will be passed-through, otherwise the returned arrays
will be forced to be a base-class array (default).

Returns
broadcasted

[tuple of arrays] These arrays are views on the original arrays. They are typically not con-
tiguous. Furthermore, more than one element of a broadcasted array may refer to a single
memory location. If you need to write to the arrays, make copies first. While you can set the
writable flag True, writing to a single output value may end up changing more than one
location in the output array.
Deprecated since version 1.17: The output is currently marked so that if written to, a depre-
cation warning will be emitted. A future version will set the writable flag False so writing
to it will raise an error.

See also:

broadcast
broadcast_to
broadcast_shapes

1.4. Routines and objects by topic 1189

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([[1,2,3]])
>>> y = np.array([[4],[5]])
>>> np.broadcast_arrays(x, y)
(array([[1, 2, 3],

[1, 2, 3]]),
array([[4, 4, 4],

[5, 5, 5]]))

Here is a useful idiom for getting contiguous copies instead of non-contiguous views.

>>> [np.array(a) for a in np.broadcast_arrays(x, y)]
[array([[1, 2, 3],

[1, 2, 3]]),
array([[4, 4, 4],

[5, 5, 5]])]

numpy.expand_dims(a, axis)
Expand the shape of an array.
Insert a new axis that will appear at the axis position in the expanded array shape.

Parameters
a

[array_like] Input array.
axis

[int or tuple of ints] Position in the expanded axes where the new axis (or axes) is placed.
Deprecated since version 1.13.0: Passing an axis where axis > a.ndim will be treated as
axis == a.ndim, and passing axis < -a.ndim - 1 will be treated as axis ==
0. This behavior is deprecated.

Returns
result

[ndarray] View of a with the number of dimensions increased.
See also:

squeeze
The inverse operation, removing singleton dimensions

reshape
Insert, remove, and combine dimensions, and resize existing ones

atleast_1d, atleast_2d, atleast_3d

1190 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([1, 2])
>>> x.shape
(2,)

The following is equivalent to x[np.newaxis, :] or x[np.newaxis]:

>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)

The following is equivalent to x[:, np.newaxis]:

>>> y = np.expand_dims(x, axis=1)
>>> y
array([[1],

[2]])
>>> y.shape
(2, 1)

axis may also be a tuple:

>>> y = np.expand_dims(x, axis=(0, 1))
>>> y
array([[[1, 2]]])

>>> y = np.expand_dims(x, axis=(2, 0))
>>> y
array([[[1],

[2]]])

Note that some examples may use None instead of np.newaxis. These are the same objects:

>>> np.newaxis is None
True

numpy.squeeze(a, axis=None)
Remove axes of length one from a.

Parameters
a

[array_like] Input data.
axis

[None or int or tuple of ints, optional] Selects a subset of the entries of length one in the shape.
If an axis is selected with shape entry greater than one, an error is raised.

Returns
squeezed

[ndarray] The input array, but with all or a subset of the dimensions of length 1 removed. This
is always a itself or a view into a. Note that if all axes are squeezed, the result is a 0d array
and not a scalar.

1.4. Routines and objects by topic 1191

NumPy Reference, Release 2.2.0

Raises
ValueError

If axis is not None, and an axis being squeezed is not of length 1
See also:

expand_dims
The inverse operation, adding entries of length one

reshape
Insert, remove, and combine dimensions, and resize existing ones

Examples

>>> import numpy as np
>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)
>>> np.squeeze(x, axis=0).shape
(3, 1)
>>> np.squeeze(x, axis=1).shape
Traceback (most recent call last):
...
ValueError: cannot select an axis to squeeze out which has size
not equal to one
>>> np.squeeze(x, axis=2).shape
(1, 3)
>>> x = np.array([[1234]])
>>> x.shape
(1, 1)
>>> np.squeeze(x)
array(1234) # 0d array
>>> np.squeeze(x).shape
()
>>> np.squeeze(x)[()]
1234

Changing kind of array

asarray(a[, dtype, order, device, copy, like]) Convert the input to an array.
asanyarray(a[, dtype, order, device, copy, like]) Convert the input to an ndarray, but pass ndarray sub-

classes through.
asmatrix(data[, dtype]) Interpret the input as a matrix.
asfortranarray(a[, dtype, like]) Return an array (ndim >= 1) laid out in Fortran order in

memory.
ascontiguousarray(a[, dtype, like]) Return a contiguous array (ndim >= 1) in memory (C or-

der).
asarray_chkfinite(a[, dtype, order]) Convert the input to an array, checking for NaNs or Infs.
require(a[, dtype, requirements, like]) Return an ndarray of the provided type that satisfies re-

quirements.

1192 1. Python API

NumPy Reference, Release 2.2.0

numpy.asfortranarray(a, dtype=None, *, like=None)
Return an array (ndim >= 1) laid out in Fortran order in memory.

Parameters
a

[array_like] Input array.
dtype

[str or dtype object, optional] By default, the data-type is inferred from the input data.
like

[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] The input a in Fortran, or column-major, order.
See also:

ascontiguousarray
Convert input to a contiguous (C order) array.

asanyarray
Convert input to an ndarray with either row or column-major memory order.

require
Return an ndarray that satisfies requirements.

ndarray.flags
Information about the memory layout of the array.

Examples

Starting with a C-contiguous array:

>>> import numpy as np
>>> x = np.ones((2, 3), order='C')
>>> x.flags['C_CONTIGUOUS']
True

Calling asfortranarray makes a Fortran-contiguous copy:

>>> y = np.asfortranarray(x)
>>> y.flags['F_CONTIGUOUS']
True
>>> np.may_share_memory(x, y)
False

Now, starting with a Fortran-contiguous array:

>>> x = np.ones((2, 3), order='F')
>>> x.flags['F_CONTIGUOUS']
True

1.4. Routines and objects by topic 1193

NumPy Reference, Release 2.2.0

Then, calling asfortranarray returns the same object:

>>> y = np.asfortranarray(x)
>>> x is y
True

Note: This function returns an array with at least one-dimension (1-d) so it will not preserve 0-d arrays.
numpy.asarray_chkfinite(a, dtype=None, order=None)

Convert the input to an array, checking for NaNs or Infs.
Parameters

a
[array_like] Input data, in any form that can be converted to an array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or
Infs.

dtype
[data-type, optional] By default, the data-type is inferred from the input data.

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Memory layout. ‘A’ and ‘K’ depend on the order of input array
a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any)
means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to
‘C’.

Returns
out

[ndarray] Array interpretation of a. No copy is performed if the input is already an ndarray.
If a is a subclass of ndarray, a base class ndarray is returned.

Raises
ValueError

Raises ValueError if a contains NaN (Not a Number) or Inf (Infinity).
See also:

asarray
Create and array.

asanyarray
Similar function which passes through subclasses.

ascontiguousarray
Convert input to a contiguous array.

asfortranarray
Convert input to an ndarray with column-major memory order.

fromiter
Create an array from an iterator.

fromfunction
Construct an array by executing a function on grid positions.

1194 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np

Convert a list into an array. If all elements are finite, then asarray_chkfinite is identical to asarray.

>>> a = [1, 2]
>>> np.asarray_chkfinite(a, dtype=float)
array([1., 2.])

Raises ValueError if array_like contains Nans or Infs.

>>> a = [1, 2, np.inf]
>>> try:
... np.asarray_chkfinite(a)
... except ValueError:
... print('ValueError')
...
ValueError

numpy.require(a, dtype=None, requirements=None, *, like=None)
Return an ndarray of the provided type that satisfies requirements.
This function is useful to be sure that an array with the correct flags is returned for passing to compiled code
(perhaps through ctypes).

Parameters
a

[array_like] The object to be converted to a type-and-requirement-satisfying array.
dtype

[data-type] The required data-type. If None preserve the current dtype. If your application
requires the data to be in native byteorder, include a byteorder specification as a part of the
dtype specification.

requirements
[str or sequence of str] The requirements list can be any of the following
• ‘F_CONTIGUOUS’ (‘F’) - ensure a Fortran-contiguous array
• ‘C_CONTIGUOUS’ (‘C’) - ensure a C-contiguous array
• ‘ALIGNED’ (‘A’) - ensure a data-type aligned array
• ‘WRITEABLE’ (‘W’) - ensure a writable array
• ‘OWNDATA’ (‘O’) - ensure an array that owns its own data
• ‘ENSUREARRAY’, (‘E’) - ensure a base array, instead of a subclass

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns

1.4. Routines and objects by topic 1195

NumPy Reference, Release 2.2.0

out
[ndarray] Array with specified requirements and type if given.

See also:

asarray
Convert input to an ndarray.

asanyarray
Convert to an ndarray, but pass through ndarray subclasses.

ascontiguousarray
Convert input to a contiguous array.

asfortranarray
Convert input to an ndarray with column-major memory order.

ndarray.flags
Information about the memory layout of the array.

Notes

The returned array will be guaranteed to have the listed requirements by making a copy if needed.

Examples

>>> import numpy as np
>>> x = np.arange(6).reshape(2,3)
>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
>>> y.flags
C_CONTIGUOUS : False
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False

1196 1. Python API

NumPy Reference, Release 2.2.0

Joining arrays

concatenate([axis, out, dtype, casting]) Join a sequence of arrays along an existing axis.
concat([axis, out, dtype, casting]) Join a sequence of arrays along an existing axis.
stack(arrays[, axis, out, dtype, casting]) Join a sequence of arrays along a new axis.
block(arrays) Assemble an nd-array from nested lists of blocks.
vstack(tup, *[, dtype, casting]) Stack arrays in sequence vertically (row wise).
hstack(tup, *[, dtype, casting]) Stack arrays in sequence horizontally (column wise).
dstack(tup) Stack arrays in sequence depth wise (along third axis).
column_stack(tup) Stack 1-D arrays as columns into a 2-D array.

numpy.concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
Join a sequence of arrays along an existing axis.

Parameters
a1, a2, …

[sequence of array_like] The arrays must have the same shape, except in the dimension corre-
sponding to axis (the first, by default).

axis
[int, optional] The axis along which the arrays will be joined. If axis is None, arrays are
flattened before use. Default is 0.

out
[ndarray, optional] If provided, the destination to place the result. The shape must be correct,
matching that of what concatenate would have returned if no out argument were specified.

dtype
[str or dtype] If provided, the destination array will have this dtype. Cannot be provided
together with out.
New in version 1.20.0.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘same_kind’. For a description of the options, please see casting.
New in version 1.20.0.

Returns
res

[ndarray] The concatenated array.
See also:

ma.concatenate
Concatenate function that preserves input masks.

array_split
Split an array into multiple sub-arrays of equal or near-equal size.

split
Split array into a list of multiple sub-arrays of equal size.

hsplit
Split array into multiple sub-arrays horizontally (column wise).

1.4. Routines and objects by topic 1197

NumPy Reference, Release 2.2.0

vsplit
Split array into multiple sub-arrays vertically (row wise).

dsplit
Split array into multiple sub-arrays along the 3rd axis (depth).

stack
Stack a sequence of arrays along a new axis.

block
Assemble arrays from blocks.

hstack
Stack arrays in sequence horizontally (column wise).

vstack
Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

column_stack
Stack 1-D arrays as columns into a 2-D array.

Notes

When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray
object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as
input, use the ma.concatenate function from the masked array module instead.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],

[3, 4],
[5, 6]])

>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],

[3, 4, 6]])
>>> np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])

This function will not preserve masking of MaskedArray inputs.

>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data=[0, --, 2],

mask=[False, True, False],
fill_value=999999)

>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])

(continues on next page)

1198 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
masked_array(data=[0, 1, 2, 2, 3, 4],

mask=False,
fill_value=999999)

>>> np.ma.concatenate([a, b])
masked_array(data=[0, --, 2, 2, 3, 4],

mask=[False, True, False, False, False, False],
fill_value=999999)

numpy.concat((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")
Join a sequence of arrays along an existing axis.

Parameters
a1, a2, …

[sequence of array_like] The arrays must have the same shape, except in the dimension corre-
sponding to axis (the first, by default).

axis
[int, optional] The axis along which the arrays will be joined. If axis is None, arrays are
flattened before use. Default is 0.

out
[ndarray, optional] If provided, the destination to place the result. The shape must be correct,
matching that of what concatenate would have returned if no out argument were specified.

dtype
[str or dtype] If provided, the destination array will have this dtype. Cannot be provided
together with out.
New in version 1.20.0.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘same_kind’. For a description of the options, please see casting.
New in version 1.20.0.

Returns
res

[ndarray] The concatenated array.
See also:

ma.concatenate
Concatenate function that preserves input masks.

array_split
Split an array into multiple sub-arrays of equal or near-equal size.

split
Split array into a list of multiple sub-arrays of equal size.

hsplit
Split array into multiple sub-arrays horizontally (column wise).

vsplit
Split array into multiple sub-arrays vertically (row wise).

dsplit
Split array into multiple sub-arrays along the 3rd axis (depth).

1.4. Routines and objects by topic 1199

NumPy Reference, Release 2.2.0

stack
Stack a sequence of arrays along a new axis.

block
Assemble arrays from blocks.

hstack
Stack arrays in sequence horizontally (column wise).

vstack
Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

column_stack
Stack 1-D arrays as columns into a 2-D array.

Notes

When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray
object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as
input, use the ma.concatenate function from the masked array module instead.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],

[3, 4],
[5, 6]])

>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],

[3, 4, 6]])
>>> np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])

This function will not preserve masking of MaskedArray inputs.

>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data=[0, --, 2],

mask=[False, True, False],
fill_value=999999)

>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data=[0, 1, 2, 2, 3, 4],

mask=False,
fill_value=999999)

>>> np.ma.concatenate([a, b])
masked_array(data=[0, --, 2, 2, 3, 4],

(continues on next page)

1200 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
mask=[False, True, False, False, False, False],

fill_value=999999)

numpy.stack(arrays, axis=0, out=None, *, dtype=None, casting='same_kind')
Join a sequence of arrays along a new axis.
The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0
it will be the first dimension and if axis=-1 it will be the last dimension.

Parameters
arrays

[sequence of ndarrays] Each array must have the same shape. In the case of a single ndarray
array_like input, it will be treated as a sequence of arrays; i.e., each element along the zeroth
axis is treated as a separate array.

axis
[int, optional] The axis in the result array along which the input arrays are stacked.

out
[ndarray, optional] If provided, the destination to place the result. The shape must be correct,
matching that of what stack would have returned if no out argument were specified.

dtype
[str or dtype] If provided, the destination array will have this dtype. Cannot be provided
together with out.
New in version 1.24.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘same_kind’.
New in version 1.24.

Returns
stacked

[ndarray] The stacked array has one more dimension than the input arrays.
See also:

concatenate
Join a sequence of arrays along an existing axis.

block
Assemble an nd-array from nested lists of blocks.

split
Split array into a list of multiple sub-arrays of equal size.

unstack
Split an array into a tuple of sub-arrays along an axis.

1.4. Routines and objects by topic 1201

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> arrays = [rng.normal(size=(3,4)) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4)

>>> np.stack(arrays, axis=1).shape
(3, 10, 4)

>>> np.stack(arrays, axis=2).shape
(3, 4, 10)

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.stack((a, b))
array([[1, 2, 3],

[4, 5, 6]])

>>> np.stack((a, b), axis=-1)
array([[1, 4],

[2, 5],
[3, 6]])

numpy.block(arrays)
Assemble an nd-array from nested lists of blocks.
Blocks in the innermost lists are concatenated (see concatenate) along the last dimension (-1), then these are
concatenated along the second-last dimension (-2), and so on until the outermost list is reached.
Blocks can be of any dimension, but will not be broadcasted using the normal rules. Instead, leading axes of size
1 are inserted, to make block.ndim the same for all blocks. This is primarily useful for working with scalars,
and means that code like np.block([v, 1]) is valid, where v.ndim == 1.
When the nested list is two levels deep, this allows block matrices to be constructed from their components.

Parameters
arrays

[nested list of array_like or scalars (but not tuples)] If passed a single ndarray or scalar (a
nested list of depth 0), this is returned unmodified (and not copied).
Elements shapes must match along the appropriate axes (without broadcasting), but leading 1s
will be prepended to the shape as necessary to make the dimensions match.

Returns
block_array

[ndarray] The array assembled from the given blocks.
The dimensionality of the output is equal to the greatest of:
• the dimensionality of all the inputs
• the depth to which the input list is nested

Raises
ValueError

1202 1. Python API

NumPy Reference, Release 2.2.0

• If list depths are mismatched - for instance, [[a, b], c] is illegal, and should be spelt
[[a, b], [c]]

• If lists are empty - for instance, [[a, b], []]

See also:

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

vstack
Stack arrays in sequence vertically (row wise).

hstack
Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third axis).

column_stack
Stack 1-D arrays as columns into a 2-D array.

vsplit
Split an array into multiple sub-arrays vertically (row-wise).

unstack
Split an array into a tuple of sub-arrays along an axis.

Notes

When called with only scalars, np.block is equivalent to an ndarray call. So np.block([[1, 2], [3,
4]]) is equivalent to np.array([[1, 2], [3, 4]]).
This function does not enforce that the blocks lie on a fixed grid. np.block([[a, b], [c, d]]) is not
restricted to arrays of the form:

AAAbb
AAAbb
cccDD

But is also allowed to produce, for some a, b, c, d:

AAAbb
AAAbb
cDDDD

Since concatenation happens along the last axis first, block is not capable of producing the following directly:

AAAbb
cccbb
cccDD

Matlab’s “square bracket stacking”, [A, B, ...; p, q, ...], is equivalent to np.block([[A, B,
...], [p, q, ...]]).

1.4. Routines and objects by topic 1203

NumPy Reference, Release 2.2.0

Examples

The most common use of this function is to build a block matrix:

>>> import numpy as np
>>> A = np.eye(2) * 2
>>> B = np.eye(3) * 3
>>> np.block([
... [A, np.zeros((2, 3))],
... [np.ones((3, 2)), B]
...])
array([[2., 0., 0., 0., 0.],

[0., 2., 0., 0., 0.],
[1., 1., 3., 0., 0.],
[1., 1., 0., 3., 0.],
[1., 1., 0., 0., 3.]])

With a list of depth 1, block can be used as hstack:

>>> np.block([1, 2, 3]) # hstack([1, 2, 3])
array([1, 2, 3])

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.block([a, b, 10]) # hstack([a, b, 10])
array([1, 2, 3, 4, 5, 6, 10])

>>> A = np.ones((2, 2), int)
>>> B = 2 * A
>>> np.block([A, B]) # hstack([A, B])
array([[1, 1, 2, 2],

[1, 1, 2, 2]])

With a list of depth 2, block can be used in place of vstack:

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.block([[a], [b]]) # vstack([a, b])
array([[1, 2, 3],

[4, 5, 6]])

>>> A = np.ones((2, 2), int)
>>> B = 2 * A
>>> np.block([[A], [B]]) # vstack([A, B])
array([[1, 1],

[1, 1],
[2, 2],
[2, 2]])

It can also be used in place of atleast_1d and atleast_2d:

>>> a = np.array(0)
>>> b = np.array([1])
>>> np.block([a]) # atleast_1d(a)
array([0])
>>> np.block([b]) # atleast_1d(b)
array([1])

1204 1. Python API

NumPy Reference, Release 2.2.0

>>> np.block([[a]]) # atleast_2d(a)
array([[0]])
>>> np.block([[b]]) # atleast_2d(b)
array([[1]])

numpy.vstack(tup, *, dtype=None, casting='same_kind')
Stack arrays in sequence vertically (row wise).
This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N).
Rebuilds arrays divided by vsplit.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters
tup

[sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length. In the case of a single array_like input, it will be treated as
a sequence of arrays; i.e., each element along the zeroth axis is treated as a separate array.

dtype
[str or dtype] If provided, the destination array will have this dtype. Cannot be provided
together with out.
New in version 1.24.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘same_kind’.
New in version 1.24.

Returns
stacked

[ndarray] The array formed by stacking the given arrays, will be at least 2-D.
See also:

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

block
Assemble an nd-array from nested lists of blocks.

hstack
Stack arrays in sequence horizontally (column wise).

dstack
Stack arrays in sequence depth wise (along third axis).

column_stack
Stack 1-D arrays as columns into a 2-D array.

vsplit
Split an array into multiple sub-arrays vertically (row-wise).

1.4. Routines and objects by topic 1205

NumPy Reference, Release 2.2.0

unstack
Split an array into a tuple of sub-arrays along an axis.

Examples

>>> import numpy as np
>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.vstack((a,b))
array([[1, 2, 3],

[4, 5, 6]])

>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[4], [5], [6]])
>>> np.vstack((a,b))
array([[1],

[2],
[3],
[4],
[5],
[6]])

numpy.hstack(tup, *, dtype=None, casting='same_kind')
Stack arrays in sequence horizontally (column wise).
This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first
axis. Rebuilds arrays divided by hsplit.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters
tup

[sequence of ndarrays] The arrays must have the same shape along all but the second axis,
except 1-D arrays which can be any length. In the case of a single array_like input, it will be
treated as a sequence of arrays; i.e., each element along the zeroth axis is treated as a separate
array.

dtype
[str or dtype] If provided, the destination array will have this dtype. Cannot be provided
together with out.
New in version 1.24.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur. Defaults to ‘same_kind’.
New in version 1.24.

Returns
stacked

[ndarray] The array formed by stacking the given arrays.
See also:

1206 1. Python API

NumPy Reference, Release 2.2.0

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

block
Assemble an nd-array from nested lists of blocks.

vstack
Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third axis).

column_stack
Stack 1-D arrays as columns into a 2-D array.

hsplit
Split an array into multiple sub-arrays horizontally (column-wise).

unstack
Split an array into a tuple of sub-arrays along an axis.

Examples

>>> import numpy as np
>>> a = np.array((1,2,3))
>>> b = np.array((4,5,6))
>>> np.hstack((a,b))
array([1, 2, 3, 4, 5, 6])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[4],[5],[6]])
>>> np.hstack((a,b))
array([[1, 4],

[2, 5],
[3, 6]])

numpy.dstack(tup)
Stack arrays in sequence depth wise (along third axis).
This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been reshaped to
(M,N,1) and 1-D arrays of shape (N,) have been reshaped to (1,N,1). Rebuilds arrays divided by dsplit.
This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first
axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters
tup

[sequence of arrays] The arrays must have the same shape along all but the third axis. 1-D or
2-D arrays must have the same shape.

Returns
stacked

[ndarray] The array formed by stacking the given arrays, will be at least 3-D.
See also:

1.4. Routines and objects by topic 1207

NumPy Reference, Release 2.2.0

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

block
Assemble an nd-array from nested lists of blocks.

vstack
Stack arrays in sequence vertically (row wise).

hstack
Stack arrays in sequence horizontally (column wise).

column_stack
Stack 1-D arrays as columns into a 2-D array.

dsplit
Split array along third axis.

Examples

>>> import numpy as np
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],

[2, 3],
[3, 4]]])

>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],

[[2, 3]],
[[3, 4]]])

numpy.column_stack(tup)
Stack 1-D arrays as columns into a 2-D array.
Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters
tup

[sequence of 1-D or 2-D arrays.] Arrays to stack. All of them must have the same first dimen-
sion.

Returns
stacked

[2-D array] The array formed by stacking the given arrays.
See also:

stack, hstack, vstack, concatenate

1208 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],

[2, 3],
[3, 4]])

Splitting arrays

split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays as views into ary.
array_split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays.
dsplit(ary, indices_or_sections) Split array into multiple sub-arrays along the 3rd axis

(depth).
hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally

(column-wise).
vsplit(ary, indices_or_sections) Split an array into multiple sub-arrays vertically (row-

wise).
unstack(x, /, *[, axis]) Split an array into a sequence of arrays along the given

axis.

numpy.split(ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays as views into ary.

Parameters
ary

[ndarray] Array to be divided into sub-arrays.
indices_or_sections

[int or 1-D array] If indices_or_sections is an integer, N, the array will be divided into N equal
arrays along axis. If such a split is not possible, an error is raised.
If indices_or_sections is a 1-D array of sorted integers, the entries indicate where along axis
the array is split. For example, [2, 3] would, for axis=0, result in
• ary[:2]
• ary[2:3]
• ary[3:]
If an index exceeds the dimension of the array along axis, an empty sub-array is returned
correspondingly.

axis
[int, optional] The axis along which to split, default is 0.

Returns
sub-arrays

[list of ndarrays] A list of sub-arrays as views into ary.
Raises

1.4. Routines and objects by topic 1209

NumPy Reference, Release 2.2.0

ValueError
If indices_or_sections is given as an integer, but a split does not result in equal division.

See also:

array_split
Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal
division cannot be made.

hsplit
Split array into multiple sub-arrays horizontally (column-wise).

vsplit
Split array into multiple sub-arrays vertically (row wise).

dsplit
Split array into multiple sub-arrays along the 3rd axis (depth).

concatenate
Join a sequence of arrays along an existing axis.

stack
Join a sequence of arrays along a new axis.

hstack
Stack arrays in sequence horizontally (column wise).

vstack
Stack arrays in sequence vertically (row wise).

dstack
Stack arrays in sequence depth wise (along third dimension).

Examples

>>> import numpy as np
>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]

>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([0., 1., 2.]),
array([3., 4.]),
array([5.]),
array([6., 7.]),
array([], dtype=float64)]

numpy.array_split(ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays.
Please refer to the split documentation. The only difference between these functions is that array_split
allows indices_or_sections to be an integer that does not equally divide the axis. For an array of length l that should
be split into n sections, it returns l % n sub-arrays of size l//n + 1 and the rest of size l//n.
See also:

split
Split array into multiple sub-arrays of equal size.

1210 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]

>>> x = np.arange(9)
>>> np.array_split(x, 4)
[array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]

numpy.dsplit(ary, indices_or_sections)
Split array into multiple sub-arrays along the 3rd axis (depth).
Please refer to the split documentation. dsplit is equivalent to split with axis=2, the array is always
split along the third axis provided the array dimension is greater than or equal to 3.
See also:

split
Split an array into multiple sub-arrays of equal size.

Examples

>>> import numpy as np
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> x
array([[[0., 1., 2., 3.],

[4., 5., 6., 7.]],
[[8., 9., 10., 11.],
[12., 13., 14., 15.]]])

>>> np.dsplit(x, 2)
[array([[[0., 1.],

[4., 5.]],
[[8., 9.],
[12., 13.]]]), array([[[2., 3.],
[6., 7.]],
[[10., 11.],
[14., 15.]]])]

>>> np.dsplit(x, np.array([3, 6]))
[array([[[0., 1., 2.],

[4., 5., 6.]],
[[8., 9., 10.],
[12., 13., 14.]]]),

array([[[3.],
[7.]],
[[11.],
[15.]]]),

array([], shape=(2, 2, 0), dtype=float64)]

numpy.hsplit(ary, indices_or_sections)
Split an array into multiple sub-arrays horizontally (column-wise).
Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is always
split along the second axis except for 1-D arrays, where it is split at axis=0.
See also:

1.4. Routines and objects by topic 1211

NumPy Reference, Release 2.2.0

split
Split an array into multiple sub-arrays of equal size.

Examples

>>> import numpy as np
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]])

>>> np.hsplit(x, 2)
[array([[0., 1.],

[4., 5.],
[8., 9.],
[12., 13.]]),

array([[2., 3.],
[6., 7.],
[10., 11.],
[14., 15.]])]

>>> np.hsplit(x, np.array([3, 6]))
[array([[0., 1., 2.],

[4., 5., 6.],
[8., 9., 10.],
[12., 13., 14.]]),

array([[3.],
[7.],
[11.],
[15.]]),

array([], shape=(4, 0), dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],

[2., 3.]],
[[4., 5.],
[6., 7.]]])

>>> np.hsplit(x, 2)
[array([[[0., 1.]],

[[4., 5.]]]),
array([[[2., 3.]],

[[6., 7.]]])]

With a 1-D array, the split is along axis 0.

>>> x = np.array([0, 1, 2, 3, 4, 5])
>>> np.hsplit(x, 2)
[array([0, 1, 2]), array([3, 4, 5])]

numpy.vsplit(ary, indices_or_sections)
Split an array into multiple sub-arrays vertically (row-wise).
Please refer to the split documentation. vsplit is equivalent to split with axis=0 (default), the array is
always split along the first axis regardless of the array dimension.

1212 1. Python API

NumPy Reference, Release 2.2.0

See also:

split
Split an array into multiple sub-arrays of equal size.

Examples

>>> import numpy as np
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]])

>>> np.vsplit(x, 2)
[array([[0., 1., 2., 3.],

[4., 5., 6., 7.]]),
array([[8., 9., 10., 11.],

[12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]]),

array([[12., 13., 14., 15.]]),
array([], shape=(0, 4), dtype=float64)]

With a higher dimensional array the split is still along the first axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],

[2., 3.]],
[[4., 5.],
[6., 7.]]])

>>> np.vsplit(x, 2)
[array([[[0., 1.],

[2., 3.]]]),
array([[[4., 5.],

[6., 7.]]])]

numpy.unstack(x, / , *, axis=0)
Split an array into a sequence of arrays along the given axis.
The axis parameter specifies the dimension along which the array will be split. For example, if axis=0 (the
default) it will be the first dimension and if axis=-1 it will be the last dimension.
The result is a tuple of arrays split along axis.
New in version 2.1.0.

Parameters
x

[ndarray] The array to be unstacked.
axis

[int, optional] Axis along which the array will be split. Default: 0.
Returns

1.4. Routines and objects by topic 1213

NumPy Reference, Release 2.2.0

unstacked
[tuple of ndarrays] The unstacked arrays.

See also:

stack
Join a sequence of arrays along a new axis.

concatenate
Join a sequence of arrays along an existing axis.

block
Assemble an nd-array from nested lists of blocks.

split
Split array into a list of multiple sub-arrays of equal size.

Notes

unstack serves as the reverse operation of stack, i.e., stack(unstack(x, axis=axis),
axis=axis) == x.
This function is equivalent to tuple(np.moveaxis(x, axis, 0)), since iterating on an array iterates
along the first axis.

Examples

>>> arr = np.arange(24).reshape((2, 3, 4))
>>> np.unstack(arr)
(array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]]),

array([[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]))

>>> np.unstack(arr, axis=1)
(array([[0, 1, 2, 3],

[12, 13, 14, 15]]),
array([[4, 5, 6, 7],

[16, 17, 18, 19]]),
array([[8, 9, 10, 11],

[20, 21, 22, 23]]))
>>> arr2 = np.stack(np.unstack(arr, axis=1), axis=1)
>>> arr2.shape
(2, 3, 4)
>>> np.all(arr == arr2)
np.True_

1214 1. Python API

NumPy Reference, Release 2.2.0

Tiling arrays

tile(A, reps) Construct an array by repeating A the number of times
given by reps.

repeat(a, repeats[, axis]) Repeat each element of an array after themselves

numpy.tile(A, reps)
Construct an array by repeating A the number of times given by reps.
If reps has length d, the result will have dimension of max(d, A.ndim).
If A.ndim < d, A is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted
to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A to
d-dimensions manually before calling this function.
If A.ndim > d, reps is promoted to A.ndim by prepending 1’s to it. Thus for an A of shape (2, 3, 4, 5), a reps
of (2, 2) is treated as (1, 1, 2, 2).
Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting oper-
ations and functions.

Parameters
A

[array_like] The input array.
reps

[array_like] The number of repetitions of A along each axis.
Returns

c
[ndarray] The tiled output array.

See also:

repeat
Repeat elements of an array.

broadcast_to
Broadcast an array to a new shape

Examples

>>> import numpy as np
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],

[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],

[[0, 1, 2, 0, 1, 2]]])

1.4. Routines and objects by topic 1215

NumPy Reference, Release 2.2.0

>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],

[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],

[3, 4],
[1, 2],
[3, 4]])

>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],

[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])

numpy.repeat(a, repeats, axis=None)
Repeat each element of an array after themselves

Parameters
a

[array_like] Input array.
repeats

[int or array of ints] The number of repetitions for each element. repeats is broadcasted to fit
the shape of the given axis.

axis
[int, optional] The axis along which to repeat values. By default, use the flattened input array,
and return a flat output array.

Returns
repeated_array

[ndarray] Output array which has the same shape as a, except along the given axis.
See also:

tile
Tile an array.

unique
Find the unique elements of an array.

Examples

>>> import numpy as np
>>> np.repeat(3, 4)
array([3, 3, 3, 3])
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 4]])

(continues on next page)

1216 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],

[3, 4],
[3, 4]])

Adding and removing elements

delete(arr, obj[, axis]) Return a new array with sub-arrays along an axis deleted.
insert(arr, obj, values[, axis]) Insert values along the given axis before the given indices.
append(arr, values[, axis]) Append values to the end of an array.
resize(a, new_shape) Return a new array with the specified shape.
trim_zeros(filt[, trim, axis]) Remove values along a dimension which are zero along all

other.
unique(ar[, return_index, return_inverse, ...]) Find the unique elements of an array.
pad(array, pad_width[, mode]) Pad an array.

numpy.delete(arr, obj, axis=None)
Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries
not returned by arr[obj].

Parameters
arr

[array_like] Input array.
obj

[slice, int, array-like of ints or bools] Indicate indices of sub-arrays to remove along the spec-
ified axis.
Changed in version 1.19.0: Boolean indices are now treated as a mask of elements to remove,
rather than being cast to the integers 0 and 1.

axis
[int, optional] The axis along which to delete the subarray defined by obj. If axis is None, obj
is applied to the flattened array.

Returns
out

[ndarray] A copy of arr with the elements specified by obj removed. Note that delete does
not occur in-place. If axis is None, out is a flattened array.

See also:

insert
Insert elements into an array.

append
Append elements at the end of an array.

1.4. Routines and objects by topic 1217

NumPy Reference, Release 2.2.0

Notes

Often it is preferable to use a boolean mask. For example:

>>> arr = np.arange(12) + 1
>>> mask = np.ones(len(arr), dtype=bool)
>>> mask[[0,2,4]] = False
>>> result = arr[mask,...]

Is equivalent to np.delete(arr, [0,2,4], axis=0), but allows further use of mask.

Examples

>>> import numpy as np
>>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
>>> arr
array([[1, 2, 3, 4],

[5, 6, 7, 8],
[9, 10, 11, 12]])

>>> np.delete(arr, 1, 0)
array([[1, 2, 3, 4],

[9, 10, 11, 12]])

>>> np.delete(arr, np.s_[::2], 1)
array([[2, 4],

[6, 8],
[10, 12]])

>>> np.delete(arr, [1,3,5], None)
array([1, 3, 5, 7, 8, 9, 10, 11, 12])

numpy.insert(arr, obj, values, axis=None)
Insert values along the given axis before the given indices.

Parameters
arr

[array_like] Input array.
obj

[slice, int, array-like of ints or bools] Object that defines the index or indices before which
values is inserted.
Changed in version 2.1.2: Boolean indices are now treated as a mask of elements to insert,
rather than being cast to the integers 0 and 1.
Support for multiple insertions when obj is a single scalar or a sequence with one element
(similar to calling insert multiple times).

values
[array_like] Values to insert into arr. If the type of values is different from that of arr, values
is converted to the type of arr. values should be shaped so that arr[...,obj,...] =
values is legal.

axis
[int, optional] Axis along which to insert values. If axis is None then arr is flattened first.

Returns

1218 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray] A copy of arr with values inserted. Note that insert does not occur in-place: a
new array is returned. If axis is None, out is a flattened array.

See also:

append
Append elements at the end of an array.

concatenate
Join a sequence of arrays along an existing axis.

delete
Delete elements from an array.

Notes

Note that for higher dimensional inserts obj=0 behaves very different from obj=[0] just like arr[:,0,:]
= values is different from arr[:,[0],:] = values. This is because of the difference between basic
and advanced indexing.

Examples

>>> import numpy as np
>>> a = np.arange(6).reshape(3, 2)
>>> a
array([[0, 1],

[2, 3],
[4, 5]])

>>> np.insert(a, 1, 6)
array([0, 6, 1, 2, 3, 4, 5])
>>> np.insert(a, 1, 6, axis=1)
array([[0, 6, 1],

[2, 6, 3],
[4, 6, 5]])

Difference between sequence and scalars, showing how obj=[1] behaves different from obj=1:

>>> np.insert(a, [1], [[7],[8],[9]], axis=1)
array([[0, 7, 1],

[2, 8, 3],
[4, 9, 5]])

>>> np.insert(a, 1, [[7],[8],[9]], axis=1)
array([[0, 7, 8, 9, 1],

[2, 7, 8, 9, 3],
[4, 7, 8, 9, 5]])

>>> np.array_equal(np.insert(a, 1, [7, 8, 9], axis=1),
... np.insert(a, [1], [[7],[8],[9]], axis=1))
True

>>> b = a.flatten()
>>> b
array([0, 1, 2, 3, 4, 5])
>>> np.insert(b, [2, 2], [6, 7])
array([0, 1, 6, 7, 2, 3, 4, 5])

1.4. Routines and objects by topic 1219

NumPy Reference, Release 2.2.0

>>> np.insert(b, slice(2, 4), [7, 8])
array([0, 1, 7, 2, 8, 3, 4, 5])

>>> np.insert(b, [2, 2], [7.13, False]) # type casting
array([0, 1, 7, 0, 2, 3, 4, 5])

>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
>>> np.insert(x, idx, 999, axis=1)
array([[0, 999, 1, 2, 999, 3],

[4, 999, 5, 6, 999, 7]])

numpy.append(arr, values, axis=None)
Append values to the end of an array.

Parameters
arr

[array_like] Values are appended to a copy of this array.
values

[array_like] These values are appended to a copy of arr. It must be of the correct shape (the
same shape as arr, excluding axis). If axis is not specified, values can be any shape and will be
flattened before use.

axis
[int, optional] The axis along which values are appended. If axis is not given, both arr and
values are flattened before use.

Returns
append

[ndarray] A copy of arr with values appended to axis. Note that append does not occur
in-place: a new array is allocated and filled. If axis is None, out is a flattened array.

See also:

insert
Insert elements into an array.

delete
Delete elements from an array.

Examples

>>> import numpy as np
>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
array([1, 2, 3, ..., 7, 8, 9])

When axis is specified, values must have the correct shape.

>>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

1220 1. Python API

NumPy Reference, Release 2.2.0

>>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
Traceback (most recent call last):

...
ValueError: all the input arrays must have same number of dimensions, but
the array at index 0 has 2 dimension(s) and the array at index 1 has 1
dimension(s)

>>> a = np.array([1, 2], dtype=int)
>>> c = np.append(a, [])
>>> c
array([1., 2.])
>>> c.dtype
float64

Default dtype for empty ndarrays is float64 thus making the output of dtype float64 when appended with
dtype int64

numpy.resize(a, new_shape)
Return a new array with the specified shape.
If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note that
this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of a.

Parameters
a

[array_like] Array to be resized.
new_shape

[int or tuple of int] Shape of resized array.
Returns

reshaped_array
[ndarray] The new array is formed from the data in the old array, repeated if necessary to fill
out the required number of elements. The data are repeated iterating over the array in C-order.

See also:

numpy.reshape
Reshape an array without changing the total size.

numpy.pad
Enlarge and pad an array.

numpy.repeat
Repeat elements of an array.

ndarray.resize
resize an array in-place.

1.4. Routines and objects by topic 1221

NumPy Reference, Release 2.2.0

Notes

When the total size of the array does not change reshape should be used. In most other cases either indexing (to
reduce the size) or padding (to increase the size) may be a more appropriate solution.
Warning: This functionality does not consider axes separately, i.e. it does not apply interpolation/extrapolation.
It fills the return array with the required number of elements, iterating over a in C-order, disregarding axes (and
cycling back from the start if the new shape is larger). This functionality is therefore not suitable to resize images,
or data where each axis represents a separate and distinct entity.

Examples

>>> import numpy as np
>>> a = np.array([[0,1],[2,3]])
>>> np.resize(a,(2,3))
array([[0, 1, 2],

[3, 0, 1]])
>>> np.resize(a,(1,4))
array([[0, 1, 2, 3]])
>>> np.resize(a,(2,4))
array([[0, 1, 2, 3],

[0, 1, 2, 3]])

numpy.trim_zeros(filt, trim='fb', axis=None)
Remove values along a dimension which are zero along all other.

Parameters
filt

[array_like] Input array.
trim

[{“fb”, “f”, “b”}, optional] A string with ‘f’ representing trim from front and ‘b’ to trim from
back. By default, zeros are trimmed on both sides. Front and back refer to the edges of a
dimension, with “front” refering to the side with the lowest index 0, and “back” refering to the
highest index (or index -1).

axis
[int or sequence, optional] If None, filt is cropped such, that the smallest bounding box is
returned that still contains all values which are not zero. If an axis is specified, filt will be
sliced in that dimension only on the sides specified by trim. The remaining area will be the
smallest that still contains all values wich are not zero.

Returns
trimmed

[ndarray or sequence] The result of trimming the input. The number of dimensions and the
input data type are preserved.

1222 1. Python API

NumPy Reference, Release 2.2.0

Notes

For all-zero arrays, the first axis is trimmed first.

Examples

>>> import numpy as np
>>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
>>> np.trim_zeros(a)
array([1, 2, 3, 0, 2, 1])

>>> np.trim_zeros(a, trim='b')
array([0, 0, 0, ..., 0, 2, 1])

Multiple dimensions are supported.

>>> b = np.array([[0, 0, 2, 3, 0, 0],
... [0, 1, 0, 3, 0, 0],
... [0, 0, 0, 0, 0, 0]])
>>> np.trim_zeros(b)
array([[0, 2, 3],

[1, 0, 3]])

>>> np.trim_zeros(b, axis=-1)
array([[0, 2, 3],

[1, 0, 3],
[0, 0, 0]])

The input data type is preserved, list/tuple in means list/tuple out.

>>> np.trim_zeros([0, 1, 2, 0])
[1, 2]

numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None, *,
equal_nan=True)

Find the unique elements of an array.
Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements:

• the indices of the input array that give the unique values
• the indices of the unique array that reconstruct the input array
• the number of times each unique value comes up in the input array

Parameters
ar

[array_like] Input array. Unless axis is specified, this will be flattened if it is not already 1-D.
return_index

[bool, optional] If True, also return the indices of ar (along the specified axis, if provided, or
in the flattened array) that result in the unique array.

return_inverse
[bool, optional] If True, also return the indices of the unique array (for the specified axis, if
provided) that can be used to reconstruct ar.

1.4. Routines and objects by topic 1223

NumPy Reference, Release 2.2.0

return_counts
[bool, optional] If True, also return the number of times each unique item appears in ar.

axis
[int or None, optional] The axis to operate on. If None, ar will be flattened. If an integer, the
subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array
with the dimension of the given axis, see the notes for more details. Object arrays or structured
arrays that contain objects are not supported if the axis kwarg is used. The default is None.

equal_nan
[bool, optional] If True, collapses multiple NaN values in the return array into one.
New in version 1.24.

Returns
unique

[ndarray] The sorted unique values.
unique_indices

[ndarray, optional] The indices of the first occurrences of the unique values in the original
array. Only provided if return_index is True.

unique_inverse
[ndarray, optional] The indices to reconstruct the original array from the unique array. Only
provided if return_inverse is True.

unique_counts
[ndarray, optional] The number of times each of the unique values comes up in the original
array. Only provided if return_counts is True.

See also:

repeat
Repeat elements of an array.

sort
Return a sorted copy of an array.

Notes

When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis
the first dimension of the array (move the axis to the first dimension to keep the order of the other axes) and then
flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element
given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same
way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with
the first element.
Changed in version 1.21: Like np.sort, NaN will sort to the end of the values. For complex arrays all NaN values
are considered equivalent (no matter whether the NaN is in the real or imaginary part). As the representant for
the returned array the smallest one in the lexicographical order is chosen - see np.sort for how the lexicographical
order is defined for complex arrays.
Changed in version 2.0: For multi-dimensional inputs, unique_inverse is reshaped such that the input can
be reconstructed using np.take(unique, unique_inverse, axis=axis). The result is now not
1-dimensional when axis=None.
Note that in NumPy 2.0.0 a higher dimensional array was returned also when axis was not None. This was
reverted, but inverse.reshape(-1) can be used to ensure compatibility with both versions.

1224 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

Return the unique rows of a 2D array

>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
>>> np.unique(a, axis=0)
array([[1, 0, 0], [2, 3, 4]])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'], dtype='<U1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'], dtype='<U1')

Reconstruct the input array from the unique values and inverse:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])

Reconstruct the input values from the unique values and counts:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> values, counts = np.unique(a, return_counts=True)
>>> values
array([1, 2, 3, 4, 6])
>>> counts
array([1, 3, 1, 1, 1])
>>> np.repeat(values, counts)
array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved

numpy.pad(array, pad_width, mode='constant', **kwargs)
Pad an array.

Parameters
array

[array_like of rank N] The array to pad.
pad_width

[{sequence, array_like, int}] Number of values padded to the edges of each axis.

1.4. Routines and objects by topic 1225

NumPy Reference, Release 2.2.0

((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis. (before, after) or ((before, after),) yields same before and
after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all
axes.

mode
[str or function, optional] One of the following string values or a user supplied function.
‘constant’ (default)
Pads with a constant value.

‘edge’
Pads with the edge values of array.

‘linear_ramp’
Pads with the linear ramp between end_value and the array edge value.

‘maximum’
Pads with the maximum value of all or part of the vector along each axis.

‘mean’
Pads with the mean value of all or part of the vector along each axis.

‘median’
Pads with the median value of all or part of the vector along each axis.

‘minimum’
Pads with the minimum value of all or part of the vector along each axis.

‘reflect’
Pads with the reflection of the vector mirrored on the first and last values of the vector along
each axis.

‘symmetric’
Pads with the reflection of the vector mirrored along the edge of the array.

‘wrap’
Pads with the wrap of the vector along the axis. The first values are used to pad the end and
the end values are used to pad the beginning.

‘empty’
Pads with undefined values.

<function>
Padding function, see Notes.

stat_length
[sequence or int, optional] Used in ‘maximum’, ‘mean’, ‘median’, and ‘minimum’. Number of
values at edge of each axis used to calculate the statistic value.
((before_1, after_1), ... (before_N, after_N)) unique statistic lengths
for each axis.
(before, after) or ((before, after),) yields same before and after statistic
lengths for each axis.
(stat_length,) or int is a shortcut for before = after = statistic length
for all axes.
Default is None, to use the entire axis.

1226 1. Python API

NumPy Reference, Release 2.2.0

constant_values
[sequence or scalar, optional] Used in ‘constant’. The values to set the padded values for each
axis.
((before_1, after_1), ... (before_N, after_N)) unique pad constants
for each axis.
(before, after) or ((before, after),) yields same before and after constants
for each axis.
(constant,) or constant is a shortcut for before = after = constant for all
axes.
Default is 0.

end_values
[sequence or scalar, optional] Used in ‘linear_ramp’. The values used for the ending value of
the linear_ramp and that will form the edge of the padded array.
((before_1, after_1), ... (before_N, after_N)) unique end values for
each axis.
(before, after) or ((before, after),) yields same before and after end values
for each axis.
(constant,) or constant is a shortcut for before = after = constant for all
axes.
Default is 0.

reflect_type
[{‘even’, ‘odd’}, optional] Used in ‘reflect’, and ‘symmetric’. The ‘even’ style is the default with
an unaltered reflection around the edge value. For the ‘odd’ style, the extended part of the array
is created by subtracting the reflected values from two times the edge value.

Returns
pad

[ndarray] Padded array of rank equal to array with shape increased according to pad_width.

Notes

For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous
axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by
using padded values from the first axis.
The padding function, if used, should modify a rank 1 array in-place. It has the following signature:

padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where
vector

[ndarray] A rank 1 array already padded with zeros. Padded values are vector[:iaxis_pad_width[0]] and
vector[-iaxis_pad_width[1]:].

iaxis_pad_width
[tuple] A 2-tuple of ints, iaxis_pad_width[0] represents the number of values padded at the beginning of
vector where iaxis_pad_width[1] represents the number of values padded at the end of vector.

1.4. Routines and objects by topic 1227

NumPy Reference, Release 2.2.0

iaxis
[int] The axis currently being calculated.

kwargs
[dict] Any keyword arguments the function requires.

Examples

>>> import numpy as np
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])

>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])

>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],

[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])

>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

1228 1. Python API

NumPy Reference, Release 2.2.0

>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],

[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])

>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],

[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])

Rearranging elements

flip(m[, axis]) Reverse the order of elements in an array along the given
axis.

fliplr(m) Reverse the order of elements along axis 1 (left/right).
flipud(m) Reverse the order of elements along axis 0 (up/down).
roll(a, shift[, axis]) Roll array elements along a given axis.
rot90(m[, k, axes]) Rotate an array by 90 degrees in the plane specified by

axes.

numpy.flip(m, axis=None)
Reverse the order of elements in an array along the given axis.
The shape of the array is preserved, but the elements are reordered.

Parameters
m

[array_like] Input array.
axis

[None or int or tuple of ints, optional] Axis or axes along which to flip over. The default,
axis=None, will flip over all of the axes of the input array. If axis is negative it counts from
the last to the first axis.
If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple.

Returns
out

[array_like] A view of m with the entries of axis reversed. Since a view is returned, this
operation is done in constant time.

See also:

1.4. Routines and objects by topic 1229

NumPy Reference, Release 2.2.0

flipud
Flip an array vertically (axis=0).

fliplr
Flip an array horizontally (axis=1).

Notes

flip(m, 0) is equivalent to flipud(m).
flip(m, 1) is equivalent to fliplr(m).
flip(m, n) corresponds to m[...,::-1,...] with ::-1 at position n.
flip(m) corresponds to m[::-1,::-1,...,::-1] with ::-1 at all positions.
flip(m, (0, 1)) corresponds to m[::-1,::-1,...] with ::-1 at position 0 and position 1.

Examples

>>> import numpy as np
>>> A = np.arange(8).reshape((2,2,2))
>>> A
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.flip(A, 0)
array([[[4, 5],

[6, 7]],
[[0, 1],
[2, 3]]])

>>> np.flip(A, 1)
array([[[2, 3],

[0, 1]],
[[6, 7],
[4, 5]]])

>>> np.flip(A)
array([[[7, 6],

[5, 4]],
[[3, 2],
[1, 0]]])

>>> np.flip(A, (0, 2))
array([[[5, 4],

[7, 6]],
[[1, 0],
[3, 2]]])

>>> rng = np.random.default_rng()
>>> A = rng.normal(size=(3,4,5))
>>> np.all(np.flip(A,2) == A[:,:,::-1,...])
True

numpy.fliplr(m)
Reverse the order of elements along axis 1 (left/right).
For a 2-D array, this flips the entries in each row in the left/right direction. Columns are preserved, but appear in
a different order than before.

1230 1. Python API

NumPy Reference, Release 2.2.0

Parameters
m

[array_like] Input array, must be at least 2-D.
Returns

f
[ndarray] A view of m with the columns reversed. Since a view is returned, this operation is
O(1).

See also:

flipud
Flip array in the up/down direction.

flip
Flip array in one or more dimensions.

rot90
Rotate array counterclockwise.

Notes

Equivalent to m[:,::-1] or np.flip(m, axis=1). Requires the array to be at least 2-D.

Examples

>>> import numpy as np
>>> A = np.diag([1.,2.,3.])
>>> A
array([[1., 0., 0.],

[0., 2., 0.],
[0., 0., 3.]])

>>> np.fliplr(A)
array([[0., 0., 1.],

[0., 2., 0.],
[3., 0., 0.]])

>>> rng = np.random.default_rng()
>>> A = rng.normal(size=(2,3,5))
>>> np.all(np.fliplr(A) == A[:,::-1,...])
True

numpy.flipud(m)
Reverse the order of elements along axis 0 (up/down).
For a 2-D array, this flips the entries in each column in the up/down direction. Rows are preserved, but appear in
a different order than before.

Parameters
m

[array_like] Input array.
Returns

1.4. Routines and objects by topic 1231

NumPy Reference, Release 2.2.0

out
[array_like] A view of m with the rows reversed. Since a view is returned, this operation is
O(1).

See also:

fliplr
Flip array in the left/right direction.

flip
Flip array in one or more dimensions.

rot90
Rotate array counterclockwise.

Notes

Equivalent to m[::-1, ...] or np.flip(m, axis=0). Requires the array to be at least 1-D.

Examples

>>> import numpy as np
>>> A = np.diag([1.0, 2, 3])
>>> A
array([[1., 0., 0.],

[0., 2., 0.],
[0., 0., 3.]])

>>> np.flipud(A)
array([[0., 0., 3.],

[0., 2., 0.],
[1., 0., 0.]])

>>> rng = np.random.default_rng()
>>> A = rng.normal(size=(2,3,5))
>>> np.all(np.flipud(A) == A[::-1,...])
True

>>> np.flipud([1,2])
array([2, 1])

numpy.roll(a, shift, axis=None)
Roll array elements along a given axis.
Elements that roll beyond the last position are re-introduced at the first.

Parameters
a

[array_like] Input array.
shift

[int or tuple of ints] The number of places by which elements are shifted. If a tuple, then axis
must be a tuple of the same size, and each of the given axes is shifted by the corresponding
number. If an int while axis is a tuple of ints, then the same value is used for all given axes.

1232 1. Python API

NumPy Reference, Release 2.2.0

axis
[int or tuple of ints, optional] Axis or axes along which elements are shifted. By default, the
array is flattened before shifting, after which the original shape is restored.

Returns
res

[ndarray] Output array, with the same shape as a.
See also:

rollaxis
Roll the specified axis backwards, until it lies in a given position.

Notes

Supports rolling over multiple dimensions simultaneously.

Examples

>>> import numpy as np
>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
>>> np.roll(x, -2)
array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])

>>> x2 = np.reshape(x, (2, 5))
>>> x2
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])
>>> np.roll(x2, 1)
array([[9, 0, 1, 2, 3],

[4, 5, 6, 7, 8]])
>>> np.roll(x2, -1)
array([[1, 2, 3, 4, 5],

[6, 7, 8, 9, 0]])
>>> np.roll(x2, 1, axis=0)
array([[5, 6, 7, 8, 9],

[0, 1, 2, 3, 4]])
>>> np.roll(x2, -1, axis=0)
array([[5, 6, 7, 8, 9],

[0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1)
array([[4, 0, 1, 2, 3],

[9, 5, 6, 7, 8]])
>>> np.roll(x2, -1, axis=1)
array([[1, 2, 3, 4, 0],

[6, 7, 8, 9, 5]])
>>> np.roll(x2, (1, 1), axis=(1, 0))
array([[9, 5, 6, 7, 8],

[4, 0, 1, 2, 3]])
>>> np.roll(x2, (2, 1), axis=(1, 0))
array([[8, 9, 5, 6, 7],

[3, 4, 0, 1, 2]])

1.4. Routines and objects by topic 1233

NumPy Reference, Release 2.2.0

numpy.rot90(m, k=1, axes=(0, 1))
Rotate an array by 90 degrees in the plane specified by axes.
Rotation direction is from the first towards the second axis. This means for a 2D array with the default k and axes,
the rotation will be counterclockwise.

Parameters
m

[array_like] Array of two or more dimensions.
k

[integer] Number of times the array is rotated by 90 degrees.
axes

[(2,) array_like] The array is rotated in the plane defined by the axes. Axes must be different.
Returns

y
[ndarray] A rotated view of m.

See also:

flip
Reverse the order of elements in an array along the given axis.

fliplr
Flip an array horizontally.

flipud
Flip an array vertically.

Notes

rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1))

rot90(m, k=1, axes=(1,0)) is equivalent to rot90(m, k=-1, axes=(0,1))

Examples

>>> import numpy as np
>>> m = np.array([[1,2],[3,4]], int)
>>> m
array([[1, 2],

[3, 4]])
>>> np.rot90(m)
array([[2, 4],

[1, 3]])
>>> np.rot90(m, 2)
array([[4, 3],

[2, 1]])
>>> m = np.arange(8).reshape((2,2,2))
>>> np.rot90(m, 1, (1,2))
array([[[1, 3],

[0, 2]],
[[5, 7],
[4, 6]]])

1234 1. Python API

NumPy Reference, Release 2.2.0

1.4.4 Bit-wise operations

Elementwise bit operations

bitwise_and(x1, x2, /[, out, where, ...]) Compute the bit-wise AND of two arrays element-wise.
bitwise_or(x1, x2, /[, out, where, casting, ...]) Compute the bit-wise OR of two arrays element-wise.
bitwise_xor(x1, x2, /[, out, where, ...]) Compute the bit-wise XOR of two arrays element-wise.
invert(x, /[, out, where, casting, order, ...]) Compute bit-wise inversion, or bit-wise NOT, element-

wise.
bitwise_invert(x, /[, out, where, casting, ...]) Compute bit-wise inversion, or bit-wise NOT, element-

wise.
left_shift(x1, x2, /[, out, where, casting, ...]) Shift the bits of an integer to the left.
bitwise_left_shift(x1, x2, /[, out, where, ...]) Shift the bits of an integer to the left.
right_shift(x1, x2, /[, out, where, ...]) Shift the bits of an integer to the right.
bitwise_right_shift(x1, x2, /[, out, where, ...]) Shift the bits of an integer to the right.

numpy.bitwise_and(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'bitwise_and'>

Compute the bit-wise AND of two arrays element-wise.
Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator &.

Parameters
x1, x2

[array_like] Only integer and boolean types are handled. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.
See also:

logical_and
bitwise_or
bitwise_xor
binary_repr

Return the binary representation of the input number as a string.

1.4. Routines and objects by topic 1235

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise AND of
13 and 17 is therefore 000000001, or 1:

>>> np.bitwise_and(13, 17)
1

>>> np.bitwise_and(14, 13)
12
>>> np.binary_repr(12)
'1100'
>>> np.bitwise_and([14,3], 13)
array([12, 1])

>>> np.bitwise_and([11,7], [4,25])
array([0, 1])
>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
array([2, 4, 16])
>>> np.bitwise_and([True, True], [False, True])
array([False, True])

The & operator can be used as a shorthand for np.bitwise_and on ndarrays.

>>> x1 = np.array([2, 5, 255])
>>> x2 = np.array([3, 14, 16])
>>> x1 & x2
array([2, 4, 16])

numpy.bitwise_or(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'bitwise_or'>

Compute the bit-wise OR of two arrays element-wise.
Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator |.

Parameters
x1, x2

[array_like] Only integer and boolean types are handled. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

1236 1. Python API

NumPy Reference, Release 2.2.0

Returns
out

[ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.
See also:

logical_or
bitwise_and
bitwise_xor
binary_repr

Return the binary representation of the input number as a string.

Examples

>>> import numpy as np

The number 13 has the binary representation 00001101. Likewise, 16 is represented by 00010000. The bit-
wise OR of 13 and 16 is then 00011101, or 29:

>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'

>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33, 5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33, 6])

>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([6, 5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([6, 5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32),
... np.array([4, 4, 4, 2147483647], dtype=np.int32))
array([6, 5, 255, 2147483647], dtype=int32)
>>> np.bitwise_or([True, True], [False, True])
array([True, True])

The | operator can be used as a shorthand for np.bitwise_or on ndarrays.

>>> x1 = np.array([2, 5, 255])
>>> x2 = np.array([4, 4, 4])
>>> x1 | x2
array([6, 5, 255])

numpy.bitwise_xor(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'bitwise_xor'>

Compute the bit-wise XOR of two arrays element-wise.
Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator ^.

Parameters

1.4. Routines and objects by topic 1237

NumPy Reference, Release 2.2.0

x1, x2
[array_like] Only integer and boolean types are handled. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.
See also:

logical_xor
bitwise_and
bitwise_or
binary_repr

Return the binary representation of the input number as a string.

Examples

>>> import numpy as np

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise XOR of
13 and 17 is therefore 00011100, or 28:

>>> np.bitwise_xor(13, 17)
28
>>> np.binary_repr(28)
'11100'

>>> np.bitwise_xor(31, 5)
26
>>> np.bitwise_xor([31,3], 5)
array([26, 6])

>>> np.bitwise_xor([31,3], [5,6])
array([26, 5])
>>> np.bitwise_xor([True, True], [False, True])
array([True, False])

The ^ operator can be used as a shorthand for np.bitwise_xor on ndarrays.

1238 1. Python API

NumPy Reference, Release 2.2.0

>>> x1 = np.array([True, True])
>>> x2 = np.array([False, True])
>>> x1 ^ x2
array([True, False])

numpy.invert(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'invert'>

Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator ~.
For signed integer inputs, the bit-wise NOT of the absolute value is returned. In a two’s-complement system, this
operation effectively flips all the bits, resulting in a representation that corresponds to the negative of the input plus
one. This is the most commonmethod of representing signed integers on computers [1]. AN-bit two’s-complement
system can represent every integer in the range −2N−1 to +2N−1 − 1.

Parameters
x

[array_like] Only integer and boolean types are handled.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Result. This is a scalar if x is a scalar.
See also:

bitwise_and, bitwise_or, bitwise_xor
logical_not
binary_repr

Return the binary representation of the input number as a string.

1.4. Routines and objects by topic 1239

NumPy Reference, Release 2.2.0

Notes

numpy.bitwise_not is an alias for invert:

>>> np.bitwise_not is np.invert
True

References

[1]

Examples

>>> import numpy as np

We’ve seen that 13 is represented by 00001101. The invert or bit-wise NOT of 13 is then:

>>> x = np.invert(np.array(13, dtype=np.uint8))
>>> x
np.uint8(242)
>>> np.binary_repr(x, width=8)
'11110010'

The result depends on the bit-width:

>>> x = np.invert(np.array(13, dtype=np.uint16))
>>> x
np.uint16(65522)
>>> np.binary_repr(x, width=16)
'1111111111110010'

When using signed integer types, the result is the bit-wise NOT of the unsigned type, interpreted as a signed integer:

>>> np.invert(np.array([13], dtype=np.int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'

Booleans are accepted as well:

>>> np.invert(np.array([True, False]))
array([False, True])

The ~ operator can be used as a shorthand for np.invert on ndarrays.

>>> x1 = np.array([True, False])
>>> ~x1
array([False, True])

numpy.bitwise_invert(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'invert'>

Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator ~.

1240 1. Python API

NumPy Reference, Release 2.2.0

For signed integer inputs, the bit-wise NOT of the absolute value is returned. In a two’s-complement system, this
operation effectively flips all the bits, resulting in a representation that corresponds to the negative of the input plus
one. This is the most commonmethod of representing signed integers on computers [1]. AN-bit two’s-complement
system can represent every integer in the range −2N−1 to +2N−1 − 1.

Parameters
x

[array_like] Only integer and boolean types are handled.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Result. This is a scalar if x is a scalar.
See also:

bitwise_and, bitwise_or, bitwise_xor
logical_not
binary_repr

Return the binary representation of the input number as a string.

Notes

numpy.bitwise_not is an alias for invert:

>>> np.bitwise_not is np.invert
True

References

[1]

1.4. Routines and objects by topic 1241

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np

We’ve seen that 13 is represented by 00001101. The invert or bit-wise NOT of 13 is then:

>>> x = np.invert(np.array(13, dtype=np.uint8))
>>> x
np.uint8(242)
>>> np.binary_repr(x, width=8)
'11110010'

The result depends on the bit-width:

>>> x = np.invert(np.array(13, dtype=np.uint16))
>>> x
np.uint16(65522)
>>> np.binary_repr(x, width=16)
'1111111111110010'

When using signed integer types, the result is the bit-wise NOT of the unsigned type, interpreted as a signed integer:

>>> np.invert(np.array([13], dtype=np.int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'

Booleans are accepted as well:

>>> np.invert(np.array([True, False]))
array([False, True])

The ~ operator can be used as a shorthand for np.invert on ndarrays.

>>> x1 = np.array([True, False])
>>> ~x1
array([False, True])

numpy.left_shift(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'left_shift'>

Shift the bits of an integer to the left.
Bits are shifted to the left by appending x2 0s at the right of x1. Since the internal representation of numbers is in
binary format, this operation is equivalent to multiplying x1 by 2**x2.

Parameters
x1

[array_like of integer type] Input values.
x2

[array_like of integer type] Number of zeros to append to x1. Has to be non-negative. If x1.
shape != x2.shape, they must be broadcastable to a common shape (which becomes
the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,

1242 1. Python API

NumPy Reference, Release 2.2.0

a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[array of integer type] Return x1 with bits shifted x2 times to the left. This is a scalar if both
x1 and x2 are scalars.

See also:

right_shift
Shift the bits of an integer to the right.

binary_repr
Return the binary representation of the input number as a string.

Examples

>>> import numpy as np
>>> np.binary_repr(5)
'101'
>>> np.left_shift(5, 2)
20
>>> np.binary_repr(20)
'10100'

>>> np.left_shift(5, [1,2,3])
array([10, 20, 40])

Note that the dtype of the second argument may change the dtype of the result and can lead to unexpected results
in some cases (see Casting Rules):

>>> a = np.left_shift(np.uint8(255), np.int64(1)) # Expect 254
>>> print(a, type(a)) # Unexpected result due to upcasting
510 <class 'numpy.int64'>
>>> b = np.left_shift(np.uint8(255), np.uint8(1))
>>> print(b, type(b))
254 <class 'numpy.uint8'>

The << operator can be used as a shorthand for np.left_shift on ndarrays.

>>> x1 = 5
>>> x2 = np.array([1, 2, 3])
>>> x1 << x2
array([10, 20, 40])

1.4. Routines and objects by topic 1243

NumPy Reference, Release 2.2.0

numpy.bitwise_left_shift(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature]) = <ufunc 'left_shift'>

Shift the bits of an integer to the left.
Bits are shifted to the left by appending x2 0s at the right of x1. Since the internal representation of numbers is in
binary format, this operation is equivalent to multiplying x1 by 2**x2.

Parameters
x1

[array_like of integer type] Input values.
x2

[array_like of integer type] Number of zeros to append to x1. Has to be non-negative. If x1.
shape != x2.shape, they must be broadcastable to a common shape (which becomes
the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[array of integer type] Return x1 with bits shifted x2 times to the left. This is a scalar if both
x1 and x2 are scalars.

See also:

right_shift
Shift the bits of an integer to the right.

binary_repr
Return the binary representation of the input number as a string.

Examples

>>> import numpy as np
>>> np.binary_repr(5)
'101'
>>> np.left_shift(5, 2)
20
>>> np.binary_repr(20)
'10100'

>>> np.left_shift(5, [1,2,3])
array([10, 20, 40])

1244 1. Python API

NumPy Reference, Release 2.2.0

Note that the dtype of the second argument may change the dtype of the result and can lead to unexpected results
in some cases (see Casting Rules):

>>> a = np.left_shift(np.uint8(255), np.int64(1)) # Expect 254
>>> print(a, type(a)) # Unexpected result due to upcasting
510 <class 'numpy.int64'>
>>> b = np.left_shift(np.uint8(255), np.uint8(1))
>>> print(b, type(b))
254 <class 'numpy.uint8'>

The << operator can be used as a shorthand for np.left_shift on ndarrays.

>>> x1 = 5
>>> x2 = np.array([1, 2, 3])
>>> x1 << x2
array([10, 20, 40])

numpy.right_shift(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'right_shift'>

Shift the bits of an integer to the right.
Bits are shifted to the right x2. Because the internal representation of numbers is in binary format, this operation
is equivalent to dividing x1 by 2**x2.

Parameters
x1

[array_like, int] Input values.
x2

[array_like, int] Number of bits to remove at the right of x1. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray, int] Return x1 with bits shifted x2 times to the right. This is a scalar if both x1 and
x2 are scalars.

See also:

left_shift
Shift the bits of an integer to the left.

1.4. Routines and objects by topic 1245

NumPy Reference, Release 2.2.0

binary_repr
Return the binary representation of the input number as a string.

Examples

>>> import numpy as np
>>> np.binary_repr(10)
'1010'
>>> np.right_shift(10, 1)
5
>>> np.binary_repr(5)
'101'

>>> np.right_shift(10, [1,2,3])
array([5, 2, 1])

The >> operator can be used as a shorthand for np.right_shift on ndarrays.

>>> x1 = 10
>>> x2 = np.array([1,2,3])
>>> x1 >> x2
array([5, 2, 1])

numpy.bitwise_right_shift(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature]) = <ufunc 'right_shift'>

Shift the bits of an integer to the right.
Bits are shifted to the right x2. Because the internal representation of numbers is in binary format, this operation
is equivalent to dividing x1 by 2**x2.

Parameters
x1

[array_like, int] Input values.
x2

[array_like, int] Number of bits to remove at the right of x1. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns

1246 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray, int] Return x1 with bits shifted x2 times to the right. This is a scalar if both x1 and
x2 are scalars.

See also:

left_shift
Shift the bits of an integer to the left.

binary_repr
Return the binary representation of the input number as a string.

Examples

>>> import numpy as np
>>> np.binary_repr(10)
'1010'
>>> np.right_shift(10, 1)
5
>>> np.binary_repr(5)
'101'

>>> np.right_shift(10, [1,2,3])
array([5, 2, 1])

The >> operator can be used as a shorthand for np.right_shift on ndarrays.

>>> x1 = 10
>>> x2 = np.array([1,2,3])
>>> x1 >> x2
array([5, 2, 1])

Bit packing

packbits(a, /[, axis, bitorder]) Packs the elements of a binary-valued array into bits in a
uint8 array.

unpackbits(a, /[, axis, count, bitorder]) Unpacks elements of a uint8 array into a binary-valued
output array.

numpy.packbits(a, / , axis=None, bitorder='big')
Packs the elements of a binary-valued array into bits in a uint8 array.
The result is padded to full bytes by inserting zero bits at the end.

Parameters
a

[array_like] An array of integers or booleans whose elements should be packed to bits.
axis

[int, optional] The dimension over which bit-packing is done. None implies packing the flat-
tened array.

1.4. Routines and objects by topic 1247

NumPy Reference, Release 2.2.0

bitorder
[{‘big’, ‘little’}, optional] The order of the input bits. ‘big’ will mimic bin(val), [0, 0, 0,
0, 0, 0, 1, 1] => 3 = 0b00000011, ‘little’ will reverse the order so [1, 1, 0,
0, 0, 0, 0, 0] => 3. Defaults to ‘big’.

Returns
packed

[ndarray] Array of type uint8 whose elements represent bits corresponding to the logical (0 or
nonzero) value of the input elements. The shape of packed has the same number of dimensions
as the input (unless axis is None, in which case the output is 1-D).

See also:

unpackbits
Unpacks elements of a uint8 array into a binary-valued output array.

Examples

>>> import numpy as np
>>> a = np.array([[[1,0,1],
... [0,1,0]],
... [[1,1,0],
... [0,0,1]]])
>>> b = np.packbits(a, axis=-1)
>>> b
array([[[160],

[64]],
[[192],
[32]]], dtype=uint8)

Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, and 32 = 0010 0000.
numpy.unpackbits(a, / , axis=None, count=None, bitorder='big')

Unpacks elements of a uint8 array into a binary-valued output array.
Each element of a represents a bit-field that should be unpacked into a binary-valued output array. The shape of
the output array is either 1-D (if axis is None) or the same shape as the input array with unpacking done along the
axis specified.

Parameters
a

[ndarray, uint8 type] Input array.
axis

[int, optional] The dimension over which bit-unpacking is done. None implies unpacking the
flattened array.

count
[int or None, optional] The number of elements to unpack along axis, provided as a way of
undoing the effect of packing a size that is not a multiple of eight. A non-negative number
means to only unpack count bits. A negative number means to trim off that many bits from
the end. Nonemeans to unpack the entire array (the default). Counts larger than the available
number of bits will add zero padding to the output. Negative counts must not exceed the
available number of bits.

bitorder
[{‘big’, ‘little’}, optional] The order of the returned bits. ‘big’ will mimic bin(val), 3 =

1248 1. Python API

NumPy Reference, Release 2.2.0

0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1], ‘little’ will reverse the order
to [1, 1, 0, 0, 0, 0, 0, 0]. Defaults to ‘big’.

Returns
unpacked

[ndarray, uint8 type] The elements are binary-valued (0 or 1).
See also:

packbits
Packs the elements of a binary-valued array into bits in a uint8 array.

Examples

>>> import numpy as np
>>> a = np.array([[2], [7], [23]], dtype=np.uint8)
>>> a
array([[2],

[7],
[23]], dtype=uint8)

>>> b = np.unpackbits(a, axis=1)
>>> b
array([[0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)

>>> c = np.unpackbits(a, axis=1, count=-3)
>>> c
array([[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0]], dtype=uint8)

>>> p = np.packbits(b, axis=0)
>>> np.unpackbits(p, axis=0)
array([[0, 0, 0, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)

>>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0]))
True

Output formatting

binary_repr(num[, width]) Return the binary representation of the input number as a
string.

numpy.binary_repr(num, width=None)
Return the binary representation of the input number as a string.

1.4. Routines and objects by topic 1249

NumPy Reference, Release 2.2.0

For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the two’s comple-
ment of the number is returned, with respect to that width.
In a two’s-complement system negative numbers are represented by the two’s complement of the absolute value.
This is the most common method of representing signed integers on computers [1]. A N-bit two’s-complement
system can represent every integer in the range −2N−1 to +2N−1 − 1.

Parameters
num

[int] Only an integer decimal number can be used.
width

[int, optional] The length of the returned string if num is positive, or the length of the two’s
complement if num is negative, provided that width is at least a sufficient number of bits for
num to be represented in the designated form. If the width value is insufficient, an error is
raised.

Returns
bin

[str] Binary representation of num or two’s complement of num.
See also:

base_repr
Return a string representation of a number in the given base system.

bin
Python’s built-in binary representation generator of an integer.

Notes

binary_repr is equivalent to using base_repr with base 2, but about 25x faster.

References

[1]

Examples

>>> import numpy as np
>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'

The two’s complement is returned when the input number is negative and width is specified:

>>> np.binary_repr(-3, width=3)
'101'
>>> np.binary_repr(-3, width=5)
'11101'

1250 1. Python API

https://docs.python.org/3/library/functions.html#bin

NumPy Reference, Release 2.2.0

1.4.5 Datetime support functions

datetime_as_string(arr[, unit, timezone, ...]) Convert an array of datetimes into an array of strings.
datetime_data(dtype, /) Get information about the step size of a date or time type.

numpy.datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind')
Convert an array of datetimes into an array of strings.

Parameters
arr

[array_like of datetime64] The array of UTC timestamps to format.
unit

[str] One of None, ‘auto’, or a datetime unit.
timezone

[{‘naive’, ‘UTC’, ‘local’} or tzinfo] Timezone information to use when displaying the datetime.
If ‘UTC’, end with a Z to indicate UTC time. If ‘local’, convert to the local timezone first, and
suffix with a +-#### timezone offset. If a tzinfo object, then do as with ‘local’, but use the
specified timezone.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}] Casting to allow when changing between datetime
units.

Returns
str_arr

[ndarray] An array of strings the same shape as arr.

Examples

>>> import numpy as np
>>> import pytz
>>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
>>> d
array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',

'2002-10-27T07:30'], dtype='datetime64[m]')

Setting the timezone to UTC shows the same information, but with a Z suffix

>>> np.datetime_as_string(d, timezone='UTC')
array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z',

'2002-10-27T07:30Z'], dtype='<U35')

Note that we picked datetimes that cross a DST boundary. Passing in a pytz timezone object will print the
appropriate offset

>>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern'))
array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400',

'2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='<U39')

Passing in a unit will change the precision

1.4. Routines and objects by topic 1251

NumPy Reference, Release 2.2.0

>>> np.datetime_as_string(d, unit='h')
array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'],

dtype='<U32')
>>> np.datetime_as_string(d, unit='s')
array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00',

'2002-10-27T07:30:00'], dtype='<U38')

‘casting’ can be used to specify whether precision can be changed

>>> np.datetime_as_string(d, unit='h', casting='safe')
Traceback (most recent call last):

...
TypeError: Cannot create a datetime string as units 'h' from a NumPy
datetime with units 'm' according to the rule 'safe'

numpy.datetime_data(dtype, /)
Get information about the step size of a date or time type.
The returned tuple can be passed as the second argument of numpy.datetime64 and numpy.
timedelta64.

Parameters
dtype

[dtype] The dtype object, which must be a datetime64 or timedelta64 type.
Returns

unit
[str] The datetime unit on which this dtype is based.

count
[int] The number of base units in a step.

Examples

>>> import numpy as np
>>> dt_25s = np.dtype('timedelta64[25s]')
>>> np.datetime_data(dt_25s)
('s', 25)
>>> np.array(10, dt_25s).astype('timedelta64[s]')
array(250, dtype='timedelta64[s]')

The result can be used to construct a datetime that uses the same units as a timedelta

>>> np.datetime64('2010', np.datetime_data(dt_25s))
np.datetime64('2010-01-01T00:00:00','25s')

1252 1. Python API

NumPy Reference, Release 2.2.0

Business day functions

busdaycalendar([weekmask, holidays]) A business day calendar object that efficiently stores in-
formation defining valid days for the busday family of
functions.

is_busday(dates[, weekmask, holidays, ...]) Calculates which of the given dates are valid days, and
which are not.

busday_offset(dates, offsets[, roll, ...]) First adjusts the date to fall on a valid day according to the
roll rule, then applies offsets to the given dates counted
in valid days.

busday_count(begindates, enddates[, ...]) Counts the number of valid days between begindates and
enddates, not including the day of enddates.

class numpy.busdaycalendar(weekmask='1111100', holidays=None)
A business day calendar object that efficiently stores information defining valid days for the busday family of func-
tions.
The default valid days are Monday through Friday (“business days”). A busdaycalendar object can be specified with
any set of weekly valid days, plus an optional “holiday” dates that always will be invalid.
Once a busdaycalendar object is created, the weekmask and holidays cannot be modified.

Parameters
weekmask

[str or array_like of bool, optional] A seven-element array indicating which ofMonday through
Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a
length-seven string, like ‘1111100’; or a string like “Mon Tue Wed Thu Fri”, made up of 3-
character abbreviations for weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays
[array_like of datetime64[D], optional] An array of dates to consider as invalid dates, nomatter
which weekday they fall upon. Holiday dates may be specified in any order, and NaT (not-a-
time) dates are ignored. This list is saved in a normalized form that is suited for fast calculations
of valid days.

Returns
out

[busdaycalendar] A business day calendar object containing the specified weekmask and hol-
idays values.

See also:

is_busday
Returns a boolean array indicating valid days.

busday_offset
Applies an offset counted in valid days.

busday_count
Counts how many valid days are in a half-open date range.

1.4. Routines and objects by topic 1253

NumPy Reference, Release 2.2.0

Notes

Once a busdaycalendar object is created, you cannot modify the weekmask or holidays. The attributes return copies
of internal data.

Examples

>>> import numpy as np
>>> # Some important days in July
... bdd = np.busdaycalendar(
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
>>> # Default is Monday to Friday weekdays
... bdd.weekmask
array([True, True, True, True, True, False, False])
>>> # Any holidays already on the weekend are removed
... bdd.holidays
array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')

Attributes
weekmask

[(copy) seven-element array of bool] A copy of the seven-element boolean mask indicating
valid days.

holidays
[(copy) sorted array of datetime64[D]] A copy of the holiday array indicating additional invalid
days.

numpy.is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None)
Calculates which of the given dates are valid days, and which are not.

Parameters
dates

[array_like of datetime64[D]] The array of dates to process.
weekmask

[str or array_like of bool, optional] A seven-element array indicating which ofMonday through
Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a
length-seven string, like ‘1111100’; or a string like “Mon Tue Wed Thu Fri”, made up of 3-
character abbreviations for weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays
[array_like of datetime64[D], optional] An array of dates to consider as invalid dates. They
may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a
normalized form that is suited for fast calculations of valid days.

busdaycal
[busdaycalendar, optional] A busdaycalendar object which specifies the valid days. If
this parameter is provided, neither weekmask nor holidays may be provided.

out
[array of bool, optional] If provided, this array is filled with the result.

Returns

1254 1. Python API

NumPy Reference, Release 2.2.0

out
[array of bool] An array with the same shape as dates, containing True for each valid day,
and False for each invalid day.

See also:

busdaycalendar
An object that specifies a custom set of valid days.

busday_offset
Applies an offset counted in valid days.

busday_count
Counts how many valid days are in a half-open date range.

Examples

>>> import numpy as np
>>> # The weekdays are Friday, Saturday, and Monday
... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
array([False, False, True])

numpy.busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None,
out=None)

First adjusts the date to fall on a valid day according to the roll rule, then applies offsets to the given dates counted
in valid days.

Parameters
dates

[array_like of datetime64[D]] The array of dates to process.
offsets

[array_like of int] The array of offsets, which is broadcast with dates.
roll

[{‘raise’, ‘nat’, ‘forward’, ‘following’, ‘backward’, ‘preceding’, ‘modifiedfollowing’, ‘modified-
preceding’}, optional] How to treat dates that do not fall on a valid day. The default is ‘raise’.
• ‘raise’ means to raise an exception for an invalid day.
• ‘nat’ means to return a NaT (not-a-time) for an invalid day.
• ‘forward’ and ‘following’ mean to take the first valid day later in time.
• ‘backward’ and ‘preceding’ mean to take the first valid day earlier in time.
• ‘modifiedfollowing’ means to take the first valid day later in time unless it is across a Month
boundary, in which case to take the first valid day earlier in time.

• ‘modifiedpreceding’ means to take the first valid day earlier in time unless it is across aMonth
boundary, in which case to take the first valid day later in time.

weekmask
[str or array_like of bool, optional] A seven-element array indicating which ofMonday through
Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a
length-seven string, like ‘1111100’; or a string like “Mon Tue Wed Thu Fri”, made up of 3-
character abbreviations for weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

1.4. Routines and objects by topic 1255

NumPy Reference, Release 2.2.0

holidays
[array_like of datetime64[D], optional] An array of dates to consider as invalid dates. They
may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a
normalized form that is suited for fast calculations of valid days.

busdaycal
[busdaycalendar, optional] A busdaycalendar object which specifies the valid days. If
this parameter is provided, neither weekmask nor holidays may be provided.

out
[array of datetime64[D], optional] If provided, this array is filled with the result.

Returns
out

[array of datetime64[D]] An array with a shape from broadcasting dates and offsets
together, containing the dates with offsets applied.

See also:

busdaycalendar
An object that specifies a custom set of valid days.

is_busday
Returns a boolean array indicating valid days.

busday_count
Counts how many valid days are in a half-open date range.

Examples

>>> import numpy as np
>>> # First business day in October 2011 (not accounting for holidays)
... np.busday_offset('2011-10', 0, roll='forward')
np.datetime64('2011-10-03')
>>> # Last business day in February 2012 (not accounting for holidays)
... np.busday_offset('2012-03', -1, roll='forward')
np.datetime64('2012-02-29')
>>> # Third Wednesday in January 2011
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
np.datetime64('2011-01-19')
>>> # 2012 Mother's Day in Canada and the U.S.
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
np.datetime64('2012-05-13')

>>> # First business day on or after a date
... np.busday_offset('2011-03-20', 0, roll='forward')
np.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
np.datetime64('2011-03-22')
>>> # First business day after a date
... np.busday_offset('2011-03-20', 1, roll='backward')
np.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
np.datetime64('2011-03-23')

1256 1. Python API

NumPy Reference, Release 2.2.0

numpy.busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None)
Counts the number of valid days between begindates and enddates, not including the day of enddates.
If enddates specifies a date value that is earlier than the corresponding begindates date value, the count will
be negative.

Parameters
begindates

[array_like of datetime64[D]] The array of the first dates for counting.
enddates

[array_like of datetime64[D]] The array of the end dates for counting, which are excluded
from the count themselves.

weekmask
[str or array_like of bool, optional] A seven-element array indicating which ofMonday through
Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a
length-seven string, like ‘1111100’; or a string like “Mon Tue Wed Thu Fri”, made up of 3-
character abbreviations for weekdays, optionally separated by white space. Valid abbreviations
are: Mon Tue Wed Thu Fri Sat Sun

holidays
[array_like of datetime64[D], optional] An array of dates to consider as invalid dates. They
may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a
normalized form that is suited for fast calculations of valid days.

busdaycal
[busdaycalendar, optional] A busdaycalendar object which specifies the valid days. If
this parameter is provided, neither weekmask nor holidays may be provided.

out
[array of int, optional] If provided, this array is filled with the result.

Returns
out

[array of int] An array with a shape from broadcasting begindates and enddates to-
gether, containing the number of valid days between the begin and end dates.

See also:

busdaycalendar
An object that specifies a custom set of valid days.

is_busday
Returns a boolean array indicating valid days.

busday_offset
Applies an offset counted in valid days.

1.4. Routines and objects by topic 1257

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> # Number of weekdays in January 2011
... np.busday_count('2011-01', '2011-02')
21
>>> # Number of weekdays in 2011
>>> np.busday_count('2011', '2012')
260
>>> # Number of Saturdays in 2011
... np.busday_count('2011', '2012', weekmask='Sat')
53

1.4.6 Data type routines

can_cast(from_, to[, casting]) Returns True if cast between data types can occur accord-
ing to the casting rule.

promote_types(type1, type2) Returns the data type with the smallest size and smallest
scalar kind to which both type1 and type2 may be
safely cast.

min_scalar_type(a, /) For scalar a, returns the data type with the smallest size
and smallest scalar kind which can hold its value.

result_type(*arrays_and_dtypes) Returns the type that results from applying the NumPy
type promotion rules to the arguments.

common_type(*arrays) Return a scalar type which is common to the input arrays.

numpy.can_cast(from_, to, casting='safe')
Returns True if cast between data types can occur according to the casting rule.

Parameters
from_

[dtype, dtype specifier, NumPy scalar, or array] Data type, NumPy scalar, or array to cast
from.

to
[dtype or dtype specifier] Data type to cast to.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.
• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.

Returns
out

[bool] True if cast can occur according to the casting rule.

1258 1. Python API

NumPy Reference, Release 2.2.0

See also:

dtype, result_type

Notes

Changed in version 2.0: This function does not support Python scalars anymore and does not apply any value-based
logic for 0-D arrays and NumPy scalars.

Examples

Basic examples

>>> import numpy as np
>>> np.can_cast(np.int32, np.int64)
True
>>> np.can_cast(np.float64, complex)
True
>>> np.can_cast(complex, float)
False

>>> np.can_cast('i8', 'f8')
True
>>> np.can_cast('i8', 'f4')
False
>>> np.can_cast('i4', 'S4')
False

numpy.promote_types(type1, type2)
Returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be
safely cast. The returned data type is always considered “canonical”, this mainly means that the promoted dtype
will always be in native byte order.
This function is symmetric, but rarely associative.

Parameters
type1

[dtype or dtype specifier] First data type.
type2

[dtype or dtype specifier] Second data type.
Returns

out
[dtype] The promoted data type.

See also:

result_type, dtype, can_cast

1.4. Routines and objects by topic 1259

NumPy Reference, Release 2.2.0

Notes

Please see numpy.result_type for additional information about promotion.
Starting in NumPy 1.9, promote_types function now returns a valid string length when given an integer or float
dtype as one argument and a string dtype as another argument. Previously it always returned the input string dtype,
even if it wasn’t long enough to store the max integer/float value converted to a string.
Changed in version 1.23.0.
NumPy now supports promotion for more structured dtypes. It will now remove unnecessary padding from a
structure dtype and promote included fields individually.

Examples

>>> import numpy as np
>>> np.promote_types('f4', 'f8')
dtype('float64')

>>> np.promote_types('i8', 'f4')
dtype('float64')

>>> np.promote_types('>i8', '<c8')
dtype('complex128')

>>> np.promote_types('i4', 'S8')
dtype('S11')

An example of a non-associative case:

>>> p = np.promote_types
>>> p('S', p('i1', 'u1'))
dtype('S6')
>>> p(p('S', 'i1'), 'u1')
dtype('S4')

numpy.min_scalar_type(a, /)
For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value. For
non-scalar array a, returns the vector’s dtype unmodified.
Floating point values are not demoted to integers, and complex values are not demoted to floats.

Parameters
a

[scalar or array_like] The value whose minimal data type is to be found.
Returns

out
[dtype] The minimal data type.

See also:

result_type, promote_types, dtype, can_cast

1260 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.min_scalar_type(10)
dtype('uint8')

>>> np.min_scalar_type(-260)
dtype('int16')

>>> np.min_scalar_type(3.1)
dtype('float16')

>>> np.min_scalar_type(1e50)
dtype('float64')

>>> np.min_scalar_type(np.arange(4,dtype='f8'))
dtype('float64')

numpy.result_type(*arrays_and_dtypes)
Returns the type that results from applying the NumPy type promotion rules to the arguments.
Type promotion in NumPy works similarly to the rules in languages like C++, with some slight differences. When
both scalars and arrays are used, the array’s type takes precedence and the actual value of the scalar is taken into
account.
For example, calculating 3*a, where a is an array of 32-bit floats, intuitively should result in a 32-bit float output.
If the 3 is a 32-bit integer, the NumPy rules indicate it can’t convert losslessly into a 32-bit float, so a 64-bit float
should be the result type. By examining the value of the constant, ‘3’, we see that it fits in an 8-bit integer, which
can be cast losslessly into the 32-bit float.

Parameters
arrays_and_dtypes

[list of arrays and dtypes] The operands of some operation whose result type is needed.
Returns

out
[dtype] The result type.

See also:

dtype, promote_types, min_scalar_type, can_cast

Notes

The specific algorithm used is as follows.
Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex)
the maximum kind of all the arrays and the scalars are.
If there are only scalars or the maximum category of the scalars is higher than the maximum category of the arrays,
the data types are combined with promote_types to produce the return value.
Otherwise, min_scalar_type is called on each scalar, and the resulting data types are all combined with
promote_types to produce the return value.

1.4. Routines and objects by topic 1261

NumPy Reference, Release 2.2.0

The set of int values is not a subset of the uint values for types with the same number of bits, something not reflected
in min_scalar_type, but handled as a special case in result_type.

Examples

>>> import numpy as np
>>> np.result_type(3, np.arange(7, dtype='i1'))
dtype('int8')

>>> np.result_type('i4', 'c8')
dtype('complex128')

>>> np.result_type(3.0, -2)
dtype('float64')

numpy.common_type(*arrays)
Return a scalar type which is common to the input arrays.
The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays.
If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype.
All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information.

Parameters
array1, array2, …

[ndarrays] Input arrays.
Returns

out
[data type code] Data type code.

See also:

dtype, mintypecode

Examples

>>> np.common_type(np.arange(2, dtype=np.float32))
<class 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<class 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<class 'numpy.complex128'>

1262 1. Python API

NumPy Reference, Release 2.2.0

Creating data types

dtype(dtype[, align, copy]) Create a data type object.
rec.format_parser(formats, names, titles[, ...]) Class to convert formats, names, titles description to a

dtype.

Data type information

finfo(dtype) Machine limits for floating point types.
iinfo(type) Machine limits for integer types.

class numpy.finfo(dtype)
Machine limits for floating point types.

Parameters
dtype

[float, dtype, or instance] Kind of floating point or complex floating point data-type about
which to get information.

See also:

iinfo
The equivalent for integer data types.

spacing
The distance between a value and the nearest adjacent number

nextafter
The next floating point value after x1 towards x2

Notes

For developers of NumPy: do not instantiate this at the module level. The initial calculation of these parameters is
expensive and negatively impacts import times. These objects are cached, so calling finfo() repeatedly inside
your functions is not a problem.
Note that smallest_normal is not actually the smallest positive representable value in a NumPy floating point
type. As in the IEEE-754 standard [1], NumPy floating point types make use of subnormal numbers to fill the gap
between 0 and smallest_normal. However, subnormal numbers may have significantly reduced precision [2].
This function can also be used for complex data types as well. If used, the output will be the same as the corre-
sponding real float type (e.g. numpy.finfo(numpy.csingle) is the same as numpy.finfo(numpy.single)). However,
the output is true for the real and imaginary components.

1.4. Routines and objects by topic 1263

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

>>> import numpy as np
>>> np.finfo(np.float64).dtype
dtype('float64')
>>> np.finfo(np.complex64).dtype
dtype('float32')

Attributes
bits

[int] The number of bits occupied by the type.
dtype

[dtype] Returns the dtype for which finfo returns information. For complex input, the re-
turned dtype is the associated float* dtype for its real and complex components.

eps
[float] The difference between 1.0 and the next smallest representable float larger than 1.0. For
example, for 64-bit binary floats in the IEEE-754 standard, eps = 2**-52, approximately
2.22e-16.

epsneg
[float] The difference between 1.0 and the next smallest representable float less than 1.0. For
example, for 64-bit binary floats in the IEEE-754 standard, epsneg = 2**-53, approxi-
mately 1.11e-16.

iexp
[int] The number of bits in the exponent portion of the floating point representation.

machep
[int] The exponent that yields eps.

max
[floating point number of the appropriate type] The largest representable number.

maxexp
[int] The smallest positive power of the base (2) that causes overflow.

min
[floating point number of the appropriate type] The smallest representable number, typically
-max.

minexp
[int] The most negative power of the base (2) consistent with there being no leading 0’s in the
mantissa.

negep
[int] The exponent that yields epsneg.

nexp
[int] The number of bits in the exponent including its sign and bias.

nmant
[int] The number of bits in the mantissa.

1264 1. Python API

NumPy Reference, Release 2.2.0

precision
[int] The approximate number of decimal digits to which this kind of float is precise.

resolution
[floating point number of the appropriate type] The approximate decimal resolution of this
type, i.e., 10**-precision.

tiny
[float] Return the value for tiny, alias of smallest_normal.

smallest_normal
[float] Return the value for the smallest normal.

smallest_subnormal
[float] The smallest positive floating point number with 0 as leading bit in themantissa following
IEEE-754.

class numpy.iinfo(type)
Machine limits for integer types.

Parameters
int_type

[integer type, dtype, or instance] The kind of integer data type to get information about.
See also:

finfo
The equivalent for floating point data types.

Examples

With types:

>>> import numpy as np
>>> ii16 = np.iinfo(np.int16)
>>> ii16.min
-32768
>>> ii16.max
32767
>>> ii32 = np.iinfo(np.int32)
>>> ii32.min
-2147483648
>>> ii32.max
2147483647

With instances:

>>> ii32 = np.iinfo(np.int32(10))
>>> ii32.min
-2147483648
>>> ii32.max
2147483647

Attributes
bits

[int] The number of bits occupied by the type.

1.4. Routines and objects by topic 1265

NumPy Reference, Release 2.2.0

dtype
[dtype] Returns the dtype for which iinfo returns information.

min
[int] Minimum value of given dtype.

max
[int] Maximum value of given dtype.

Data type testing

isdtype(dtype, kind) Determine if a provided dtype is of a specified data type
kind.

issubdtype(arg1, arg2) Returns True if first argument is a typecode lower/equal
in type hierarchy.

numpy.isdtype(dtype, kind)
Determine if a provided dtype is of a specified data type kind.
This function only supports built-in NumPy’s data types. Third-party dtypes are not yet supported.

Parameters
dtype

[dtype] The input dtype.
kind

[dtype or str or tuple of dtypes/strs.] dtype or dtype kind. Allowed dtype kinds are: * 'bool'
: boolean kind * 'signed integer' : signed integer data types * 'unsigned inte-
ger' : unsigned integer data types * 'integral' : integer data types * 'real float-
ing' : real-valued floating-point data types * 'complex floating' : complex floating-
point data types * 'numeric' : numeric data types

Returns
out

[bool]
See also:

issubdtype

Examples

>>> import numpy as np
>>> np.isdtype(np.float32, np.float64)
False
>>> np.isdtype(np.float32, "real floating")
True
>>> np.isdtype(np.complex128, ("real floating", "complex floating"))
True

numpy.issubdtype(arg1, arg2)
Returns True if first argument is a typecode lower/equal in type hierarchy.
This is like the builtin issubclass, but for dtypes.

1266 1. Python API

https://docs.python.org/3/library/functions.html#issubclass

NumPy Reference, Release 2.2.0

Parameters
arg1, arg2

[dtype_like] dtype or object coercible to one
Returns

out
[bool]

See also:

Scalars
Overview of the numpy type hierarchy.

Examples

issubdtype can be used to check the type of arrays:

>>> ints = np.array([1, 2, 3], dtype=np.int32)
>>> np.issubdtype(ints.dtype, np.integer)
True
>>> np.issubdtype(ints.dtype, np.floating)
False

>>> floats = np.array([1, 2, 3], dtype=np.float32)
>>> np.issubdtype(floats.dtype, np.integer)
False
>>> np.issubdtype(floats.dtype, np.floating)
True

Similar types of different sizes are not subdtypes of each other:

>>> np.issubdtype(np.float64, np.float32)
False
>>> np.issubdtype(np.float32, np.float64)
False

but both are subtypes of floating:

>>> np.issubdtype(np.float64, np.floating)
True
>>> np.issubdtype(np.float32, np.floating)
True

For convenience, dtype-like objects are allowed too:

>>> np.issubdtype('S1', np.bytes_)
True
>>> np.issubdtype('i4', np.signedinteger)
True

1.4. Routines and objects by topic 1267

NumPy Reference, Release 2.2.0

Miscellaneous

typename(char) Return a description for the given data type code.
mintypecode(typechars[, typeset, default]) Return the character for the minimum-size type to which

given types can be safely cast.

numpy.typename(char)
Return a description for the given data type code.

Parameters
char

[str] Data type code.
Returns

out
[str] Description of the input data type code.

See also:

dtype

Examples

>>> import numpy as np
>>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
>>> for typechar in typechars:
... print(typechar, ' : ', np.typename(typechar))
...
S1 : character
? : bool
B : unsigned char
D : complex double precision
G : complex long double precision
F : complex single precision
I : unsigned integer
H : unsigned short
L : unsigned long integer
O : object
Q : unsigned long long integer
S : string
U : unicode
V : void
b : signed char
d : double precision
g : long precision
f : single precision
i : integer
h : short
l : long integer
q : long long integer

1268 1. Python API

NumPy Reference, Release 2.2.0

numpy.mintypecode(typechars, typeset='GDFgdf', default='d')
Return the character for the minimum-size type to which given types can be safely cast.
The returned type character must represent the smallest size dtype such that an array of the returned type can handle
the data from an array of all types in typechars (or if typechars is an array, then its dtype.char).

Parameters
typechars

[list of str or array_like] If a list of strings, each string should represent a dtype. If array_like,
the character representation of the array dtype is used.

typeset
[str or list of str, optional] The set of characters that the returned character is chosen from.
The default set is ‘GDFgdf’.

default
[str, optional] The default character, this is returned if none of the characters in typechars
matches a character in typeset.

Returns
typechar

[str] The character representing the minimum-size type that was found.
See also:

dtype

Examples

>>> import numpy as np
>>> np.mintypecode(['d', 'f', 'S'])
'd'
>>> x = np.array([1.1, 2-3.j])
>>> np.mintypecode(x)
'D'

>>> np.mintypecode('abceh', default='G')
'G'

1.4.7 Floating point error handling

Setting and getting error handling

seterr([all, divide, over, under, invalid]) Set how floating-point errors are handled.
geterr() Get the current way of handling floating-point errors.
seterrcall(func) Set the floating-point error callback function or log object.
geterrcall() Return the current callback function used on floating-

point errors.
errstate(**kwargs) Context manager for floating-point error handling.

1.4. Routines and objects by topic 1269

NumPy Reference, Release 2.2.0

numpy.seterr(all=None, divide=None, over=None, under=None, invalid=None)
Set how floating-point errors are handled.
Note that operations on integer scalar types (such as int16) are handled like floating point, and are affected by
these settings.

Parameters
all

[{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Set treatment for all types of floating-
point errors at once:
• ignore: Take no action when the exception occurs.
• warn: Print a RuntimeWarning (via the Python warnings module).
• raise: Raise a FloatingPointError.
• call: Call a function specified using the seterrcall function.
• print: Print a warning directly to stdout.
• log: Record error in a Log object specified by seterrcall.
The default is not to change the current behavior.

divide
[{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for division by zero.

over
[{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for floating-point overflow.

under
[{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for floating-point underflow.

invalid
[{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for invalid floating-point op-
eration.

Returns
old_settings

[dict] Dictionary containing the old settings.
See also:

seterrcall
Set a callback function for the ‘call’ mode.

geterr, geterrcall, errstate

Notes

The floating-point exceptions are defined in the IEEE 754 standard [1]:
• Division by zero: infinite result obtained from finite numbers.
• Overflow: result too large to be expressed.
• Underflow: result so close to zero that some precision was lost.
• Invalid operation: result is not an expressible number, typically indicates that a NaN was produced.

1270 1. Python API

https://docs.python.org/3/library/exceptions.html#RuntimeWarning
https://docs.python.org/3/library/warnings.html#module-warnings
https://docs.python.org/3/library/exceptions.html#FloatingPointError

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> orig_settings = np.seterr(all='ignore') # seterr to known value
>>> np.int16(32000) * np.int16(3)
np.int16(30464)
>>> np.seterr(over='raise')
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
>>> old_settings = np.seterr(all='warn', over='raise')
>>> np.int16(32000) * np.int16(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FloatingPointError: overflow encountered in scalar multiply

>>> old_settings = np.seterr(all='print')
>>> np.geterr()
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
>>> np.int16(32000) * np.int16(3)
np.int16(30464)
>>> np.seterr(**orig_settings) # restore original
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}

numpy.geterr()

Get the current way of handling floating-point errors.
Returns

res
[dict] A dictionary with keys “divide”, “over”, “under”, and “invalid”, whose values are from
the strings “ignore”, “print”, “log”, “warn”, “raise”, and “call”. The keys represent possible
floating-point exceptions, and the values define how these exceptions are handled.

See also:

geterrcall, seterr, seterrcall

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

Examples

>>> import numpy as np
>>> np.geterr()
{'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
>>> np.arange(3.) / np.arange(3.)
array([nan, 1., 1.])
RuntimeWarning: invalid value encountered in divide

>>> oldsettings = np.seterr(all='warn', invalid='raise')
>>> np.geterr()
{'divide': 'warn', 'over': 'warn', 'under': 'warn', 'invalid': 'raise'}
>>> np.arange(3.) / np.arange(3.)
Traceback (most recent call last):

(continues on next page)

1.4. Routines and objects by topic 1271

NumPy Reference, Release 2.2.0

(continued from previous page)
...

FloatingPointError: invalid value encountered in divide
>>> oldsettings = np.seterr(**oldsettings) # restore original

numpy.seterrcall(func)
Set the floating-point error callback function or log object.
There are two ways to capture floating-point error messages. The first is to set the error-handler to ‘call’, using
seterr. Then, set the function to call using this function.
The second is to set the error-handler to ‘log’, using seterr. Floating-point errors then trigger a call to the ‘write’
method of the provided object.

Parameters
func

[callable f(err, flag) or object with write method] Function to call upon floating-point errors
(‘call’-mode) or object whose ‘write’ method is used to log such message (‘log’-mode).
The call function takes two arguments. The first is a string describing the type of error (such as
“divide by zero”, “overflow”, “underflow”, or “invalid value”), and the second is the status flag.
The flag is a byte, whose four least-significant bits indicate the type of error, one of “divide”,
“over”, “under”, “invalid”:

[0 0 0 0 divide over under invalid]

In other words, flags = divide + 2*over + 4*under + 8*invalid.
If an object is provided, its write method should take one argument, a string.

Returns
h

[callable, log instance or None] The old error handler.
See also:

seterr, geterr, geterrcall

Examples

Callback upon error:

>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
...

>>> import numpy as np

>>> orig_handler = np.seterrcall(err_handler)
>>> orig_err = np.seterr(all='call')

>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([inf, inf, inf])

1272 1. Python API

NumPy Reference, Release 2.2.0

>>> np.seterrcall(orig_handler)
<function err_handler at 0x...>
>>> np.seterr(**orig_err)
{'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}

Log error message:

>>> class Log:
... def write(self, msg):
... print("LOG: %s" % msg)
...

>>> log = Log()
>>> saved_handler = np.seterrcall(log)
>>> save_err = np.seterr(all='log')

>>> np.array([1, 2, 3]) / 0.0
LOG: Warning: divide by zero encountered in divide
array([inf, inf, inf])

>>> np.seterrcall(orig_handler)
<numpy.Log object at 0x...>
>>> np.seterr(**orig_err)
{'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}

numpy.geterrcall()

Return the current callback function used on floating-point errors.
When the error handling for a floating-point error (one of “divide”, “over”, “under”, or “invalid”) is set to ‘call’ or
‘log’, the function that is called or the log instance that is written to is returned by geterrcall. This function or
log instance has been set with seterrcall.

Returns
errobj

[callable, log instance or None] The current error handler. If no handler was set through
seterrcall, None is returned.

See also:

seterrcall, seterr, geterr

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

1.4. Routines and objects by topic 1273

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.geterrcall() # we did not yet set a handler, returns None

>>> orig_settings = np.seterr(all='call')
>>> def err_handler(type, flag):
... print("Floating point error (%s), with flag %s" % (type, flag))
>>> old_handler = np.seterrcall(err_handler)
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
array([inf, inf, inf])

>>> cur_handler = np.geterrcall()
>>> cur_handler is err_handler
True
>>> old_settings = np.seterr(**orig_settings) # restore original
>>> old_handler = np.seterrcall(None) # restore original

class numpy.errstate(**kwargs)
Context manager for floating-point error handling.
Using an instance of errstate as a context manager allows statements in that context to execute with a known
error handling behavior. Upon entering the context the error handling is set with seterr and seterrcall,
and upon exiting it is reset to what it was before.
Changed in version 1.17.0: errstate is also usable as a function decorator, saving a level of indentation if an
entire function is wrapped.
Changed in version 2.0: errstate is now fully thread and asyncio safe, but may not be entered more than once.
It is not safe to decorate async functions using errstate.

Parameters
kwargs

[{divide, over, under, invalid}] Keyword arguments. The valid keywords are the possible
floating-point exceptions. Each keyword should have a string value that defines the treatment
for the particular error. Possible values are {‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}.

See also:

seterr, geterr, seterrcall, geterrcall

Notes

For complete documentation of the types of floating-point exceptions and treatment options, see seterr.

1274 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.

>>> np.arange(3) / 0.
array([nan, inf, inf])
>>> with np.errstate(divide='ignore'):
... np.arange(3) / 0.
array([nan, inf, inf])

>>> np.sqrt(-1)
np.float64(nan)
>>> with np.errstate(invalid='raise'):
... np.sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

FloatingPointError: invalid value encountered in sqrt

Outside the context the error handling behavior has not changed:

>>> np.geterr()
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
>>> olderr = np.seterr(**olderr) # restore original state

Methods

__call__(func) Call self as a function.

method
errstate.__call__(func)

Call self as a function.

1.4.8 Functional programming

apply_along_axis(func1d, axis, arr, *args, ...) Apply a function to 1-D slices along the given axis.
apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes.
vectorize([pyfunc, otypes, doc, excluded, ...]) Returns an object that acts like pyfunc, but takes arrays as

input.
frompyfunc(func, /, nin, nout, *[, identity]) Takes an arbitrary Python function and returns a NumPy

ufunc.
piecewise(x, condlist, funclist, *args, **kw) Evaluate a piecewise-defined function.

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.
Execute func1d(a, *args, **kwargs) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.
This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii, jj, and kk
to a tuple of indices:

1.4. Routines and objects by topic 1275

NumPy Reference, Release 2.2.0

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
f = func1d(arr[ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex(Nj):

out[ii + jj + kk] = f[jj]

Equivalently, eliminating the inner loop, this can be expressed as:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])

Parameters
func1d

[function (M,) -> (Nj…)] This function should accept 1-D arrays. It is applied to 1-D slices of
arr along the specified axis.

axis
[integer] Axis along which arr is sliced.

arr
[ndarray (Ni…, M, Nk…)] Input array.

args
[any] Additional arguments to func1d.

kwargs
[any] Additional named arguments to func1d.

Returns
out

[ndarray (Ni…, Nj…, Nk…)] The output array. The shape of out is identical to the shape of
arr, except along the axis dimension. This axis is removed, and replaced with new dimensions
equal to the shape of the return value of func1d. So if func1d returns a scalar out will have
one fewer dimensions than arr.

See also:

apply_over_axes
Apply a function repeatedly over multiple axes.

Examples

>>> import numpy as np
>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])

1276 1. Python API

NumPy Reference, Release 2.2.0

For a function that returns a 1D array, the number of dimensions in outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],

[3, 4, 9],
[2, 5, 6]])

For a function that returns a higher dimensional array, those dimensions are inserted in place of the axis dimension.

>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)
array([[[1, 0, 0],

[0, 2, 0],
[0, 0, 3]],
[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],
[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])

numpy.apply_over_axes(func, a, axes)
Apply a function repeatedly over multiple axes.
func is called as res = func(a, axis), where axis is the first element of axes. The result res of the function call must
have either the same dimensions as a or one less dimension. If res has one less dimension than a, a dimension is
inserted before axis. The call to func is then repeated for each axis in axes, with res as the first argument.

Parameters
func

[function] This function must take two arguments, func(a, axis).
a

[array_like] Input array.
axes

[array_like] Axes over which func is applied; the elements must be integers.
Returns

apply_over_axis
[ndarray] The output array. The number of dimensions is the same as a, but the shape can
be different. This depends on whether func changes the shape of its output with respect to its
input.

See also:

apply_along_axis
Apply a function to 1-D slices of an array along the given axis.

1.4. Routines and objects by topic 1277

NumPy Reference, Release 2.2.0

Notes

This function is equivalent to tuple axis arguments to reorderable ufuncs with keepdims=True. Tuple axis arguments
to ufuncs have been available since version 1.7.0.

Examples

>>> import numpy as np
>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

Sum over axes 0 and 2. The result has same number of dimensions as the original array:

>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[60],

[92],
[124]]])

Tuple axis arguments to ufuncs are equivalent:

>>> np.sum(a, axis=(0,2), keepdims=True)
array([[[60],

[92],
[124]]])

class numpy.vectorize(pyfunc=np._NoValue, otypes=None, doc=None, excluded=None, cache=False,
signature=None)

Returns an object that acts like pyfunc, but takes arrays as input.
Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a single
numpy array or a tuple of numpy arrays. The vectorized function evaluates pyfunc over successive tuples of the
input arrays like the python map function, except it uses the broadcasting rules of numpy.
The data type of the output of vectorized is determined by calling the function with the first element of the input.
This can be avoided by specifying the otypes argument.

Parameters
pyfunc

[callable, optional] A python function or method. Can be omitted to produce a decorator with
keyword arguments.

otypes
[str or list of dtypes, optional] The output data type. It must be specified as either a string of
typecode characters or a list of data type specifiers. There should be one data type specifier
for each output.

doc
[str, optional] The docstring for the function. If None, the docstring will be the pyfunc.
__doc__.

1278 1. Python API

NumPy Reference, Release 2.2.0

excluded
[set, optional] Set of strings or integers representing the positional or keyword arguments for
which the function will not be vectorized. These will be passed directly to pyfunc unmodified.

cache
[bool, optional] If True, then cache the first function call that determines the number of outputs
if otypes is not provided.

signature
[string, optional] Generalized universal function signature, e.g., (m,n),(n)->(m) for vec-
torized matrix-vector multiplication. If provided, pyfunc will be called with (and expected
to return) arrays with shapes given by the size of corresponding core dimensions. By default,
pyfunc is assumed to take scalars as input and output.

Returns
out

[callable] A vectorized function if pyfunc was provided, a decorator otherwise.
See also:

frompyfunc
Takes an arbitrary Python function and returns a ufunc

Notes

The vectorize function is provided primarily for convenience, not for performance. The implementation is
essentially a for loop.
If otypes is not specified, then a call to the function with the first argument will be used to determine the number
of outputs. The results of this call will be cached if cache is True to prevent calling the function twice. However,
to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only do
this if your function is expensive.
The new keyword argument interface and excluded argument support further degrades performance.

References

[1]

Examples

>>> import numpy as np
>>> def myfunc(a, b):
... "Return a-b if a>b, otherwise return a+b"
... if a > b:
... return a - b
... else:
... return a + b

>>> vfunc = np.vectorize(myfunc)
>>> vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])

The docstring is taken from the input function to vectorize unless it is specified:

1.4. Routines and objects by topic 1279

NumPy Reference, Release 2.2.0

>>> vfunc.__doc__
'Return a-b if a>b, otherwise return a+b'
>>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`')
>>> vfunc.__doc__
'Vectorized `myfunc`'

The output type is determined by evaluating the first element of the input, unless it is specified:

>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<class 'numpy.int64'>
>>> vfunc = np.vectorize(myfunc, otypes=[float])
>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
<class 'numpy.float64'>

The excluded argument can be used to prevent vectorizing over certain arguments. This can be useful for array-like
arguments of a fixed length such as the coefficients for a polynomial as in polyval:

>>> def mypolyval(p, x):
... _p = list(p)
... res = _p.pop(0)
... while _p:
... res = res*x + _p.pop(0)
... return res

Here, we exclude the zeroth argument from vectorization whether it is passed by position or keyword.

>>> vpolyval = np.vectorize(mypolyval, excluded={0, 'p'})
>>> vpolyval([1, 2, 3], x=[0, 1])
array([3, 6])
>>> vpolyval(p=[1, 2, 3], x=[0, 1])
array([3, 6])

The signature argument allows for vectorizing functions that act on non-scalar arrays of fixed length. For example,
you can use it for a vectorized calculation of Pearson correlation coefficient and its p-value:

>>> import scipy.stats
>>> pearsonr = np.vectorize(scipy.stats.pearsonr,
... signature='(n),(n)->(),()')
>>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]])
(array([1., -1.]), array([0., 0.]))

Or for a vectorized convolution:

>>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)')
>>> convolve(np.eye(4), [1, 2, 1])
array([[1., 2., 1., 0., 0., 0.],

[0., 1., 2., 1., 0., 0.],
[0., 0., 1., 2., 1., 0.],
[0., 0., 0., 1., 2., 1.]])

Decorator syntax is supported. The decorator can be called as a function to provide keyword arguments:

>>> @np.vectorize
... def identity(x):
... return x

(continues on next page)

1280 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
...
>>> identity([0, 1, 2])
array([0, 1, 2])
>>> @np.vectorize(otypes=[float])
... def as_float(x):
... return x
...
>>> as_float([0, 1, 2])
array([0., 1., 2.])

Methods

__call__(*args, **kwargs) Call self as a function.

method
vectorize.__call__(*args, **kwargs)

Call self as a function.
numpy.frompyfunc(func, / , nin, nout, *[, identity])

Takes an arbitrary Python function and returns a NumPy ufunc.
Can be used, for example, to add broadcasting to a built-in Python function (see Examples section).

Parameters
func

[Python function object] An arbitrary Python function.
nin

[int] The number of input arguments.
nout

[int] The number of objects returned by func.
identity

[object, optional] The value to use for the identity attribute of the resulting object.
If specified, this is equivalent to setting the underlying C identity field to PyU-
Func_IdentityValue. If omitted, the identity is set to PyUFunc_None. Note that
this is _not_ equivalent to setting the identity to None, which implies the operation is reorder-
able.

Returns
out

[ufunc] Returns a NumPy universal function (ufunc) object.
See also:

vectorize
Evaluates pyfunc over input arrays using broadcasting rules of numpy.

1.4. Routines and objects by topic 1281

NumPy Reference, Release 2.2.0

Notes

The returned ufunc always returns PyObject arrays.

Examples

Use frompyfunc to add broadcasting to the Python function oct:

>>> import numpy as np
>>> oct_array = np.frompyfunc(oct, 1, 1)
>>> oct_array(np.array((10, 30, 100)))
array(['0o12', '0o36', '0o144'], dtype=object)
>>> np.array((oct(10), oct(30), oct(100))) # for comparison
array(['0o12', '0o36', '0o144'], dtype='<U5')

numpy.piecewise(x, condlist, funclist, *args, **kw)
Evaluate a piecewise-defined function.
Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its con-
dition is true.

Parameters
x

[ndarray or scalar] The input domain.
condlist

[list of bool arrays or bool scalars] Each boolean array corresponds to a function in funclist.
Wherever condlist[i] is True, funclist[i](x) is used as the output value.
Each boolean array in condlist selects a piece of x, and should therefore be of the same shape
as x.
The length of condlist must correspond to that of funclist. If one extra function is given, i.e.
if len(funclist) == len(condlist) + 1, then that extra function is the default
value, used wherever all conditions are false.

funclist
[list of callables, f(x,*args,**kw), or scalars] Each function is evaluated over x wherever its
corresponding condition is True. It should take a 1d array as input and give an 1d array or a
scalar value as output. If, instead of a callable, a scalar is provided then a constant function
(lambda x: scalar) is assumed.

args
[tuple, optional] Any further arguments given to piecewise are passed to the functions upon
execution, i.e., if called piecewise(..., ..., 1, 'a'), then each function is called
as f(x, 1, 'a').

kw
[dict, optional] Keyword arguments used in calling piecewise are passed to the functions
upon execution, i.e., if called piecewise(..., ..., alpha=1), then each function
is called as f(x, alpha=1).

Returns
out

[ndarray] The output is the same shape and type as x and is found by calling the functions in
funclist on the appropriate portions of x, as defined by the boolean arrays in condlist. Portions
not covered by any condition have a default value of 0.

1282 1. Python API

NumPy Reference, Release 2.2.0

See also:

choose, select, where

Notes

This is similar to choose or select, except that functions are evaluated on elements of x that satisfy the corresponding
condition from condlist.
The result is:

|--
|funclist[0](x[condlist[0]])

out = |funclist[1](x[condlist[1]])
|...
funclist[n2](x[condlist[n2]])

Examples

>>> import numpy as np

Define the signum function, which is -1 for x < 0 and +1 for x >= 0.

>>> x = np.linspace(-2.5, 2.5, 6)
>>> np.piecewise(x, [x < 0, x >= 0], [-1, 1])
array([-1., -1., -1., 1., 1., 1.])

Define the absolute value, which is -x for x <0 and x for x >= 0.

>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
array([2.5, 1.5, 0.5, 0.5, 1.5, 2.5])

Apply the same function to a scalar value.

>>> y = -2
>>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x])
array(2)

1.4.9 Input and output

NumPy binary files (npy, npz)

load(file[, mmap_mode, allow_pickle, ...]) Load arrays or pickled objects from .npy, .npz or pick-
led files.

save(file, arr[, allow_pickle, fix_imports]) Save an array to a binary file in NumPy .npy format.
savez(file, *args[, allow_pickle]) Save several arrays into a single file in uncompressed .

npz format.
savez_compressed(file, *args[, allow_pickle]) Save several arrays into a single file in compressed .npz

format.
lib.npyio.NpzFile(fid) A dictionary-like object with lazy-loading of files in the

zipped archive provided on construction.

1.4. Routines and objects by topic 1283

NumPy Reference, Release 2.2.0

numpy.load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, encoding='ASCII', *,
max_header_size=10000)

Load arrays or pickled objects from .npy, .npz or pickled files.

Warning: Loading files that contain object arrays uses the pickle module, which is not secure against
erroneous or maliciously constructed data. Consider passing allow_pickle=False to load data that is
known not to contain object arrays for the safer handling of untrusted sources.

Parameters
file

[file-like object, string, or pathlib.Path] The file to read. File-like objects must support the
seek() and read() methods and must always be opened in binary mode. Pickled files
require that the file-like object support the readline() method as well.

mmap_mode
[{None, ‘r+’, ‘r’, ‘w+’, ‘c’}, optional] If not None, then memory-map the file, using the given
mode (see numpy.memmap for a detailed description of the modes). A memory-mapped
array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory
mapping is especially useful for accessing small fragments of large files without reading the
entire file into memory.

allow_pickle
[bool, optional] Allow loading pickled object arrays stored in npy files. Reasons for disallowing
pickles include security, as loading pickled data can execute arbitrary code. If pickles are
disallowed, loading object arrays will fail. Default: False

fix_imports
[bool, optional] Only useful when loading Python 2 generated pickled files on Python 3, which
includes npy/npz files containing object arrays. If fix_imports is True, pickle will try to map
the old Python 2 names to the new names used in Python 3.

encoding
[str, optional] What encoding to use when reading Python 2 strings. Only useful when loading
Python 2 generated pickled files in Python 3, which includes npy/npz files containing object
arrays. Values other than ‘latin1’, ‘ASCII’, and ‘bytes’ are not allowed, as they can corrupt
numerical data. Default: ‘ASCII’

max_header_size
[int, optional] Maximum allowed size of the header. Large headers may not be safe to load
securely and thus require explicitly passing a larger value. See ast.literal_eval for
details. This option is ignored when allow_pickle is passed. In that case the file is by definition
trusted and the limit is unnecessary.

Returns
result

[array, tuple, dict, etc.] Data stored in the file. For .npz files, the returned instance of NpzFile
class must be closed to avoid leaking file descriptors.

Raises
OSError

If the input file does not exist or cannot be read.
UnpicklingError

If allow_pickle=True, but the file cannot be loaded as a pickle.

1284 1. Python API

https://docs.python.org/3/library/ast.html#ast.literal_eval

NumPy Reference, Release 2.2.0

ValueError
The file contains an object array, but allow_pickle=False given.

EOFError
When calling np.load multiple times on the same file handle, if all data has already been
read

See also:

save, savez, savez_compressed, loadtxt
memmap

Create a memory-map to an array stored in a file on disk.
lib.format.open_memmap

Create or load a memory-mapped .npy file.

Notes

• If the file contains pickle data, then whatever object is stored in the pickle is returned.
• If the file is a .npy file, then a single array is returned.
• If the file is a .npz file, then a dictionary-like object is returned, containing {filename: array}
key-value pairs, one for each file in the archive.

• If the file is a .npz file, the returned value supports the context manager protocol in a similar fashion to the
open function:

with load('foo.npz') as data:
a = data['a']

The underlying file descriptor is closed when exiting the ‘with’ block.

Examples

>>> import numpy as np

Store data to disk, and load it again:

>>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]]))
>>> np.load('/tmp/123.npy')
array([[1, 2, 3],

[4, 5, 6]])

Store compressed data to disk, and load it again:

>>> a=np.array([[1, 2, 3], [4, 5, 6]])
>>> b=np.array([1, 2])
>>> np.savez('/tmp/123.npz', a=a, b=b)
>>> data = np.load('/tmp/123.npz')
>>> data['a']
array([[1, 2, 3],

[4, 5, 6]])
>>> data['b']
array([1, 2])
>>> data.close()

1.4. Routines and objects by topic 1285

NumPy Reference, Release 2.2.0

Mem-map the stored array, and then access the second row directly from disk:

>>> X = np.load('/tmp/123.npy', mmap_mode='r')
>>> X[1, :]
memmap([4, 5, 6])

numpy.save(file, arr, allow_pickle=True, fix_imports=<no value>)
Save an array to a binary file in NumPy .npy format.

Parameters
file

[file, str, or pathlib.Path] File or filename to which the data is saved. If file is a file-object, then
the filename is unchanged. If file is a string or Path, a .npy extension will be appended to the
filename if it does not already have one.

arr
[array_like] Array data to be saved.

allow_pickle
[bool, optional] Allow saving object arrays using Python pickles. Reasons for disallowing pick-
les include security (loading pickled data can execute arbitrary code) and portability (pickled
objects may not be loadable on different Python installations, for example if the stored objects
require libraries that are not available, and not all pickled data is compatible between different
versions of Python). Default: True

fix_imports
[bool, optional] The fix_imports flag is deprecated and has no effect.
Deprecated since version 2.1: This flag is ignored since NumPy 1.17 and was only needed to
support loading some files in Python 2 written in Python 3.

See also:

savez
Save several arrays into a .npz archive

savetxt, load

Notes

For a description of the .npy format, see numpy.lib.format.
Any data saved to the file is appended to the end of the file.

Examples

>>> import numpy as np

>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()

>>> x = np.arange(10)
>>> np.save(outfile, x)

1286 1. Python API

NumPy Reference, Release 2.2.0

>>> _ = outfile.seek(0) # Only needed to simulate closing & reopening file
>>> np.load(outfile)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> with open('test.npy', 'wb') as f:
... np.save(f, np.array([1, 2]))
... np.save(f, np.array([1, 3]))
>>> with open('test.npy', 'rb') as f:
... a = np.load(f)
... b = np.load(f)
>>> print(a, b)
[1 2] [1 3]

numpy.savez(file, *args, allow_pickle=True, **kwds)
Save several arrays into a single file in uncompressed .npz format.
Provide arrays as keyword arguments to store them under the corresponding name in the output file: savez(fn,
x=x, y=y).
If arrays are specified as positional arguments, i.e., savez(fn, x, y), their names will be arr_0, arr_1, etc.

Parameters
file

[file, str, or pathlib.Path] Either the filename (string) or an open file (file-like object) where
the data will be saved. If file is a string or a Path, the .npz extension will be appended to the
filename if it is not already there.

args
[Arguments, optional] Arrays to save to the file. Please use keyword arguments (see kwds
below) to assign names to arrays. Arrays specified as args will be named “arr_0”, “arr_1”, and
so on.

allow_pickle
[bool, optional] Allow saving object arrays using Python pickles. Reasons for disallowing pick-
les include security (loading pickled data can execute arbitrary code) and portability (pickled
objects may not be loadable on different Python installations, for example if the stored objects
require libraries that are not available, and not all pickled data is compatible between different
versions of Python). Default: True

kwds
[Keyword arguments, optional] Arrays to save to the file. Each array will be saved to the output
file with its corresponding keyword name.

Returns
None

See also:

save
Save a single array to a binary file in NumPy format.

savetxt
Save an array to a file as plain text.

savez_compressed
Save several arrays into a compressed .npz archive

1.4. Routines and objects by topic 1287

NumPy Reference, Release 2.2.0

Notes

The .npz file format is a zipped archive of files named after the variables they contain. The archive is not com-
pressed and each file in the archive contains one variable in .npy format. For a description of the .npy format,
see numpy.lib.format.
When opening the saved .npz file with load a NpzFile object is returned. This is a dictionary-like object
which can be queried for its list of arrays (with the .files attribute), and for the arrays themselves.
Keys passed in kwds are used as filenames inside the ZIP archive. Therefore, keys should be valid filenames; e.g.,
avoid keys that begin with / or contain ..
When naming variables with keyword arguments, it is not possible to name a variable file, as this would cause
the file argument to be defined twice in the call to savez.

Examples

>>> import numpy as np
>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()
>>> x = np.arange(10)
>>> y = np.sin(x)

Using savez with *args, the arrays are saved with default names.

>>> np.savez(outfile, x, y)
>>> _ = outfile.seek(0) # Only needed to simulate closing & reopening file
>>> npzfile = np.load(outfile)
>>> npzfile.files
['arr_0', 'arr_1']
>>> npzfile['arr_0']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Using savez with **kwds, the arrays are saved with the keyword names.

>>> outfile = TemporaryFile()
>>> np.savez(outfile, x=x, y=y)
>>> _ = outfile.seek(0)
>>> npzfile = np.load(outfile)
>>> sorted(npzfile.files)
['x', 'y']
>>> npzfile['x']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

numpy.savez_compressed(file, *args, allow_pickle=True, **kwds)

Save several arrays into a single file in compressed .npz format.
Provide arrays as keyword arguments to store them under the corresponding name in the output file:
savez_compressed(fn, x=x, y=y).
If arrays are specified as positional arguments, i.e., savez_compressed(fn, x, y), their names will be
arr_0, arr_1, etc.

Parameters
file

[file, str, or pathlib.Path] Either the filename (string) or an open file (file-like object) where

1288 1. Python API

NumPy Reference, Release 2.2.0

the data will be saved. If file is a string or a Path, the .npz extension will be appended to the
filename if it is not already there.

args
[Arguments, optional] Arrays to save to the file. Please use keyword arguments (see kwds
below) to assign names to arrays. Arrays specified as args will be named “arr_0”, “arr_1”, and
so on.

allow_pickle
[bool, optional] Allow saving object arrays using Python pickles. Reasons for disallowing pick-
les include security (loading pickled data can execute arbitrary code) and portability (pickled
objects may not be loadable on different Python installations, for example if the stored objects
require libraries that are not available, and not all pickled data is compatible between different
versions of Python). Default: True

kwds
[Keyword arguments, optional] Arrays to save to the file. Each array will be saved to the output
file with its corresponding keyword name.

Returns
None

See also:

numpy.save
Save a single array to a binary file in NumPy format.

numpy.savetxt
Save an array to a file as plain text.

numpy.savez
Save several arrays into an uncompressed .npz file format

numpy.load
Load the files created by savez_compressed.

Notes

The .npz file format is a zipped archive of files named after the variables they contain. The archive is com-
pressed with zipfile.ZIP_DEFLATED and each file in the archive contains one variable in .npy format. For
a description of the .npy format, see numpy.lib.format.
When opening the saved .npz file with load a NpzFile object is returned. This is a dictionary-like object
which can be queried for its list of arrays (with the .files attribute), and for the arrays themselves.

Examples

>>> import numpy as np
>>> test_array = np.random.rand(3, 2)
>>> test_vector = np.random.rand(4)
>>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector)
>>> loaded = np.load('/tmp/123.npz')
>>> print(np.array_equal(test_array, loaded['a']))
True
>>> print(np.array_equal(test_vector, loaded['b']))
True

1.4. Routines and objects by topic 1289

NumPy Reference, Release 2.2.0

The format of these binary file types is documented in numpy.lib.format

Text files

loadtxt(fname[, dtype, comments, delimiter, ...]) Load data from a text file.
savetxt(fname, X[, fmt, delimiter, newline, ...]) Save an array to a text file.
genfromtxt(fname[, dtype, comments, ...]) Load data from a text file, with missing values handled as

specified.
fromregex(file, regexp, dtype[, encoding]) Construct an array from a text file, using regular expres-

sion parsing.
fromstring(string[, dtype, count, like]) A new 1-D array initialized from text data in a string.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).
ndarray.tolist() Return the array as an a.ndim-levels deep nested list of

Python scalars.

numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ',
encoding=None)

Save an array to a text file.
Parameters

fname
[filename, file handle or pathlib.Path] If the filename ends in .gz, the file is automatically
saved in compressed gzip format. loadtxt understands gzipped files transparently.

X
[1D or 2D array_like] Data to be saved to a text file.

fmt
[str or sequence of strs, optional] A single format (%10.5f), a sequence of formats, or a multi-
format string, e.g. ‘Iteration %d – %10.5f’, in which case delimiter is ignored. For complex X,
the legal options for fmt are:
• a single specifier, fmt='%.4e', resulting in numbers formatted like ' (%s+%sj)' %
(fmt, fmt)

• a full string specifying every real and imaginary part, e.g. ' %.4e %+.4ej %.4e
%+.4ej %.4e %+.4ej' for 3 columns

• a list of specifiers, one per column - in this case, the real and imaginary part must have
separate specifiers, e.g. ['%.3e + %.3ej', '(%.15e%+.15ej)'] for 2 columns

delimiter
[str, optional] String or character separating columns.

newline
[str, optional] String or character separating lines.

header
[str, optional] String that will be written at the beginning of the file.

footer
[str, optional] String that will be written at the end of the file.

comments
[str, optional] String that will be prepended to the header and footer strings, to mark
them as comments. Default: ‘# ‘, as expected by e.g. numpy.loadtxt.

1290 1. Python API

NumPy Reference, Release 2.2.0

encoding
[{None, str}, optional] Encoding used to encode the outputfile. Does not apply to output
streams. If the encoding is something other than ‘bytes’ or ‘latin1’ you will not be able to load
the file in NumPy versions < 1.14. Default is ‘latin1’.

See also:

save
Save an array to a binary file in NumPy .npy format

savez
Save several arrays into an uncompressed .npz archive

savez_compressed
Save several arrays into a compressed .npz archive

Notes

Further explanation of the fmt parameter (%[flag]width[.precision]specifier):
flags:

- : left justify
+ : Forces to precede result with + or -.
0 : Left pad the number with zeros instead of space (see width).

width:
Minimum number of characters to be printed. The value is not truncated if it has more characters.

precision:
• For integer specifiers (eg. d,i,o,x), the minimum number of digits.
• For e, E and f specifiers, the number of digits to print after the decimal point.
• For g and G, the maximum number of significant digits.
• For s, the maximum number of characters.

specifiers:
c : character
d or i : signed decimal integer
e or E : scientific notation with e or E.
f : decimal floating point
g,G : use the shorter of e,E or f
o : signed octal
s : string of characters
u : unsigned decimal integer
x,X : unsigned hexadecimal integer

This explanation of fmt is not complete, for an exhaustive specification see [1].

1.4. Routines and objects by topic 1291

NumPy Reference, Release 2.2.0

References

[1]

Examples

>>> import numpy as np
>>> x = y = z = np.arange(0.0,5.0,1.0)
>>> np.savetxt('test.out', x, delimiter=',') # X is an array
>>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
>>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation

numpy.genfromtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, skip_header=0, skip_footer=0,
converters=None, missing_values=None, filling_values=None, usecols=None, names=None,
excludelist=None, deletechars=" !#$%&'()*+, -./:;<=>?@[\\]^{|}~" , replace_space='_',
autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False,
loose=True, invalid_raise=True, max_rows=None, encoding=None, *, ndmin=0, like=None)

Load data from a text file, with missing values handled as specified.
Each line past the first skip_header lines is split at the delimiter character, and characters following the comments
character are discarded.

Parameters
fname

[file, str, pathlib.Path, list of str, generator] File, filename, list, or generator to read. If the
filename extension is .gz or .bz2, the file is first decompressed. Note that generators must
return bytes or strings. The strings in a list or produced by a generator are treated as lines.

dtype
[dtype, optional] Data type of the resulting array. If None, the dtypes will be determined by
the contents of each column, individually.

comments
[str, optional] The character used to indicate the start of a comment. All the characters occur-
ring on a line after a comment are discarded.

delimiter
[str, int, or sequence, optional] The string used to separate values. By default, any consecu-
tive whitespaces act as delimiter. An integer or sequence of integers can also be provided as
width(s) of each field.

skiprows
[int, optional] skiprows was removed in numpy 1.10. Please use skip_header instead.

skip_header
[int, optional] The number of lines to skip at the beginning of the file.

skip_footer
[int, optional] The number of lines to skip at the end of the file.

converters
[variable, optional] The set of functions that convert the data of a column to a value. The
converters can also be used to provide a default value for missing data: converters =
{3: lambda s: float(s or 0)}.

missing
[variable, optional] missing was removed in numpy 1.10. Please use missing_values instead.

1292 1. Python API

NumPy Reference, Release 2.2.0

missing_values
[variable, optional] The set of strings corresponding to missing data.

filling_values
[variable, optional] The set of values to be used as default when the data are missing.

usecols
[sequence, optional] Which columns to read, with 0 being the first. For example, usecols
= (1, 4, 5) will extract the 2nd, 5th and 6th columns.

names
[{None, True, str, sequence}, optional] If names is True, the field names are read from the
first line after the first skip_header lines. This line can optionally be preceded by a comment
delimiter. Any content before the comment delimiter is discarded. If names is a sequence or
a single-string of comma-separated names, the names will be used to define the field names in
a structured dtype. If names is None, the names of the dtype fields will be used, if any.

excludelist
[sequence, optional] A list of names to exclude. This list is appended to the default list [‘re-
turn’,’file’,’print’]. Excluded names are appended with an underscore: for example, file would
become file_.

deletechars
[str, optional] A string combining invalid characters that must be deleted from the names.

defaultfmt
[str, optional] A format used to define default field names, such as “f%i” or “f_%02i”.

autostrip
[bool, optional] Whether to automatically strip white spaces from the variables.

replace_space
[char, optional] Character(s) used in replacement of white spaces in the variable names. By
default, use a ‘_’.

case_sensitive
[{True, False, ‘upper’, ‘lower’}, optional] If True, field names are case sensitive. If False or
‘upper’, field names are converted to upper case. If ‘lower’, field names are converted to lower
case.

unpack
[bool, optional] If True, the returned array is transposed, so that arguments may be unpacked
using x, y, z = genfromtxt(...). When used with a structured data-type, arrays
are returned for each field. Default is False.

usemask
[bool, optional] If True, return a masked array. If False, return a regular array.

loose
[bool, optional] If True, do not raise errors for invalid values.

invalid_raise
[bool, optional] If True, an exception is raised if an inconsistency is detected in the number of
columns. If False, a warning is emitted and the offending lines are skipped.

max_rows
[int, optional] The maximum number of rows to read. Must not be used with skip_footer at
the same time. If given, the value must be at least 1. Default is to read the entire file.

encoding
[str, optional] Encoding used to decode the inputfile. Does not apply when fname is a file

1.4. Routines and objects by topic 1293

NumPy Reference, Release 2.2.0

object. The special value ‘bytes’ enables backward compatibility workarounds that ensure that
you receive byte arrays when possible and passes latin1 encoded strings to converters. Override
this value to receive unicode arrays and pass strings as input to converters. If set to None the
system default is used. The default value is ‘bytes’.
Changed in version 2.0: Before NumPy 2, the default was 'bytes' for Python 2 compati-
bility. The default is now None.

ndmin
[int, optional] Same parameter as loadtxt
New in version 1.23.0.

like
[array_like, optional] Reference object to allow the creation of arrays which are not NumPy
arrays. If an array-like passed in as like supports the __array_function__ protocol,
the result will be defined by it. In this case, it ensures the creation of an array object compatible
with that passed in via this argument.
New in version 1.20.0.

Returns
out

[ndarray] Data read from the text file. If usemask is True, this is a masked array.
See also:

numpy.loadtxt
equivalent function when no data is missing.

Notes

• When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any
missing data between two fields.

• When variables are named (either by a flexible dtype or with a names sequence), there must not be any header
in the file (else a ValueError exception is raised).

• Individual values are not stripped of spaces by default. When using a custom converter, make sure the function
does remove spaces.

• Custom converters may receive unexpected values due to dtype discovery.

References

[1]

1294 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> from io import StringIO
>>> import numpy as np

Comma delimited file with mixed dtype

>>> s = StringIO("1,1.3,abcde")
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
array((1, 1.3, b'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])

Using dtype = None

>>> _ = s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, 'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '<U5')])

Specifying dtype and names

>>> _ = s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
array((1, 1.3, b'abcde'),

dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])

An example with fixed-width columns

>>> s = StringIO("11.3abcde")
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
... delimiter=[1,3,5])
>>> data
array((1, 1.3, 'abcde'),

dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '<U5')])

An example to show comments

>>> f = StringIO('''
... text,# of chars
... hello world,11
... numpy,5''')
>>> np.genfromtxt(f, dtype='S12,S12', delimiter=',')
array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')],
dtype=[('f0', 'S12'), ('f1', 'S12')])

numpy.fromregex(file, regexp, dtype, encoding=None)
Construct an array from a text file, using regular expression parsing.
The returned array is always a structured array, and is constructed from all matches of the regular expression in the
file. Groups in the regular expression are converted to fields of the structured array.

Parameters

1.4. Routines and objects by topic 1295

NumPy Reference, Release 2.2.0

file
[file, str, or pathlib.Path] Filename or file object to read.
Changed in version 1.22.0: Now accepts os.PathLike implementations.

regexp
[str or regexp] Regular expression used to parse the file. Groups in the regular expression
correspond to fields in the dtype.

dtype
[dtype or list of dtypes] Dtype for the structured array; must be a structured datatype.

encoding
[str, optional] Encoding used to decode the inputfile. Does not apply to input streams.

Returns
output

[ndarray] The output array, containing the part of the content of file that was matched by
regexp. output is always a structured array.

Raises
TypeError

When dtype is not a valid dtype for a structured array.
See also:

fromstring, loadtxt

Notes

Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field
name. For details see basics.rec.

Examples

>>> import numpy as np
>>> from io import StringIO
>>> text = StringIO("1312 foo\n1534 bar\n444 qux")

>>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything]
>>> output = np.fromregex(text, regexp,
... [('num', np.int64), ('key', 'S3')])
>>> output
array([(1312, b'foo'), (1534, b'bar'), (444, b'qux')],

dtype=[('num', '<i8'), ('key', 'S3')])
>>> output['num']
array([1312, 1534, 444])

1296 1. Python API

https://docs.python.org/3/library/os.html#os.PathLike

NumPy Reference, Release 2.2.0

Raw binary files

fromfile(file[, dtype, count, sep, offset, like]) Construct an array from data in a text or binary file.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).

String formatting

array2string(a[, max_line_width, precision, ...]) Return a string representation of an array.
array_repr(arr[, max_line_width, precision, ...]) Return the string representation of an array.
array_str(a[, max_line_width, precision, ...]) Return a string representation of the data in an array.
format_float_positional(x[, precision, ...]) Format a floating-point scalar as a decimal string in posi-

tional notation.
format_float_scientific(x[, precision, ...]) Format a floating-point scalar as a decimal string in sci-

entific notation.

numpy.array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=' ', prefix='',
style=<no value>, formatter=None, threshold=None, edgeitems=None, sign=None,
floatmode=None, suffix='', *, legacy=None)

Return a string representation of an array.
Parameters

a
[ndarray] Input array.

max_line_width
[int, optional] Inserts newlines if text is longer than max_line_width. Defaults to numpy.
get_printoptions()['linewidth'].

precision
[int or None, optional] Floating point precision. Defaults to numpy.
get_printoptions()['precision'].

suppress_small
[bool, optional] Represent numbers “very close” to zero as zero; default is False. Very close is
defined by precision: if the precision is 8, e.g., numbers smaller (in absolute value) than 5e-9
are represented as zero. Defaults to numpy.get_printoptions()['suppress'].

separator
[str, optional] Inserted between elements.

prefix
[str, optional]

suffix
[str, optional] The length of the prefix and suffix strings are used to respectively align and wrap
the output. An array is typically printed as:

prefix + array2string(a) + suffix

The output is left-padded by the length of the prefix string, andwrapping is forced at the column
max_line_width - len(suffix). It should be noted that the content of prefix and
suffix strings are not included in the output.

1.4. Routines and objects by topic 1297

NumPy Reference, Release 2.2.0

style
[_NoValue, optional] Has no effect, do not use.
Deprecated since version 1.14.0.

formatter
[dict of callables, optional] If not None, the keys should indicate the type(s) that the respective
formatting function applies to. Callables should return a string. Types that are not specified
(by their corresponding keys) are handled by the default formatters. Individual types for which
a formatter can be set are:
• ‘bool’
• ‘int’
• ‘timedelta’ : a numpy.timedelta64
• ‘datetime’ : a numpy.datetime64
• ‘float’
• ‘longfloat’ : 128-bit floats
• ‘complexfloat’
• ‘longcomplexfloat’ : composed of two 128-bit floats
• ‘void’ : type numpy.void
• ‘numpystr’ : types numpy.bytes_ and numpy.str_
Other keys that can be used to set a group of types at once are:
• ‘all’ : sets all types
• ‘int_kind’ : sets ‘int’
• ‘float_kind’ : sets ‘float’ and ‘longfloat’
• ‘complex_kind’ : sets ‘complexfloat’ and ‘longcomplexfloat’
• ‘str_kind’ : sets ‘numpystr’

threshold
[int, optional] Total number of array elements which trigger summarization rather than full
repr. Defaults to numpy.get_printoptions()['threshold'].

edgeitems
[int, optional] Number of array items in summary at beginning and end of each dimension.
Defaults to numpy.get_printoptions()['edgeitems'].

sign
[string, either ‘-’, ‘+’, or ‘ ‘, optional] Controls printing of the sign of floating-point types. If ‘+’,
always print the sign of positive values. If ‘ ‘, always prints a space (whitespace character) in
the sign position of positive values. If ‘-’, omit the sign character of positive values. Defaults
to numpy.get_printoptions()['sign'].
Changed in version 2.0: The sign parameter can now be an integer type, previously types were
floating-point types.

floatmode
[str, optional] Controls the interpretation of the precision option for floating-point types. De-
faults to numpy.get_printoptions()['floatmode']. Can take the following val-
ues:

1298 1. Python API

NumPy Reference, Release 2.2.0

• ‘fixed’: Always print exactly precision fractional digits, even if this would print more or fewer
digits than necessary to specify the value uniquely.

• ‘unique’: Print the minimum number of fractional digits necessary to represent each value
uniquely. Different elements may have a different number of digits. The value of the pre-
cision option is ignored.

• ‘maxprec’: Print at most precision fractional digits, but if an element can be uniquely repre-
sented with fewer digits only print it with that many.

• ‘maxprec_equal’: Print at most precision fractional digits, but if every element in the array
can be uniquely represented with an equal number of fewer digits, use that many digits for
all elements.

legacy
[string or False, optional] If set to the string '1.13' enables 1.13 legacy printing mode. This
approximates numpy 1.13 print output by including a space in the sign position of floats and
different behavior for 0d arrays. If set to False, disables legacy mode. Unrecognized strings
will be ignored with a warning for forward compatibility.

Returns
array_str

[str] String representation of the array.
Raises

TypeError
if a callable in formatter does not return a string.

See also:

array_str, array_repr, set_printoptions, get_printoptions

Notes

If a formatter is specified for a certain type, the precision keyword is ignored for that type.
This is a very flexible function; array_repr and array_str are using array2string internally so key-
words with the same name should work identically in all three functions.

Examples

>>> import numpy as np
>>> x = np.array([1e-16,1,2,3])
>>> np.array2string(x, precision=2, separator=',',
... suppress_small=True)
'[0.,1.,2.,3.]'

>>> x = np.arange(3.)
>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
'[0.00 1.00 2.00]'

>>> x = np.arange(3)
>>> np.array2string(x, formatter={'int':lambda x: hex(x)})
'[0x0 0x1 0x2]'

1.4. Routines and objects by topic 1299

NumPy Reference, Release 2.2.0

numpy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)
Return the string representation of an array.

Parameters
arr

[ndarray] Input array.
max_line_width

[int, optional] Inserts newlines if text is longer than max_line_width. Defaults to numpy.
get_printoptions()['linewidth'].

precision
[int, optional] Floating point precision. Defaults to numpy.
get_printoptions()['precision'].

suppress_small
[bool, optional] Represent numbers “very close” to zero as zero; default is False. Very close is
defined by precision: if the precision is 8, e.g., numbers smaller (in absolute value) than 5e-9
are represented as zero. Defaults to numpy.get_printoptions()['suppress'].

Returns
string

[str] The string representation of an array.
See also:

array_str, array2string, set_printoptions

Examples

>>> import numpy as np
>>> np.array_repr(np.array([1,2]))
'array([1, 2])'
>>> np.array_repr(np.ma.array([0.]))
'MaskedArray([0.])'
>>> np.array_repr(np.array([], np.int32))
'array([], dtype=int32)'

>>> x = np.array([1e-6, 4e-7, 2, 3])
>>> np.array_repr(x, precision=6, suppress_small=True)
'array([0.000001, 0. , 2. , 3.])'

numpy.array_str(a, max_line_width=None, precision=None, suppress_small=None)
Return a string representation of the data in an array.
The data in the array is returned as a single string. This function is similar to array_repr, the difference being
that array_repr also returns information on the kind of array and its data type.

Parameters
a

[ndarray] Input array.
max_line_width

[int, optional] Inserts newlines if text is longer than max_line_width. Defaults to numpy.
get_printoptions()['linewidth'].

1300 1. Python API

NumPy Reference, Release 2.2.0

precision
[int, optional] Floating point precision. Defaults to numpy.
get_printoptions()['precision'].

suppress_small
[bool, optional] Represent numbers “very close” to zero as zero; default is False. Very close is
defined by precision: if the precision is 8, e.g., numbers smaller (in absolute value) than 5e-9
are represented as zero. Defaults to numpy.get_printoptions()['suppress'].

See also:

array2string, array_repr, set_printoptions

Examples

>>> import numpy as np
>>> np.array_str(np.arange(3))
'[0 1 2]'

numpy.format_float_positional(x, precision=None, unique=True, fractional=True, trim='k', sign=False,
pad_left=None, pad_right=None, min_digits=None)

Format a floating-point scalar as a decimal string in positional notation.
Provides control over rounding, trimming and padding. Uses and assumes IEEE unbiased rounding. Uses the
“Dragon4” algorithm.

Parameters
x

[python float or numpy floating scalar] Value to format.
precision

[non-negative integer or None, optional] Maximum number of digits to print. May be None if
unique is True, but must be an integer if unique is False.

unique
[boolean, optional] If True, use a digit-generation strategy which gives the shortest represen-
tation which uniquely identifies the floating-point number from other values of the same type,
by judicious rounding. If precision is given fewer digits than necessary can be printed, or if
min_digits is given more can be printed, in which cases the last digit is rounded with unbiased
rounding. If False, digits are generated as if printing an infinite-precision value and stopping
after precision digits, rounding the remaining value with unbiased rounding

fractional
[boolean, optional] If True, the cutoffs of precision and min_digits refer to the total number of
digits after the decimal point, including leading zeros. If False, precision and min_digits refer
to the total number of significant digits, before or after the decimal point, ignoring leading
zeros.

trim
[one of ‘k’, ‘.’, ‘0’, ‘-’, optional] Controls post-processing trimming of trailing digits, as follows:
• ‘k’ : keep trailing zeros, keep decimal point (no trimming)
• ‘.’ : trim all trailing zeros, leave decimal point
• ‘0’ : trim all but the zero before the decimal point. Insert the zero if it is missing.
• ‘-’ : trim trailing zeros and any trailing decimal point

1.4. Routines and objects by topic 1301

NumPy Reference, Release 2.2.0

sign
[boolean, optional] Whether to show the sign for positive values.

pad_left
[non-negative integer, optional] Pad the left side of the string with whitespace until at least that
many characters are to the left of the decimal point.

pad_right
[non-negative integer, optional] Pad the right side of the string with whitespace until at least
that many characters are to the right of the decimal point.

min_digits
[non-negative integer or None, optional] Minimum number of digits to print. Only has an
effect if unique=True in which case additional digits past those necessary to uniquely identify
the value may be printed, rounding the last additional digit.
New in version 1.21.0.

Returns
rep

[string] The string representation of the floating point value
See also:

format_float_scientific

Examples

>>> import numpy as np
>>> np.format_float_positional(np.float32(np.pi))
'3.1415927'
>>> np.format_float_positional(np.float16(np.pi))
'3.14'
>>> np.format_float_positional(np.float16(0.3))
'0.3'
>>> np.format_float_positional(np.float16(0.3), unique=False, precision=10)
'0.3000488281'

numpy.format_float_scientific(x, precision=None, unique=True, trim='k', sign=False, pad_left=None,
exp_digits=None, min_digits=None)

Format a floating-point scalar as a decimal string in scientific notation.
Provides control over rounding, trimming and padding. Uses and assumes IEEE unbiased rounding. Uses the
“Dragon4” algorithm.

Parameters
x

[python float or numpy floating scalar] Value to format.
precision

[non-negative integer or None, optional] Maximum number of digits to print. May be None if
unique is True, but must be an integer if unique is False.

unique
[boolean, optional] If True, use a digit-generation strategy which gives the shortest represen-
tation which uniquely identifies the floating-point number from other values of the same type,
by judicious rounding. If precision is given fewer digits than necessary can be printed. If

1302 1. Python API

NumPy Reference, Release 2.2.0

min_digits is given more can be printed, in which cases the last digit is rounded with unbiased
rounding. If False, digits are generated as if printing an infinite-precision value and stopping
after precision digits, rounding the remaining value with unbiased rounding

trim
[one of ‘k’, ‘.’, ‘0’, ‘-’, optional] Controls post-processing trimming of trailing digits, as follows:
• ‘k’ : keep trailing zeros, keep decimal point (no trimming)
• ‘.’ : trim all trailing zeros, leave decimal point
• ‘0’ : trim all but the zero before the decimal point. Insert the zero if it is missing.
• ‘-’ : trim trailing zeros and any trailing decimal point

sign
[boolean, optional] Whether to show the sign for positive values.

pad_left
[non-negative integer, optional] Pad the left side of the string with whitespace until at least that
many characters are to the left of the decimal point.

exp_digits
[non-negative integer, optional] Pad the exponent with zeros until it contains at least this many
digits. If omitted, the exponent will be at least 2 digits.

min_digits
[non-negative integer or None, optional] Minimum number of digits to print. This only has an
effect for unique=True. In that case more digits than necessary to uniquely identify the value
may be printed and rounded unbiased.
New in version 1.21.0.

Returns
rep

[string] The string representation of the floating point value
See also:

format_float_positional

Examples

>>> import numpy as np
>>> np.format_float_scientific(np.float32(np.pi))
'3.1415927e+00'
>>> s = np.float32(1.23e24)
>>> np.format_float_scientific(s, unique=False, precision=15)
'1.230000071797338e+24'
>>> np.format_float_scientific(s, exp_digits=4)
'1.23e+0024'

1.4. Routines and objects by topic 1303

NumPy Reference, Release 2.2.0

Memory mapping files

memmap(filename[, dtype, mode, offset, ...]) Create a memory-map to an array stored in a binary file
on disk.

lib.format.open_memmap(filename[, mode, ...]) Open a .npy file as a memory-mapped array.

Text formatting options

set_printoptions([precision, threshold, ...]) Set printing options.
get_printoptions() Return the current print options.
printoptions(*args, **kwargs) Context manager for setting print options.

numpy.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None,
nanstr=None, infstr=None, formatter=None, sign=None, floatmode=None, *,
legacy=None, override_repr=None)

Set printing options.
These options determine the way floating point numbers, arrays and other NumPy objects are displayed.

Parameters
precision

[int or None, optional] Number of digits of precision for floating point output (default 8). May
be None if floatmode is not fixed, to print as many digits as necessary to uniquely specify the
value.

threshold
[int, optional] Total number of array elements which trigger summarization rather than full
repr (default 1000). To always use the full repr without summarization, pass sys.maxsize.

edgeitems
[int, optional] Number of array items in summary at beginning and end of each dimension
(default 3).

linewidth
[int, optional] The number of characters per line for the purpose of inserting line breaks (default
75).

suppress
[bool, optional] If True, always print floating point numbers using fixed point notation, in
which case numbers equal to zero in the current precision will print as zero. If False, then
scientific notation is used when absolute value of the smallest number is < 1e-4 or the ratio of
the maximum absolute value to the minimum is > 1e3. The default is False.

nanstr
[str, optional] String representation of floating point not-a-number (default nan).

infstr
[str, optional] String representation of floating point infinity (default inf).

sign
[string, either ‘-’, ‘+’, or ‘ ‘, optional] Controls printing of the sign of floating-point types. If ‘+’,
always print the sign of positive values. If ‘ ‘, always prints a space (whitespace character) in
the sign position of positive values. If ‘-’, omit the sign character of positive values. (default
‘-‘)

1304 1. Python API

https://docs.python.org/3/library/sys.html#sys.maxsize

NumPy Reference, Release 2.2.0

Changed in version 2.0: The sign parameter can now be an integer type, previously types were
floating-point types.

formatter
[dict of callables, optional] If not None, the keys should indicate the type(s) that the respective
formatting function applies to. Callables should return a string. Types that are not specified
(by their corresponding keys) are handled by the default formatters. Individual types for which
a formatter can be set are:
• ‘bool’
• ‘int’
• ‘timedelta’ : a numpy.timedelta64
• ‘datetime’ : a numpy.datetime64
• ‘float’
• ‘longfloat’ : 128-bit floats
• ‘complexfloat’
• ‘longcomplexfloat’ : composed of two 128-bit floats
• ‘numpystr’ : types numpy.bytes_ and numpy.str_
• ‘object’ : np.object_ arrays
Other keys that can be used to set a group of types at once are:
• ‘all’ : sets all types
• ‘int_kind’ : sets ‘int’
• ‘float_kind’ : sets ‘float’ and ‘longfloat’
• ‘complex_kind’ : sets ‘complexfloat’ and ‘longcomplexfloat’
• ‘str_kind’ : sets ‘numpystr’

floatmode
[str, optional] Controls the interpretation of the precision option for floating-point types. Can
take the following values (default maxprec_equal):
• ‘fixed’: Always print exactly precision fractional digits,

even if this would print more or fewer digits than necessary to specify the value uniquely.
• ‘unique’: Print the minimum number of fractional digits necessary

to represent each value uniquely. Different elements may have a different number of
digits. The value of the precision option is ignored.

• ‘maxprec’: Print at most precision fractional digits, but if
an element can be uniquely represented with fewer digits only print it with that many.

• ‘maxprec_equal’: Print at most precision fractional digits,
but if every element in the array can be uniquely represented with an equal number of
fewer digits, use that many digits for all elements.

legacy
[string or False, optional] If set to the string '1.13' enables 1.13 legacy printing mode. This
approximates numpy 1.13 print output by including a space in the sign position of floats and
different behavior for 0d arrays. This also enables 1.21 legacy printingmode (described below).

1.4. Routines and objects by topic 1305

NumPy Reference, Release 2.2.0

If set to the string '1.21' enables 1.21 legacy printing mode. This approximates numpy 1.21
print output of complex structured dtypes by not inserting spaces after commas that separate
fields and after colons.
If set to '1.25' approximates printing of 1.25 which mainly means that numeric scalars are
printed without their type information, e.g. as 3.0 rather than np.float64(3.0).
If set to '2.1', shape information is not given when arrays are summarized (i.e., multiple
elements replaced with ...).
If set to False, disables legacy mode.
Unrecognized strings will be ignored with a warning for forward compatibility.
Changed in version 1.22.0.
Changed in version 2.2.

override_repr: callable, optional
If set a passed function will be used for generating arrays’ repr. Other options will be ignored.

See also:

get_printoptions, printoptions, array2string

Notes

formatter is always reset with a call to set_printoptions.
Use printoptions as a context manager to set the values temporarily.

Examples

Floating point precision can be set:

>>> import numpy as np
>>> np.set_printoptions(precision=4)
>>> np.array([1.123456789])
[1.1235]

Long arrays can be summarised:

>>> np.set_printoptions(threshold=5)
>>> np.arange(10)
array([0, 1, 2, ..., 7, 8, 9], shape=(10,))

Small results can be suppressed:

>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)
>>> x**2 - (x + eps)**2
array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)
>>> x**2 - (x + eps)**2
array([-0., -0., 0., 0.])

A custom formatter can be used to display array elements as desired:

1306 1. Python API

NumPy Reference, Release 2.2.0

>>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)})
>>> x = np.arange(3)
>>> x
array([int: 0, int: -1, int: -2])
>>> np.set_printoptions() # formatter gets reset
>>> x
array([0, 1, 2])

To put back the default options, you can use:

>>> np.set_printoptions(edgeitems=3, infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)

Also to temporarily override options, use printoptions as a context manager:

>>> with np.printoptions(precision=2, suppress=True, threshold=5):
... np.linspace(0, 10, 10)
array([0. , 1.11, 2.22, ..., 7.78, 8.89, 10.], shape=(10,))

numpy.get_printoptions()

Return the current print options.
Returns

print_opts
[dict] Dictionary of current print options with keys
• precision : int
• threshold : int
• edgeitems : int
• linewidth : int
• suppress : bool
• nanstr : str
• infstr : str
• sign : str
• formatter : dict of callables
• floatmode : str
• legacy : str or False
For a full description of these options, see set_printoptions.

See also:

set_printoptions, printoptions

1.4. Routines and objects by topic 1307

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np

>>> np.get_printoptions()
{'edgeitems': 3, 'threshold': 1000, ..., 'override_repr': None}

>>> np.get_printoptions()['linewidth']
75
>>> np.set_printoptions(linewidth=100)
>>> np.get_printoptions()['linewidth']
100

numpy.printoptions(*args, **kwargs)
Context manager for setting print options.
Set print options for the scope of thewith block, and restore the old options at the end. See set_printoptions
for the full description of available options.
See also:

set_printoptions, get_printoptions

Examples

>>> import numpy as np

>>> from numpy.testing import assert_equal
>>> with np.printoptions(precision=2):
... np.array([2.0]) / 3
array([0.67])

The as-clause of the with-statement gives the current print options:

>>> with np.printoptions(precision=2) as opts:
... assert_equal(opts, np.get_printoptions())

Base-n representations

binary_repr(num[, width]) Return the binary representation of the input number as a
string.

base_repr(number[, base, padding]) Return a string representation of a number in the given
base system.

numpy.base_repr(number, base=2, padding=0)
Return a string representation of a number in the given base system.

Parameters
number

[int] The value to convert. Positive and negative values are handled.

1308 1. Python API

NumPy Reference, Release 2.2.0

base
[int, optional] Convertnumber to the base number system. The valid range is 2-36, the default
value is 2.

padding
[int, optional] Number of zeros padded on the left. Default is 0 (no padding).

Returns
out

[str] String representation of number in base system.
See also:

binary_repr
Faster version of base_repr for base 2.

Examples

>>> import numpy as np
>>> np.base_repr(5)
'101'
>>> np.base_repr(6, 5)
'11'
>>> np.base_repr(7, base=5, padding=3)
'00012'

>>> np.base_repr(10, base=16)
'A'
>>> np.base_repr(32, base=16)
'20'

Data sources

lib.npyio.DataSource([destpath]) A generic data source file (file, http, ftp, ...).

Binary format description

lib.format Binary serialization

1.4.10 Indexing routines

See also:
basics.indexing

1.4. Routines and objects by topic 1309

NumPy Reference, Release 2.2.0

Generating index arrays

c_ Translates slice objects to concatenation along the second
axis.

r_ Translates slice objects to concatenation along the first
axis.

s_ A nicer way to build up index tuples for arrays.
nonzero(a) Return the indices of the elements that are non-zero.
where(condition, [x, y], /) Return elements chosen from x or y depending on condi-

tion.
indices(dimensions[, dtype, sparse]) Return an array representing the indices of a grid.
ix_(*args) Construct an open mesh from multiple sequences.
ogrid An instance which returns an open multi-dimensional

"meshgrid".
ravel_multi_index(multi_index, dims[, mode,
...])

Converts a tuple of index arrays into an array of flat in-
dices, applying boundary modes to the multi-index.

unravel_index(indices, shape[, order]) Converts a flat index or array of flat indices into a tuple of
coordinate arrays.

diag_indices(n[, ndim]) Return the indices to access the main diagonal of an array.
diag_indices_from(arr) Return the indices to access the main diagonal of an n-

dimensional array.
mask_indices(n, mask_func[, k]) Return the indices to access (n, n) arrays, given a masking

function.
tril_indices(n[, k, m]) Return the indices for the lower-triangle of an (n, m) ar-

ray.
tril_indices_from(arr[, k]) Return the indices for the lower-triangle of arr.
triu_indices(n[, k, m]) Return the indices for the upper-triangle of an (n, m) ar-

ray.
triu_indices_from(arr[, k]) Return the indices for the upper-triangle of arr.

numpy.c_ = <numpy.lib._index_tricks_impl.CClass object>

Translates slice objects to concatenation along the second axis.
This is short-hand for np.r_['-1,2,0', index expression], which is useful because of its common
occurrence. In particular, arrays will be stacked along their last axis after being upgraded to at least 2-D with 1’s
post-pended to the shape (column vectors made out of 1-D arrays).
See also:

column_stack
Stack 1-D arrays as columns into a 2-D array.

r_
For more detailed documentation.

1310 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
array([[1, 4],

[2, 5],
[3, 6]])

>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
array([[1, 2, 3, ..., 4, 5, 6]])

numpy.r_ = <numpy.lib._index_tricks_impl.RClass object>

Translates slice objects to concatenation along the first axis.
This is a simple way to build up arrays quickly. There are two use cases.
1. If the index expression contains comma separated arrays, then stack them along their first axis.
2. If the index expression contains slice notation or scalars then create a 1-D array with a range indicated by the

slice notation.
If slice notation is used, the syntax start:stop:step is equivalent to np.arange(start, stop,
step) inside of the brackets. However, ifstep is an imaginary number (i.e. 100j) then its integer portion is inter-
preted as a number-of-points desired and the start and stop are inclusive. In other words start:stop:stepj
is interpreted as np.linspace(start, stop, step, endpoint=1) inside of the brackets. After
expansion of slice notation, all comma separated sequences are concatenated together.
Optional character strings placed as the first element of the index expression can be used to change the output. The
strings ‘r’ or ‘c’ result in matrix output. If the result is 1-D and ‘r’ is specified a 1 x N (row) matrix is produced.
If the result is 1-D and ‘c’ is specified, then a N x 1 (column) matrix is produced. If the result is 2-D then both
provide the same matrix result.
A string integer specifies which axis to stack multiple comma separated arrays along. A string of two comma-
separated integers allows indication of the minimum number of dimensions to force each entry into as the second
integer (the axis to concatenate along is still the first integer).
A string with three comma-separated integers allows specification of the axis to concatenate along, the minimum
number of dimensions to force the entries to, and which axis should contain the start of the arrays which are less
than the specified number of dimensions. In other words the third integer allows you to specify where the 1’s should
be placed in the shape of the arrays that have their shapes upgraded. By default, they are placed in the front of the
shape tuple. The third argument allows you to specify where the start of the array should be instead. Thus, a third
argument of ‘0’ would place the 1’s at the end of the array shape. Negative integers specify where in the new shape
tuple the last dimension of upgraded arrays should be placed, so the default is ‘-1’.

Parameters
Not a function, so takes no parameters

Returns
A concatenated ndarray or matrix.

See also:

concatenate
Join a sequence of arrays along an existing axis.

c_
Translates slice objects to concatenation along the second axis.

1.4. Routines and objects by topic 1311

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
array([1, 2, 3, ..., 4, 5, 6])
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6.])

String integers specify the axis to concatenate along or the minimum number of dimensions to force entries into.

>>> a = np.array([[0, 1, 2], [3, 4, 5]])
>>> np.r_['-1', a, a] # concatenate along last axis
array([[0, 1, 2, 0, 1, 2],

[3, 4, 5, 3, 4, 5]])
>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
array([[1, 2, 3],

[4, 5, 6]])

>>> np.r_['0,2,0', [1,2,3], [4,5,6]]
array([[1],

[2],
[3],
[4],
[5],
[6]])

>>> np.r_['1,2,0', [1,2,3], [4,5,6]]
array([[1, 4],

[2, 5],
[3, 6]])

Using ‘r’ or ‘c’ as a first string argument creates a matrix.

>>> np.r_['r',[1,2,3], [4,5,6]]
matrix([[1, 2, 3, 4, 5, 6]])

numpy.s_ = <numpy.lib._index_tricks_impl.IndexExpression object>

A nicer way to build up index tuples for arrays.

Note: Use one of the two predefined instances index_exp or s_ rather than directly using IndexExpression.

For any index combination, including slicing and axis insertion, a[indices] is the same as a[np.
index_exp[indices]] for any array a. However, np.index_exp[indices] can be used anywhere
in Python code and returns a tuple of slice objects that can be used in the construction of complex index expres-
sions.

Parameters
maketuple

[bool] If True, always returns a tuple.
See also:

s_
Predefined instance without tuple conversion: s_ = IndexExpression(maketuple=False). The index_exp is
another predefined instance that always returns a tuple: index_exp = IndexExpression(maketuple=True).

1312 1. Python API

NumPy Reference, Release 2.2.0

Notes

You can do all this with slice plus a few special objects, but there’s a lot to remember and this version is simpler
because it uses the standard array indexing syntax.

Examples

>>> import numpy as np
>>> np.s_[2::2]
slice(2, None, 2)
>>> np.index_exp[2::2]
(slice(2, None, 2),)

>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
array([2, 4])

numpy.nonzero(a)
Return the indices of the elements that are non-zero.
Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in that
dimension. The values in a are always tested and returned in row-major, C-style order.
To group the indices by element, rather than dimension, use argwhere, which returns a row for each non-zero
element.

Note: When called on a zero-d array or scalar, nonzero(a) is treated as nonzero(atleast_1d(a)).
Deprecated since version 1.17.0: Use atleast_1d explicitly if this behavior is deliberate.

Parameters
a

[array_like] Input array.
Returns

tuple_of_arrays
[tuple] Indices of elements that are non-zero.

See also:

flatnonzero
Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero
Equivalent ndarray method.

count_nonzero
Counts the number of non-zero elements in the input array.

1.4. Routines and objects by topic 1313

https://docs.python.org/3/library/functions.html#slice

NumPy Reference, Release 2.2.0

Notes

While the nonzero values can be obtained with a[nonzero(a)], it is recommended to use x[x.
astype(bool)] or x[x != 0] instead, which will correctly handle 0-d arrays.

Examples

>>> import numpy as np
>>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]])
>>> x
array([[3, 0, 0],

[0, 4, 0],
[5, 6, 0]])

>>> np.nonzero(x)
(array([0, 1, 2, 2]), array([0, 1, 0, 1]))

>>> x[np.nonzero(x)]
array([3, 4, 5, 6])
>>> np.transpose(np.nonzero(x))
array([[0, 0],

[1, 1],
[2, 0],
[2, 1]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the a
where the condition is true.

>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> a > 3
array([[False, False, False],

[True, True, True],
[True, True, True]])

>>> np.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

Using this result to index a is equivalent to using the mask directly:

>>> a[np.nonzero(a > 3)]
array([4, 5, 6, 7, 8, 9])
>>> a[a > 3] # prefer this spelling
array([4, 5, 6, 7, 8, 9])

nonzero can also be called as a method of the array.

>>> (a > 3).nonzero()
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

numpy.where(condition, [x, y,]/)
Return elements chosen from x or y depending on condition.

Note: When only condition is provided, this function is a shorthand for np.asarray(condition).
nonzero(). Using nonzero directly should be preferred, as it behaves correctly for subclasses. The rest
of this documentation covers only the case where all three arguments are provided.

1314 1. Python API

NumPy Reference, Release 2.2.0

Parameters
condition

[array_like, bool] Where True, yield x, otherwise yield y.
x, y

[array_like] Values from which to choose. x, y and condition need to be broadcastable to some
shape.

Returns
out

[ndarray] An array with elements from x where condition is True, and elements from y else-
where.

See also:

choose
nonzero

The function that is called when x and y are omitted

Notes

If all the arrays are 1-D, where is equivalent to:

[xv if c else yv
for c, xv, yv in zip(condition, x, y)]

Examples

>>> import numpy as np
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.where(a < 5, a, 10*a)
array([0, 1, 2, 3, 4, 50, 60, 70, 80, 90])

This can be used on multidimensional arrays too:

>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],

[3, 4]])

The shapes of x, y, and the condition are broadcast together:

>>> x, y = np.ogrid[:3, :4]
>>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast
array([[10, 0, 0, 0],

[10, 11, 1, 1],
[10, 11, 12, 2]])

1.4. Routines and objects by topic 1315

NumPy Reference, Release 2.2.0

>>> a = np.array([[0, 1, 2],
... [0, 2, 4],
... [0, 3, 6]])
>>> np.where(a < 4, a, -1) # -1 is broadcast
array([[0, 1, 2],

[0, 2, -1],
[0, 3, -1]])

numpy.indices(dimensions, dtype=<class 'int'>, sparse=False)
Return an array representing the indices of a grid.
Compute an array where the subarrays contain index values 0, 1, … varying only along the corresponding axis.

Parameters
dimensions

[sequence of ints] The shape of the grid.
dtype

[dtype, optional] Data type of the result.
sparse

[boolean, optional] Return a sparse representation of the grid instead of a dense representation.
Default is False.

Returns
grid

[one ndarray or tuple of ndarrays]
If sparse is False:
Returns one array of grid indices, grid.shape = (len(dimensions),) + tu-
ple(dimensions).

If sparse is True:
Returns a tuple of arrays, with grid[i].shape = (1, ..., 1,
dimensions[i], 1, ..., 1) with dimensions[i] in the ith place

See also:

mgrid, ogrid, meshgrid

Notes

The output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple of
dimensions, i.e. if dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N, r0, ...,
rN-1).
The subarrays grid[k] contains the N-D array of indices along the k-th axis. Explicitly:

grid[k, i0, i1, ..., iN-1] = ik

1316 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],

[1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],

[0, 1, 2]])

The indices can be used as an index into an array.

>>> x = np.arange(20).reshape(5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array([[0, 1, 2],

[4, 5, 6]])

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].
If sparse is set to true, the grid will be returned in a sparse representation.

>>> i, j = np.indices((2, 3), sparse=True)
>>> i.shape
(2, 1)
>>> j.shape
(1, 3)
>>> i # row indices
array([[0],

[1]])
>>> j # column indices
array([[0, 1, 2]])

numpy.ix_(*args)
Construct an open mesh from multiple sequences.
This function takes N 1-D sequences and returns N outputs with N dimensions each, such that the shape is 1 in all
but one dimension and the dimension with the non-unit shape value cycles through all N dimensions.
Using ix_ one can quickly construct index arrays that will index the cross product. a[np.ix_([1,3],[2,
5])] returns the array [[a[1,2] a[1,5]], [a[3,2] a[3,5]]].

Parameters
args

[1-D sequences] Each sequence should be of integer or boolean type. Boolean sequences will
be interpreted as boolean masks for the corresponding dimension (equivalent to passing in
np.nonzero(boolean_sequence)).

Returns
out

[tuple of ndarrays] N arrays with N dimensions each, with N the number of input sequences.
Together these arrays form an open mesh.

See also:

1.4. Routines and objects by topic 1317

NumPy Reference, Release 2.2.0

ogrid, mgrid, meshgrid

Examples

>>> import numpy as np
>>> a = np.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])
>>> ixgrid = np.ix_([0, 1], [2, 4])
>>> ixgrid
(array([[0],

[1]]), array([[2, 4]]))
>>> ixgrid[0].shape, ixgrid[1].shape
((2, 1), (1, 2))
>>> a[ixgrid]
array([[2, 4],

[7, 9]])

>>> ixgrid = np.ix_([True, True], [2, 4])
>>> a[ixgrid]
array([[2, 4],

[7, 9]])
>>> ixgrid = np.ix_([True, True], [False, False, True, False, True])
>>> a[ixgrid]
array([[2, 4],

[7, 9]])

numpy.ravel_multi_index(multi_index, dims, mode='raise', order='C')
Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.

Parameters
multi_index

[tuple of array_like] A tuple of integer arrays, one array for each dimension.
dims

[tuple of ints] The shape of array into which the indices from multi_index apply.
mode

[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices are handled. Can specify
either one mode or a tuple of modes, one mode per index.
• ‘raise’ – raise an error (default)
• ‘wrap’ – wrap around
• ‘clip’ – clip to the range
In ‘clip’ mode, a negative index which would normally wrap will clip to 0 instead.

order
[{‘C’, ‘F’}, optional] Determines whether the multi-index should be viewed as indexing in row-
major (C-style) or column-major (Fortran-style) order.

Returns
raveled_indices

[ndarray] An array of indices into the flattened version of an array of dimensions dims.

1318 1. Python API

NumPy Reference, Release 2.2.0

See also:

unravel_index

Examples

>>> import numpy as np
>>> arr = np.array([[3,6,6],[4,5,1]])
>>> np.ravel_multi_index(arr, (7,6))
array([22, 41, 37])
>>> np.ravel_multi_index(arr, (7,6), order='F')
array([31, 41, 13])
>>> np.ravel_multi_index(arr, (4,6), mode='clip')
array([22, 23, 19])
>>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap'))
array([12, 13, 13])

>>> np.ravel_multi_index((3,1,4,1), (6,7,8,9))
1621

numpy.unravel_index(indices, shape, order='C')
Converts a flat index or array of flat indices into a tuple of coordinate arrays.

Parameters
indices

[array_like] An integer array whose elements are indices into the flattened version of an array
of dimensions shape. Before version 1.6.0, this function accepted just one index value.

shape
[tuple of ints] The shape of the array to use for unraveling indices.

order
[{‘C’, ‘F’}, optional] Determines whether the indices should be viewed as indexing in row-major
(C-style) or column-major (Fortran-style) order.

Returns
unraveled_coords

[tuple of ndarray] Each array in the tuple has the same shape as the indices array.
See also:

ravel_multi_index

Examples

>>> import numpy as np
>>> np.unravel_index([22, 41, 37], (7,6))
(array([3, 6, 6]), array([4, 5, 1]))
>>> np.unravel_index([31, 41, 13], (7,6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))

>>> np.unravel_index(1621, (6,7,8,9))
(3, 1, 4, 1)

1.4. Routines and objects by topic 1319

NumPy Reference, Release 2.2.0

numpy.diag_indices(n, ndim=2)
Return the indices to access the main diagonal of an array.
This returns a tuple of indices that can be used to access the main diagonal of an array a with a.ndim >= 2
dimensions and shape (n, n, …, n). For a.ndim = 2 this is the usual diagonal, for a.ndim > 2 this is the set
of indices to access a[i, i, ..., i] for i = [0..n-1].

Parameters
n

[int] The size, along each dimension, of the arrays for which the returned indices can be used.
ndim

[int, optional] The number of dimensions.
See also:

diag_indices_from

Examples

>>> import numpy as np

Create a set of indices to access the diagonal of a (4, 4) array:

>>> di = np.diag_indices(4)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

>>> a[di] = 100
>>> a
array([[100, 1, 2, 3],

[4, 100, 6, 7],
[8, 9, 100, 11],
[12, 13, 14, 100]])

Now, we create indices to manipulate a 3-D array:

>>> d3 = np.diag_indices(2, 3)
>>> d3
(array([0, 1]), array([0, 1]), array([0, 1]))

And use it to set the diagonal of an array of zeros to 1:

>>> a = np.zeros((2, 2, 2), dtype=int)
>>> a[d3] = 1
>>> a
array([[[1, 0],

[0, 0]],
[[0, 0],
[0, 1]]])

1320 1. Python API

NumPy Reference, Release 2.2.0

numpy.diag_indices_from(arr)
Return the indices to access the main diagonal of an n-dimensional array.
See diag_indices for full details.

Parameters
arr

[array, at least 2-D]
See also:

diag_indices

Examples

>>> import numpy as np

Create a 4 by 4 array.

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

Get the indices of the diagonal elements.

>>> di = np.diag_indices_from(a)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))

>>> a[di]
array([0, 5, 10, 15])

This is simply syntactic sugar for diag_indices.

>>> np.diag_indices(a.shape[0])
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))

numpy.mask_indices(n, mask_func, k=0)
Return the indices to access (n, n) arrays, given a masking function.
Assume mask_func is a function that, for a square array a of size (n, n) with a possible offset argument k, when
called as mask_func(a, k) returns a new array with zeros in certain locations (functions like triu or tril
do precisely this). Then this function returns the indices where the non-zero values would be located.

Parameters
n

[int] The returned indices will be valid to access arrays of shape (n, n).
mask_func

[callable] A function whose call signature is similar to that of triu, tril. That is,
mask_func(x, k) returns a boolean array, shaped like x. k is an optional argument to
the function.

1.4. Routines and objects by topic 1321

NumPy Reference, Release 2.2.0

k
[scalar] An optional argument which is passed through to mask_func. Functions like triu,
tril take a second argument that is interpreted as an offset.

Returns
indices

[tuple of arrays.] The n arrays of indices corresponding to the locations where
mask_func(np.ones((n, n)), k) is True.

See also:

triu, tril, triu_indices, tril_indices

Examples

>>> import numpy as np

These are the indices that would allow you to access the upper triangular part of any 3x3 array:

>>> iu = np.mask_indices(3, np.triu)

For example, if a is a 3x3 array:

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> a[iu]
array([0, 1, 2, 4, 5, 8])

An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of
the main one:

>>> iu1 = np.mask_indices(3, np.triu, 1)

with which we now extract only three elements:

>>> a[iu1]
array([1, 2, 5])

numpy.tril_indices(n, k=0, m=None)
Return the indices for the lower-triangle of an (n, m) array.

Parameters
n

[int] The row dimension of the arrays for which the returned indices will be valid.
k

[int, optional] Diagonal offset (see tril for details).
m

[int, optional] The column dimension of the arrays for which the returned arrays will be valid.
By default m is taken equal to n.

Returns

1322 1. Python API

NumPy Reference, Release 2.2.0

inds
[tuple of arrays] The row and column indices, respectively. The row indices are sorted in
non-decreasing order, and the correspdonding column indices are strictly increasing for each
row.

See also:

triu_indices
similar function, for upper-triangular.

mask_indices
generic function accepting an arbitrary mask function.

tril, triu

Examples

>>> import numpy as np

Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main
diagonal, and one starting two diagonals further right:

>>> il1 = np.tril_indices(4)
>>> il1
(array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))

Note that row indices (first array) are non-decreasing, and the corresponding column indices (second array) are
strictly increasing for each row. Here is how they can be used with a sample array:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

Both for indexing:

>>> a[il1]
array([0, 4, 5, ..., 13, 14, 15])

And for assigning values:

>>> a[il1] = -1
>>> a
array([[-1, 1, 2, 3],

[-1, -1, 6, 7],
[-1, -1, -1, 11],
[-1, -1, -1, -1]])

These cover almost the whole array (two diagonals right of the main one):

>>> il2 = np.tril_indices(4, 2)
>>> a[il2] = -10
>>> a
array([[-10, -10, -10, 3],

(continues on next page)

1.4. Routines and objects by topic 1323

NumPy Reference, Release 2.2.0

(continued from previous page)
[-10, -10, -10, -10],
[-10, -10, -10, -10],
[-10, -10, -10, -10]])

numpy.tril_indices_from(arr, k=0)
Return the indices for the lower-triangle of arr.
See tril_indices for full details.

Parameters
arr

[array_like] The indices will be valid for square arrays whose dimensions are the same as arr.
k

[int, optional] Diagonal offset (see tril for details).
See also:

tril_indices, tril, triu_indices_from

Examples

>>> import numpy as np

Create a 4 by 4 array

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

Pass the array to get the indices of the lower triangular elements.

>>> trili = np.tril_indices_from(a)
>>> trili
(array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))

>>> a[trili]
array([0, 4, 5, 8, 9, 10, 12, 13, 14, 15])

This is syntactic sugar for tril_indices().

>>> np.tril_indices(a.shape[0])
(array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3]))

Use the k parameter to return the indices for the lower triangular array up to the k-th diagonal.

>>> trili1 = np.tril_indices_from(a, k=1)
>>> a[trili1]
array([0, 1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15])

1324 1. Python API

NumPy Reference, Release 2.2.0

numpy.triu_indices(n, k=0, m=None)
Return the indices for the upper-triangle of an (n, m) array.

Parameters
n

[int] The size of the arrays for which the returned indices will be valid.
k

[int, optional] Diagonal offset (see triu for details).
m

[int, optional] The column dimension of the arrays for which the returned arrays will be valid.
By default m is taken equal to n.

Returns
inds

[tuple, shape(2) of ndarrays, shape(n)] The row and column indices, respectively. The row
indices are sorted in non-decreasing order, and the correspdonding column indices are strictly
increasing for each row.

See also:

tril_indices
similar function, for lower-triangular.

mask_indices
generic function accepting an arbitrary mask function.

triu, tril

Examples

>>> import numpy as np

Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main
diagonal, and one starting two diagonals further right:

>>> iu1 = np.triu_indices(4)
>>> iu1
(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))

Note that row indices (first array) are non-decreasing, and the corresponding column indices (second array) are
strictly increasing for each row.
Here is how they can be used with a sample array:

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

Both for indexing:

>>> a[iu1]
array([0, 1, 2, ..., 10, 11, 15])

1.4. Routines and objects by topic 1325

NumPy Reference, Release 2.2.0

And for assigning values:

>>> a[iu1] = -1
>>> a
array([[-1, -1, -1, -1],

[4, -1, -1, -1],
[8, 9, -1, -1],
[12, 13, 14, -1]])

These cover only a small part of the whole array (two diagonals right of the main one):

>>> iu2 = np.triu_indices(4, 2)
>>> a[iu2] = -10
>>> a
array([[-1, -1, -10, -10],

[4, -1, -1, -10],
[8, 9, -1, -1],
[12, 13, 14, -1]])

numpy.triu_indices_from(arr, k=0)
Return the indices for the upper-triangle of arr.
See triu_indices for full details.

Parameters
arr

[ndarray, shape(N, N)] The indices will be valid for square arrays.
k

[int, optional] Diagonal offset (see triu for details).
Returns

triu_indices_from
[tuple, shape(2) of ndarray, shape(N)] Indices for the upper-triangle of arr.

See also:

triu_indices, triu, tril_indices_from

Examples

>>> import numpy as np

Create a 4 by 4 array

>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

Pass the array to get the indices of the upper triangular elements.

>>> triui = np.triu_indices_from(a)
>>> triui
(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))

1326 1. Python API

NumPy Reference, Release 2.2.0

>>> a[triui]
array([0, 1, 2, 3, 5, 6, 7, 10, 11, 15])

This is syntactic sugar for triu_indices().

>>> np.triu_indices(a.shape[0])
(array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3]))

Use the k parameter to return the indices for the upper triangular array from the k-th diagonal.

>>> triuim1 = np.triu_indices_from(a, k=1)
>>> a[triuim1]
array([1, 2, 3, 6, 7, 11])

Indexing-like operations

take(a, indices[, axis, out, mode]) Take elements from an array along an axis.
take_along_axis(arr, indices, axis) Take values from the input array by matching 1d index

and data slices.
choose(a, choices[, out, mode]) Construct an array from an index array and a list of arrays

to choose from.
compress(condition, a[, axis, out]) Return selected slices of an array along given axis.
diag(v[, k]) Extract a diagonal or construct a diagonal array.
diagonal(a[, offset, axis1, axis2]) Return specified diagonals.
select(condlist, choicelist[, default]) Return an array drawn from elements in choicelist, de-

pending on conditions.

numpy.take(a, indices, axis=None, out=None, mode='raise')
Take elements from an array along an axis.
When axis is not None, this function does the same thing as “fancy” indexing (indexing arrays using arrays); how-
ever, it can be easier to use if you need elements along a given axis. A call such as np.take(arr, indices,
axis=3) is equivalent to arr[:,:,:,indices,...].
Explained without fancy indexing, this is equivalent to the following use of ndindex, which sets each of ii, jj,
and kk to a tuple of indices:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
Nj = indices.shape
for ii in ndindex(Ni):

for jj in ndindex(Nj):
for kk in ndindex(Nk):

out[ii + jj + kk] = a[ii + (indices[jj],) + kk]

Parameters
a

[array_like (Ni…, M, Nk…)] The source array.
indices

[array_like (Nj…)] The indices of the values to extract. Also allow scalars for indices.
axis

[int, optional] The axis over which to select values. By default, the flattened input array is used.

1.4. Routines and objects by topic 1327

NumPy Reference, Release 2.2.0

out
[ndarray, optional (Ni…, Nj…, Nk…)] If provided, the result will be placed in this array. It
should be of the appropriate shape and dtype. Note that out is always buffered ifmode=’raise’ ;
use other modes for better performance.

mode
[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
• ‘raise’ – raise an error (default)
• ‘wrap’ – wrap around
• ‘clip’ – clip to the range
‘clip’ mode means that all indices that are too large are replaced by the index that addresses the
last element along that axis. Note that this disables indexing with negative numbers.

Returns
out

[ndarray (Ni…, Nj…, Nk…)] The returned array has the same type as a.

See also:

compress
Take elements using a boolean mask

ndarray.take
equivalent method

take_along_axis
Take elements by matching the array and the index arrays

Notes

By eliminating the inner loop in the description above, and using s_ to build simple slice objects, take can be
expressed in terms of applying fancy indexing to each 1-d slice:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nj):
out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices]

For this reason, it is equivalent to (but faster than) the following use of apply_along_axis:

out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a)

Examples

>>> import numpy as np
>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array([4, 3, 6])

In this example if a is an ndarray, “fancy” indexing can be used.

1328 1. Python API

NumPy Reference, Release 2.2.0

>>> a = np.array(a)
>>> a[indices]
array([4, 3, 6])

If indices is not one dimensional, the output also has these dimensions.

>>> np.take(a, [[0, 1], [2, 3]])
array([[4, 3],

[5, 7]])

numpy.take_along_axis(arr, indices, axis)
Take values from the input array by matching 1d index and data slices.
This iterates over matching 1d slices oriented along the specified axis in the index and data arrays, and uses the
former to look up values in the latter. These slices can be different lengths.
Functions returning an index along an axis, like argsort and argpartition, produce suitable indices for this
function.

Parameters
arr

[ndarray (Ni…, M, Nk…)] Source array
indices

[ndarray (Ni…, J, Nk…)] Indices to take along each 1d slice of arr. This must match the
dimension of arr, but dimensions Ni and Nj only need to broadcast against arr.

axis
[int] The axis to take 1d slices along. If axis is None, the input array is treated as if it had first
been flattened to 1d, for consistency with sort and argsort.

Returns
out: ndarray (Ni…, J, Nk…)

The indexed result.
See also:

take
Take along an axis, using the same indices for every 1d slice

put_along_axis
Put values into the destination array by matching 1d index and data slices

Notes

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii and kk to a
tuple of indices:

Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
J = indices.shape[axis] # Need not equal M
out = np.empty(Ni + (J,) + Nk)

for ii in ndindex(Ni):
for kk in ndindex(Nk):

a_1d = a [ii + s_[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]

(continues on next page)

1.4. Routines and objects by topic 1329

NumPy Reference, Release 2.2.0

(continued from previous page)
out_1d = out [ii + s_[:,] + kk]
for j in range(J):

out_1d[j] = a_1d[indices_1d[j]]

Equivalently, eliminating the inner loop, the last two lines would be:

out_1d[:] = a_1d[indices_1d]

Examples

>>> import numpy as np

For this sample array

>>> a = np.array([[10, 30, 20], [60, 40, 50]])

We can sort either by using sort directly, or argsort and this function

>>> np.sort(a, axis=1)
array([[10, 20, 30],

[40, 50, 60]])
>>> ai = np.argsort(a, axis=1)
>>> ai
array([[0, 2, 1],

[1, 2, 0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 20, 30],

[40, 50, 60]])

The same works for max and min, if you maintain the trivial dimension with keepdims:

>>> np.max(a, axis=1, keepdims=True)
array([[30],

[60]])
>>> ai = np.argmax(a, axis=1, keepdims=True)
>>> ai
array([[1],

[0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[30],

[60]])

If we want to get the max and min at the same time, we can stack the indices first

>>> ai_min = np.argmin(a, axis=1, keepdims=True)
>>> ai_max = np.argmax(a, axis=1, keepdims=True)
>>> ai = np.concatenate([ai_min, ai_max], axis=1)
>>> ai
array([[0, 1],

[1, 0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 30],

[40, 60]])

1330 1. Python API

NumPy Reference, Release 2.2.0

numpy.choose(a, choices, out=None, mode='raise')
Construct an array from an index array and a list of arrays to choose from.
First of all, if confused or uncertain, definitely look at the Examples - in its full generality, this function is less
simple than it might seem from the following code description:

np.choose(a,c) == np.array([c[a[I]][I] for I in np.ndindex(a.shape)])

But this omits some subtleties. Here is a fully general summary:
Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are first
broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,…,n-1 we have that,
necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with shape Ba.shape is
created as follows:

• if mode='raise' (the default), then, first of all, each element of a (and thus Ba) must be in the range
[0, n-1]; now, suppose that i (in that range) is the value at the (j0, j1, ..., jm) position in Ba
- then the value at the same position in the new array is the value in Bchoices[i] at that same position;

• if mode='wrap', values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to map
integers outside the range [0, n-1] back into that range; and then the new array is constructed as above;

• if mode='clip', values in a (and thus Ba) may be any (signed) integer; negative integers are mapped to
0; values greater than n-1 are mapped to n-1; and then the new array is constructed as above.

Parameters
a

[int array] This array must contain integers in [0, n-1], where n is the number of choices,
unless mode=wrap or mode=clip, in which cases any integers are permissible.

choices
[sequence of arrays] Choice arrays. a and all of the choices must be broadcastable to the same
shape. If choices is itself an array (not recommended), then its outermost dimension (i.e., the
one corresponding to choices.shape[0]) is taken as defining the “sequence”.

out
[array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype. Note that out is always buffered if mode='raise'; use other
modes for better performance.

mode
[{‘raise’ (default), ‘wrap’, ‘clip’}, optional] Specifies how indices outside [0, n-1] will be
treated:
• ‘raise’ : an exception is raised
• ‘wrap’ : value becomes value mod n
• ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns
merged_array

[array] The merged result.
Raises

ValueError: shape mismatch
If a and each choice array are not all broadcastable to the same shape.

See also:

1.4. Routines and objects by topic 1331

NumPy Reference, Release 2.2.0

ndarray.choose
equivalent method

numpy.take_along_axis
Preferable if choices is an array

Notes

To reduce the chance ofmisinterpretation, even though the following “abuse” is nominally supported, choices should
neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container should be either a list or
a tuple.

Examples

>>> import numpy as np
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices
... # the first element of the result will be the first element of the
... # third (2+1) "array" in choices, namely, 20; the second element
... # will be the second element of the fourth (3+1) choice array, i.e.,
... # 31, etc.
...)
array([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
array([20, 31, 12, 3])
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
array([20, 1, 12, 3])
>>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
>>> choices = [-10, 10]
>>> np.choose(a, choices)
array([[10, -10, 10],

[-10, 10, -10],
[10, -10, 10]])

>>> # With thanks to Anne Archibald
>>> a = np.array([0, 1]).reshape((2,1,1))
>>> c1 = np.array([1, 2, 3]).reshape((1,3,1))
>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
>>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
array([[[1, 1, 1, 1, 1],

[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],
[[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5]]])

numpy.compress(condition, a, axis=None, out=None)
Return selected slices of an array along given axis.

1332 1. Python API

NumPy Reference, Release 2.2.0

Whenworking along a given axis, a slice along that axis is returned in output for each indexwhere condition evaluates
to True. When working on a 1-D array, compress is equivalent to extract.

Parameters
condition

[1-D array of bools] Array that selects which entries to return. If len(condition) is less than
the size of a along the given axis, then output is truncated to the length of the condition array.

a
[array_like] Array from which to extract a part.

axis
[int, optional] Axis along which to take slices. If None (default), work on the flattened array.

out
[ndarray, optional] Output array. Its type is preserved and it must be of the right shape to hold
the output.

Returns
compressed_array

[ndarray] A copy of a without the slices along axis for which condition is false.
See also:

take, choose, diag, diagonal, select
ndarray.compress

Equivalent method in ndarray
extract

Equivalent method when working on 1-D arrays
ufuncs-output-type

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4], [5, 6]])
>>> a
array([[1, 2],

[3, 4],
[5, 6]])

>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([False, True, True], a, axis=0)
array([[3, 4],

[5, 6]])
>>> np.compress([False, True], a, axis=1)
array([[2],

[4],
[6]])

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress([False, True], a)
array([2])

1.4. Routines and objects by topic 1333

NumPy Reference, Release 2.2.0

numpy.select(condlist, choicelist, default=0)
Return an array drawn from elements in choicelist, depending on conditions.

Parameters
condlist

[list of bool ndarrays] The list of conditions which determine from which array in choicelist the
output elements are taken. When multiple conditions are satisfied, the first one encountered in
condlist is used.

choicelist
[list of ndarrays] The list of arrays from which the output elements are taken. It has to be of
the same length as condlist.

default
[scalar, optional] The element inserted in output when all conditions evaluate to False.

Returns
output

[ndarray] The output at position m is the m-th element of the array in choicelist where the m-th
element of the corresponding array in condlist is True.

See also:

where
Return elements from one of two arrays depending on condition.

take, choose, compress, diag, diagonal

Examples

>>> import numpy as np

Beginning with an array of integers from 0 to 5 (inclusive), elements less than 3 are negated, elements greater than
3 are squared, and elements not meeting either of these conditions (exactly 3) are replaced with a default value of
42.

>>> x = np.arange(6)
>>> condlist = [x<3, x>3]
>>> choicelist = [x, x**2]
>>> np.select(condlist, choicelist, 42)
array([0, 1, 2, 42, 16, 25])

When multiple conditions are satisfied, the first one encountered in condlist is used.

>>> condlist = [x<=4, x>3]
>>> choicelist = [x, x**2]
>>> np.select(condlist, choicelist, 55)
array([0, 1, 2, 3, 4, 25])

1334 1. Python API

NumPy Reference, Release 2.2.0

Inserting data into arrays

place(arr, mask, vals) Change elements of an array based on conditional and in-
put values.

put(a, ind, v[, mode]) Replaces specified elements of an array with given values.
put_along_axis(arr, indices, values, axis) Put values into the destination array by matching 1d index

and data slices.
putmask(a, mask, values) Changes elements of an array based on conditional and

input values.
fill_diagonal(a, val[, wrap]) Fill the main diagonal of the given array of any dimen-

sionality.

numpy.place(arr, mask, vals)
Change elements of an array based on conditional and input values.
Similar to np.copyto(arr, vals, where=mask), the difference is that place uses the first N elements
of vals, where N is the number of True values in mask, while copyto uses the elements where mask is True.
Note that extract does the exact opposite of place.

Parameters
arr

[ndarray] Array to put data into.
mask

[array_like] Boolean mask array. Must have the same size as a.
vals

[1-D sequence] Values to put into a. Only the first N elements are used, where N is the number
of True values in mask. If vals is smaller than N, it will be repeated, and if elements of a are
to be masked, this sequence must be non-empty.

See also:

copyto, put, take, extract

Examples

>>> import numpy as np
>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[0, 1, 2],

[44, 55, 44]])

numpy.put(a, ind, v, mode='raise')
Replaces specified elements of an array with given values.
The indexing works on the flattened target array. put is roughly equivalent to:

a.flat[ind] = v

Parameters

1.4. Routines and objects by topic 1335

NumPy Reference, Release 2.2.0

a
[ndarray] Target array.

ind
[array_like] Target indices, interpreted as integers.

v
[array_like] Values to place in a at target indices. If v is shorter than ind it will be repeated as
necessary.

mode
[{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
• ‘raise’ – raise an error (default)
• ‘wrap’ – wrap around
• ‘clip’ – clip to the range
‘clip’ mode means that all indices that are too large are replaced by the index that addresses the
last element along that axis. Note that this disables indexing with negative numbers. In ‘raise’
mode, if an exception occurs the target array may still be modified.

See also:

putmask, place
put_along_axis

Put elements by matching the array and the index arrays

Examples

>>> import numpy as np
>>> a = np.arange(5)
>>> np.put(a, [0, 2], [-44, -55])
>>> a
array([-44, 1, -55, 3, 4])

>>> a = np.arange(5)
>>> np.put(a, 22, -5, mode='clip')
>>> a
array([0, 1, 2, 3, -5])

numpy.put_along_axis(arr, indices, values, axis)
Put values into the destination array by matching 1d index and data slices.
This iterates over matching 1d slices oriented along the specified axis in the index and data arrays, and uses the
former to place values into the latter. These slices can be different lengths.
Functions returning an index along an axis, like argsort and argpartition, produce suitable indices for this
function.

Parameters
arr

[ndarray (Ni…, M, Nk…)] Destination array.
indices

[ndarray (Ni…, J, Nk…)] Indices to change along each 1d slice of arr. This must match the
dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast against arr.

1336 1. Python API

NumPy Reference, Release 2.2.0

values
[array_like (Ni…, J, Nk…)] values to insert at those indices. Its shape and dimension are
broadcast to match that of indices.

axis
[int] The axis to take 1d slices along. If axis is None, the destination array is treated as if a
flattened 1d view had been created of it.

See also:

take_along_axis
Take values from the input array by matching 1d index and data slices

Notes

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii and kk to a
tuple of indices:

Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
J = indices.shape[axis] # Need not equal M

for ii in ndindex(Ni):
for kk in ndindex(Nk):

a_1d = a [ii + s_[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]
values_1d = values [ii + s_[:,] + kk]
for j in range(J):

a_1d[indices_1d[j]] = values_1d[j]

Equivalently, eliminating the inner loop, the last two lines would be:

a_1d[indices_1d] = values_1d

Examples

>>> import numpy as np

For this sample array

>>> a = np.array([[10, 30, 20], [60, 40, 50]])

We can replace the maximum values with:

>>> ai = np.argmax(a, axis=1, keepdims=True)
>>> ai
array([[1],

[0]])
>>> np.put_along_axis(a, ai, 99, axis=1)
>>> a
array([[10, 99, 20],

[99, 40, 50]])

numpy.putmask(a, mask, values)
Changes elements of an array based on conditional and input values.

1.4. Routines and objects by topic 1337

NumPy Reference, Release 2.2.0

Sets a.flat[n] = values[n] for each n where mask.flat[n]==True.
If values is not the same size as a and mask then it will repeat. This gives behavior different from a[mask] =
values.

Parameters
a

[ndarray] Target array.
mask

[array_like] Boolean mask array. It has to be the same shape as a.
values

[array_like] Values to put into a where mask is True. If values is smaller than a it will be
repeated.

See also:

place, put, take, copyto

Examples

>>> import numpy as np
>>> x = np.arange(6).reshape(2, 3)
>>> np.putmask(x, x>2, x**2)
>>> x
array([[0, 1, 2],

[9, 16, 25]])

If values is smaller than a it is repeated:

>>> x = np.arange(5)
>>> np.putmask(x, x>1, [-33, -44])
>>> x
array([0, 1, -33, -44, -33])

numpy.fill_diagonal(a, val, wrap=False)
Fill the main diagonal of the given array of any dimensionality.
For an array a with a.ndim >= 2, the diagonal is the list of values a[i, ..., i] with indices i all identical.
This function modifies the input array in-place without returning a value.

Parameters
a

[array, at least 2-D.] Array whose diagonal is to be filled in-place.
val

[scalar or array_like] Value(s) to write on the diagonal. If val is scalar, the value is written
along the diagonal. If array-like, the flattened val is written along the diagonal, repeating if
necessary to fill all diagonal entries.

wrap
[bool] For tall matrices in NumPy version up to 1.6.2, the diagonal “wrapped” after N columns.
You can have this behavior with this option. This affects only tall matrices.

See also:

diag_indices, diag_indices_from

1338 1. Python API

NumPy Reference, Release 2.2.0

Notes

This functionality can be obtained via diag_indices, but internally this version uses a much faster implemen-
tation that never constructs the indices and uses simple slicing.

Examples

>>> import numpy as np
>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],

[0, 5, 0],
[0, 0, 5]])

The same function can operate on a 4-D array:

>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)

We only show a few blocks for clarity:

>>> a[0, 0]
array([[4, 0, 0],

[0, 0, 0],
[0, 0, 0]])

>>> a[1, 1]
array([[0, 0, 0],

[0, 4, 0],
[0, 0, 0]])

>>> a[2, 2]
array([[0, 0, 0],

[0, 0, 0],
[0, 0, 4]])

The wrap option affects only tall matrices:

>>> # tall matrices no wrap
>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal(a, 4)
>>> a
array([[4, 0, 0],

[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[0, 0, 0]])

>>> # tall matrices wrap
>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0],

[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[4, 0, 0]])

1.4. Routines and objects by topic 1339

NumPy Reference, Release 2.2.0

>>> # wide matrices
>>> a = np.zeros((3, 5), int)
>>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0, 0, 0],

[0, 4, 0, 0, 0],
[0, 0, 4, 0, 0]])

The anti-diagonal can be filled by reversing the order of elements using either numpy.flipud or numpy.
fliplr.

>>> a = np.zeros((3, 3), int);
>>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip
>>> a
array([[0, 0, 1],

[0, 2, 0],
[3, 0, 0]])

>>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip
>>> a
array([[0, 0, 3],

[0, 2, 0],
[1, 0, 0]])

Note that the order in which the diagonal is filled varies depending on the flip function.

Iterating over arrays

nditer(op[, flags, op_flags, op_dtypes, ...]) Efficient multi-dimensional iterator object to iterate over
arrays.

ndenumerate(arr) Multidimensional index iterator.
ndindex(*shape) An N-dimensional iterator object to index arrays.
nested_iters(op, axes[, flags, op_flags, ...]) Create nditers for use in nested loops
flatiter() Flat iterator object to iterate over arrays.
iterable(y) Check whether or not an object can be iterated over.

class numpy.nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe',
op_axes=None, itershape=None, buffersize=0)

Efficient multi-dimensional iterator object to iterate over arrays. To get started using this object, see the introductory
guide to array iteration.

Parameters
op

[ndarray or sequence of array_like] The array(s) to iterate over.
flags

[sequence of str, optional] Flags to control the behavior of the iterator.
• buffered enables buffering when required.
• c_index causes a C-order index to be tracked.
• f_index causes a Fortran-order index to be tracked.
• multi_index causes a multi-index, or a tuple of indices with one per iteration dimension,
to be tracked.

1340 1. Python API

NumPy Reference, Release 2.2.0

• common_dtype causes all the operands to be converted to a common data type, with
copying or buffering as necessary.

• copy_if_overlap causes the iterator to determine if read operands have overlap with
write operands, and make temporary copies as necessary to avoid overlap. False positives
(needless copying) are possible in some cases.

• delay_bufalloc delays allocation of the buffers until a reset() call is made. Allows
allocate operands to be initialized before their values are copied into the buffers.

• external_loop causes the values given to be one-dimensional arrays with multiple
values instead of zero-dimensional arrays.

• grow_inner allows the value array sizes to be made larger than the buffer size when
both buffered and external_loop is used.

• ranged allows the iterator to be restricted to a sub-range of the iterindex values.
• refs_ok enables iteration of reference types, such as object arrays.
• reduce_ok enables iteration of readwrite operands which are broadcasted, also
known as reduction operands.

• zerosize_ok allows itersize to be zero.
op_flags

[list of list of str, optional] This is a list of flags for each operand. At minimum, one of
readonly, readwrite, or writeonly must be specified.
• readonly indicates the operand will only be read from.
• readwrite indicates the operand will be read from and written to.
• writeonly indicates the operand will only be written to.
• no_broadcast prevents the operand from being broadcasted.
• contig forces the operand data to be contiguous.
• aligned forces the operand data to be aligned.
• nbo forces the operand data to be in native byte order.
• copy allows a temporary read-only copy if required.
• updateifcopy allows a temporary read-write copy if required.
• allocate causes the array to be allocated if it is None in the op parameter.
• no_subtype prevents an allocate operand from using a subtype.
• arraymask indicates that this operand is the mask to use for selecting elements when
writing to operands with the ‘writemasked’ flag set. The iterator does not enforce this, but
when writing from a buffer back to the array, it only copies those elements indicated by this
mask.

• writemasked indicates that only elements where the chosen arraymask operand is
True will be written to.

• overlap_assume_elementwise can be used to mark operands that are accessed
only in the iterator order, to allow less conservative copying when copy_if_overlap is
present.

op_dtypes
[dtype or tuple of dtype(s), optional] The required data type(s) of the operands. If copying or
buffering is enabled, the data will be converted to/from their original types.

1.4. Routines and objects by topic 1341

NumPy Reference, Release 2.2.0

order
[{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the iteration order. ‘C’ means C order, ‘F’ means Fortran
order, ‘A’ means ‘F’ order if all the arrays are Fortran contiguous, ‘C’ order otherwise, and ‘K’
means as close to the order the array elements appear in memory as possible. This also affects
the element memory order of allocate operands, as they are allocated to be compatible
with iteration order. Default is ‘K’.

casting
[{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data casting may
occur when making a copy or buffering. Setting this to ‘unsafe’ is not recommended, as it can
adversely affect accumulations.
• ‘no’ means the data types should not be cast at all.
• ‘equiv’ means only byte-order changes are allowed.
• ‘safe’ means only casts which can preserve values are allowed.
• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
• ‘unsafe’ means any data conversions may be done.

op_axes
[list of list of ints, optional] If provided, is a list of ints or None for each operands. The list
of axes for an operand is a mapping from the dimensions of the iterator to the dimensions of
the operand. A value of -1 can be placed for entries, causing that dimension to be treated as
newaxis.

itershape
[tuple of ints, optional] The desired shape of the iterator. This allows allocate operands
with a dimension mapped by op_axes not corresponding to a dimension of a different operand
to get a value not equal to 1 for that dimension.

buffersize
[int, optional] When buffering is enabled, controls the size of the temporary buffers. Set to 0
for the default value.

Notes

nditer supersedes flatiter. The iterator implementation behind nditer is also exposed by the NumPy C
API.
The Python exposure supplies two iteration interfaces, one which follows the Python iterator protocol, and another
which mirrors the C-style do-while pattern. The native Python approach is better in most cases, but if you need
the coordinates or index of an iterator, use the C-style pattern.

Examples

Here is how we might write an iter_add function, using the Python iterator protocol:

>>> import numpy as np

>>> def iter_add_py(x, y, out=None):
... addop = np.add
... it = np.nditer([x, y, out], [],
... [['readonly'], ['readonly'], ['writeonly','allocate']])
... with it:

(continues on next page)

1342 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
... for (a, b, c) in it:
... addop(a, b, out=c)
... return it.operands[2]

Here is the same function, but following the C-style pattern:

>>> def iter_add(x, y, out=None):
... addop = np.add
... it = np.nditer([x, y, out], [],
... [['readonly'], ['readonly'], ['writeonly','allocate']])
... with it:
... while not it.finished:
... addop(it[0], it[1], out=it[2])
... it.iternext()
... return it.operands[2]

Here is an example outer product function:

>>> def outer_it(x, y, out=None):
... mulop = np.multiply
... it = np.nditer([x, y, out], ['external_loop'],
... [['readonly'], ['readonly'], ['writeonly', 'allocate']],
... op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
... [-1] * x.ndim + list(range(y.ndim)),
... None])
... with it:
... for (a, b, c) in it:
... mulop(a, b, out=c)
... return it.operands[2]

>>> a = np.arange(2)+1
>>> b = np.arange(3)+1
>>> outer_it(a,b)
array([[1, 2, 3],

[2, 4, 6]])

Here is an example function which operates like a “lambda” ufunc:

>>> def luf(lamdaexpr, *args, **kwargs):
... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe',␣
↪→buffersize=0)'''
... nargs = len(args)
... op = (kwargs.get('out',None),) + args
... it = np.nditer(op, ['buffered','external_loop'],
... [['writeonly','allocate','no_broadcast']] +
... [['readonly','nbo','aligned']]*nargs,
... order=kwargs.get('order','K'),
... casting=kwargs.get('casting','safe'),
... buffersize=kwargs.get('buffersize',0))
... while not it.finished:
... it[0] = lamdaexpr(*it[1:])
... it.iternext()
... return it.operands[0]

>>> a = np.arange(5)
>>> b = np.ones(5)

(continues on next page)

1.4. Routines and objects by topic 1343

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> luf(lambda i,j:i*i + j/2, a, b)
array([0.5, 1.5, 4.5, 9.5, 16.5])

If operand flags "writeonly" or "readwrite" are used the operands may be views into the original data with
the WRITEBACKIFCOPY flag. In this case nditer must be used as a context manager or the nditer.close
method must be called before using the result. The temporary data will be written back to the original data when
the __exit__ function is called but not before:

>>> a = np.arange(6, dtype='i4')[::-2]
>>> with np.nditer(a, [],
... [['writeonly', 'updateifcopy']],
... casting='unsafe',
... op_dtypes=[np.dtype('f4')]) as i:
... x = i.operands[0]
... x[:] = [-1, -2, -3]
... # a still unchanged here
>>> a, x
(array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))

It is important to note that once the iterator is exited, dangling references (like x in the example) may or may not
share data with the original data a. If writeback semantics were active, i.e. if x.base.flags.writebackifcopy is True,
then exiting the iterator will sever the connection between x and a, writing to xwill no longer write to a. If writeback
semantics are not active, then x.data will still point at some part of a.data, and writing to one will affect the other.
Context management and the close method appeared in version 1.15.0.

Attributes
dtypes

[tuple of dtype(s)] The data types of the values provided in value. This may be different
from the operand data types if buffering is enabled. Valid only before the iterator is closed.

finished
[bool] Whether the iteration over the operands is finished or not.

has_delayed_bufalloc
[bool] If True, the iterator was created with the delay_bufalloc flag, and no reset() func-
tion was called on it yet.

has_index
[bool] If True, the iterator was created with either the c_index or the f_index flag, and
the property index can be used to retrieve it.

has_multi_index
[bool] If True, the iterator was created with the multi_index flag, and the property
multi_index can be used to retrieve it.

index
When the c_index or f_index flag was used, this property provides access to the index.
Raises a ValueError if accessed and has_index is False.

iterationneedsapi
[bool] Whether iteration requires access to the Python API, for example if one of the operands
is an object array.

iterindex
[int] An index which matches the order of iteration.

1344 1. Python API

https://docs.python.org/3/reference/datamodel.html#object.__exit__

NumPy Reference, Release 2.2.0

itersize
[int] Size of the iterator.

itviews
Structured view(s) of operands in memory, matching the reordered and optimized iterator
access pattern. Valid only before the iterator is closed.

multi_index
When the multi_index flag was used, this property provides access to the index. Raises a
ValueError if accessed accessed and has_multi_index is False.

ndim
[int] The dimensions of the iterator.

nop
[int] The number of iterator operands.

operands
[tuple of operand(s)] operands[Slice]

shape
[tuple of ints] Shape tuple, the shape of the iterator.

value
Value of operands at current iteration. Normally, this is a tuple of array scalars, but if the
flag external_loop is used, it is a tuple of one dimensional arrays.

Methods

close() Resolve all writeback semantics in writeable operands.
copy() Get a copy of the iterator in its current state.
debug_print() Print the current state of the nditer instance and de-

bug info to stdout.
enable_external_loop() When the "external_loop" was not used during con-

struction, but is desired, this modifies the iterator to
behave as if the flag was specified.

iternext() Check whether iterations are left, and perform a single
internal iteration without returning the result.

remove_axis(i, /) Removes axis i from the iterator.
remove_multi_index() When the "multi_index" flag was specified, this re-

moves it, allowing the internal iteration structure to be
optimized further.

reset() Reset the iterator to its initial state.

method
nditer.close()

Resolve all writeback semantics in writeable operands.
See also:

Modifying array values

method

1.4. Routines and objects by topic 1345

NumPy Reference, Release 2.2.0

nditer.copy()

Get a copy of the iterator in its current state.

Examples

>>> import numpy as np
>>> x = np.arange(10)
>>> y = x + 1
>>> it = np.nditer([x, y])
>>> next(it)
(array(0), array(1))
>>> it2 = it.copy()
>>> next(it2)
(array(1), array(2))

method
nditer.debug_print()

Print the current state of the nditer instance and debug info to stdout.
method
nditer.enable_external_loop()

When the “external_loop” was not used during construction, but is desired, this modifies the iterator to behave
as if the flag was specified.

method
nditer.iternext()

Check whether iterations are left, and perform a single internal iteration without returning the result. Used in
the C-style pattern do-while pattern. For an example, see nditer.

Returns
iternext
[bool] Whether or not there are iterations left.

method
nditer.remove_axis(i, /)

Removes axis i from the iterator. Requires that the flag “multi_index” be enabled.
method
nditer.remove_multi_index()

When the “multi_index” flag was specified, this removes it, allowing the internal iteration structure to be
optimized further.

method
nditer.reset()

Reset the iterator to its initial state.
class numpy.ndindex(*shape)

An N-dimensional iterator object to index arrays.
Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each
iteration a tuple of indices is returned, the last dimension is iterated over first.

Parameters

1346 1. Python API

NumPy Reference, Release 2.2.0

shape
[ints, or a single tuple of ints] The size of each dimension of the array can be passed as indi-
vidual parameters or as the elements of a tuple.

See also:

ndenumerate, flatiter

Examples

>>> import numpy as np

Dimensions as individual arguments

>>> for index in np.ndindex(3, 2, 1):
... print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

Same dimensions - but in a tuple (3, 2, 1)

>>> for index in np.ndindex((3, 2, 1)):
... print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

Methods

ndincr() Increment the multi-dimensional index by one.

method
ndindex.ndincr()

Increment the multi-dimensional index by one.
This method is for backward compatibility only: do not use.
Deprecated since version 1.20.0: This method has been advised against since numpy 1.8.0, but only started
emitting DeprecationWarning as of this version.

numpy.nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, order='K', casting='safe',
buffersize=0)

Create nditers for use in nested loops
Create a tuple of nditer objects which iterate in nested loops over different axes of the op argument. The first
iterator is used in the outermost loop, the last in the innermost loop. Advancing one will change the subsequent
iterators to point at its new element.

1.4. Routines and objects by topic 1347

NumPy Reference, Release 2.2.0

Parameters
op

[ndarray or sequence of array_like] The array(s) to iterate over.
axes

[list of list of int] Each item is used as an “op_axes” argument to an nditer
flags, op_flags, op_dtypes, order, casting, buffersize (optional)

See nditer parameters of the same name
Returns

iters
[tuple of nditer] An nditer for each item in axes, outermost first

See also:

nditer

Examples

Basic usage. Note how y is the “flattened” version of [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified the first iter’s
axes as [1]

>>> import numpy as np
>>> a = np.arange(12).reshape(2, 3, 2)
>>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"])
>>> for x in i:
... print(i.multi_index)
... for y in j:
... print('', j.multi_index, y)
(0,)
(0, 0) 0
(0, 1) 1
(1, 0) 6
(1, 1) 7
(1,)
(0, 0) 2
(0, 1) 3
(1, 0) 8
(1, 1) 9
(2,)
(0, 0) 4
(0, 1) 5
(1, 0) 10
(1, 1) 11

class numpy.flatiter

Flat iterator object to iterate over arrays.
A flatiter iterator is returned by x.flat for any array x. It allows iterating over the array as if it were a 1-D
array, either in a for-loop or by calling its next method.
Iteration is done in row-major, C-style order (the last index varying the fastest). The iterator can also be indexed
using basic slicing or advanced indexing.
See also:

1348 1. Python API

NumPy Reference, Release 2.2.0

ndarray.flat
Return a flat iterator over an array.

ndarray.flatten
Returns a flattened copy of an array.

Notes

A flatiter iterator can not be constructed directly from Python code by calling the flatiter constructor.

Examples

>>> import numpy as np
>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> type(fl)
<class 'numpy.flatiter'>
>>> for item in fl:
... print(item)
...
0
1
2
3
4
5

>>> fl[2:4]
array([2, 3])

Attributes
base

A reference to the array that is iterated over.
coords

An N-dimensional tuple of current coordinates.
index

Current flat index into the array.

Methods

copy() Get a copy of the iterator as a 1-D array.

method
flatiter.copy()

Get a copy of the iterator as a 1-D array.

1.4. Routines and objects by topic 1349

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.arange(6).reshape(2, 3)
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> fl = x.flat
>>> fl.copy()
array([0, 1, 2, 3, 4, 5])

numpy.iterable(y)
Check whether or not an object can be iterated over.

Parameters
y

[object] Input object.
Returns

b
[bool] ReturnTrue if the object has an iterator method or is a sequence andFalse otherwise.

Notes

In most cases, the results of np.iterable(obj) are consistent with isinstance(obj, collections.
abc.Iterable). One notable exception is the treatment of 0-dimensional arrays:

>>> from collections.abc import Iterable
>>> a = np.array(1.0) # 0-dimensional numpy array
>>> isinstance(a, Iterable)
True
>>> np.iterable(a)
False

Examples

>>> import numpy as np
>>> np.iterable([1, 2, 3])
True
>>> np.iterable(2)
False

1.4.11 Logic functions

Truth value testing

all(a[, axis, out, keepdims, where]) Test whether all array elements along a given axis evaluate
to True.

any(a[, axis, out, keepdims, where]) Test whether any array element along a given axis evalu-
ates to True.

1350 1. Python API

NumPy Reference, Release 2.2.0

numpy.all(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)
Test whether all array elements along a given axis evaluate to True.

Parameters
a

[array_like] Input array or object that can be converted to an array.
axis

[None or int or tuple of ints, optional] Axis or axes along which a logical AND reduction is
performed. The default (axis=None) is to perform a logical AND over all the dimensions
of the input array. axis may be negative, in which case it counts from the last to the first axis.
If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis or
all the axes as before.

out
[ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output and its type is preserved (e.g., if dtype(out) is float, the result
will consist of 0.0’s and 1.0’s). See ufuncs-output-type for more details.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the all method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

where
[array_like of bool, optional] Elements to include in checking for all True values. See reduce
for details.
New in version 1.20.0.

Returns
all

[ndarray, bool] A new boolean or array is returned unless out is specified, in which case a
reference to out is returned.

See also:

ndarray.all
equivalent method

any
Test whether any element along a given axis evaluates to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.
Changed in version 2.0: Before NumPy 2.0, all did not return booleans for object dtype input arrays. This
behavior is still available via np.logical_and.reduce.

1.4. Routines and objects by topic 1351

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.all([[True,False],[True,True]])
False

>>> np.all([[True,False],[True,True]], axis=0)
array([True, False])

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> np.all([[True, True], [False, True]], where=[[True], [False]])
True

>>> o=np.array(False)
>>> z=np.all([-1, 4, 5], out=o)
>>> id(z), id(o), z
(28293632, 28293632, array(True)) # may vary

numpy.any(a, axis=None, out=None, keepdims=<no value>, *, where=<no value>)
Test whether any array element along a given axis evaluates to True.
Returns single boolean if axis is None

Parameters
a

[array_like] Input array or object that can be converted to an array.
axis

[None or int or tuple of ints, optional] Axis or axes along which a logical OR reduction is
performed. The default (axis=None) is to perform a logical OR over all the dimensions of
the input array. axis may be negative, in which case it counts from the last to the first axis. If
this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis or all
the axes as before.

out
[ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output and its type is preserved (e.g., if it is of type float, then it will
remain so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See ufuncs-
output-type for more details.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the any method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

where

1352 1. Python API

NumPy Reference, Release 2.2.0

[array_like of bool, optional] Elements to include in checking for any True values. See re-
duce for details.
New in version 1.20.0.

Returns
any

[bool or ndarray] A new boolean or ndarray is returned unless out is specified, in which
case a reference to out is returned.

See also:

ndarray.any
equivalent method

all
Test whether all elements along a given axis evaluate to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.
Changed in version 2.0: Before NumPy 2.0, any did not return booleans for object dtype input arrays. This
behavior is still available via np.logical_or.reduce.

Examples

>>> import numpy as np
>>> np.any([[True, False], [True, True]])
True

>>> np.any([[True, False, True],
... [False, False, False]], axis=0)
array([True, False, True])

>>> np.any([-1, 0, 5])
True

>>> np.any([[np.nan], [np.inf]], axis=1, keepdims=True)
array([[True],

[True]])

>>> np.any([[True, False], [False, False]], where=[[False], [True]])
False

>>> a = np.array([[1, 0, 0],
... [0, 0, 1],
... [0, 0, 0]])
>>> np.any(a, axis=0)
array([True, False, True])
>>> np.any(a, axis=1)
array([True, True, False])

1.4. Routines and objects by topic 1353

NumPy Reference, Release 2.2.0

>>> o=np.array(False)
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
(array(True), array(True))
>>> # Check now that z is a reference to o
>>> z is o
True
>>> id(z), id(o) # identity of z and o
(191614240, 191614240)

Array contents

isfinite(x, /[, out, where, casting, order, ...]) Test element-wise for finiteness (not infinity and not Not
a Number).

isinf(x, /[, out, where, casting, order, ...]) Test element-wise for positive or negative infinity.
isnan(x, /[, out, where, casting, order, ...]) Test element-wise for NaN and return result as a boolean

array.
isnat(x, /[, out, where, casting, order, ...]) Test element-wise for NaT (not a time) and return result

as a boolean array.
isneginf(x[, out]) Test element-wise for negative infinity, return result as

bool array.
isposinf(x[, out]) Test element-wise for positive infinity, return result as

bool array.

numpy.isfinite(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'isfinite'>

Test element-wise for finiteness (not infinity and not Not a Number).
The result is returned as a boolean array.

Parameters
x

[array_like] Input values.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray, bool] True where x is not positive infinity, negative infinity, or NaN; false otherwise.
This is a scalar if x is a scalar.

1354 1. Python API

NumPy Reference, Release 2.2.0

See also:

isinf , isneginf , isposinf , isnan

Notes

Not a Number, positive infinity and negative infinity are considered to be non-finite.
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is
equivalent to positive infinity. Errors result if the second argument is also supplied when x is a scalar input, or if
first and second arguments have different shapes.

Examples

>>> import numpy as np
>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(-np.inf)
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)])
array([False, True, False])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isfinite(x, y)
array([0, 1, 0])
>>> y
array([0, 1, 0])

numpy.isinf(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'isinf'>

Test element-wise for positive or negative infinity.
Returns a boolean array of the same shape as x, True where x == +/-inf, otherwise False.

Parameters
x

[array_like] Input values
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain

1.4. Routines and objects by topic 1355

NumPy Reference, Release 2.2.0

its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[bool (scalar) or boolean ndarray] True where x is positive or negative infinity, false otherwise.
This is a scalar if x is a scalar.

See also:

isneginf , isposinf , isnan, isfinite

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second
arguments have different shapes.

Examples

>>> import numpy as np
>>> np.isinf(np.inf)
True
>>> np.isinf(np.nan)
False
>>> np.isinf(-np.inf)
True
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
array([True, True, False, False])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isinf(x, y)
array([1, 0, 1])
>>> y
array([1, 0, 1])

numpy.isnan(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'isnan'>

Test element-wise for NaN and return result as a boolean array.
Parameters

x
[array_like] Input array.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1356 1. Python API

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or bool] True where x is NaN, false otherwise. This is a scalar if x is a scalar.
See also:

isinf , isneginf , isposinf , isfinite, isnat

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

Examples

>>> import numpy as np
>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan([np.log(-1.),1.,np.log(0)])
array([True, False, False])

numpy.isnat(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'isnat'>

Test element-wise for NaT (not a time) and return result as a boolean array.
Parameters

x
[array_like] Input array with datetime or timedelta data type.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

1.4. Routines and objects by topic 1357

NumPy Reference, Release 2.2.0

Returns
y

[ndarray or bool] True where x is NaT, false otherwise. This is a scalar if x is a scalar.
See also:

isnan, isinf , isneginf , isposinf , isfinite

Examples

>>> import numpy as np
>>> np.isnat(np.datetime64("NaT"))
True
>>> np.isnat(np.datetime64("2016-01-01"))
False
>>> np.isnat(np.array(["NaT", "2016-01-01"], dtype="datetime64[ns]"))
array([True, False])

numpy.isneginf(x, out=None)
Test element-wise for negative infinity, return result as bool array.

Parameters
x

[array_like] The input array.
out

[array_like, optional] A location into which the result is stored. If provided, it must have a
shape that the input broadcasts to. If not provided or None, a freshly-allocated boolean array
is returned.

Returns
out

[ndarray] A boolean array with the same dimensions as the input. If second argument is not
supplied then a numpy boolean array is returned with values True where the corresponding
element of the input is negative infinity and values False where the element of the input is not
negative infinity.
If a second argument is supplied the result is stored there. If the type of that array is a numeric
type the result is represented as zeros and ones, if the type is boolean then as False and True.
The return value out is then a reference to that array.

See also:

isinf , isposinf , isnan, isfinite

1358 1. Python API

NumPy Reference, Release 2.2.0

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
Errors result if the second argument is also supplied when x is a scalar input, if first and second arguments have
different shapes, or if the first argument has complex values.

Examples

>>> import numpy as np
>>> np.isneginf(-np.inf)
True
>>> np.isneginf(np.inf)
False
>>> np.isneginf([-np.inf, 0., np.inf])
array([True, False, False])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isneginf(x, y)
array([1, 0, 0])
>>> y
array([1, 0, 0])

numpy.isposinf(x, out=None)
Test element-wise for positive infinity, return result as bool array.

Parameters
x

[array_like] The input array.
out

[array_like, optional] A location into which the result is stored. If provided, it must have a
shape that the input broadcasts to. If not provided or None, a freshly-allocated boolean array
is returned.

Returns
out

[ndarray] A boolean array with the same dimensions as the input. If second argument is not
supplied then a boolean array is returned with values True where the corresponding element
of the input is positive infinity and values False where the element of the input is not positive
infinity.
If a second argument is supplied the result is stored there. If the type of that array is a numeric
type the result is represented as zeros and ones, if the type is boolean then as False and True.
The return value out is then a reference to that array.

See also:

isinf , isneginf , isfinite, isnan

1.4. Routines and objects by topic 1359

NumPy Reference, Release 2.2.0

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
Errors result if the second argument is also supplied when x is a scalar input, if first and second arguments have
different shapes, or if the first argument has complex values

Examples

>>> import numpy as np
>>> np.isposinf(np.inf)
True
>>> np.isposinf(-np.inf)
False
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True])

>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isposinf(x, y)
array([0, 0, 1])
>>> y
array([0, 0, 1])

Array type testing

iscomplex(x) Returns a bool array, where True if input element is com-
plex.

iscomplexobj(x) Check for a complex type or an array of complex num-
bers.

isfortran(a) Check if the array is Fortran contiguous but not C con-
tiguous.

isreal(x) Returns a bool array, where True if input element is real.
isrealobj(x) Return True if x is a not complex type or an array of com-

plex numbers.
isscalar(element) Returns True if the type of element is a scalar type.

numpy.iscomplex(x)
Returns a bool array, where True if input element is complex.
What is tested is whether the input has a non-zero imaginary part, not if the input type is complex.

Parameters
x

[array_like] Input array.
Returns

out
[ndarray of bools] Output array.

See also:

1360 1. Python API

NumPy Reference, Release 2.2.0

isreal
iscomplexobj

Return True if x is a complex type or an array of complex numbers.

Examples

>>> import numpy as np
>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([True, False, False, False, False, True])

numpy.iscomplexobj(x)
Check for a complex type or an array of complex numbers.
The type of the input is checked, not the value. Even if the input has an imaginary part equal to zero, iscom-
plexobj evaluates to True.

Parameters
x

[any] The input can be of any type and shape.
Returns

iscomplexobj
[bool] The return value, True if x is of a complex type or has at least one complex element.

See also:

isrealobj, iscomplex

Examples

>>> import numpy as np
>>> np.iscomplexobj(1)
False
>>> np.iscomplexobj(1+0j)
True
>>> np.iscomplexobj([3, 1+0j, True])
True

numpy.isfortran(a)
Check if the array is Fortran contiguous but not C contiguous.
This function is obsolete. If you only want to check if an array is Fortran contiguous use a.flags.
f_contiguous instead.

Parameters
a

[ndarray] Input array.
Returns

isfortran
[bool] Returns True if the array is Fortran contiguous but not C contiguous.

1.4. Routines and objects by topic 1361

NumPy Reference, Release 2.2.0

Examples

np.array allows to specify whether the array is written in C-contiguous order (last index varies the fastest), or
FORTRAN-contiguous order in memory (first index varies the fastest).

>>> import numpy as np
>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(a)
False

>>> b = np.array([[1, 2, 3], [4, 5, 6]], order='F')
>>> b
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(b)
True

The transpose of a C-ordered array is a FORTRAN-ordered array.

>>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.isfortran(a)
False
>>> b = a.T
>>> b
array([[1, 4],

[2, 5],
[3, 6]])

>>> np.isfortran(b)
True

C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.

>>> np.isfortran(np.array([1, 2], order='F'))
False

numpy.isreal(x)
Returns a bool array, where True if input element is real.
If element has complex type with zero imaginary part, the return value for that element is True.

Parameters
x

[array_like] Input array.
Returns

out
[ndarray, bool] Boolean array of same shape as x.

See also:

1362 1. Python API

NumPy Reference, Release 2.2.0

iscomplex
isrealobj

Return True if x is not a complex type.

Notes

isreal may behave unexpectedly for string or object arrays (see examples)

Examples

>>> import numpy as np
>>> a = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j], dtype=complex)
>>> np.isreal(a)
array([False, True, True, True, True, False])

The function does not work on string arrays.

>>> a = np.array([2j, "a"], dtype="U")
>>> np.isreal(a) # Warns about non-elementwise comparison
False

Returns True for all elements in input array of dtype=object even if any of the elements is complex.

>>> a = np.array([1, "2", 3+4j], dtype=object)
>>> np.isreal(a)
array([True, True, True])

isreal should not be used with object arrays

>>> a = np.array([1+2j, 2+1j], dtype=object)
>>> np.isreal(a)
array([True, True])

numpy.isrealobj(x)
Return True if x is a not complex type or an array of complex numbers.
The type of the input is checked, not the value. So even if the input has an imaginary part equal to zero, isre-
alobj evaluates to False if the data type is complex.

Parameters
x

[any] The input can be of any type and shape.
Returns

y
[bool] The return value, False if x is of a complex type.

See also:

iscomplexobj, isreal

1.4. Routines and objects by topic 1363

NumPy Reference, Release 2.2.0

Notes

The function is only meant for arrays with numerical values but it accepts all other objects. Since it assumes array
input, the return value of other objects may be True.

>>> np.isrealobj('A string')
True
>>> np.isrealobj(False)
True
>>> np.isrealobj(None)
True

Examples

>>> import numpy as np
>>> np.isrealobj(1)
True
>>> np.isrealobj(1+0j)
False
>>> np.isrealobj([3, 1+0j, True])
False

numpy.isscalar(element)
Returns True if the type of element is a scalar type.

Parameters
element

[any] Input argument, can be of any type and shape.
Returns

val
[bool] True if element is a scalar type, False if it is not.

See also:

ndim
Get the number of dimensions of an array

Notes

If you need a stricter way to identify a numerical scalar, use isinstance(x, numbers.Number), as that
returns False for most non-numerical elements such as strings.
In most cases np.ndim(x) == 0 should be used instead of this function, as that will also return true for 0d
arrays. This is how numpy overloads functions in the style of the dx arguments to gradient and the bins
argument to histogram. Some key differences:

1364 1. Python API

NumPy Reference, Release 2.2.0

x iss-
calar(x)

np.ndim(x)
== 0

PEP 3141 numeric objects (including builtins) True True
builtin string and buffer objects True True
other builtin objects, like pathlib.Path, Exception, the result of
re.compile

False True

third-party objects like matplotlib.figure.Figure False True
zero-dimensional numpy arrays False True
other numpy arrays False False
list, tuple, and other sequence objects False False

Examples

>>> import numpy as np

>>> np.isscalar(3.1)
True

>>> np.isscalar(np.array(3.1))
False

>>> np.isscalar([3.1])
False

>>> np.isscalar(False)
True

>>> np.isscalar('numpy')
True

NumPy supports PEP 3141 numbers:

>>> from fractions import Fraction
>>> np.isscalar(Fraction(5, 17))
True
>>> from numbers import Number
>>> np.isscalar(Number())
True

Logical operations

logical_and(x1, x2, /[, out, where, ...]) Compute the truth value of x1 AND x2 element-wise.
logical_or(x1, x2, /[, out, where, casting, ...]) Compute the truth value of x1 OR x2 element-wise.
logical_not(x, /[, out, where, casting, ...]) Compute the truth value of NOT x element-wise.
logical_xor(x1, x2, /[, out, where, ...]) Compute the truth value of x1 XOR x2, element-wise.

numpy.logical_and(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'logical_and'>

1.4. Routines and objects by topic 1365

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/re.html#re.compile
https://matplotlib.org/stable/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure

NumPy Reference, Release 2.2.0

Compute the truth value of x1 AND x2 element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or bool] Boolean result of the logical AND operation applied to the elements of x1
and x2; the shape is determined by broadcasting. This is a scalar if both x1 and x2 are scalars.

See also:

logical_or, logical_not, logical_xor
bitwise_and

Examples

>>> import numpy as np
>>> np.logical_and(True, False)
False
>>> np.logical_and([True, False], [False, False])
array([False, False])

>>> x = np.arange(5)
>>> np.logical_and(x>1, x<4)
array([False, False, True, True, False])

The & operator can be used as a shorthand for np.logical_and on boolean ndarrays.

>>> a = np.array([True, False])
>>> b = np.array([False, False])
>>> a & b
array([False, False])

numpy.logical_or(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'logical_or'>

Compute the truth value of x1 OR x2 element-wise.

1366 1. Python API

NumPy Reference, Release 2.2.0

Parameters
x1, x2

[array_like] Logical OR is applied to the elements of x1 and x2. If x1.shape != x2.
shape, they must be broadcastable to a common shape (which becomes the shape of the
output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or bool] Boolean result of the logical OR operation applied to the elements of x1 and
x2; the shape is determined by broadcasting. This is a scalar if both x1 and x2 are scalars.

See also:

logical_and, logical_not, logical_xor
bitwise_or

Examples

>>> import numpy as np
>>> np.logical_or(True, False)
True
>>> np.logical_or([True, False], [False, False])
array([True, False])

>>> x = np.arange(5)
>>> np.logical_or(x < 1, x > 3)
array([True, False, False, False, True])

The | operator can be used as a shorthand for np.logical_or on boolean ndarrays.

>>> a = np.array([True, False])
>>> b = np.array([False, False])
>>> a | b
array([True, False])

numpy.logical_not(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'logical_not'>

Compute the truth value of NOT x element-wise.
Parameters

1.4. Routines and objects by topic 1367

NumPy Reference, Release 2.2.0

x
[array_like] Logical NOT is applied to the elements of x.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[bool or ndarray of bool] Boolean result with the same shape as x of the NOT operation on
elements of x. This is a scalar if x is a scalar.

See also:

logical_and, logical_or, logical_xor

Examples

>>> import numpy as np
>>> np.logical_not(3)
False
>>> np.logical_not([True, False, 0, 1])
array([False, True, True, False])

>>> x = np.arange(5)
>>> np.logical_not(x<3)
array([False, False, False, True, True])

numpy.logical_xor(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'logical_xor'>

Compute the truth value of x1 XOR x2, element-wise.
Parameters

x1, x2
[array_like] Logical XOR is applied to the elements of x1 and x2. If x1.shape != x2.
shape, they must be broadcastable to a common shape (which becomes the shape of the
output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1368 1. Python API

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[bool or ndarray of bool] Boolean result of the logical XOR operation applied to the elements
of x1 and x2; the shape is determined by broadcasting. This is a scalar if both x1 and x2 are
scalars.

See also:

logical_and, logical_or, logical_not, bitwise_xor

Examples

>>> import numpy as np
>>> np.logical_xor(True, False)
True
>>> np.logical_xor([True, True, False, False], [True, False, True, False])
array([False, True, True, False])

>>> x = np.arange(5)
>>> np.logical_xor(x < 1, x > 3)
array([True, False, False, False, True])

Simple example showing support of broadcasting

>>> np.logical_xor(0, np.eye(2))
array([[True, False],

[False, True]])

Comparison

allclose(a, b[, rtol, atol, equal_nan]) Returns True if two arrays are element-wise equal within
a tolerance.

isclose(a, b[, rtol, atol, equal_nan]) Returns a boolean array where two arrays are element-
wise equal within a tolerance.

array_equal(a1, a2[, equal_nan]) True if two arrays have the same shape and elements,
False otherwise.

array_equiv(a1, a2) Returns True if input arrays are shape consistent and all
elements equal.

numpy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns True if two arrays are element-wise equal within a tolerance.

1.4. Routines and objects by topic 1369

NumPy Reference, Release 2.2.0

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the
absolute difference atol are added together to compare against the absolute difference between a and b.

Warning: The default atol is not appropriate for comparing numbers with magnitudes much smaller than one
(see Notes).

NaNs are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal if
they are in the same place and of the same sign in both arrays.

Parameters
a, b

[array_like] Input arrays to compare.
rtol

[array_like] The relative tolerance parameter (see Notes).
atol

[array_like] The absolute tolerance parameter (see Notes).
equal_nan

[bool] Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to
NaN’s in b in the output array.

Returns
allclose

[bool] Returns True if the two arrays are equal within the given tolerance; False otherwise.
See also:

isclose, all, any, equal

Notes

If the following equation is element-wise True, then allclose returns True.:

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that allclose(a, b) might be different from
allclose(b, a) in some rare cases.
The default value of atol is not appropriate when the reference value b has magnitude smaller than one. For example,
it is unlikely that a = 1e-9 and b = 2e-9 should be considered “close”, yet allclose(1e-9, 2e-9)
is True with default settings. Be sure to select atol for the use case at hand, especially for defining the threshold
below which a non-zero value in a will be considered “close” to a very small or zero value in b.
The comparison of a and b uses standard broadcasting, which means that a and b need not have the same shape in
order for allclose(a, b) to evaluate to True. The same is true for equal but not array_equal.
allclose is not defined for non-numeric data types. bool is considered a numeric data-type for this purpose.

1370 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
False

>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
True

>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
False

>>> np.allclose([1.0, np.nan], [1.0, np.nan])
False

>>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
True

numpy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns a boolean array where two arrays are element-wise equal within a tolerance.
The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the
absolute difference atol are added together to compare against the absolute difference between a and b.

Warning: The default atol is not appropriate for comparing numbers with magnitudes much smaller than one
(see Notes).

Parameters
a, b

[array_like] Input arrays to compare.
rtol

[array_like] The relative tolerance parameter (see Notes).
atol

[array_like] The absolute tolerance parameter (see Notes).
equal_nan

[bool] Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to
NaN’s in b in the output array.

Returns
y

[array_like] Returns a boolean array of where a and b are equal within the given tolerance. If
both a and b are scalars, returns a single boolean value.

See also:

allclose
math.isclose

1.4. Routines and objects by topic 1371

https://docs.python.org/3/library/math.html#math.isclose

NumPy Reference, Release 2.2.0

Notes

For finite values, isclose uses the following equation to test whether two floating point values are equivalent.:

absolute(a - b) <= (atol + rtol * absolute(b))

Unlike the built-in math.isclose, the above equation is not symmetric in a and b – it assumes b is the reference
value – so that isclose(a, b) might be different from isclose(b, a).
The default value of atol is not appropriate when the reference value b has magnitude smaller than one. For example,
it is unlikely that a = 1e-9 and b = 2e-9 should be considered “close”, yet isclose(1e-9, 2e-9)
is True with default settings. Be sure to select atol for the use case at hand, especially for defining the threshold
below which a non-zero value in a will be considered “close” to a very small or zero value in b.
isclose is not defined for non-numeric data types. bool is considered a numeric data-type for this purpose.

Examples

>>> import numpy as np
>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
array([True, False])

>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
array([True, True])

>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
array([False, True])

>>> np.isclose([1.0, np.nan], [1.0, np.nan])
array([True, False])

>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
array([True, True])

>>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
array([True, False])

>>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
array([False, False])

>>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
array([True, True])

>>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
array([False, True])

numpy.array_equal(a1, a2, equal_nan=False)
True if two arrays have the same shape and elements, False otherwise.

Parameters
a1, a2

[array_like] Input arrays.

1372 1. Python API

https://docs.python.org/3/library/math.html#math.isclose

NumPy Reference, Release 2.2.0

equal_nan
[bool] Whether to compare NaN’s as equal. If the dtype of a1 and a2 is complex, values will
be considered equal if either the real or the imaginary component of a given value is nan.

Returns
b

[bool] Returns True if the arrays are equal.
See also:

allclose
Returns True if two arrays are element-wise equal within a tolerance.

array_equiv
Returns True if input arrays are shape consistent and all elements equal.

Examples

>>> import numpy as np

>>> np.array_equal([1, 2], [1, 2])
True

>>> np.array_equal(np.array([1, 2]), np.array([1, 2]))
True

>>> np.array_equal([1, 2], [1, 2, 3])
False

>>> np.array_equal([1, 2], [1, 4])
False

>>> a = np.array([1, np.nan])
>>> np.array_equal(a, a)
False

>>> np.array_equal(a, a, equal_nan=True)
True

When equal_nan is True, complex values with nan components are considered equal if either the real or the
imaginary components are nan.

>>> a = np.array([1 + 1j])
>>> b = a.copy()
>>> a.real = np.nan
>>> b.imag = np.nan
>>> np.array_equal(a, b, equal_nan=True)
True

numpy.array_equiv(a1, a2)
Returns True if input arrays are shape consistent and all elements equal.
Shape consistent means they are either the same shape, or one input array can be broadcasted to create the same
shape as the other one.

1.4. Routines and objects by topic 1373

NumPy Reference, Release 2.2.0

Parameters
a1, a2

[array_like] Input arrays.
Returns

out
[bool] True if equivalent, False otherwise.

Examples

>>> import numpy as np
>>> np.array_equiv([1, 2], [1, 2])
True
>>> np.array_equiv([1, 2], [1, 3])
False

Showing the shape equivalence:

>>> np.array_equiv([1, 2], [[1, 2], [1, 2]])
True
>>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]])
False

>>> np.array_equiv([1, 2], [[1, 2], [1, 3]])
False

greater(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 > x2) element-wise.
greater_equal(x1, x2, /[, out, where, ...]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 < x2) element-wise.
less_equal(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 <= x2) element-wise.
equal(x1, x2, /[, out, where, casting, ...]) Return (x1 == x2) element-wise.
not_equal(x1, x2, /[, out, where, casting, ...]) Return (x1 != x2) element-wise.

numpy.greater(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'greater'>

Return the truth value of (x1 > x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1374 1. Python API

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater_equal, less, less_equal, equal, not_equal

Examples

>>> import numpy as np
>>> np.greater([4,2],[2,2])
array([True, False])

The > operator can be used as a shorthand for np.greater on ndarrays.

>>> a = np.array([4, 2])
>>> b = np.array([2, 2])
>>> a > b
array([True, False])

numpy.greater_equal(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'greater_equal'>

Return the truth value of (x1 >= x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[bool or ndarray of bool] Output array, element-wise comparison of x1 and x2. Typically of
type bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

1.4. Routines and objects by topic 1375

NumPy Reference, Release 2.2.0

greater, less, less_equal, equal, not_equal

Examples

>>> import numpy as np
>>> np.greater_equal([4, 2, 1], [2, 2, 2])
array([True, True, False])

The >= operator can be used as a shorthand for np.greater_equal on ndarrays.

>>> a = np.array([4, 2, 1])
>>> b = np.array([2, 2, 2])
>>> a >= b
array([True, True, False])

numpy.less(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'less'>

Return the truth value of (x1 < x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater, less_equal, greater_equal, equal, not_equal

1376 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.less([1, 2], [2, 2])
array([True, False])

The < operator can be used as a shorthand for np.less on ndarrays.

>>> a = np.array([1, 2])
>>> b = np.array([2, 2])
>>> a < b
array([True, False])

numpy.less_equal(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'less_equal'>

Return the truth value of (x1 <= x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

greater, less, greater_equal, equal, not_equal

1.4. Routines and objects by topic 1377

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.less_equal([4, 2, 1], [2, 2, 2])
array([False, True, True])

The <= operator can be used as a shorthand for np.less_equal on ndarrays.

>>> a = np.array([4, 2, 1])
>>> b = np.array([2, 2, 2])
>>> a <= b
array([False, True, True])

numpy.equal(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'equal'>

Return (x1 == x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

not_equal, greater_equal, less_equal, greater, less

1378 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.equal([0, 1, 3], np.arange(3))
array([True, True, False])

What is compared are values, not types. So an int (1) and an array of length one can evaluate as True:

>>> np.equal(1, np.ones(1))
array([True])

The == operator can be used as a shorthand for np.equal on ndarrays.

>>> a = np.array([2, 4, 6])
>>> b = np.array([2, 4, 2])
>>> a == b
array([True, True, False])

numpy.not_equal(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'not_equal'>

Return (x1 != x2) element-wise.
Parameters

x1, x2
[array_like] Input arrays. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

equal, greater, greater_equal, less, less_equal

1.4. Routines and objects by topic 1379

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.not_equal([1.,2.], [1., 3.])
array([False, True])
>>> np.not_equal([1, 2], [[1, 3],[1, 4]])
array([[False, True],

[False, True]])

The != operator can be used as a shorthand for np.not_equal on ndarrays.

>>> a = np.array([1., 2.])
>>> b = np.array([1., 3.])
>>> a != b
array([False, True])

1.4.12 Mathematical functions

Trigonometric functions

sin(x, /[, out, where, casting, order, ...]) Trigonometric sine, element-wise.
cos(x, /[, out, where, casting, order, ...]) Cosine element-wise.
tan(x, /[, out, where, casting, order, ...]) Compute tangent element-wise.
arcsin(x, /[, out, where, casting, order, ...]) Inverse sine, element-wise.
asin(x, /[, out, where, casting, order, ...]) Inverse sine, element-wise.
arccos(x, /[, out, where, casting, order, ...]) Trigonometric inverse cosine, element-wise.
acos(x, /[, out, where, casting, order, ...]) Trigonometric inverse cosine, element-wise.
arctan(x, /[, out, where, casting, order, ...]) Trigonometric inverse tangent, element-wise.
atan(x, /[, out, where, casting, order, ...]) Trigonometric inverse tangent, element-wise.
hypot(x1, x2, /[, out, where, casting, ...]) Given the "legs" of a right triangle, return its hypotenuse.
arctan2(x1, x2, /[, out, where, casting, ...]) Element-wise arc tangent of x1/x2 choosing the quad-

rant correctly.
atan2(x1, x2, /[, out, where, casting, ...]) Element-wise arc tangent of x1/x2 choosing the quad-

rant correctly.
degrees(x, /[, out, where, casting, order, ...]) Convert angles from radians to degrees.
radians(x, /[, out, where, casting, order, ...]) Convert angles from degrees to radians.
unwrap(p[, discont, axis, period]) Unwrap by taking the complement of large deltas with

respect to the period.
deg2rad(x, /[, out, where, casting, order, ...]) Convert angles from degrees to radians.
rad2deg(x, /[, out, where, casting, order, ...]) Convert angles from radians to degrees.

numpy.sin(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'sin'>

Trigonometric sine, element-wise.
Parameters

x
[array_like] Angle, in radians (2π rad equals 360 degrees).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,

1380 1. Python API

NumPy Reference, Release 2.2.0

a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[array_like] The sine of each element of x. This is a scalar if x is a scalar.
See also:

arcsin, sinh, cos

Notes

The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a
circle of radius 1 centered on the origin. A ray comes in from the +x axis, makes an angle at the origin (measured
counter-clockwise from that axis), and departs from the origin. The y coordinate of the outgoing ray’s intersection
with the unit circle is the sine of that angle. It ranges from -1 for x = 3π/2 to +1 for π/2. The function has zeroes
where the angle is a multiple of π. Sines of angles between π and 2π are negative. The numerous properties of the
sine and related functions are included in any standard trigonometry text.

Examples

>>> import numpy as np

Print sine of one angle:

>>> np.sin(np.pi/2.)
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.)
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

1.4. Routines and objects by topic 1381

NumPy Reference, Release 2.2.0

3 2 1 0 1 2 3
Angle [rad]

1.0

0.5

0.0

0.5

1.0

sin
(x

)

numpy.cos(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'cos'>

Cosine element-wise.
Parameters

x
[array_like] Input array in radians.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The corresponding cosine values. This is a scalar if x is a scalar.

1382 1. Python API

NumPy Reference, Release 2.2.0

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> import numpy as np
>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out1 = np.array([0], dtype='d')
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

numpy.tan(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'tan'>

Compute tangent element-wise.
Equivalent to np.sin(x)/np.cos(x) element-wise.

Parameters
x

[array_like] Input array.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The corresponding tangent values. This is a scalar if x is a scalar.

1.4. Routines and objects by topic 1383

NumPy Reference, Release 2.2.0

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> import numpy as np
>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = np.array([0], dtype='d')
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

numpy.arcsin(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'arcsin'>

Inverse sine, element-wise.
Parameters

x
[array_like] y-coordinate on the unit circle.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
angle

[ndarray] The inverse sine of each element in x, in radians and in the closed interval [-pi/2,
pi/2]. This is a scalar if x is a scalar.

1384 1. Python API

NumPy Reference, Release 2.2.0

See also:

sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

Notes

arcsin is a multivalued function: for each x there are infinitely many numbers z such that sin(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].
For real-valued input data types, arcsin always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arcsin is a complex analytic function that has, by convention, the branch cuts [-inf,
-1] and [1, inf] and is continuous from above on the former and from below on the latter.
The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover, 1964,
pp. 79ff. https://personal.math.ubc.ca/~cbm/aands/page_79.htm

Examples

>>> import numpy as np
>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

numpy.asin(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'arcsin'>

Inverse sine, element-wise.
Parameters

x
[array_like] y-coordinate on the unit circle.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

1.4. Routines and objects by topic 1385

https://personal.math.ubc.ca/~cbm/aands/page_79.htm

NumPy Reference, Release 2.2.0

Returns
angle

[ndarray] The inverse sine of each element in x, in radians and in the closed interval [-pi/2,
pi/2]. This is a scalar if x is a scalar.

See also:

sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

Notes

arcsin is a multivalued function: for each x there are infinitely many numbers z such that sin(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].
For real-valued input data types, arcsin always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arcsin is a complex analytic function that has, by convention, the branch cuts [-inf,
-1] and [1, inf] and is continuous from above on the former and from below on the latter.
The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover, 1964,
pp. 79ff. https://personal.math.ubc.ca/~cbm/aands/page_79.htm

Examples

>>> import numpy as np
>>> np.arcsin(1) # pi/2
1.5707963267948966
>>> np.arcsin(-1) # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

numpy.arccos(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'arccos'>

Trigonometric inverse cosine, element-wise.
The inverse of cos so that, if y = cos(x), then x = arccos(y).

Parameters
x

[array_like] x-coordinate on the unit circle. For real arguments, the domain is [-1, 1].
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1386 1. Python API

https://personal.math.ubc.ca/~cbm/aands/page_79.htm

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
angle

[ndarray] The angle of the ray intersecting the unit circle at the given x-coordinate in radians
[0, pi]. This is a scalar if x is a scalar.

See also:

cos, arctan, arcsin, emath.arccos

Notes

arccos is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x. The
convention is to return the angle z whose real part lies in [0, pi].
For real-valued input data types, arccos always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arccos is a complex analytic function that has branch cuts [-inf, -1] and [1, inf]
and is continuous from above on the former and from below on the latter.
The inverse cos is also known as acos or cos^-1.

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 79. https:
//personal.math.ubc.ca/~cbm/aands/page_79.htm

Examples

>>> import numpy as np

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

1.4. Routines and objects by topic 1387

https://personal.math.ubc.ca/~cbm/aands/page_79.htm
https://personal.math.ubc.ca/~cbm/aands/page_79.htm

NumPy Reference, Release 2.2.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

numpy.acos(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'arccos'>

Trigonometric inverse cosine, element-wise.
The inverse of cos so that, if y = cos(x), then x = arccos(y).

Parameters
x

[array_like] x-coordinate on the unit circle. For real arguments, the domain is [-1, 1].
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
angle

[ndarray] The angle of the ray intersecting the unit circle at the given x-coordinate in radians
[0, pi]. This is a scalar if x is a scalar.

See also:

cos, arctan, arcsin, emath.arccos

1388 1. Python API

NumPy Reference, Release 2.2.0

Notes

arccos is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x. The
convention is to return the angle z whose real part lies in [0, pi].
For real-valued input data types, arccos always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arccos is a complex analytic function that has branch cuts [-inf, -1] and [1, inf]
and is continuous from above on the former and from below on the latter.
The inverse cos is also known as acos or cos^-1.

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 79. https:
//personal.math.ubc.ca/~cbm/aands/page_79.htm

Examples

>>> import numpy as np

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.4. Routines and objects by topic 1389

https://personal.math.ubc.ca/~cbm/aands/page_79.htm
https://personal.math.ubc.ca/~cbm/aands/page_79.htm

NumPy Reference, Release 2.2.0

numpy.arctan(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'arctan'>

Trigonometric inverse tangent, element-wise.
The inverse of tan, so that if y = tan(x) then x = arctan(y).

Parameters
x

[array_like]
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Out has the same shape as x. Its real part is in [-pi/2, pi/2]
(arctan(+/-inf) returns +/-pi/2). This is a scalar if x is a scalar.

See also:

arctan2
The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.

angle
Argument of complex values.

Notes

arctan is a multi-valued function: for each x there are infinitely many numbers z such that tan(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].
For real-valued input data types, arctan always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arctan is a complex analytic function that has [1j, infj] and [-1j, -infj] as
branch cuts, and is continuous from the left on the former and from the right on the latter.
The inverse tangent is also known as atan or tan^{-1}.

1390 1. Python API

NumPy Reference, Release 2.2.0

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover, 1964,
pp. 79. https://personal.math.ubc.ca/~cbm/aands/page_79.htm

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> import numpy as np

>>> np.arctan([0, 1])
array([0. , 0.78539816])

>>> np.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

numpy.atan(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'arctan'>

Trigonometric inverse tangent, element-wise.
The inverse of tan, so that if y = tan(x) then x = arctan(y).

Parameters
x

[array_like]

1.4. Routines and objects by topic 1391

https://personal.math.ubc.ca/~cbm/aands/page_79.htm

NumPy Reference, Release 2.2.0

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Out has the same shape as x. Its real part is in [-pi/2, pi/2]
(arctan(+/-inf) returns +/-pi/2). This is a scalar if x is a scalar.

See also:

arctan2
The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.

angle
Argument of complex values.

Notes

arctan is a multi-valued function: for each x there are infinitely many numbers z such that tan(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].
For real-valued input data types, arctan always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arctan is a complex analytic function that has [1j, infj] and [-1j, -infj] as
branch cuts, and is continuous from the left on the former and from the right on the latter.
The inverse tangent is also known as atan or tan^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover, 1964,
pp. 79. https://personal.math.ubc.ca/~cbm/aands/page_79.htm

1392 1. Python API

https://personal.math.ubc.ca/~cbm/aands/page_79.htm

NumPy Reference, Release 2.2.0

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> import numpy as np

>>> np.arctan([0, 1])
array([0. , 0.78539816])

>>> np.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

numpy.hypot(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'hypot'>

Given the “legs” of a right triangle, return its hypotenuse.
Equivalent to sqrt(x1**2 + x2**2), element-wise. If x1 or x2 is scalar_like (i.e., unambiguously cast-able
to a scalar type), it is broadcast for use with each element of the other argument. (See Examples)

Parameters
x1, x2

[array_like] Leg of the triangle(s). If x1.shape != x2.shape, they must be broad-
castable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,

1.4. Routines and objects by topic 1393

NumPy Reference, Release 2.2.0

a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
z

[ndarray] The hypotenuse of the triangle(s). This is a scalar if both x1 and x2 are scalars.

Examples

>>> import numpy as np
>>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3)))
array([[5., 5., 5.],

[5., 5., 5.],
[5., 5., 5.]])

Example showing broadcast of scalar_like argument:

>>> np.hypot(3*np.ones((3, 3)), [4])
array([[5., 5., 5.],

[5., 5., 5.],
[5., 5., 5.]])

numpy.arctan2(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'arctan2'>

Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is the signed angle in radians between the ray
ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the
point (x2, x1). (Note the role reversal: the “y-coordinate” is the first function parameter, the “x-coordinate” is the
second.) By IEEE convention, this function is defined for x2 = +/-0 and for either or both of x1 and x2 = +/-inf
(see Notes for specific values).
This function is not defined for complex-valued arguments; for the so-called argument of complex values, use
angle.

Parameters
x1

[array_like, real-valued] y-coordinates.
x2

[array_like, real-valued] x-coordinates. If x1.shape != x2.shape, they must be broad-
castable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1394 1. Python API

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
angle

[ndarray] Array of angles in radians, in the range [-pi, pi]. This is a scalar if both x1 and
x2 are scalars.

See also:

arctan, tan, angle

Notes

arctan2 is identical to the atan2 function of the underlying C library. The following special values are defined in
the C standard: [1]

x1 x2 arctan2(x1,x2)
+/- 0 +0 +/- 0
+/- 0 -0 +/- pi
> 0 +/-inf +0 / +pi
< 0 +/-inf -0 / -pi
+/-inf +inf +/- (pi/4)
+/-inf -inf +/- (3*pi/4)

Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf.

References

[1]

Examples

Consider four points in different quadrants:

>>> import numpy as np

>>> x = np.array([-1, +1, +1, -1])
>>> y = np.array([-1, -1, +1, +1])
>>> np.arctan2(y, x) * 180 / np.pi
array([-135., -45., 45., 135.])

Note the order of the parameters. arctan2 is defined also when x2 = 0 and at several other special points,
obtaining values in the range [-pi, pi]:

1.4. Routines and objects by topic 1395

NumPy Reference, Release 2.2.0

>>> np.arctan2([1., -1.], [0., 0.])
array([1.57079633, -1.57079633])
>>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
array([0. , 3.14159265, 0.78539816])

numpy.atan2(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'arctan2'>

Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is the signed angle in radians between the ray
ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the
point (x2, x1). (Note the role reversal: the “y-coordinate” is the first function parameter, the “x-coordinate” is the
second.) By IEEE convention, this function is defined for x2 = +/-0 and for either or both of x1 and x2 = +/-inf
(see Notes for specific values).
This function is not defined for complex-valued arguments; for the so-called argument of complex values, use
angle.

Parameters
x1

[array_like, real-valued] y-coordinates.
x2

[array_like, real-valued] x-coordinates. If x1.shape != x2.shape, they must be broad-
castable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
angle

[ndarray] Array of angles in radians, in the range [-pi, pi]. This is a scalar if both x1 and
x2 are scalars.

See also:

arctan, tan, angle

1396 1. Python API

NumPy Reference, Release 2.2.0

Notes

arctan2 is identical to the atan2 function of the underlying C library. The following special values are defined in
the C standard: [1]

x1 x2 arctan2(x1,x2)
+/- 0 +0 +/- 0
+/- 0 -0 +/- pi
> 0 +/-inf +0 / +pi
< 0 +/-inf -0 / -pi
+/-inf +inf +/- (pi/4)
+/-inf -inf +/- (3*pi/4)

Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf.

References

[1]

Examples

Consider four points in different quadrants:

>>> import numpy as np

>>> x = np.array([-1, +1, +1, -1])
>>> y = np.array([-1, -1, +1, +1])
>>> np.arctan2(y, x) * 180 / np.pi
array([-135., -45., 45., 135.])

Note the order of the parameters. arctan2 is defined also when x2 = 0 and at several other special points,
obtaining values in the range [-pi, pi]:

>>> np.arctan2([1., -1.], [0., 0.])
array([1.57079633, -1.57079633])
>>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
array([0. , 3.14159265, 0.78539816])

numpy.degrees(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'degrees'>

Convert angles from radians to degrees.
Parameters

x
[array_like] Input array in radians.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1.4. Routines and objects by topic 1397

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray of floats] The corresponding degree values; if out was supplied this is a reference to
it. This is a scalar if x is a scalar.

See also:

rad2deg
equivalent function

Examples

Convert a radian array to degrees

>>> import numpy as np

>>> rad = np.arange(12.)*np.pi/6
>>> np.degrees(rad)
array([0., 30., 60., 90., 120., 150., 180., 210., 240.,

270., 300., 330.])

>>> out = np.zeros((rad.shape))
>>> r = np.degrees(rad, out)
>>> np.all(r == out)
True

numpy.radians(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'radians'>

Convert angles from degrees to radians.
Parameters

x
[array_like] Input array in degrees.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1398 1. Python API

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The corresponding radian values. This is a scalar if x is a scalar.
See also:

deg2rad
equivalent function

Examples

>>> import numpy as np

Convert a degree array to radians

>>> deg = np.arange(12.) * 30.
>>> np.radians(deg)
array([0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,

2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
5.23598776, 5.75958653])

>>> out = np.zeros((deg.shape))
>>> ret = np.radians(deg, out)
>>> ret is out
True

numpy.unwrap(p, discont=None, axis=-1, *, period=6.283185307179586)
Unwrap by taking the complement of large deltas with respect to the period.
This unwraps a signal p by changing elements which have an absolute difference from their predecessor of more
than max(discont, period/2) to their period-complementary values.
For the default case where period is 2π and discont is π, this unwraps a radian phase p such that adjacent differences
are never greater than π by adding 2kπ for some integer k.

Parameters
p

[array_like] Input array.
discont

[float, optional] Maximum discontinuity between values, default is period/2. Values below
period/2 are treated as if they were period/2. To have an effect different from the
default, discont should be larger than period/2.

axis
[int, optional] Axis along which unwrap will operate, default is the last axis.

period
[float, optional] Size of the range over which the input wraps. By default, it is 2 pi.
New in version 1.21.0.

Returns

1.4. Routines and objects by topic 1399

NumPy Reference, Release 2.2.0

out
[ndarray] Output array.

See also:

rad2deg, deg2rad

Notes

If the discontinuity in p is smaller than period/2, but larger than discont, no unwrapping is done because taking
the complement would only make the discontinuity larger.

Examples

>>> import numpy as np
>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
array([0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) # may␣
↪→vary
>>> np.unwrap(phase)
array([0. , 0.78539816, 1.57079633, -0.78539816, 0.]) # may␣
↪→vary
>>> np.unwrap([0, 1, 2, -1, 0], period=4)
array([0, 1, 2, 3, 4])
>>> np.unwrap([1, 2, 3, 4, 5, 6, 1, 2, 3], period=6)
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.unwrap([2, 3, 4, 5, 2, 3, 4, 5], period=4)
array([2, 3, 4, 5, 6, 7, 8, 9])
>>> phase_deg = np.mod(np.linspace(0 ,720, 19), 360) - 180
>>> np.unwrap(phase_deg, period=360)
array([-180., -140., -100., -60., -20., 20., 60., 100., 140.,

180., 220., 260., 300., 340., 380., 420., 460., 500.,
540.])

numpy.deg2rad(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'deg2rad'>

Convert angles from degrees to radians.
Parameters

x
[array_like] Angles in degrees.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1400 1. Python API

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The corresponding angle in radians. This is a scalar if x is a scalar.
See also:

rad2deg
Convert angles from radians to degrees.

unwrap
Remove large jumps in angle by wrapping.

Notes

deg2rad(x) is x * pi / 180.

Examples

>>> import numpy as np
>>> np.deg2rad(180)
3.1415926535897931

numpy.rad2deg(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'rad2deg'>

Convert angles from radians to degrees.
Parameters

x
[array_like] Angle in radians.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The corresponding angle in degrees. This is a scalar if x is a scalar.
See also:

1.4. Routines and objects by topic 1401

NumPy Reference, Release 2.2.0

deg2rad
Convert angles from degrees to radians.

unwrap
Remove large jumps in angle by wrapping.

Notes

rad2deg(x) is 180 * x / pi.

Examples

>>> import numpy as np
>>> np.rad2deg(np.pi/2)
90.0

Hyperbolic functions

sinh(x, /[, out, where, casting, order, ...]) Hyperbolic sine, element-wise.
cosh(x, /[, out, where, casting, order, ...]) Hyperbolic cosine, element-wise.
tanh(x, /[, out, where, casting, order, ...]) Compute hyperbolic tangent element-wise.
arcsinh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic sine element-wise.
asinh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic sine element-wise.
arccosh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic cosine, element-wise.
acosh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic cosine, element-wise.
arctanh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic tangent element-wise.
atanh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic tangent element-wise.

numpy.sinh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'sinh'>

Hyperbolic sine, element-wise.
Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or -1j * np.sin(1j*x).

Parameters
x

[array_like] Input array.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

1402 1. Python API

NumPy Reference, Release 2.2.0

Returns
y

[ndarray] The corresponding hyperbolic sine values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

Examples

>>> import numpy as np
>>> np.sinh(0)
0.0
>>> np.sinh(np.pi*1j/2)
1j
>>> np.sinh(np.pi*1j) # (exact value is 0)
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out1 = np.array([0], dtype='d')
>>> out2 = np.sinh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

numpy.cosh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'cosh'>

Hyperbolic cosine, element-wise.
Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np.cos(1j*x).

Parameters
x

[array_like] Input array.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1.4. Routines and objects by topic 1403

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array of same shape as x. This is a scalar if x is a scalar.

Examples

>>> import numpy as np
>>> np.cosh(0)
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()

4 3 2 1 0 1 2 3 4
0

5

10

15

20

25

numpy.tanh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'tanh'>

Compute hyperbolic tangent element-wise.
Equivalent to np.sinh(x)/np.cosh(x) or -1j * np.tan(1j*x).

Parameters
x

[array_like] Input array.

1404 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The corresponding hyperbolic tangent values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

[1], [2]

Examples

>>> import numpy as np
>>> np.tanh((0, np.pi*1j, np.pi*1j/2))
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out1 = np.array([0], dtype='d')
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

numpy.arcsinh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'arcsinh'>

Inverse hyperbolic sine element-wise.
Parameters

x
[array_like] Input array.

1.4. Routines and objects by topic 1405

NumPy Reference, Release 2.2.0

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Array of the same shape as x. This is a scalar if x is a scalar.

Notes

arcsinh is a multivalued function: for each x there are infinitely many numbers z such that sinh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi/2, pi/2].
For real-valued input data types, arcsinh always returns real output. For each value that cannot be expressed as
a real number or infinity, it returns nan and sets the invalid floating point error flag.
For complex-valued input, arcsinh is a complex analytical function that has branch cuts [1j, infj] and [-1j, -infj]
and is continuous from the right on the former and from the left on the latter.
The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

[1], [2]

Examples

>>> import numpy as np
>>> np.arcsinh(np.array([np.e, 10.0]))
array([1.72538256, 2.99822295])

numpy.asinh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'arcsinh'>

Inverse hyperbolic sine element-wise.
Parameters

x
[array_like] Input array.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,

1406 1. Python API

NumPy Reference, Release 2.2.0

a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Array of the same shape as x. This is a scalar if x is a scalar.

Notes

arcsinh is a multivalued function: for each x there are infinitely many numbers z such that sinh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi/2, pi/2].
For real-valued input data types, arcsinh always returns real output. For each value that cannot be expressed as
a real number or infinity, it returns nan and sets the invalid floating point error flag.
For complex-valued input, arcsinh is a complex analytical function that has branch cuts [1j, infj] and [-1j, -infj]
and is continuous from the right on the former and from the left on the latter.
The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

[1], [2]

Examples

>>> import numpy as np
>>> np.arcsinh(np.array([np.e, 10.0]))
array([1.72538256, 2.99822295])

numpy.arccosh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'arccosh'>

Inverse hyperbolic cosine, element-wise.
Parameters

x
[array_like] Input array.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1.4. Routines and objects by topic 1407

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
arccosh

[ndarray] Array of the same shape as x. This is a scalar if x is a scalar.
See also:

cosh, arcsinh, sinh, arctanh, tanh

Notes

arccosh is a multivalued function: for each x there are infinitely many numbers z such that cosh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi] and the real part in [0, inf].
For real-valued input data types, arccosh always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arccosh is a complex analytical function that has a branch cut [-inf, 1] and is contin-
uous from above on it.

References

[1], [2]

Examples

>>> import numpy as np
>>> np.arccosh([np.e, 10.0])
array([1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0

numpy.acosh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'arccosh'>

Inverse hyperbolic cosine, element-wise.
Parameters

x
[array_like] Input array.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1408 1. Python API

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
arccosh

[ndarray] Array of the same shape as x. This is a scalar if x is a scalar.
See also:

cosh, arcsinh, sinh, arctanh, tanh

Notes

arccosh is a multivalued function: for each x there are infinitely many numbers z such that cosh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi] and the real part in [0, inf].
For real-valued input data types, arccosh always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arccosh is a complex analytical function that has a branch cut [-inf, 1] and is contin-
uous from above on it.

References

[1], [2]

Examples

>>> import numpy as np
>>> np.arccosh([np.e, 10.0])
array([1.65745445, 2.99322285])
>>> np.arccosh(1)
0.0

numpy.arctanh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'arctanh'>

Inverse hyperbolic tangent element-wise.
Parameters

x
[array_like] Input array.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1.4. Routines and objects by topic 1409

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Array of the same shape as x. This is a scalar if x is a scalar.
See also:

emath.arctanh

Notes

arctanh is a multivalued function: for each x there are infinitely many numbers z such that tanh(z) = x.
The convention is to return the z whose imaginary part lies in [-pi/2, pi/2].
For real-valued input data types, arctanh always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arctanh is a complex analytical function that has branch cuts [-1, -inf] and [1, inf]
and is continuous from above on the former and from below on the latter.
The inverse hyperbolic tangent is also known as atanh or tanh^-1.

References

[1], [2]

Examples

>>> import numpy as np
>>> np.arctanh([0, -0.5])
array([0. , -0.54930614])

numpy.atanh(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'arctanh'>

Inverse hyperbolic tangent element-wise.
Parameters

x
[array_like] Input array.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1410 1. Python API

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Array of the same shape as x. This is a scalar if x is a scalar.
See also:

emath.arctanh

Notes

arctanh is a multivalued function: for each x there are infinitely many numbers z such that tanh(z) = x.
The convention is to return the z whose imaginary part lies in [-pi/2, pi/2].
For real-valued input data types, arctanh always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, arctanh is a complex analytical function that has branch cuts [-1, -inf] and [1, inf]
and is continuous from above on the former and from below on the latter.
The inverse hyperbolic tangent is also known as atanh or tanh^-1.

References

[1], [2]

Examples

>>> import numpy as np
>>> np.arctanh([0, -0.5])
array([0. , -0.54930614])

Rounding

round(a[, decimals, out]) Evenly round to the given number of decimals.
around(a[, decimals, out]) Round an array to the given number of decimals.
rint(x, /[, out, where, casting, order, ...]) Round elements of the array to the nearest integer.
fix(x[, out]) Round to nearest integer towards zero.
floor(x, /[, out, where, casting, order, ...]) Return the floor of the input, element-wise.
ceil(x, /[, out, where, casting, order, ...]) Return the ceiling of the input, element-wise.
trunc(x, /[, out, where, casting, order, ...]) Return the truncated value of the input, element-wise.

1.4. Routines and objects by topic 1411

NumPy Reference, Release 2.2.0

numpy.round(a, decimals=0, out=None)
Evenly round to the given number of decimals.

Parameters
a

[array_like] Input data.
decimals

[int, optional] Number of decimal places to round to (default: 0). If decimals is negative, it
specifies the number of positions to the left of the decimal point.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape as the expected output, but the type of the output values will be cast if necessary. See
ufuncs-output-type for more details.

Returns
rounded_array

[ndarray] An array of the same type as a, containing the rounded values. Unless out was
specified, a new array is created. A reference to the result is returned.
The real and imaginary parts of complex numbers are rounded separately. The result of round-
ing a float is a float.

See also:

ndarray.round
equivalent method

around
an alias for this function

ceil, fix, floor, rint, trunc

Notes

For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5
and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc.
np.round uses a fast but sometimes inexact algorithm to round floating-point datatypes. For positive decimals it is
equivalent to np.true_divide(np.rint(a * 10**decimals), 10**decimals), which has error
due to the inexact representation of decimal fractions in the IEEE floating point standard [1] and errors introduced
when scaling by powers of ten. For instance, note the extra “1” in the following:

>>> np.round(56294995342131.5, 3)
56294995342131.51

If your goal is to print such values with a fixed number of decimals, it is preferable to use numpy’s float printing
routines to limit the number of printed decimals:

>>> np.format_float_positional(56294995342131.5, precision=3)
'56294995342131.5'

The float printing routines use an accurate but much more computationally demanding algorithm to compute the
number of digits after the decimal point.
Alternatively, Python’s builtin round function uses a more accurate but slower algorithm for 64-bit floating point
values:

1412 1. Python API

NumPy Reference, Release 2.2.0

>>> round(56294995342131.5, 3)
56294995342131.5
>>> np.round(16.055, 2), round(16.055, 2) # equals 16.0549999999999997
(16.06, 16.05)

References

[1]

Examples

>>> import numpy as np
>>> np.round([0.37, 1.64])
array([0., 2.])
>>> np.round([0.37, 1.64], decimals=1)
array([0.4, 1.6])
>>> np.round([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
array([0., 2., 2., 4., 4.])
>>> np.round([1,2,3,11], decimals=1) # ndarray of ints is returned
array([1, 2, 3, 11])
>>> np.round([1,2,3,11], decimals=-1)
array([0, 0, 0, 10])

numpy.around(a, decimals=0, out=None)
Round an array to the given number of decimals.
around is an alias of round.
See also:

ndarray.round
equivalent method

round
alias for this function

ceil, fix, floor, rint, trunc

numpy.rint(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'rint'>

Round elements of the array to the nearest integer.
Parameters

x
[array_like] Input array.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain

1.4. Routines and objects by topic 1413

NumPy Reference, Release 2.2.0

its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array is same shape and type as x. This is a scalar if x is a scalar.
See also:

fix, ceil, floor, trunc

Notes

For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5
and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc.

Examples

>>> import numpy as np
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.rint(a)
array([-2., -2., -0., 0., 2., 2., 2.])

numpy.fix(x, out=None)
Round to nearest integer towards zero.
Round an array of floats element-wise to nearest integer towards zero. The rounded values have the same data-type
as the input.

Parameters
x

[array_like] An array to be rounded
out

[ndarray, optional] A location into which the result is stored. If provided, it must have a shape
that the input broadcasts to. If not provided or None, a freshly-allocated array is returned.

Returns
out

[ndarray of floats] An array with the same dimensions and data-type as the input. If second
argument is not supplied then a new array is returned with the rounded values.
If a second argument is supplied the result is stored there. The return value out is then a
reference to that array.

See also:

rint, trunc, floor, ceil
around

Round to given number of decimals

1414 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.fix(3.14)
3.0
>>> np.fix(3)
3
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([2., 2., -2., -2.])

numpy.floor(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'floor'>

Return the floor of the input, element-wise.
The floor of the scalar x is the largest integer i, such that i <= x. It is often denoted as ⌊x⌋.

Parameters
x

[array_like] Input data.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The floor of each element in x. This is a scalar if x is a scalar.
See also:

ceil, trunc, rint, fix

Notes

Some spreadsheet programs calculate the “floor-towards-zero”, where floor(-2.5) == -2. NumPy instead
uses the definition of floor where floor(-2.5) == -3. The “floor-towards-zero” function is called fix in NumPy.

1.4. Routines and objects by topic 1415

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.floor(a)
array([-2., -2., -1., 0., 1., 1., 2.])

numpy.ceil(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'ceil'>

Return the ceiling of the input, element-wise.
The ceil of the scalar x is the smallest integer i, such that i >= x. It is often denoted as ⌈x⌉.

Parameters
x

[array_like] Input data.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The ceiling of each element in x. This is a scalar if x is a scalar.
See also:

floor, trunc, rint, fix

Examples

>>> import numpy as np

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.ceil(a)
array([-1., -1., -0., 1., 2., 2., 2.])

numpy.trunc(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'trunc'>

Return the truncated value of the input, element-wise.
The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. In short, the fractional
part of the signed number x is discarded.

Parameters

1416 1. Python API

NumPy Reference, Release 2.2.0

x
[array_like] Input data.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The truncated value of each element in x. This is a scalar if x is a scalar.
See also:

ceil, floor, rint, fix

Examples

>>> import numpy as np
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.trunc(a)
array([-1., -1., -0., 0., 1., 1., 2.])

1.4. Routines and objects by topic 1417

NumPy Reference, Release 2.2.0

Sums, products, differences

prod(a[, axis, dtype, out, keepdims, ...]) Return the product of array elements over a given axis.
sum(a[, axis, dtype, out, keepdims, ...]) Sum of array elements over a given axis.
nanprod(a[, axis, dtype, out, keepdims, ...]) Return the product of array elements over a given axis

treating Not a Numbers (NaNs) as ones.
nansum(a[, axis, dtype, out, keepdims, ...]) Return the sum of array elements over a given axis treating

Not a Numbers (NaNs) as zero.
cumulative_sum(x, /, *[, axis, dtype, out, ...]) Return the cumulative sum of the elements along a given

axis.
cumulative_prod(x, /, *[, axis, dtype, out, ...]) Return the cumulative product of elements along a given

axis.
cumprod(a[, axis, dtype, out]) Return the cumulative product of elements along a given

axis.
cumsum(a[, axis, dtype, out]) Return the cumulative sum of the elements along a given

axis.
nancumprod(a[, axis, dtype, out]) Return the cumulative product of array elements over a

given axis treating Not a Numbers (NaNs) as one.
nancumsum(a[, axis, dtype, out]) Return the cumulative sum of array elements over a given

axis treating Not a Numbers (NaNs) as zero.
diff(a[, n, axis, prepend, append]) Calculate the n-th discrete difference along the given axis.
ediff1d(ary[, to_end, to_begin]) The differences between consecutive elements of an array.
gradient(f, *varargs[, axis, edge_order]) Return the gradient of an N-dimensional array.
cross(a, b[, axisa, axisb, axisc, axis]) Return the cross product of two (arrays of) vectors.
trapezoid(y[, x, dx, axis]) Integrate along the given axis using the composite trape-

zoidal rule.

numpy.prod(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the product of array elements over a given axis.

Parameters
a

[array_like] Input data.
axis

[None or int or tuple of ints, optional] Axis or axes along which a product is performed. The
default, axis=None, will calculate the product of all the elements in the input array. If axis is
negative it counts from the last to the first axis.
If axis is a tuple of ints, a product is performed on all of the axes specified in the tuple instead
of a single axis or all the axes as before.

dtype
[dtype, optional] The type of the returned array, as well as of the accumulator in which the
elements are multiplied. The dtype of a is used by default unless a has an integer dtype of less
precision than the default platform integer. In that case, if a is signed then the platform integer
is used while if a is unsigned then an unsigned integer of the same precision as the platform
integer is used.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape as the expected output, but the type of the output values will be cast if necessary.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-

1418 1. Python API

NumPy Reference, Release 2.2.0

mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the prod method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial
[scalar, optional] The starting value for this product. See reduce for details.

where
[array_like of bool, optional] Elements to include in the product. See reduce for details.

Returns
product_along_axis

[ndarray, see dtype parameter above.] An array shaped as a but with the specified axis
removed. Returns a reference to out if specified.

See also:

ndarray.prod
equivalent method

ufuncs-output-type

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a 32-bit
platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x)
16 # may vary

The product of an empty array is the neutral element 1:

>>> np.prod([])
1.0

Examples

By default, calculate the product of all elements:

>>> import numpy as np
>>> np.prod([1.,2.])
2.0

Even when the input array is two-dimensional:

>>> a = np.array([[1., 2.], [3., 4.]])
>>> np.prod(a)
24.0

But we can also specify the axis over which to multiply:

1.4. Routines and objects by topic 1419

NumPy Reference, Release 2.2.0

>>> np.prod(a, axis=1)
array([2., 12.])
>>> np.prod(a, axis=0)
array([3., 8.])

Or select specific elements to include:

>>> np.prod([1., np.nan, 3.], where=[True, False, True])
3.0

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> np.prod(x).dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([1, 2, 3], dtype=np.int8)
>>> np.prod(x).dtype == int
True

You can also start the product with a value other than one:

>>> np.prod([1, 2], initial=5)
10

numpy.sum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Sum of array elements over a given axis.

Parameters
a

[array_like] Elements to sum.
axis

[None or int or tuple of ints, optional] Axis or axes along which a sum is performed. The
default, axis=None, will sum all of the elements of the input array. If axis is negative it counts
from the last to the first axis. If axis is a tuple of ints, a sum is performed on all of the axes
specified in the tuple instead of a single axis or all the axes as before.

dtype
[dtype, optional] The type of the returned array and of the accumulator in which the elements
are summed. The dtype of a is used by default unless a has an integer dtype of less precision
than the default platform integer. In that case, if a is signed then the platform integer is used
while if a is unsigned then an unsigned integer of the same precision as the platform integer is
used.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape as the expected output, but the type of the output values will be cast if necessary.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.

1420 1. Python API

NumPy Reference, Release 2.2.0

If the default value is passed, then keepdims will not be passed through to the sum method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial
[scalar, optional] Starting value for the sum. See reduce for details.

where
[array_like of bool, optional] Elements to include in the sum. See reduce for details.

Returns
sum_along_axis

[ndarray] An array with the same shape as a, with the specified axis removed. If a is a 0-d
array, or if axis is None, a scalar is returned. If an output array is specified, a reference to out
is returned.

See also:

ndarray.sum
Equivalent method.

add
numpy.add.reduce equivalent function.

cumsum
Cumulative sum of array elements.

trapezoid
Integration of array values using composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.
The sum of an empty array is the neutral element 0:

>>> np.sum([])
0.0

For floating point numbers the numerical precision of sum (andnp.add.reduce) is in general limited by directly
adding each number individually to the result causing rounding errors in every step. However, often numpy will use
a numerically better approach (partial pairwise summation) leading to improved precision in many use-cases. This
improved precision is always provided when no axis is given. When axis is given, it will depend on which axis is
summed. Technically, to provide the best speed possible, the improved precision is only used when the summation is
along the fast axis in memory. Note that the exact precision may vary depending on other parameters. In contrast
to NumPy, Python’s math.fsum function uses a slower but more precise approach to summation. Especially
when summing a large number of lower precision floating point numbers, such as float32, numerical errors can
become significant. In such cases it can be advisable to use dtype=”float64” to use a higher precision for the output.

1.4. Routines and objects by topic 1421

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
np.int32(1)
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])
>>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1)
array([1., 5.])

If the accumulator is too small, overflow occurs:

>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
np.int8(-128)

You can also start the sum with a value other than zero:

>>> np.sum([10], initial=5)
15

numpy.nanprod(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no
value>)

Return the product of array elements over a given axis treating Not a Numbers (NaNs) as ones.
One is returned for slices that are all-NaN or empty.

Parameters
a

[array_like] Array containing numbers whose product is desired. If a is not an array, a con-
version is attempted.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the product is computed. The
default is to compute the product of the flattened array.

dtype
[data-type, optional] The type of the returned array and of the accumulator in which the ele-
ments are summed. By default, the dtype of a is used. An exception is when a has an integer
type with less precision than the platform (u)intp. In that case, the default will be either (u)int32
or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact inputs, dtype must
be inexact.

out
[ndarray, optional] Alternate output array in which to place the result. The default is None.
If provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See ufuncs-output-type for more details. The casting of NaN to integer can yield
unexpected results.

keepdims
[bool, optional] If True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original arr.

1422 1. Python API

NumPy Reference, Release 2.2.0

initial
[scalar, optional] The starting value for this product. See reduce for details.
New in version 1.22.0.

where
[array_like of bool, optional] Elements to include in the product. See reduce for details.
New in version 1.22.0.

Returns
nanprod

[ndarray] A new array holding the result is returned unless out is specified, in which case it is
returned.

See also:

numpy.prod
Product across array propagating NaNs.

isnan
Show which elements are NaN.

Examples

>>> import numpy as np
>>> np.nanprod(1)
1
>>> np.nanprod([1])
1
>>> np.nanprod([1, np.nan])
1.0
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanprod(a)
6.0
>>> np.nanprod(a, axis=0)
array([3., 2.])

numpy.nansum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>, where=<no
value>)

Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero.
In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or empty. In later versions zero is returned.

Parameters
a

[array_like] Array containing numbers whose sum is desired. If a is not an array, a conversion
is attempted.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the sum is computed. The default
is to compute the sum of the flattened array.

dtype
[data-type, optional] The type of the returned array and of the accumulator in which the ele-
ments are summed. By default, the dtype of a is used. An exception is when a has an integer
type with less precision than the platform (u)intp. In that case, the default will be either (u)int32

1.4. Routines and objects by topic 1423

NumPy Reference, Release 2.2.0

or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact inputs, dtype must
be inexact.

out
[ndarray, optional] Alternate output array in which to place the result. The default is None.
If provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See ufuncs-output-type for more details. The casting of NaN to integer can yield
unexpected results.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a.
If the value is anything but the default, then keepdims will be passed through to the mean or
sum methods of sub-classes of ndarray. If the sub-classes methods does not implement
keepdims any exceptions will be raised.

initial
[scalar, optional] Starting value for the sum. See reduce for details.
New in version 1.22.0.

where
[array_like of bool, optional] Elements to include in the sum. See reduce for details.
New in version 1.22.0.

Returns
nansum

[ndarray.] A new array holding the result is returned unless out is specified, in which it is
returned. The result has the same size as a, and the same shape as a if axis is not None or a is
a 1-d array.

See also:

numpy.sum
Sum across array propagating NaNs.

isnan
Show which elements are NaN.

isfinite
Show which elements are not NaN or +/-inf.

Notes

If both positive and negative infinity are present, the sum will be Not A Number (NaN).

1424 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.nansum(1)
1
>>> np.nansum([1])
1
>>> np.nansum([1, np.nan])
1.0
>>> a = np.array([[1, 1], [1, np.nan]])
>>> np.nansum(a)
3.0
>>> np.nansum(a, axis=0)
array([2., 1.])
>>> np.nansum([1, np.nan, np.inf])
inf
>>> np.nansum([1, np.nan, -np.inf])
-inf
>>> from numpy.testing import suppress_warnings
>>> with np.errstate(invalid="ignore"):
... np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
np.float64(nan)

numpy.cumulative_sum(x, / , *, axis=None, dtype=None, out=None, include_initial=False)
Return the cumulative sum of the elements along a given axis.
This function is an Array API compatible alternative to numpy.cumsum.

Parameters
x

[array_like] Input array.
axis

[int, optional] Axis along which the cumulative sum is computed. The default (None) is only
allowed for one-dimensional arrays. For arrays with more than one dimension axis is re-
quired.

dtype
[dtype, optional] Type of the returned array and of the accumulator in which the elements are
summed. If dtype is not specified, it defaults to the dtype of x, unless x has an integer dtype
with a precision less than that of the default platform integer. In that case, the default platform
integer is used.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output but the type will be cast if necessary. See
ufuncs-output-type for more details.

include_initial
[bool, optional] Boolean indicating whether to include the initial value (zeros) as the first value
in the output. With include_initial=True the shape of the output is different than the
shape of the input. Default: False.

Returns
cumulative_sum_along_axis

[ndarray] A new array holding the result is returned unless out is specified, in which
case a reference to out is returned. The result has the same shape as x if in-
clude_initial=False.

1.4. Routines and objects by topic 1425

NumPy Reference, Release 2.2.0

See also:

sum
Sum array elements.

trapezoid
Integration of array values using composite trapezoidal rule.

diff
Calculate the n-th discrete difference along given axis.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.
cumulative_sum(a)[-1] may not be equal to sum(a) for floating-point values since sum may use a pair-
wise summation routine, reducing the roundoff-error. See sum for more information.

Examples

>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> a
array([1, 2, 3, 4, 5, 6])
>>> np.cumulative_sum(a)
array([1, 3, 6, 10, 15, 21])
>>> np.cumulative_sum(a, dtype=float) # specifies type of output value(s)
array([1., 3., 6., 10., 15., 21.])

>>> b = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumulative_sum(b,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],

[5, 7, 9]])
>>> np.cumulative_sum(b,axis=1) # sum over columns for each of the 2 rows
array([[1, 3, 6],

[4, 9, 15]])

cumulative_sum(c)[-1] may not be equal to sum(c)

>>> c = np.array([1, 2e-9, 3e-9] * 1000000)
>>> np.cumulative_sum(c)[-1]
1000000.0050045159
>>> c.sum()
1000000.0050000029

numpy.cumulative_prod(x, / , *, axis=None, dtype=None, out=None, include_initial=False)
Return the cumulative product of elements along a given axis.
This function is an Array API compatible alternative to numpy.cumprod.

Parameters
x

[array_like] Input array.
axis

[int, optional] Axis along which the cumulative product is computed. The default (None) is

1426 1. Python API

NumPy Reference, Release 2.2.0

only allowed for one-dimensional arrays. For arrays with more than one dimension axis is
required.

dtype
[dtype, optional] Type of the returned array, as well as of the accumulator in which the elements
are multiplied. If dtype is not specified, it defaults to the dtype of x, unless x has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used instead.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output but the type of the resulting values will be cast
if necessary. See ufuncs-output-type for more details.

include_initial
[bool, optional] Boolean indicating whether to include the initial value (ones) as the first value
in the output. With include_initial=True the shape of the output is different than the
shape of the input. Default: False.

Returns
cumulative_prod_along_axis

[ndarray] A new array holding the result is returned unless out is specified, in which
case a reference to out is returned. The result has the same shape as x if in-
clude_initial=False.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([1, 2, 3])
>>> np.cumulative_prod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> np.cumulative_prod(a, dtype=float) # specify type of output
array([1., 2., 6., 24., 120., 720.])

The cumulative product for each column (i.e., over the rows) of b:

>>> b = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumulative_prod(b, axis=0)
array([[1, 2, 3],

[4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of b:

>>> np.cumulative_prod(b, axis=1)
array([[1, 2, 6],

[4, 20, 120]])

numpy.cumprod(a, axis=None, dtype=None, out=None)
Return the cumulative product of elements along a given axis.

1.4. Routines and objects by topic 1427

NumPy Reference, Release 2.2.0

Parameters
a

[array_like] Input array.
axis

[int, optional] Axis along which the cumulative product is computed. By default the input is
flattened.

dtype
[dtype, optional] Type of the returned array, as well as of the accumulator in which the elements
are multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used instead.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output but the type of the resulting values will be cast
if necessary.

Returns
cumprod

[ndarray] A new array holding the result is returned unless out is specified, in which case a
reference to out is returned.

See also:

cumulative_prod
Array API compatible alternative for cumprod.

ufuncs-output-type

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> import numpy as np
>>> a = np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumprod(a, dtype=float) # specify type of output
array([1., 2., 6., 24., 120., 720.])

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array([[1, 2, 3],

[4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of a:

1428 1. Python API

NumPy Reference, Release 2.2.0

>>> np.cumprod(a,axis=1)
array([[1, 2, 6],

[4, 20, 120]])

numpy.cumsum(a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters
a

[array_like] Input array.
axis

[int, optional] Axis along which the cumulative sum is computed. The default (None) is to
compute the cumsum over the flattened array.

dtype
[dtype, optional] Type of the returned array and of the accumulator in which the elements are
summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype
with a precision less than that of the default platform integer. In that case, the default platform
integer is used.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output but the type will be cast if necessary. See
ufuncs-output-type for more details.

Returns
cumsum_along_axis

[ndarray.] A new array holding the result is returned unless out is specified, in which case a
reference to out is returned. The result has the same size as a, and the same shape as a if axis
is not None or a is a 1-d array.

See also:

cumulative_sum
Array API compatible alternative for cumsum.

sum
Sum array elements.

trapezoid
Integration of array values using composite trapezoidal rule.

diff
Calculate the n-th discrete difference along given axis.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.
cumsum(a)[-1]may not be equal tosum(a) for floating-point values sincesummay use a pairwise summation
routine, reducing the roundoff-error. See sum for more information.

1.4. Routines and objects by topic 1429

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([[1,2,3], [4,5,6]])
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.cumsum(a)
array([1, 3, 6, 10, 15, 21])
>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array([1., 3., 6., 10., 15., 21.])

>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],

[5, 7, 9]])
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array([[1, 3, 6],

[4, 9, 15]])

cumsum(b)[-1] may not be equal to sum(b)

>>> b = np.array([1, 2e-9, 3e-9] * 1000000)
>>> b.cumsum()[-1]
1000000.0050045159
>>> b.sum()
1000000.0050000029

numpy.nancumprod(a, axis=None, dtype=None, out=None)
Return the cumulative product of array elements over a given axis treating Not a Numbers (NaNs) as one. The
cumulative product does not change when NaNs are encountered and leading NaNs are replaced by ones.
Ones are returned for slices that are all-NaN or empty.

Parameters
a

[array_like] Input array.
axis

[int, optional] Axis along which the cumulative product is computed. By default the input is
flattened.

dtype
[dtype, optional] Type of the returned array, as well as of the accumulator in which the elements
are multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used instead.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output but the type of the resulting values will be cast
if necessary.

Returns
nancumprod

[ndarray] A new array holding the result is returned unless out is specified, in which case it is
returned.

1430 1. Python API

NumPy Reference, Release 2.2.0

See also:

numpy.cumprod
Cumulative product across array propagating NaNs.

isnan
Show which elements are NaN.

Examples

>>> import numpy as np
>>> np.nancumprod(1)
array([1])
>>> np.nancumprod([1])
array([1])
>>> np.nancumprod([1, np.nan])
array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumprod(a)
array([1., 2., 6., 6.])
>>> np.nancumprod(a, axis=0)
array([[1., 2.],

[3., 2.]])
>>> np.nancumprod(a, axis=1)
array([[1., 2.],

[3., 3.]])

numpy.nancumsum(a, axis=None, dtype=None, out=None)
Return the cumulative sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. The
cumulative sum does not change when NaNs are encountered and leading NaNs are replaced by zeros.
Zeros are returned for slices that are all-NaN or empty.

Parameters
a

[array_like] Input array.
axis

[int, optional] Axis along which the cumulative sum is computed. The default (None) is to
compute the cumsum over the flattened array.

dtype
[dtype, optional] Type of the returned array and of the accumulator in which the elements are
summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype
with a precision less than that of the default platform integer. In that case, the default platform
integer is used.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output but the type will be cast if necessary. See
ufuncs-output-type for more details.

Returns
nancumsum

[ndarray.] A new array holding the result is returned unless out is specified, in which it is
returned. The result has the same size as a, and the same shape as a if axis is not None or a is
a 1-d array.

1.4. Routines and objects by topic 1431

NumPy Reference, Release 2.2.0

See also:

numpy.cumsum
Cumulative sum across array propagating NaNs.

isnan
Show which elements are NaN.

Examples

>>> import numpy as np
>>> np.nancumsum(1)
array([1])
>>> np.nancumsum([1])
array([1])
>>> np.nancumsum([1, np.nan])
array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumsum(a)
array([1., 3., 6., 6.])
>>> np.nancumsum(a, axis=0)
array([[1., 2.],

[4., 2.]])
>>> np.nancumsum(a, axis=1)
array([[1., 3.],

[3., 3.]])

numpy.diff(a, n=1, axis=-1, prepend=<no value>, append=<no value>)
Calculate the n-th discrete difference along the given axis.
The first difference is given by out[i] = a[i+1] - a[i] along the given axis, higher differences are
calculated by using diff recursively.

Parameters
a

[array_like] Input array
n

[int, optional] The number of times values are differenced. If zero, the input is returned as-is.
axis

[int, optional] The axis along which the difference is taken, default is the last axis.
prepend, append

[array_like, optional] Values to prepend or append to a along axis prior to performing the
difference. Scalar values are expanded to arrays with length 1 in the direction of axis and the
shape of the input array in along all other axes. Otherwise the dimension and shape must match
a except along axis.

Returns
diff

[ndarray] The n-th differences. The shape of the output is the same as a except along axis
where the dimension is smaller by n. The type of the output is the same as the type of the
difference between any two elements of a. This is the same as the type of a in most cases. A
notable exception is datetime64, which results in a timedelta64 output array.

See also:

1432 1. Python API

NumPy Reference, Release 2.2.0

gradient, ediff1d, cumsum

Notes

Type is preserved for boolean arrays, so the result will contain False when consecutive elements are the same and
True when they differ.
For unsigned integer arrays, the results will also be unsigned. This should not be surprising, as the result is consistent
with calculating the difference directly:

>>> u8_arr = np.array([1, 0], dtype=np.uint8)
>>> np.diff(u8_arr)
array([255], dtype=uint8)
>>> u8_arr[1,...] - u8_arr[0,...]
np.uint8(255)

If this is not desirable, then the array should be cast to a larger integer type first:

>>> i16_arr = u8_arr.astype(np.int16)
>>> np.diff(i16_arr)
array([-1], dtype=int16)

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 4, 7, 0])
>>> np.diff(x)
array([1, 2, 3, -7])
>>> np.diff(x, n=2)
array([1, 1, -10])

>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> np.diff(x)
array([[2, 3, 4],

[5, 1, 2]])
>>> np.diff(x, axis=0)
array([[-1, 2, 0, -2]])

>>> x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64)
>>> np.diff(x)
array([1, 1], dtype='timedelta64[D]')

numpy.ediff1d(ary, to_end=None, to_begin=None)
The differences between consecutive elements of an array.

Parameters
ary

[array_like] If necessary, will be flattened before the differences are taken.
to_end

[array_like, optional] Number(s) to append at the end of the returned differences.
to_begin

[array_like, optional] Number(s) to prepend at the beginning of the returned differences.

1.4. Routines and objects by topic 1433

NumPy Reference, Release 2.2.0

Returns
ediff1d

[ndarray] The differences. Loosely, this is ary.flat[1:] - ary.flat[:-1].
See also:

diff , gradient

Notes

When applied to masked arrays, this function drops the mask information if the to_begin and/or to_end parameters
are used.

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([1, 2, 3, -7])

>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99, 1, 2, ..., -7, 88, 99])

The returned array is always 1D.

>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([1, 2, -3, 5, 18])

numpy.gradient(f, *varargs, axis=None, edge_order=1)
Return the gradient of an N-dimensional array.
The gradient is computed using second order accurate central differences in the interior points and either first or
second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence
has the same shape as the input array.

Parameters
f

[array_like] An N-dimensional array containing samples of a scalar function.
varargs

[list of scalar or array, optional] Spacing between f values. Default unitary spacing for all
dimensions. Spacing can be specified using:
1. single scalar to specify a sample distance for all dimensions.
2. N scalars to specify a constant sample distance for each dimension. i.e. dx, dy, dz, …
3. N arrays to specify the coordinates of the values along each dimension of F. The length of

the array must match the size of the corresponding dimension
4. Any combination of N scalars/arrays with the meaning of 2. and 3.
If axis is given, the number of varargs must equal the number of axes. Default: 1. (see Exam-
ples below).

1434 1. Python API

NumPy Reference, Release 2.2.0

edge_order
[{1, 2}, optional] Gradient is calculated usingN-th order accurate differences at the boundaries.
Default: 1.

axis
[None or int or tuple of ints, optional] Gradient is calculated only along the given axis or axes
The default (axis = None) is to calculate the gradient for all the axes of the input array. axis
may be negative, in which case it counts from the last to the first axis.

Returns
gradient

[ndarray or tuple of ndarray] A tuple of ndarrays (or a single ndarray if there is only one di-
mension) corresponding to the derivatives of f with respect to each dimension. Each derivative
has the same shape as f.

Notes

Assuming that f ∈ C3 (i.e., f has at least 3 continuous derivatives) and let h∗ be a non-homogeneous stepsize,
we minimize the “consistency error” ηi between the true gradient and its estimate from a linear combination of the
neighboring grid-points:

ηi = f
(1)
i − [αf (xi) + βf (xi + hd) + γf (xi − hs)]

By substituting f(xi + hd) and f(xi − hs) with their Taylor series expansion, this translates into solving the
following the linear system: α+ β + γ = 0

βhd − γhs = 1
βh2

d + γh2
s = 0

The resulting approximation of f (1)
i is the following:

f̂
(1)
i =

h2
sf (xi + hd) +

(
h2
d − h2

s

)
f (xi)− h2

df (xi − hs)

hshd (hd + hs)
+O

(
hdh

2
s + hsh

2
d

hd + hs

)
It is worth noting that if hs = hd (i.e., data are evenly spaced) we find the standard second order approximation:

f̂
(1)
i =

f (xi+1)− f (xi−1)

2h
+O

(
h2
)

With a similar procedure the forward/backward approximations used for boundaries can be derived.

References

[1], [2], [3]

Examples

>>> import numpy as np
>>> f = np.array([1, 2, 4, 7, 11, 16])
>>> np.gradient(f)
array([1. , 1.5, 2.5, 3.5, 4.5, 5.])
>>> np.gradient(f, 2)
array([0.5 , 0.75, 1.25, 1.75, 2.25, 2.5])

1.4. Routines and objects by topic 1435

NumPy Reference, Release 2.2.0

Spacing can be also specified with an array that represents the coordinates of the values F along the dimensions.
For instance a uniform spacing:

>>> x = np.arange(f.size)
>>> np.gradient(f, x)
array([1. , 1.5, 2.5, 3.5, 4.5, 5.])

Or a non uniform one:

>>> x = np.array([0., 1., 1.5, 3.5, 4., 6.])
>>> np.gradient(f, x)
array([1. , 3. , 3.5, 6.7, 6.9, 2.5])

For two dimensional arrays, the return will be two arrays ordered by axis. In this example the first array stands for
the gradient in rows and the second one in columns direction:

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]]))
(array([[2., 2., -1.],

[2., 2., -1.]]),
array([[1. , 2.5, 4.],

[1. , 1. , 1.]]))

In this example the spacing is also specified: uniform for axis=0 and non uniform for axis=1

>>> dx = 2.
>>> y = [1., 1.5, 3.5]
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]]), dx, y)
(array([[1. , 1. , -0.5],

[1. , 1. , -0.5]]),
array([[2. , 2. , 2.],

[2. , 1.7, 0.5]]))

It is possible to specify how boundaries are treated using edge_order

>>> x = np.array([0, 1, 2, 3, 4])
>>> f = x**2
>>> np.gradient(f, edge_order=1)
array([1., 2., 4., 6., 7.])
>>> np.gradient(f, edge_order=2)
array([0., 2., 4., 6., 8.])

The axis keyword can be used to specify a subset of axes of which the gradient is calculated

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]]), axis=0)
array([[2., 2., -1.],

[2., 2., -1.]])

The varargs argument defines the spacing between sample points in the input array. It can take two forms:
1. An array, specifying coordinates, which may be unevenly spaced:

>>> x = np.array([0., 2., 3., 6., 8.])
>>> y = x ** 2
>>> np.gradient(y, x, edge_order=2)
array([0., 4., 6., 12., 16.])

2. A scalar, representing the fixed sample distance:

1436 1. Python API

NumPy Reference, Release 2.2.0

>>> dx = 2
>>> x = np.array([0., 2., 4., 6., 8.])
>>> y = x ** 2
>>> np.gradient(y, dx, edge_order=2)
array([0., 4., 8., 12., 16.])

It’s possible to provide different data for spacing along each dimension. The number of arguments must match the
number of dimensions in the input data.

>>> dx = 2
>>> dy = 3
>>> x = np.arange(0, 6, dx)
>>> y = np.arange(0, 9, dy)
>>> xs, ys = np.meshgrid(x, y)
>>> zs = xs + 2 * ys
>>> np.gradient(zs, dy, dx) # Passing two scalars
(array([[2., 2., 2.],

[2., 2., 2.],
[2., 2., 2.]]),

array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]))

Mixing scalars and arrays is also allowed:

>>> np.gradient(zs, y, dx) # Passing one array and one scalar
(array([[2., 2., 2.],

[2., 2., 2.],
[2., 2., 2.]]),

array([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]))

numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)
Return the cross product of two (arrays of) vectors.
The cross product of a and b in R3 is a vector perpendicular to both a and b. If a and b are arrays of vectors, the
vectors are defined by the last axis of a and b by default, and these axes can have dimensions 2 or 3. Where the
dimension of either a or b is 2, the third component of the input vector is assumed to be zero and the cross product
calculated accordingly. In cases where both input vectors have dimension 2, the z-component of the cross product
is returned.

Parameters
a

[array_like] Components of the first vector(s).
b

[array_like] Components of the second vector(s).
axisa

[int, optional] Axis of a that defines the vector(s). By default, the last axis.
axisb

[int, optional] Axis of b that defines the vector(s). By default, the last axis.
axisc

[int, optional] Axis of c containing the cross product vector(s). Ignored if both input vectors
have dimension 2, as the return is scalar. By default, the last axis.

1.4. Routines and objects by topic 1437

NumPy Reference, Release 2.2.0

axis
[int, optional] If defined, the axis of a, b and c that defines the vector(s) and cross product(s).
Overrides axisa, axisb and axisc.

Returns
c

[ndarray] Vector cross product(s).
Raises

ValueError
When the dimension of the vector(s) in a and/or b does not equal 2 or 3.

See also:

inner
Inner product

outer
Outer product.

linalg.cross
An Array API compatible variation of np.cross, which accepts (arrays of) 3-element vectors only.

ix_
Construct index arrays.

Notes

Supports full broadcasting of the inputs.
Dimension-2 input arrays were deprecated in 2.0.0. If you do need this functionality, you can use:

def cross2d(x, y):
return x[..., 0] * y[..., 1] - x[..., 1] * y[..., 0]

Examples

Vector cross-product.

>>> import numpy as np
>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([-3, 6, -3])

One vector with dimension 2.

>>> x = [1, 2]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])

Equivalently:

1438 1. Python API

NumPy Reference, Release 2.2.0

>>> x = [1, 2, 0]
>>> y = [4, 5, 6]
>>> np.cross(x, y)
array([12, -6, -3])

Both vectors with dimension 2.

>>> x = [1,2]
>>> y = [4,5]
>>> np.cross(x, y)
array(-3)

Multiple vector cross-products. Note that the direction of the cross product vector is defined by the right-hand rule.

>>> x = np.array([[1,2,3], [4,5,6]])
>>> y = np.array([[4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[-3, 6, -3],

[3, -6, 3]])

The orientation of c can be changed using the axisc keyword.

>>> np.cross(x, y, axisc=0)
array([[-3, 3],

[6, -6],
[-3, 3]])

Change the vector definition of x and y using axisa and axisb.

>>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]])
>>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]])
>>> np.cross(x, y)
array([[-6, 12, -6],

[0, 0, 0],
[6, -12, 6]])

>>> np.cross(x, y, axisa=0, axisb=0)
array([[-24, 48, -24],

[-30, 60, -30],
[-36, 72, -36]])

numpy.trapezoid(y, x=None, dx=1.0, axis=-1)
Integrate along the given axis using the composite trapezoidal rule.
If x is provided, the integration happens in sequence along its elements - they are not sorted.
Integrate y (x) along each 1d slice on the given axis, compute

∫
y(x)dx. When x is specified, this integrates along

the parametric curve, computing
∫
t
y(t)dt =

∫
t
y(t) dx

dt

∣∣
x=x(t)

dt.

New in version 2.0.0.
Parameters

y
[array_like] Input array to integrate.

x
[array_like, optional] The sample points corresponding to the y values. If x is None, the sample
points are assumed to be evenly spaced dx apart. The default is None.

1.4. Routines and objects by topic 1439

NumPy Reference, Release 2.2.0

dx
[scalar, optional] The spacing between sample points when x is None. The default is 1.

axis
[int, optional] The axis along which to integrate.

Returns
trapezoid

[float or ndarray] Definite integral of y = n-dimensional array as approximated along a single
axis by the trapezoidal rule. If y is a 1-dimensional array, then the result is a float. If n is
greater than 1, then the result is an n-1 dimensional array.

See also:

sum, cumsum

Notes

Image [2] illustrates trapezoidal rule – y-axis locations of points will be taken from y array, by default x-axis
distances between points will be 1.0, alternatively they can be provided with x array or with dx scalar. Return value
will be equal to combined area under the red lines.

References

[1], [2]

Examples

>>> import numpy as np

Use the trapezoidal rule on evenly spaced points:

>>> np.trapezoid([1, 2, 3])
4.0

The spacing between sample points can be selected by either the x or dx arguments:

>>> np.trapezoid([1, 2, 3], x=[4, 6, 8])
8.0
>>> np.trapezoid([1, 2, 3], dx=2)
8.0

Using a decreasing x corresponds to integrating in reverse:

>>> np.trapezoid([1, 2, 3], x=[8, 6, 4])
-8.0

More generally x is used to integrate along a parametric curve. We can estimate the integral
∫ 1

0
x2 = 1/3 using:

>>> x = np.linspace(0, 1, num=50)
>>> y = x**2
>>> np.trapezoid(y, x)
0.33340274885464394

1440 1. Python API

NumPy Reference, Release 2.2.0

Or estimate the area of a circle, noting we repeat the sample which closes the curve:

>>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
>>> np.trapezoid(np.cos(theta), x=np.sin(theta))
3.141571941375841

np.trapezoid can be applied along a specified axis to do multiple computations in one call:

>>> a = np.arange(6).reshape(2, 3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.trapezoid(a, axis=0)
array([1.5, 2.5, 3.5])
>>> np.trapezoid(a, axis=1)
array([2., 8.])

Exponents and logarithms

exp(x, /[, out, where, casting, order, ...]) Calculate the exponential of all elements in the input ar-
ray.

expm1(x, /[, out, where, casting, order, ...]) Calculate exp(x) - 1 for all elements in the array.
exp2(x, /[, out, where, casting, order, ...]) Calculate 2**p for all p in the input array.
log(x, /[, out, where, casting, order, ...]) Natural logarithm, element-wise.
log10(x, /[, out, where, casting, order, ...]) Return the base 10 logarithm of the input array, element-

wise.
log2(x, /[, out, where, casting, order, ...]) Base-2 logarithm of x.
log1p(x, /[, out, where, casting, order, ...]) Return the natural logarithm of one plus the input array,

element-wise.
logaddexp(x1, x2, /[, out, where, casting, ...]) Logarithm of the sum of exponentiations of the inputs.
logaddexp2(x1, x2, /[, out, where, casting, ...]) Logarithm of the sum of exponentiations of the inputs in

base-2.

numpy.exp(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'exp'>

Calculate the exponential of all elements in the input array.
Parameters

x
[array_like] Input values.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1.4. Routines and objects by topic 1441

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Output array, element-wise exponential of x. This is a scalar if x is a scalar.
See also:

expm1
Calculate exp(x) - 1 for all elements in the array.

exp2
Calculate 2**x for all elements in the array.

Notes

The irrational number e is also known as Euler’s number. It is approximately 2.718281, and is the base of the
natural logarithm, ln (this means that, if x = ln y = loge y, then ex = y. For real input, exp(x) is always
positive.
For complex arguments, x = a + ib, we can write ex = eaeib. The first term, ea, is already known (it is the real
argument, described above). The second term, eib, is cos b + i sin b, a function with magnitude 1 and a periodic
phase.

References

[1], [2]

Examples

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray')
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv')
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

1442 1. Python API

NumPy Reference, Release 2.2.0

5 0 5

5.0

2.5

0.0

2.5

5.0

Magnitude of exp(x)

5 0 5

5.0

2.5

0.0

2.5

5.0

Phase (angle) of exp(x)

numpy.expm1(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'expm1'>

Calculate exp(x) - 1 for all elements in the array.
Parameters

x
[array_like] Input values.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Element-wise exponential minus one: out = exp(x) - 1. This is a
scalar if x is a scalar.

See also:

log1p
log(1 + x), the inverse of expm1.

1.4. Routines and objects by topic 1443

NumPy Reference, Release 2.2.0

Notes

This function provides greater precision than exp(x) - 1 for small values of x.

Examples

The true value of exp(1e-10) - 1 is 1.00000000005e-10 to about 32 significant digits. This example
shows the superiority of expm1 in this case.

>>> import numpy as np

>>> np.expm1(1e-10)
1.00000000005e-10
>>> np.exp(1e-10) - 1
1.000000082740371e-10

numpy.exp2(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'exp2'>

Calculate 2**p for all p in the input array.
Parameters

x
[array_like] Input values.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Element-wise 2 to the power x. This is a scalar if x is a scalar.
See also:

power

1444 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.exp2([2, 3])
array([4., 8.])

numpy.log(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'log'>

Natural logarithm, element-wise.
The natural logarithm log is the inverse of the exponential function, so that log(exp(x)) = x. The natural logarithm
is logarithm in base e.

Parameters
x

[array_like] Input value.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The natural logarithm of x, element-wise. This is a scalar if x is a scalar.
See also:

log10, log2, log1p, emath.log

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = x. The convention
is to return the z whose imaginary part lies in (-pi, pi].
For real-valued input data types, log always returns real output. For each value that cannot be expressed as a real
number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, log is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log handles the floating-point negative zero as an infinitesimal negative number, conforming to
the C99 standard.
In the cases where the input has a negative real part and a very small negative complex part (approaching 0), the
result is so close to -pi that it evaluates to exactly -pi.

1.4. Routines and objects by topic 1445

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

>>> import numpy as np
>>> np.log([1, np.e, np.e**2, 0])
array([0., 1., 2., -inf])

numpy.log10(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'log10'>

Return the base 10 logarithm of the input array, element-wise.
Parameters

x
[array_like] Input values.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The logarithm to the base 10 of x, element-wise. NaNs are returned where x is
negative. This is a scalar if x is a scalar.

See also:

emath.log10

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that 10**z = x. The convention
is to return the z whose imaginary part lies in (-pi, pi].
For real-valued input data types, log10 always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, log10 is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log10 handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.
In the cases where the input has a negative real part and a very small negative complex part (approaching 0), the
result is so close to -pi that it evaluates to exactly -pi.

1446 1. Python API

NumPy Reference, Release 2.2.0

References

[1], [2]

Examples

>>> import numpy as np
>>> np.log10([1e-15, -3.])
array([-15., nan])

numpy.log2(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'log2'>

Base-2 logarithm of x.
Parameters

x
[array_like] Input values.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Base-2 logarithm of x. This is a scalar if x is a scalar.
See also:

log, log10, log1p, emath.log2

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that 2**z = x. The convention
is to return the z whose imaginary part lies in (-pi, pi].
For real-valued input data types, log2 always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.
For complex-valued input, log2 is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log2 handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.
In the cases where the input has a negative real part and a very small negative complex part (approaching 0), the
result is so close to -pi that it evaluates to exactly -pi.

1.4. Routines and objects by topic 1447

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = np.array([0, 1, 2, 2**4])
>>> np.log2(x)
array([-inf, 0., 1., 4.])

>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j])
>>> np.log2(xi)
array([0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])

numpy.log1p(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'log1p'>

Return the natural logarithm of one plus the input array, element-wise.
Calculates log(1 + x).

Parameters
x

[array_like] Input values.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Natural logarithm of 1 + x, element-wise. This is a scalar if x is a scalar.
See also:

expm1
exp(x) - 1, the inverse of log1p.

Notes

For real-valued input, log1p is accurate also for x so small that 1 + x == 1 in floating-point accuracy.
Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = 1 + x. The
convention is to return the z whose imaginary part lies in [-pi, pi].
For real-valued input data types, log1p always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

1448 1. Python API

NumPy Reference, Release 2.2.0

For complex-valued input, log1p is a complex analytical function that has a branch cut [-inf, -1] and is continuous
from above on it. log1p handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.

References

[1], [2]

Examples

>>> import numpy as np
>>> np.log1p(1e-99)
1e-99
>>> np.log(1 + 1e-99)
0.0

numpy.logaddexp(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'logaddexp'>

Logarithm of the sum of exponentiations of the inputs.
Calculates log(exp(x1) + exp(x2)). This function is useful in statistics where the calculated probabilities
of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of
the calculated probability is stored. This function allows adding probabilities stored in such a fashion.

Parameters
x1, x2

[array_like] Input values. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
result

[ndarray] Logarithm of exp(x1) + exp(x2). This is a scalar if both x1 and x2 are scalars.
See also:

logaddexp2
Logarithm of the sum of exponentiations of inputs in base 2.

1.4. Routines and objects by topic 1449

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> prob1 = np.log(1e-50)
>>> prob2 = np.log(2.5e-50)
>>> prob12 = np.logaddexp(prob1, prob2)
>>> prob12
-113.87649168120691
>>> np.exp(prob12)
3.5000000000000057e-50

numpy.logaddexp2(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'logaddexp2'>

Logarithm of the sum of exponentiations of the inputs in base-2.
Calculates log2(2**x1 + 2**x2). This function is useful in machine learning when the calculated probabil-
ities of events may be so small as to exceed the range of normal floating point numbers. In such cases the base-2
logarithm of the calculated probability can be used instead. This function allows adding probabilities stored in such
a fashion.

Parameters
x1, x2

[array_like] Input values. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
result

[ndarray] Base-2 logarithm of 2**x1 + 2**x2. This is a scalar if both x1 and x2 are
scalars.

See also:

logaddexp
Logarithm of the sum of exponentiations of the inputs.

1450 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> prob1 = np.log2(1e-50)
>>> prob2 = np.log2(2.5e-50)
>>> prob12 = np.logaddexp2(prob1, prob2)
>>> prob1, prob2, prob12
(-166.09640474436813, -164.77447664948076, -164.28904982231052)
>>> 2**prob12
3.4999999999999914e-50

Other special functions

i0(x) Modified Bessel function of the first kind, order 0.
sinc(x) Return the normalized sinc function.

numpy.i0(x)
Modified Bessel function of the first kind, order 0.
Usually denoted I0.

Parameters
x

[array_like of float] Argument of the Bessel function.
Returns

out
[ndarray, shape = x.shape, dtype = float] The modified Bessel function evaluated at each of the
elements of x.

See also:

scipy.special.i0, scipy.special.iv, scipy.special.ive

Notes

The scipy implementation is recommended over this function: it is a proper ufunc written in C, and more than an
order of magnitude faster.
We use the algorithm published by Clenshaw [1] and referenced by Abramowitz and Stegun [2], for which the
function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are
employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3] as having
a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).

1.4. Routines and objects by topic 1451

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i0.html#scipy.special.i0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.iv.html#scipy.special.iv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ive.html#scipy.special.ive

NumPy Reference, Release 2.2.0

References

[1], [2], [3]

Examples

>>> import numpy as np
>>> np.i0(0.)
array(1.0)
>>> np.i0([0, 1, 2, 3])
array([1. , 1.26606588, 2.2795853 , 4.88079259])

numpy.sinc(x)
Return the normalized sinc function.
The sinc function is equal to sin(πx)/(πx) for any argument x ̸= 0. sinc(0) takes the limit value 1, making
sinc not only everywhere continuous but also infinitely differentiable.

Note: Note the normalization factor of pi used in the definition. This is the most commonly used definition
in signal processing. Use sinc(x / np.pi) to obtain the unnormalized sinc function sin(x)/x that is more
common in mathematics.

Parameters
x

[ndarray] Array (possibly multi-dimensional) of values for which to calculate sinc(x).
Returns

out
[ndarray] sinc(x), which has the same shape as the input.

Notes

The name sinc is short for “sine cardinal” or “sinus cardinalis”.
The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of
a Lanczos resampling filter, and in interpolation.
For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc
function.

References

[1], [2]

1452 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 41)
>>> np.sinc(x)
array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02, # may vary

-8.90384387e-02, -5.84680802e-02, 3.89804309e-17,
6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
8.50444803e-02, -3.89804309e-17, -1.03943254e-01,
-1.89206682e-01, -2.16236208e-01, -1.55914881e-01,
3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
2.33872321e-01, 3.89804309e-17, -1.55914881e-01,
-2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
-3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
1.16434881e-01, 6.68206631e-02, 3.89804309e-17,
-5.84680802e-02, -8.90384387e-02, -8.40918587e-02,
-4.92362781e-02, -3.89804309e-17])

>>> plt.plot(x, np.sinc(x))
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
Text(0.5, 1.0, 'Sinc Function')
>>> plt.ylabel("Amplitude")
Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("X")
Text(0.5, 0, 'X')
>>> plt.show()

4 3 2 1 0 1 2 3 4
X

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Sinc Function

1.4. Routines and objects by topic 1453

NumPy Reference, Release 2.2.0

Floating point routines

signbit(x, /[, out, where, casting, order, ...]) Returns element-wise True where signbit is set (less than
zero).

copysign(x1, x2, /[, out, where, casting, ...]) Change the sign of x1 to that of x2, element-wise.
frexp(x[, out1, out2], / [[, out, where, ...]) Decompose the elements of x into mantissa and twos ex-

ponent.
ldexp(x1, x2, /[, out, where, casting, ...]) Returns x1 * 2**x2, element-wise.
nextafter(x1, x2, /[, out, where, casting, ...]) Return the next floating-point value after x1 towards x2,

element-wise.
spacing(x, /[, out, where, casting, order, ...]) Return the distance between x and the nearest adjacent

number.

numpy.signbit(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'signbit'>

Returns element-wise True where signbit is set (less than zero).
Parameters

x
[array_like] The input value(s).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
result

[ndarray of bool] Output array, or reference to out if that was supplied. This is a scalar if x is
a scalar.

Examples

>>> import numpy as np
>>> np.signbit(-1.2)
True
>>> np.signbit(np.array([1, -2.3, 2.1]))
array([False, True, False])

numpy.copysign(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'copysign'>

Change the sign of x1 to that of x2, element-wise.

1454 1. Python API

NumPy Reference, Release 2.2.0

If x2 is a scalar, its sign will be copied to all elements of x1.
Parameters

x1
[array_like] Values to change the sign of.

x2
[array_like] The sign of x2 is copied to x1. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] The values of x1 with the sign of x2. This is a scalar if both x1 and x2 are
scalars.

Examples

>>> import numpy as np
>>> np.copysign(1.3, -1)
-1.3
>>> 1/np.copysign(0, 1)
inf
>>> 1/np.copysign(0, -1)
-inf

>>> np.copysign([-1, 0, 1], -1.1)
array([-1., -0., -1.])
>>> np.copysign([-1, 0, 1], np.arange(3)-1)
array([-1., 0., 1.])

numpy.frexp(x, [out1, out2,]/ , [out=(None, None),]*, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature]) = <ufunc 'frexp'>

Decompose the elements of x into mantissa and twos exponent.
Returns (mantissa, exponent), where x = mantissa * 2**exponent. The mantissa lies in the open
interval(-1, 1), while the twos exponent is a signed integer.

Parameters
x

[array_like] Array of numbers to be decomposed.

1.4. Routines and objects by topic 1455

NumPy Reference, Release 2.2.0

out1
[ndarray, optional] Output array for the mantissa. Must have the same shape as x.

out2
[ndarray, optional] Output array for the exponent. Must have the same shape as x.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
mantissa

[ndarray] Floating values between -1 and 1. This is a scalar if x is a scalar.
exponent

[ndarray] Integer exponents of 2. This is a scalar if x is a scalar.
See also:

ldexp
Compute y = x1 * 2**x2, the inverse of frexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

Examples

>>> import numpy as np
>>> x = np.arange(9)
>>> y1, y2 = np.frexp(x)
>>> y1
array([0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,

0.5])
>>> y2
array([0, 1, 2, 2, 3, 3, 3, 3, 4], dtype=int32)
>>> y1 * 2**y2
array([0., 1., 2., 3., 4., 5., 6., 7., 8.])

numpy.ldexp(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'ldexp'>

Returns x1 * 2**x2, element-wise.
The mantissas x1 and twos exponents x2 are used to construct floating point numbers x1 * 2**x2.

Parameters

1456 1. Python API

NumPy Reference, Release 2.2.0

x1
[array_like] Array of multipliers.

x2
[array_like, int] Array of twos exponents. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The result of x1 * 2**x2. This is a scalar if both x1 and x2 are scalars.
See also:

frexp
Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.
ldexp is useful as the inverse of frexp, if used by itself it is more clear to simply use the expression x1 *
2**x2.

Examples

>>> import numpy as np
>>> np.ldexp(5, np.arange(4))
array([5., 10., 20., 40.], dtype=float16)

>>> x = np.arange(6)
>>> np.ldexp(*np.frexp(x))
array([0., 1., 2., 3., 4., 5.])

numpy.nextafter(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'nextafter'>

Return the next floating-point value after x1 towards x2, element-wise.
Parameters

x1
[array_like] Values to find the next representable value of.

1.4. Routines and objects by topic 1457

NumPy Reference, Release 2.2.0

x2
[array_like] The direction where to look for the next representable value of x1. If x1.shape
!= x2.shape, they must be broadcastable to a common shape (which becomes the shape
of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] The next representable values of x1 in the direction of x2. This is a scalar
if both x1 and x2 are scalars.

Examples

>>> import numpy as np
>>> eps = np.finfo(np.float64).eps
>>> np.nextafter(1, 2) == eps + 1
True
>>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]
array([True, True])

numpy.spacing(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'spacing'>

Return the distance between x and the nearest adjacent number.
Parameters

x
[array_like] Values to find the spacing of.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

1458 1. Python API

NumPy Reference, Release 2.2.0

Returns
out

[ndarray or scalar] The spacing of values of x. This is a scalar if x is a scalar.

Notes

It can be considered as a generalization of EPS: spacing(np.float64(1)) == np.finfo(np.
float64).eps, and there should not be any representable number between x + spacing(x) and x for
any finite x.
Spacing of +- inf and NaN is NaN.

Examples

>>> import numpy as np
>>> np.spacing(1) == np.finfo(np.float64).eps
True

Rational routines

lcm(x1, x2, /[, out, where, casting, order, ...]) Returns the lowest common multiple of |x1| and |x2|
gcd(x1, x2, /[, out, where, casting, order, ...]) Returns the greatest common divisor of |x1| and |x2|

numpy.lcm(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'lcm'>

Returns the lowest common multiple of |x1| and |x2|
Parameters

x1, x2
[array_like, int] Arrays of values. If x1.shape != x2.shape, theymust be broadcastable
to a common shape (which becomes the shape of the output).

Returns
y

[ndarray or scalar] The lowest common multiple of the absolute value of the inputs This is a
scalar if both x1 and x2 are scalars.

See also:

gcd
The greatest common divisor

1.4. Routines and objects by topic 1459

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.lcm(12, 20)
60
>>> np.lcm.reduce([3, 12, 20])
60
>>> np.lcm.reduce([40, 12, 20])
120
>>> np.lcm(np.arange(6), 20)
array([0, 20, 20, 60, 20, 20])

numpy.gcd(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'gcd'>

Returns the greatest common divisor of |x1| and |x2|
Parameters

x1, x2
[array_like, int] Arrays of values. If x1.shape != x2.shape, theymust be broadcastable
to a common shape (which becomes the shape of the output).

Returns
y

[ndarray or scalar] The greatest common divisor of the absolute value of the inputs This is a
scalar if both x1 and x2 are scalars.

See also:

lcm
The lowest common multiple

Examples

>>> import numpy as np
>>> np.gcd(12, 20)
4
>>> np.gcd.reduce([15, 25, 35])
5
>>> np.gcd(np.arange(6), 20)
array([20, 1, 2, 1, 4, 5])

1460 1. Python API

NumPy Reference, Release 2.2.0

Arithmetic operations

add(x1, x2, /[, out, where, casting, order, ...]) Add arguments element-wise.
reciprocal(x, /[, out, where, casting, ...]) Return the reciprocal of the argument, element-wise.
positive(x, /[, out, where, casting, order, ...]) Numerical positive, element-wise.
negative(x, /[, out, where, casting, order, ...]) Numerical negative, element-wise.
multiply(x1, x2, /[, out, where, casting, ...]) Multiply arguments element-wise.
divide(x1, x2, /[, out, where, casting, ...]) Divide arguments element-wise.
power(x1, x2, /[, out, where, casting, ...]) First array elements raised to powers from second array,

element-wise.
pow(x1, x2, /[, out, where, casting, order, ...]) First array elements raised to powers from second array,

element-wise.
subtract(x1, x2, /[, out, where, casting, ...]) Subtract arguments, element-wise.
true_divide(x1, x2, /[, out, where, ...]) Divide arguments element-wise.
floor_divide(x1, x2, /[, out, where, ...]) Return the largest integer smaller or equal to the division

of the inputs.
float_power(x1, x2, /[, out, where, ...]) First array elements raised to powers from second array,

element-wise.
fmod(x1, x2, /[, out, where, casting, ...]) Returns the element-wise remainder of division.
mod(x1, x2, /[, out, where, casting, order, ...]) Returns the element-wise remainder of division.
modf(x[, out1, out2], / [[, out, where, ...]) Return the fractional and integral parts of an array,

element-wise.
remainder(x1, x2, /[, out, where, casting, ...]) Returns the element-wise remainder of division.
divmod(x1, x2[, out1, out2], / [[, out, ...]) Return element-wise quotient and remainder simultane-

ously.

numpy.add(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'add'>

Add arguments element-wise.
Parameters

x1, x2
[array_like] The arrays to be added. If x1.shape != x2.shape, they must be broad-
castable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
add

[ndarray or scalar] The sum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are
scalars.

1.4. Routines and objects by topic 1461

NumPy Reference, Release 2.2.0

Notes

Equivalent to x1 + x2 in terms of array broadcasting.

Examples

>>> import numpy as np
>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[0., 2., 4.],

[3., 5., 7.],
[6., 8., 10.]])

The + operator can be used as a shorthand for np.add on ndarrays.

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 + x2
array([[0., 2., 4.],

[3., 5., 7.],
[6., 8., 10.]])

numpy.reciprocal(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'reciprocal'>

Return the reciprocal of the argument, element-wise.
Calculates 1/x.

Parameters
x

[array_like] Input array.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] Return array. This is a scalar if x is a scalar.

1462 1. Python API

NumPy Reference, Release 2.2.0

Notes

Note: This function is not designed to work with integers.

For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles
integer division. For integer zero the result is an overflow.

Examples

>>> import numpy as np
>>> np.reciprocal(2.)
0.5
>>> np.reciprocal([1, 2., 3.33])
array([1. , 0.5 , 0.3003003])

numpy.positive(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'positive'>

Numerical positive, element-wise.
Parameters

x
[array_like or scalar] Input array.

Returns
y

[ndarray or scalar] Returned array or scalar: y = +x. This is a scalar if x is a scalar.

Notes

Equivalent to x.copy(), but only defined for types that support arithmetic.

Examples

>>> import numpy as np

>>> x1 = np.array(([1., -1.]))
>>> np.positive(x1)
array([1., -1.])

The unary + operator can be used as a shorthand for np.positive on ndarrays.

>>> x1 = np.array(([1., -1.]))
>>> +x1
array([1., -1.])

numpy.negative(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'negative'>

Numerical negative, element-wise.
Parameters

1.4. Routines and objects by topic 1463

NumPy Reference, Release 2.2.0

x
[array_like or scalar] Input array.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] Returned array or scalar: y = -x. This is a scalar if x is a scalar.

Examples

>>> import numpy as np
>>> np.negative([1.,-1.])
array([-1., 1.])

The unary - operator can be used as a shorthand for np.negative on ndarrays.

>>> x1 = np.array(([1., -1.]))
>>> -x1
array([-1., 1.])

numpy.multiply(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'multiply'>

Multiply arguments element-wise.
Parameters

x1, x2
[array_like] Input arrays to be multiplied. If x1.shape != x2.shape, they must be
broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1464 1. Python API

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The product of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars.

Notes

Equivalent to x1 * x2 in terms of array broadcasting.

Examples

>>> import numpy as np
>>> np.multiply(2.0, 4.0)
8.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[0., 1., 4.],

[0., 4., 10.],
[0., 7., 16.]])

The * operator can be used as a shorthand for np.multiply on ndarrays.

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 * x2
array([[0., 1., 4.],

[0., 4., 10.],
[0., 7., 16.]])

numpy.divide(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'divide'>

Divide arguments element-wise.
Parameters

x1
[array_like] Dividend array.

x2
[array_like] Divisor array. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain

1.4. Routines and objects by topic 1465

NumPy Reference, Release 2.2.0

its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The quotient x1/x2, element-wise. This is a scalar if both x1 and x2 are
scalars.

See also:

seterr
Set whether to raise or warn on overflow, underflow and division by zero.

Notes

Equivalent to x1 / x2 in terms of array-broadcasting.
The true_divide(x1, x2) function is an alias for divide(x1, x2).

Examples

>>> import numpy as np
>>> np.divide(2.0, 4.0)
0.5
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.divide(x1, x2)
array([[nan, 1. , 1.],

[inf, 4. , 2.5],
[inf, 7. , 4.]])

The / operator can be used as a shorthand for np.divide on ndarrays.

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = 2 * np.ones(3)
>>> x1 / x2
array([[0. , 0.5, 1.],

[1.5, 2. , 2.5],
[3. , 3.5, 4.]])

numpy.power(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'power'>

First array elements raised to powers from second array, element-wise.
Raise each base in x1 to the positionally-corresponding power in x2. x1 and x2 must be broadcastable to the same
shape.
An integer type raised to a negative integer power will raise a ValueError.
Negative values raised to a non-integral value will return nan. To get complex results, cast the input to complex,
or specify the dtype to be complex (see the example below).

Parameters

1466 1. Python API

NumPy Reference, Release 2.2.0

x1
[array_like] The bases.

x2
[array_like] The exponents. If x1.shape != x2.shape, they must be broadcastable to
a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are
scalars.

See also:

float_power
power function that promotes integers to float

Examples

>>> import numpy as np

Cube each element in an array.

>>> x1 = np.arange(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([0, 1, 8, 27, 64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.power(x1, x2)
array([0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],

[1, 2, 3, 3, 2, 1]])

(continues on next page)

1.4. Routines and objects by topic 1467

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> np.power(x1, x2)
array([[0, 1, 8, 27, 16, 5],

[0, 1, 8, 27, 16, 5]])

The ** operator can be used as a shorthand for np.power on ndarrays.

>>> x2 = np.array([1, 2, 3, 3, 2, 1])
>>> x1 = np.arange(6)
>>> x1 ** x2
array([0, 1, 8, 27, 16, 5])

Negative values raised to a non-integral value will result in nan (and a warning will be generated).

>>> x3 = np.array([-1.0, -4.0])
>>> with np.errstate(invalid='ignore'):
... p = np.power(x3, 1.5)
...
>>> p
array([nan, nan])

To get complex results, give the argument dtype=complex.

>>> np.power(x3, 1.5, dtype=complex)
array([-1.83697020e-16-1.j, -1.46957616e-15-8.j])

numpy.pow(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'power'>

First array elements raised to powers from second array, element-wise.
Raise each base in x1 to the positionally-corresponding power in x2. x1 and x2 must be broadcastable to the same
shape.
An integer type raised to a negative integer power will raise a ValueError.
Negative values raised to a non-integral value will return nan. To get complex results, cast the input to complex,
or specify the dtype to be complex (see the example below).

Parameters
x1

[array_like] The bases.
x2

[array_like] The exponents. If x1.shape != x2.shape, they must be broadcastable to
a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1468 1. Python API

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are
scalars.

See also:

float_power
power function that promotes integers to float

Examples

>>> import numpy as np

Cube each element in an array.

>>> x1 = np.arange(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([0, 1, 8, 27, 64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.power(x1, x2)
array([0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],

[1, 2, 3, 3, 2, 1]])
>>> np.power(x1, x2)
array([[0, 1, 8, 27, 16, 5],

[0, 1, 8, 27, 16, 5]])

The ** operator can be used as a shorthand for np.power on ndarrays.

>>> x2 = np.array([1, 2, 3, 3, 2, 1])
>>> x1 = np.arange(6)
>>> x1 ** x2
array([0, 1, 8, 27, 16, 5])

Negative values raised to a non-integral value will result in nan (and a warning will be generated).

>>> x3 = np.array([-1.0, -4.0])
>>> with np.errstate(invalid='ignore'):
... p = np.power(x3, 1.5)
...
>>> p
array([nan, nan])

1.4. Routines and objects by topic 1469

NumPy Reference, Release 2.2.0

To get complex results, give the argument dtype=complex.

>>> np.power(x3, 1.5, dtype=complex)
array([-1.83697020e-16-1.j, -1.46957616e-15-8.j])

numpy.subtract(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'subtract'>

Subtract arguments, element-wise.
Parameters

x1, x2
[array_like] The arrays to be subtracted from each other. If x1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are
scalars.

Notes

Equivalent to x1 - x2 in terms of array broadcasting.

Examples

>>> import numpy as np
>>> np.subtract(1.0, 4.0)
-3.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.subtract(x1, x2)
array([[0., 0., 0.],

[3., 3., 3.],
[6., 6., 6.]])

The - operator can be used as a shorthand for np.subtract on ndarrays.

1470 1. Python API

NumPy Reference, Release 2.2.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 - x2
array([[0., 0., 0.],

[3., 3., 3.],
[6., 6., 6.]])

numpy.true_divide(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'divide'>

Divide arguments element-wise.
Parameters

x1
[array_like] Dividend array.

x2
[array_like] Divisor array. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The quotient x1/x2, element-wise. This is a scalar if both x1 and x2 are
scalars.

See also:

seterr
Set whether to raise or warn on overflow, underflow and division by zero.

Notes

Equivalent to x1 / x2 in terms of array-broadcasting.
The true_divide(x1, x2) function is an alias for divide(x1, x2).

1.4. Routines and objects by topic 1471

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.divide(2.0, 4.0)
0.5
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.divide(x1, x2)
array([[nan, 1. , 1.],

[inf, 4. , 2.5],
[inf, 7. , 4.]])

The / operator can be used as a shorthand for np.divide on ndarrays.

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = 2 * np.ones(3)
>>> x1 / x2
array([[0. , 0.5, 1.],

[1.5, 2. , 2.5],
[3. , 3.5, 4.]])

numpy.floor_divide(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'floor_divide'>

Return the largest integer smaller or equal to the division of the inputs. It is equivalent to the Python // operator
and pairs with the Python % (remainder), function so that a = a % b + b * (a // b) up to roundoff.

Parameters
x1

[array_like] Numerator.
x2

[array_like] Denominator. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] y = floor(x1/x2) This is a scalar if both x1 and x2 are scalars.
See also:

remainder
Remainder complementary to floor_divide.

1472 1. Python API

NumPy Reference, Release 2.2.0

divmod
Simultaneous floor division and remainder.

divide
Standard division.

floor
Round a number to the nearest integer toward minus infinity.

ceil
Round a number to the nearest integer toward infinity.

Examples

>>> import numpy as np
>>> np.floor_divide(7,3)
2
>>> np.floor_divide([1., 2., 3., 4.], 2.5)
array([0., 0., 1., 1.])

The // operator can be used as a shorthand for np.floor_divide on ndarrays.

>>> x1 = np.array([1., 2., 3., 4.])
>>> x1 // 2.5
array([0., 0., 1., 1.])

numpy.float_power(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'float_power'>

First array elements raised to powers from second array, element-wise.
Raise each base in x1 to the positionally-corresponding power in x2. x1 and x2 must be broadcastable to the same
shape. This differs from the power function in that integers, float16, and float32 are promoted to floats with a
minimum precision of float64 so that the result is always inexact. The intent is that the function will return a usable
result for negative powers and seldom overflow for positive powers.
Negative values raised to a non-integral value will return nan. To get complex results, cast the input to complex,
or specify the dtype to be complex (see the example below).

Parameters
x1

[array_like] The bases.
x2

[array_like] The exponents. If x1.shape != x2.shape, they must be broadcastable to
a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1.4. Routines and objects by topic 1473

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are
scalars.

See also:

power
power function that preserves type

Examples

>>> import numpy as np

Cube each element in a list.

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.float_power(x1, 3)
array([0., 1., 8., 27., 64., 125.])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.float_power(x1, x2)
array([0., 1., 8., 27., 16., 5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],

[1, 2, 3, 3, 2, 1]])
>>> np.float_power(x1, x2)
array([[0., 1., 8., 27., 16., 5.],

[0., 1., 8., 27., 16., 5.]])

Negative values raised to a non-integral value will result in nan (and a warning will be generated).

>>> x3 = np.array([-1, -4])
>>> with np.errstate(invalid='ignore'):
... p = np.float_power(x3, 1.5)
...
>>> p
array([nan, nan])

To get complex results, give the argument dtype=complex.

>>> np.float_power(x3, 1.5, dtype=complex)
array([-1.83697020e-16-1.j, -1.46957616e-15-8.j])

1474 1. Python API

NumPy Reference, Release 2.2.0

numpy.fmod(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'fmod'>

Returns the element-wise remainder of division.
This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the dividend
x1. It is equivalent to the Matlab(TM) rem function and should not be confused with the Python modulus operator
x1 % x2.

Parameters
x1

[array_like] Dividend.
x2

[array_like] Divisor. If x1.shape != x2.shape, they must be broadcastable to a com-
mon shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[array_like] The remainder of the division of x1 by x2. This is a scalar if both x1 and x2 are
scalars.

See also:

remainder
Equivalent to the Python % operator.

divide

Notes

The result of the modulo operation for negative dividend and divisors is bound by conventions. For fmod, the sign
of result is the sign of the dividend, while for remainder the sign of the result is the sign of the divisor. The
fmod function is equivalent to the Matlab(TM) rem function.

1.4. Routines and objects by topic 1475

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.fmod([-3, -2, -1, 1, 2, 3], 2)
array([-1, 0, -1, 1, 0, 1])
>>> np.remainder([-3, -2, -1, 1, 2, 3], 2)
array([1, 0, 1, 1, 0, 1])

>>> np.fmod([5, 3], [2, 2.])
array([1., 1.])
>>> a = np.arange(-3, 3).reshape(3, 2)
>>> a
array([[-3, -2],

[-1, 0],
[1, 2]])

>>> np.fmod(a, [2,2])
array([[-1, 0],

[-1, 0],
[1, 0]])

numpy.mod(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'remainder'>

Returns the element-wise remainder of division.
Computes the remainder complementary to the floor_divide function. It is equivalent to the Python modulus
operator x1 % x2 and has the same sign as the divisor x2. TheMATLAB function equivalent to np.remainder
is mod.

Warning: This should not be confused with:
• Python 3.7’s math.remainder and C’s remainder, which computes the IEEE remainder, which
are the complement to round(x1 / x2).

• The MATLAB rem function and or the C % operator which is the complement to int(x1 / x2).

Parameters
x1

[array_like] Dividend array.
x2

[array_like] Divisor array. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

1476 1. Python API

https://docs.python.org/3/library/math.html#math.remainder

NumPy Reference, Release 2.2.0

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The element-wise remainder of the quotient floor_divide(x1, x2). This is
a scalar if both x1 and x2 are scalars.

See also:

floor_divide
Equivalent of Python // operator.

divmod
Simultaneous floor division and remainder.

fmod
Equivalent of the MATLAB rem function.

divide, floor

Notes

Returns 0 when x2 is 0 and both x1 and x2 are (arrays of) integers. mod is an alias of remainder.

Examples

>>> import numpy as np
>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])

The % operator can be used as a shorthand for np.remainder on ndarrays.

>>> x1 = np.arange(7)
>>> x1 % 5
array([0, 1, 2, 3, 4, 0, 1])

numpy.modf(x, [out1, out2,]/ , [out=(None, None),]*, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'modf'>

Return the fractional and integral parts of an array, element-wise.
The fractional and integral parts are negative if the given number is negative.

Parameters
x

[array_like] Input array.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1.4. Routines and objects by topic 1477

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y1

[ndarray] Fractional part of x. This is a scalar if x is a scalar.
y2

[ndarray] Integral part of x. This is a scalar if x is a scalar.
See also:

divmod
divmod(x, 1) is equivalent to modf with the return values switched, except it always has a positive
remainder.

Notes

For integer input the return values are floats.

Examples

>>> import numpy as np
>>> np.modf([0, 3.5])
(array([0. , 0.5]), array([0., 3.]))
>>> np.modf(-0.5)
(-0.5, -0)

numpy.remainder(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'remainder'>

Returns the element-wise remainder of division.
Computes the remainder complementary to the floor_divide function. It is equivalent to the Python modulus
operator x1 % x2 and has the same sign as the divisor x2. TheMATLAB function equivalent to np.remainder
is mod.

Warning: This should not be confused with:
• Python 3.7’s math.remainder and C’s remainder, which computes the IEEE remainder, which
are the complement to round(x1 / x2).

• The MATLAB rem function and or the C % operator which is the complement to int(x1 / x2).

Parameters
x1

[array_like] Dividend array.

1478 1. Python API

https://docs.python.org/3/library/math.html#math.remainder

NumPy Reference, Release 2.2.0

x2
[array_like] Divisor array. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The element-wise remainder of the quotient floor_divide(x1, x2). This is
a scalar if both x1 and x2 are scalars.

See also:

floor_divide
Equivalent of Python // operator.

divmod
Simultaneous floor division and remainder.

fmod
Equivalent of the MATLAB rem function.

divide, floor

Notes

Returns 0 when x2 is 0 and both x1 and x2 are (arrays of) integers. mod is an alias of remainder.

Examples

>>> import numpy as np
>>> np.remainder([4, 7], [2, 3])
array([0, 1])
>>> np.remainder(np.arange(7), 5)
array([0, 1, 2, 3, 4, 0, 1])

The % operator can be used as a shorthand for np.remainder on ndarrays.

>>> x1 = np.arange(7)
>>> x1 % 5
array([0, 1, 2, 3, 4, 0, 1])

1.4. Routines and objects by topic 1479

NumPy Reference, Release 2.2.0

numpy.divmod(x1, x2, [out1, out2,]/ , [out=(None, None),]*, where=True, casting='same_kind', order='K',
dtype=None, subok=True[, signature]) = <ufunc 'divmod'>

Return element-wise quotient and remainder simultaneously.
np.divmod(x, y) is equivalent to (x // y, x % y), but faster because it avoids redundant work. It is
used to implement the Python built-in function divmod on NumPy arrays.

Parameters
x1

[array_like] Dividend array.
x2

[array_like] Divisor array. If x1.shape != x2.shape, they must be broadcastable to a
common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out1

[ndarray] Element-wise quotient resulting from floor division. This is a scalar if both x1 and
x2 are scalars.

out2
[ndarray] Element-wise remainder from floor division. This is a scalar if both x1 and x2 are
scalars.

See also:

floor_divide
Equivalent to Python’s // operator.

remainder
Equivalent to Python’s % operator.

modf
Equivalent to divmod(x, 1) for positive x with the return values switched.

1480 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.divmod(np.arange(5), 3)
(array([0, 0, 0, 1, 1]), array([0, 1, 2, 0, 1]))

The divmod function can be used as a shorthand for np.divmod on ndarrays.

>>> x = np.arange(5)
>>> divmod(x, 3)
(array([0, 0, 0, 1, 1]), array([0, 1, 2, 0, 1]))

Handling complex numbers

angle(z[, deg]) Return the angle of the complex argument.
real(val) Return the real part of the complex argument.
imag(val) Return the imaginary part of the complex argument.
conj(x, /[, out, where, casting, order, ...]) Return the complex conjugate, element-wise.
conjugate(x, /[, out, where, casting, ...]) Return the complex conjugate, element-wise.

numpy.angle(z, deg=False)
Return the angle of the complex argument.

Parameters
z

[array_like] A complex number or sequence of complex numbers.
deg

[bool, optional] Return angle in degrees if True, radians if False (default).
Returns

angle
[ndarray or scalar] The counterclockwise angle from the positive real axis on the complex plane
in the range (-pi, pi], with dtype as numpy.float64.

See also:

arctan2
absolute

Notes

This function passes the imaginary and real parts of the argument to arctan2 to compute the result; consequently,
it follows the convention of arctan2 when the magnitude of the argument is zero. See example.

1.4. Routines and objects by topic 1481

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.angle([1.0, 1.0j, 1+1j]) # in radians
array([0. , 1.57079633, 0.78539816]) # may vary
>>> np.angle(1+1j, deg=True) # in degrees
45.0
>>> np.angle([0., -0., complex(0., -0.), complex(-0., -0.)]) # convention
array([0. , 3.14159265, -0. , -3.14159265])

numpy.real(val)
Return the real part of the complex argument.

Parameters
val

[array_like] Input array.
Returns

out
[ndarray or scalar] The real component of the complex argument. If val is real, the type of val
is used for the output. If val has complex elements, the returned type is float.

See also:

real_if_close, imag, angle

Examples

>>> import numpy as np
>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.real
array([1., 3., 5.])
>>> a.real = 9
>>> a
array([9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = np.array([9, 8, 7])
>>> a
array([9.+2.j, 8.+4.j, 7.+6.j])
>>> np.real(1 + 1j)
1.0

numpy.imag(val)
Return the imaginary part of the complex argument.

Parameters
val

[array_like] Input array.
Returns

out
[ndarray or scalar] The imaginary component of the complex argument. If val is real, the type
of val is used for the output. If val has complex elements, the returned type is float.

See also:

1482 1. Python API

NumPy Reference, Release 2.2.0

real, angle, real_if_close

Examples

>>> import numpy as np
>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.imag
array([2., 4., 6.])
>>> a.imag = np.array([8, 10, 12])
>>> a
array([1. +8.j, 3.+10.j, 5.+12.j])
>>> np.imag(1 + 1j)
1.0

numpy.conj(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'conjugate'>

Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x

[array_like] Input value.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The complex conjugate of x, with same dtype as y. This is a scalar if x is a scalar.

Notes

conj is an alias for conjugate:

>>> np.conj is np.conjugate
True

1.4. Routines and objects by topic 1483

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[1.-1.j, 0.-0.j],

[0.-0.j, 1.-1.j]])

numpy.conjugate(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'conjugate'>

Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters
x

[array_like] Input value.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The complex conjugate of x, with same dtype as y. This is a scalar if x is a scalar.

Notes

conj is an alias for conjugate:

>>> np.conj is np.conjugate
True

1484 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.conjugate(1+2j)
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2)
>>> np.conjugate(x)
array([[1.-1.j, 0.-0.j],

[0.-0.j, 1.-1.j]])

Extrema finding

maximum(x1, x2, /[, out, where, casting, ...]) Element-wise maximum of array elements.
max(a[, axis, out, keepdims, initial, where]) Return the maximum of an array or maximum along an

axis.
amax(a[, axis, out, keepdims, initial, where]) Return the maximum of an array or maximum along an

axis.
fmax(x1, x2, /[, out, where, casting, ...]) Element-wise maximum of array elements.
nanmax(a[, axis, out, keepdims, initial, where]) Return the maximum of an array or maximum along an

axis, ignoring any NaNs.
minimum(x1, x2, /[, out, where, casting, ...]) Element-wise minimum of array elements.
min(a[, axis, out, keepdims, initial, where]) Return the minimum of an array or minimum along an

axis.
amin(a[, axis, out, keepdims, initial, where]) Return the minimum of an array or minimum along an

axis.
fmin(x1, x2, /[, out, where, casting, ...]) Element-wise minimum of array elements.
nanmin(a[, axis, out, keepdims, initial, where]) Return minimum of an array or minimum along an axis,

ignoring any NaNs.

numpy.maximum(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'maximum'>

Element-wise maximum of array elements.
Compare two arrays and return a new array containing the element-wise maxima. If one of the elements being
compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter
distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a
NaN. The net effect is that NaNs are propagated.

Parameters
x1, x2

[array_like] The arrays holding the elements to be compared. Ifx1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain

1.4. Routines and objects by topic 1485

NumPy Reference, Release 2.2.0

its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The maximum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

minimum
Element-wise minimum of two arrays, propagates NaNs.

fmax
Element-wise maximum of two arrays, ignores NaNs.

amax
The maximum value of an array along a given axis, propagates NaNs.

nanmax
The maximum value of an array along a given axis, ignores NaNs.

fmin, amin, nanmin

Notes

The maximum is equivalent to np.where(x1 >= x2, x1, x2) when neither x1 nor x2 are nans, but it is
faster and does proper broadcasting.

Examples

>>> import numpy as np
>>> np.maximum([2, 3, 4], [1, 5, 2])
array([2, 5, 4])

>>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting
array([[1. , 2.],

[0.5, 2.]])

>>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
array([nan, nan, nan])
>>> np.maximum(np.inf, 1)
inf

numpy.max(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the maximum of an array or maximum along an axis.

Parameters
a

[array_like] Input data.

1486 1. Python API

NumPy Reference, Release 2.2.0

axis
[None or int or tuple of ints, optional] Axis or axes along which to operate. By default, flattened
input is used. If this is a tuple of ints, the maximum is selected over multiple axes, instead of
a single axis or all the axes as before.

out
[ndarray, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output. See ufuncs-output-type for more details.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the max method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial
[scalar, optional] The minimum value of an output element. Must be present to allow compu-
tation on empty slice. See reduce for details.

where
[array_like of bool, optional] Elements to compare for the maximum. See reduce for details.

Returns
max

[ndarray or scalar] Maximum of a. If axis is None, the result is a scalar value. If axis is an int,
the result is an array of dimension a.ndim - 1. If axis is a tuple, the result is an array of
dimension a.ndim - len(axis).

See also:

amin
The minimum value of an array along a given axis, propagating any NaNs.

nanmax
The maximum value of an array along a given axis, ignoring any NaNs.

maximum
Element-wise maximum of two arrays, propagating any NaNs.

fmax
Element-wise maximum of two arrays, ignoring any NaNs.

argmax
Return the indices of the maximum values.

nanmin, minimum, fmin

1.4. Routines and objects by topic 1487

NumPy Reference, Release 2.2.0

Notes

NaN values are propagated, that is if at least one item is NaN, the corresponding max value will be NaN as well.
To ignore NaN values (MATLAB behavior), please use nanmax.
Don’t use max for element-wise comparison of 2 arrays; when a.shape[0] is 2, maximum(a[0], a[1])
is faster than max(a, axis=0).

Examples

>>> import numpy as np
>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.max(a) # Maximum of the flattened array
3
>>> np.max(a, axis=0) # Maxima along the first axis
array([2, 3])
>>> np.max(a, axis=1) # Maxima along the second axis
array([1, 3])
>>> np.max(a, where=[False, True], initial=-1, axis=0)
array([-1, 3])
>>> b = np.arange(5, dtype=float)
>>> b[2] = np.nan
>>> np.max(b)
np.float64(nan)
>>> np.max(b, where=~np.isnan(b), initial=-1)
4.0
>>> np.nanmax(b)
4.0

You can use an initial value to compute the maximum of an empty slice, or to initialize it to a different value:

>>> np.max([[-50], [10]], axis=-1, initial=0)
array([0, 10])

Notice that the initial value is used as one of the elements for which the maximum is determined, unlike for the
default argument Python’s max function, which is only used for empty iterables.

>>> np.max([5], initial=6)
6
>>> max([5], default=6)
5

numpy.amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the maximum of an array or maximum along an axis.
amax is an alias of max.
See also:

max
alias of this function

ndarray.max
equivalent method

1488 1. Python API

NumPy Reference, Release 2.2.0

numpy.fmax(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'fmax'>

Element-wise maximum of array elements.
Compare two arrays and return a new array containing the element-wise maxima. If one of the elements being
compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The
latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts
being a NaN. The net effect is that NaNs are ignored when possible.

Parameters
x1, x2

[array_like] The arrays holding the elements to be compared. Ifx1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The maximum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

fmin
Element-wise minimum of two arrays, ignores NaNs.

maximum
Element-wise maximum of two arrays, propagates NaNs.

amax
The maximum value of an array along a given axis, propagates NaNs.

nanmax
The maximum value of an array along a given axis, ignores NaNs.

minimum, amin, nanmin

1.4. Routines and objects by topic 1489

NumPy Reference, Release 2.2.0

Notes

The fmax is equivalent to np.where(x1 >= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is faster
and does proper broadcasting.

Examples

>>> import numpy as np
>>> np.fmax([2, 3, 4], [1, 5, 2])
array([2, 5, 4])

>>> np.fmax(np.eye(2), [0.5, 2])
array([[1. , 2.],

[0.5, 2.]])

>>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([0., 0., nan])

numpy.nanmax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the maximum of an array or maximum along an axis, ignoring any NaNs. When all-NaN slices are encoun-
tered a RuntimeWarning is raised and NaN is returned for that slice.

Parameters
a

[array_like] Array containing numbers whose maximum is desired. If a is not an array, a
conversion is attempted.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the maximum is computed. The
default is to compute the maximum of the flattened array.

out
[ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See ufuncs-output-type for more details.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a. If the value is anything but the default, then keepdims will be passed through to the max
method of sub-classes of ndarray. If the sub-classes methods does not implement keepdims
any exceptions will be raised.

initial
[scalar, optional] The minimum value of an output element. Must be present to allow compu-
tation on empty slice. See reduce for details.
New in version 1.22.0.

where
[array_like of bool, optional] Elements to compare for the maximum. See reduce for details.
New in version 1.22.0.

Returns

1490 1. Python API

NumPy Reference, Release 2.2.0

nanmax
[ndarray] An array with the same shape as a, with the specified axis removed. If a is a 0-d
array, or if axis is None, an ndarray scalar is returned. The same dtype as a is returned.

See also:

nanmin
The minimum value of an array along a given axis, ignoring any NaNs.

amax
The maximum value of an array along a given axis, propagating any NaNs.

fmax
Element-wise maximum of two arrays, ignoring any NaNs.

maximum
Element-wise maximum of two arrays, propagating any NaNs.

isnan
Shows which elements are Not a Number (NaN).

isfinite
Shows which elements are neither NaN nor infinity.

amin, fmin, minimum

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is
treated as a very small (i.e. negative) number.
If the input has a integer type the function is equivalent to np.max.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmax(a)
3.0
>>> np.nanmax(a, axis=0)
array([3., 2.])
>>> np.nanmax(a, axis=1)
array([2., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmax([1, 2, np.nan, -np.inf])
2.0
>>> np.nanmax([1, 2, np.nan, np.inf])
inf

numpy.minimum(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'minimum'>

Element-wise minimum of array elements.
Compare two arrays and return a new array containing the element-wise minima. If one of the elements being
compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter

1.4. Routines and objects by topic 1491

NumPy Reference, Release 2.2.0

distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a
NaN. The net effect is that NaNs are propagated.

Parameters
x1, x2

[array_like] The arrays holding the elements to be compared. Ifx1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The minimum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

maximum
Element-wise maximum of two arrays, propagates NaNs.

fmin
Element-wise minimum of two arrays, ignores NaNs.

amin
The minimum value of an array along a given axis, propagates NaNs.

nanmin
The minimum value of an array along a given axis, ignores NaNs.

fmax, amax, nanmax

Notes

The minimum is equivalent to np.where(x1 <= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is
faster and does proper broadcasting.

1492 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.minimum([2, 3, 4], [1, 5, 2])
array([1, 3, 2])

>>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting
array([[0.5, 0.],

[0. , 1.]])

>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([nan, nan, nan])
>>> np.minimum(-np.inf, 1)
-inf

numpy.min(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the minimum of an array or minimum along an axis.

Parameters
a

[array_like] Input data.
axis

[None or int or tuple of ints, optional] Axis or axes along which to operate. By default, flattened
input is used.
If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis or
all the axes as before.

out
[ndarray, optional] Alternative output array in which to place the result. Must be of the same
shape and buffer length as the expected output. See ufuncs-output-type for more details.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the min method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial
[scalar, optional] The maximum value of an output element. Must be present to allow compu-
tation on empty slice. See reduce for details.

where
[array_like of bool, optional] Elements to compare for the minimum. See reduce for details.

Returns
min

[ndarray or scalar] Minimum of a. If axis is None, the result is a scalar value. If axis is an int,
the result is an array of dimension a.ndim - 1. If axis is a tuple, the result is an array of
dimension a.ndim - len(axis).

See also:

1.4. Routines and objects by topic 1493

NumPy Reference, Release 2.2.0

amax
The maximum value of an array along a given axis, propagating any NaNs.

nanmin
The minimum value of an array along a given axis, ignoring any NaNs.

minimum
Element-wise minimum of two arrays, propagating any NaNs.

fmin
Element-wise minimum of two arrays, ignoring any NaNs.

argmin
Return the indices of the minimum values.

nanmax, maximum, fmax

Notes

NaN values are propagated, that is if at least one item is NaN, the corresponding min value will be NaN as well.
To ignore NaN values (MATLAB behavior), please use nanmin.
Don’t use min for element-wise comparison of 2 arrays; when a.shape[0] is 2, minimum(a[0], a[1])
is faster than min(a, axis=0).

Examples

>>> import numpy as np
>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.min(a) # Minimum of the flattened array
0
>>> np.min(a, axis=0) # Minima along the first axis
array([0, 1])
>>> np.min(a, axis=1) # Minima along the second axis
array([0, 2])
>>> np.min(a, where=[False, True], initial=10, axis=0)
array([10, 1])

>>> b = np.arange(5, dtype=float)
>>> b[2] = np.nan
>>> np.min(b)
np.float64(nan)
>>> np.min(b, where=~np.isnan(b), initial=10)
0.0
>>> np.nanmin(b)
0.0

>>> np.min([[-50], [10]], axis=-1, initial=0)
array([-50, 0])

Notice that the initial value is used as one of the elements for which the minimum is determined, unlike for the
default argument Python’s max function, which is only used for empty iterables.
Notice that this isn’t the same as Python’s default argument.

1494 1. Python API

NumPy Reference, Release 2.2.0

>>> np.min([6], initial=5)
5
>>> min([6], default=5)
6

numpy.amin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return the minimum of an array or minimum along an axis.
amin is an alias of min.
See also:

min
alias of this function

ndarray.min
equivalent method

numpy.fmin(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'fmin'>

Element-wise minimum of array elements.
Compare two arrays and return a new array containing the element-wise minima. If one of the elements being
compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The
latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts
being a NaN. The net effect is that NaNs are ignored when possible.

Parameters
x1, x2

[array_like] The arrays holding the elements to be compared. Ifx1.shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The minimum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

fmax
Element-wise maximum of two arrays, ignores NaNs.

1.4. Routines and objects by topic 1495

NumPy Reference, Release 2.2.0

minimum
Element-wise minimum of two arrays, propagates NaNs.

amin
The minimum value of an array along a given axis, propagates NaNs.

nanmin
The minimum value of an array along a given axis, ignores NaNs.

maximum, amax, nanmax

Notes

The fmin is equivalent to np.where(x1 <= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is faster
and does proper broadcasting.

Examples

>>> import numpy as np
>>> np.fmin([2, 3, 4], [1, 5, 2])
array([1, 3, 2])

>>> np.fmin(np.eye(2), [0.5, 2])
array([[0.5, 0.],

[0. , 1.]])

>>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
array([0., 0., nan])

numpy.nanmin(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>)
Return minimum of an array or minimum along an axis, ignoring any NaNs. When all-NaN slices are encountered
a RuntimeWarning is raised and Nan is returned for that slice.

Parameters
a

[array_like] Array containing numbers whose minimum is desired. If a is not an array, a
conversion is attempted.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the minimum is computed. The
default is to compute the minimum of the flattened array.

out
[ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See ufuncs-output-type for more details.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a.
If the value is anything but the default, then keepdimswill be passed through to the minmethod
of sub-classes of ndarray. If the sub-classes methods does not implement keepdims any
exceptions will be raised.

1496 1. Python API

NumPy Reference, Release 2.2.0

initial
[scalar, optional] The maximum value of an output element. Must be present to allow compu-
tation on empty slice. See reduce for details.
New in version 1.22.0.

where
[array_like of bool, optional] Elements to compare for the minimum. See reduce for details.
New in version 1.22.0.

Returns
nanmin

[ndarray] An array with the same shape as a, with the specified axis removed. If a is a 0-d
array, or if axis is None, an ndarray scalar is returned. The same dtype as a is returned.

See also:

nanmax
The maximum value of an array along a given axis, ignoring any NaNs.

amin
The minimum value of an array along a given axis, propagating any NaNs.

fmin
Element-wise minimum of two arrays, ignoring any NaNs.

minimum
Element-wise minimum of two arrays, propagating any NaNs.

isnan
Shows which elements are Not a Number (NaN).

isfinite
Shows which elements are neither NaN nor infinity.

amax, fmax, maximum

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is
treated as a very small (i.e. negative) number.
If the input has a integer type the function is equivalent to np.min.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmin(a)
1.0
>>> np.nanmin(a, axis=0)
array([1., 2.])
>>> np.nanmin(a, axis=1)
array([1., 3.])

When positive infinity and negative infinity are present:

1.4. Routines and objects by topic 1497

NumPy Reference, Release 2.2.0

>>> np.nanmin([1, 2, np.nan, np.inf])
1.0
>>> np.nanmin([1, 2, np.nan, -np.inf])
-inf

Miscellaneous

convolve(a, v[, mode]) Returns the discrete, linear convolution of two one-
dimensional sequences.

clip(a[, a_min, a_max, out, min, max]) Clip (limit) the values in an array.
sqrt(x, /[, out, where, casting, order, ...]) Return the non-negative square-root of an array, element-

wise.
cbrt(x, /[, out, where, casting, order, ...]) Return the cube-root of an array, element-wise.
square(x, /[, out, where, casting, order, ...]) Return the element-wise square of the input.
absolute(x, /[, out, where, casting, order, ...]) Calculate the absolute value element-wise.
fabs(x, /[, out, where, casting, order, ...]) Compute the absolute values element-wise.
sign(x, /[, out, where, casting, order, ...]) Returns an element-wise indication of the sign of a num-

ber.
heaviside(x1, x2, /[, out, where, casting, ...]) Compute the Heaviside step function.
nan_to_num(x[, copy, nan, posinf, neginf]) Replace NaN with zero and infinity with large finite num-

bers (default behaviour) or with the numbers defined by
the user using the nan, posinf and/or neginf keywords.

real_if_close(a[, tol]) If input is complex with all imaginary parts close to zero,
return real parts.

interp(x, xp, fp[, left, right, period]) One-dimensional linear interpolation for monotonically
increasing sample points.

bitwise_count(x, /[, out, where, casting, ...]) Computes the number of 1-bits in the absolute value of
x.

numpy.convolve(a, v, mode='full')
Returns the discrete, linear convolution of two one-dimensional sequences.
The convolution operator is often seen in signal processing, where it models the effect of a linear time-invariant
system on a signal [1]. In probability theory, the sum of two independent random variables is distributed according
to the convolution of their individual distributions.
If v is longer than a, the arrays are swapped before computation.

Parameters
a

[(N,) array_like] First one-dimensional input array.
v

[(M,) array_like] Second one-dimensional input array.
mode

[{‘full’, ‘valid’, ‘same’}, optional]
‘full’:
By default, mode is ‘full’. This returns the convolution at each point of overlap, with an
output shape of (N+M-1,). At the end-points of the convolution, the signals do not overlap
completely, and boundary effects may be seen.

1498 1. Python API

NumPy Reference, Release 2.2.0

‘same’:
Mode ‘same’ returns output of length max(M, N). Boundary effects are still visible.

‘valid’:
Mode ‘valid’ returns output of length max(M, N) - min(M, N) + 1. The convolution
product is only given for points where the signals overlap completely. Values outside the
signal boundary have no effect.

Returns
out

[ndarray] Discrete, linear convolution of a and v.
See also:

scipy.signal.fftconvolve
Convolve two arrays using the Fast Fourier Transform.

scipy.linalg.toeplitz
Used to construct the convolution operator.

polymul
Polynomial multiplication. Same output as convolve, but also accepts poly1d objects as input.

Notes

The discrete convolution operation is defined as

(a ∗ v)n =

∞∑
m=−∞

amvn−m

It can be shown that a convolution x(t) ∗ y(t) in time/space is equivalent to the multiplication X(f)Y (f) in the
Fourier domain, after appropriate padding (padding is necessary to prevent circular convolution). Since multi-
plication is more efficient (faster) than convolution, the function scipy.signal.fftconvolve exploits the
FFT to calculate the convolution of large data-sets.

References

[1]

Examples

Note how the convolution operator flips the second array before “sliding” the two across one another:

>>> import numpy as np
>>> np.convolve([1, 2, 3], [0, 1, 0.5])
array([0. , 1. , 2.5, 4. , 1.5])

Only return the middle values of the convolution. Contains boundary effects, where zeros are taken into account:

>>> np.convolve([1,2,3],[0,1,0.5], 'same')
array([1. , 2.5, 4.])

The two arrays are of the same length, so there is only one position where they completely overlap:

1.4. Routines and objects by topic 1499

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.toeplitz.html#scipy.linalg.toeplitz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve

NumPy Reference, Release 2.2.0

>>> np.convolve([1,2,3],[0,1,0.5], 'valid')
array([2.5])

numpy.clip(a, a_min=<no value>, a_max=<no value>, out=None, *, min=<no value>, max=<no value>,
**kwargs)

Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of [0,
1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.
Equivalent to but faster than np.minimum(a_max, np.maximum(a, a_min)).
No check is performed to ensure a_min < a_max.

Parameters
a

[array_like] Array containing elements to clip.
a_min, a_max

[array_like or None] Minimum and maximum value. If None, clipping is not performed on
the corresponding edge. If both a_min and a_max are None, the elements of the returned
array stay the same. Both are broadcasted against a.

out
[ndarray, optional] The results will be placed in this array. It may be the input array for in-place
clipping. out must be of the right shape to hold the output. Its type is preserved.

min, max
[array_like or None] Array API compatible alternatives for a_min and a_max arguments.
Either a_min and a_max or min and max can be passed at the same time. Default: None.
New in version 2.1.0.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
clipped_array

[ndarray] An array with the elements of a, but where values < a_min are replaced with a_min,
and those > a_max with a_max.

See also:

ufuncs-output-type

Notes

When a_min is greater than a_max, clip returns an array in which all values are equal to a_max, as shown in the
second example.

1500 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> np.clip(a, 8, 1)
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

numpy.sqrt(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'sqrt'>

Return the non-negative square-root of an array, element-wise.
Parameters

x
[array_like] The values whose square-roots are required.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] An array of the same shape as x, containing the positive square-root of each element
in x. If any element in x is complex, a complex array is returned (and the square-roots of
negative reals are calculated). If all of the elements in x are real, so is y, with negative elements
returning nan. If out was provided, y is a reference to it. This is a scalar if x is a scalar.

See also:

emath.sqrt
A version which returns complex numbers when given negative reals. Note that 0.0 and -0.0 are handled
differently for complex inputs.

1.4. Routines and objects by topic 1501

NumPy Reference, Release 2.2.0

Notes

sqrt has–consistent with common convention–as its branch cut the real “interval” [-inf, 0), and is continuous from
above on it. A branch cut is a curve in the complex plane across which a given complex function fails to be
continuous.

Examples

>>> import numpy as np
>>> np.sqrt([1,4,9])
array([1., 2., 3.])

>>> np.sqrt([4, -1, -3+4J])
array([2.+0.j, 0.+1.j, 1.+2.j])

>>> np.sqrt([4, -1, np.inf])
array([2., nan, inf])

numpy.cbrt(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'cbrt'>

Return the cube-root of an array, element-wise.
Parameters

x
[array_like] The values whose cube-roots are required.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] An array of the same shape as x, containing the cube root of each element in x. If
out was provided, y is a reference to it. This is a scalar if x is a scalar.

1502 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.cbrt([1,8,27])
array([1., 2., 3.])

numpy.square(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'square'>

Return the element-wise square of the input.
Parameters

x
[array_like] Input data.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] Element-wise x*x, of the same shape and dtype as x. This is a scalar if x is
a scalar.

See also:

numpy.linalg.matrix_power
sqrt
power

Examples

>>> import numpy as np
>>> np.square([-1j, 1])
array([-1.-0.j, 1.+0.j])

numpy.absolute(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[,
signature]) = <ufunc 'absolute'>

Calculate the absolute value element-wise.
np.abs is a shorthand for this function.

Parameters
x

[array_like] Input array.

1.4. Routines and objects by topic 1503

NumPy Reference, Release 2.2.0

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
absolute

[ndarray] An ndarray containing the absolute value of each element in x. For complex input,
a + ib, the absolute value is

√
a2 + b2. This is a scalar if x is a scalar.

Examples

>>> import numpy as np
>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([1.2, 1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308

Plot the function over [-10, 10]:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(start=-10, stop=10, num=101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()

Plot the function over the complex plane:

>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10], cmap='gray')
>>> plt.show()

The abs function can be used as a shorthand for np.absolute on ndarrays.

>>> x = np.array([-1.2, 1.2])
>>> abs(x)
array([1.2, 1.2])

numpy.fabs(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'fabs'>

Compute the absolute values element-wise.
This function returns the absolute values (positive magnitude) of the data in x. Complex values are not handled,
use absolute to find the absolute values of complex data.

1504 1. Python API

https://docs.python.org/3/library/functions.html#abs

NumPy Reference, Release 2.2.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

1.4. Routines and objects by topic 1505

NumPy Reference, Release 2.2.0

Parameters
x

[array_like] The array of numbers for which the absolute values are required. If x is a scalar,
the result y will also be a scalar.

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray or scalar] The absolute values of x, the returned values are always floats. This is a
scalar if x is a scalar.

See also:

absolute
Absolute values including complex types.

Examples

>>> import numpy as np
>>> np.fabs(-1)
1.0
>>> np.fabs([-1.2, 1.2])
array([1.2, 1.2])

numpy.sign(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature
]) = <ufunc 'sign'>

Returns an element-wise indication of the sign of a number.
The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0. nan is returned for nan inputs.
For complex inputs, the sign function returns x / abs(x), the generalization of the above (and 0 if x==0).
Changed in version 2.0.0: Definition of complex sign changed to follow the Array API standard.

Parameters
x

[array_like] Input values.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1506 1. Python API

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The sign of x. This is a scalar if x is a scalar.

Notes

There is more than one definition of sign in common use for complex numbers. The definition used here, x/|x|,
is the more common and useful one, but is different from the one used in numpy prior to version 2.0, x/√x ∗ x,
which is equivalent to sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j.

Examples

>>> import numpy as np
>>> np.sign([-5., 4.5])
array([-1., 1.])
>>> np.sign(0)
0
>>> np.sign([3-4j, 8j])
array([0.6-0.8j, 0. +1.j])

numpy.heaviside(x1, x2, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'heaviside'>

Compute the Heaviside step function.
The Heaviside step function [1] is defined as:

0 if x1 < 0
heaviside(x1, x2) = x2 if x1 == 0

1 if x1 > 0

where x2 is often taken to be 0.5, but 0 and 1 are also sometimes used.
Parameters

x1
[array_like] Input values.

x2
[array_like] The value of the function when x1 is 0. If x1.shape != x2.shape, they
must be broadcastable to a common shape (which becomes the shape of the output).

out
[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

1.4. Routines and objects by topic 1507

NumPy Reference, Release 2.2.0

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
out

[ndarray or scalar] The output array, element-wise Heaviside step function of x1. This is a
scalar if both x1 and x2 are scalars.

References

[1]

Examples

>>> import numpy as np
>>> np.heaviside([-1.5, 0, 2.0], 0.5)
array([0. , 0.5, 1.])
>>> np.heaviside([-1.5, 0, 2.0], 1)
array([0., 1., 1.])

numpy.nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None)
Replace NaN with zero and infinity with large finite numbers (default behaviour) or with the numbers defined by
the user using the nan, posinf and/or neginf keywords.
If x is inexact, NaN is replaced by zero or by the user defined value in nan keyword, infinity is replaced by the
largest finite floating point values representable by x.dtype or by the user defined value in posinf keyword and
-infinity is replaced by the most negative finite floating point values representable by x.dtype or by the user
defined value in neginf keyword.
For complex dtypes, the above is applied to each of the real and imaginary components of x separately.
If x is not inexact, then no replacements are made.

Parameters
x

[scalar or array_like] Input data.
copy

[bool, optional] Whether to create a copy of x (True) or to replace values in-place (False). The
in-place operation only occurs if casting to an array does not require a copy. Default is True.

nan
[int, float, optional] Value to be used to fill NaN values. If no value is passed then NaN values
will be replaced with 0.0.

posinf
[int, float, optional] Value to be used to fill positive infinity values. If no value is passed then
positive infinity values will be replaced with a very large number.

1508 1. Python API

NumPy Reference, Release 2.2.0

neginf
[int, float, optional] Value to be used to fill negative infinity values. If no value is passed then
negative infinity values will be replaced with a very small (or negative) number.

Returns
out

[ndarray] x, with the non-finite values replaced. If copy is False, this may be x itself.
See also:

isinf
Shows which elements are positive or negative infinity.

isneginf
Shows which elements are negative infinity.

isposinf
Shows which elements are positive infinity.

isnan
Shows which elements are Not a Number (NaN).

isfinite
Shows which elements are finite (not NaN, not infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

Examples

>>> import numpy as np
>>> np.nan_to_num(np.inf)
1.7976931348623157e+308
>>> np.nan_to_num(-np.inf)
-1.7976931348623157e+308
>>> np.nan_to_num(np.nan)
0.0
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
array([1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary

-1.28000000e+002, 1.28000000e+002])
>>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333)
array([3.3333333e+07, 3.3333333e+07, -9.9990000e+03,

-1.2800000e+02, 1.2800000e+02])
>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)])
array([1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary

-1.28000000e+002, 1.28000000e+002])
>>> np.nan_to_num(y)
array([1.79769313e+308 +0.00000000e+000j, # may vary

0.00000000e+000 +0.00000000e+000j,
0.00000000e+000 +1.79769313e+308j])

>>> np.nan_to_num(y, nan=111111, posinf=222222)
array([222222.+111111.j, 111111. +0.j, 111111.+222222.j])

1.4. Routines and objects by topic 1509

NumPy Reference, Release 2.2.0

numpy.real_if_close(a, tol=100)
If input is complex with all imaginary parts close to zero, return real parts.
“Close to zero” is defined as tol * (machine epsilon of the type for a).

Parameters
a

[array_like] Input array.
tol

[float] Tolerance in machine epsilons for the complex part of the elements in the array. If the
tolerance is <=1, then the absolute tolerance is used.

Returns
out

[ndarray] If a is real, the type of a is used for the output. If a has complex elements, the
returned type is float.

See also:

real, imag, angle

Notes

Machine epsilon varies from machine to machine and between data types but Python floats on most platforms have
a machine epsilon equal to 2.2204460492503131e-16. You can use ‘np.finfo(float).eps’ to print out the machine
epsilon for floats.

Examples

>>> import numpy as np
>>> np.finfo(float).eps
2.2204460492503131e-16 # may vary

>>> np.real_if_close([2.1 + 4e-14j, 5.2 + 3e-15j], tol=1000)
array([2.1, 5.2])
>>> np.real_if_close([2.1 + 4e-13j, 5.2 + 3e-15j], tol=1000)
array([2.1+4.e-13j, 5.2 + 3e-15j])

numpy.interp(x, xp, fp, left=None, right=None, period=None)
One-dimensional linear interpolation for monotonically increasing sample points.
Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp),
evaluated at x.

Parameters
x

[array_like] The x-coordinates at which to evaluate the interpolated values.
xp

[1-D sequence of floats] The x-coordinates of the data points, must be increasing if argu-
ment period is not specified. Otherwise, xp is internally sorted after normalizing the periodic
boundaries with xp = xp % period.

1510 1. Python API

NumPy Reference, Release 2.2.0

fp
[1-D sequence of float or complex] The y-coordinates of the data points, same length as xp.

left
[optional float or complex corresponding to fp] Value to return for x < xp[0], default is fp[0].

right
[optional float or complex corresponding to fp] Value to return for x > xp[-1], default is fp[-1].

period
[None or float, optional] A period for the x-coordinates. This parameter allows the proper
interpolation of angular x-coordinates. Parameters left and right are ignored if period is spec-
ified.

Returns
y

[float or complex (corresponding to fp) or ndarray] The interpolated values, same shape as x.
Raises

ValueError
If xp and fp have different length If xp or fp are not 1-D sequences If period == 0

Warning: The x-coordinate sequence is expected to be increasing, but this is not explicitly enforced. However,
if the sequence xp is non-increasing, interpolation results are meaningless.
Note that, since NaN is unsortable, xp also cannot contain NaNs.
A simple check for xp being strictly increasing is:
np.all(np.diff(xp) > 0)

See also:

scipy.interpolate

Examples

>>> import numpy as np
>>> xp = [1, 2, 3]
>>> fp = [3, 2, 0]
>>> np.interp(2.5, xp, fp)
1.0
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
array([3. , 3. , 2.5 , 0.56, 0.])
>>> UNDEF = -99.0
>>> np.interp(3.14, xp, fp, right=UNDEF)
-99.0

Plot an interpolant to the sine function:

>>> x = np.linspace(0, 2*np.pi, 10)
>>> y = np.sin(x)
>>> xvals = np.linspace(0, 2*np.pi, 50)
>>> yinterp = np.interp(xvals, x, y)
>>> import matplotlib.pyplot as plt

(continues on next page)

1.4. Routines and objects by topic 1511

https://docs.scipy.org/doc/scipy/reference/interpolate.html#module-scipy.interpolate

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> plt.plot(x, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(xvals, yinterp, '-x')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()

0 1 2 3 4 5 6
1.0

0.5

0.0

0.5

1.0

Interpolation with periodic x-coordinates:

>>> x = [-180, -170, -185, 185, -10, -5, 0, 365]
>>> xp = [190, -190, 350, -350]
>>> fp = [5, 10, 3, 4]
>>> np.interp(x, xp, fp, period=360)
array([7.5 , 5. , 8.75, 6.25, 3. , 3.25, 3.5 , 3.75])

Complex interpolation:

>>> x = [1.5, 4.0]
>>> xp = [2,3,5]
>>> fp = [1.0j, 0, 2+3j]
>>> np.interp(x, xp, fp)
array([0.+1.j , 1.+1.5j])

numpy.bitwise_count(x, / , out=None, *, where=True, casting='same_kind', order='K', dtype=None,
subok=True[, signature]) = <ufunc 'bitwise_count'>

Computes the number of 1-bits in the absolute value of x. Analogous to the builtin int.bit_count or popcount in
C++.

Parameters
x

[array_like, unsigned int] Input array.
out

[ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None,

1512 1. Python API

NumPy Reference, Release 2.2.0

a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have
length equal to the number of outputs.

where
[array_like, optional] This condition is broadcast over the input. At locations where the con-
dition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain
its original value. Note that if an uninitialized out array is created via the default out=None,
locations within it where the condition is False will remain uninitialized.

**kwargs
For other keyword-only arguments, see the ufunc docs.

Returns
y

[ndarray] The corresponding number of 1-bits in the input. Returns uint8 for all integer types
This is a scalar if x is a scalar.

References

[1], [2], [3]

Examples

>>> import numpy as np
>>> np.bitwise_count(1023)
np.uint8(10)
>>> a = np.array([2**i - 1 for i in range(16)])
>>> np.bitwise_count(a)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],

dtype=uint8)

1.4.13 Miscellaneous routines

Performance tuning

setbufsize(size) Set the size of the buffer used in ufuncs.
getbufsize() Return the size of the buffer used in ufuncs.

numpy.setbufsize(size)
Set the size of the buffer used in ufuncs.
Changed in version 2.0: The scope of setting the buffer is tied to the numpy.errstate context. Exiting a with
errstate(): will also restore the bufsize.

Parameters
size

[int] Size of buffer.
Returns

bufsize
[int] Previous size of ufunc buffer in bytes.

1.4. Routines and objects by topic 1513

NumPy Reference, Release 2.2.0

Examples

When exiting a numpy.errstate context manager the bufsize is restored:

>>> import numpy as np
>>> with np.errstate():
... np.setbufsize(4096)
... print(np.getbufsize())
...
8192
4096
>>> np.getbufsize()
8192

numpy.getbufsize()

Return the size of the buffer used in ufuncs.
Returns

getbufsize
[int] Size of ufunc buffer in bytes.

Examples

>>> import numpy as np
>>> np.getbufsize()
8192

Memory ranges

shares_memory(a, b, /[, max_work]) Determine if two arrays share memory.
may_share_memory(a, b, /[, max_work]) Determine if two arrays might share memory

numpy.shares_memory(a, b, / , max_work=None)
Determine if two arrays share memory.

Warning: This function can be exponentially slow for some inputs, unlessmax_work is set to zero or a positive
integer. If in doubt, use numpy.may_share_memory instead.

Parameters
a, b

[ndarray] Input arrays
max_work

[int, optional] Effort to spend on solving the overlap problem (maximum number of candidate
solutions to consider). The following special values are recognized:
max_work=-1 (default)
The problem is solved exactly. In this case, the function returns True only if there is an
element shared between the arrays. Finding the exact solution may take extremely long in
some cases.

1514 1. Python API

NumPy Reference, Release 2.2.0

max_work=0
Only the memory bounds of a and b are checked. This is equivalent to using
may_share_memory().

Returns
out

[bool]
Raises

numpy.exceptions.TooHardError
Exceeded max_work.

See also:

may_share_memory

Examples

>>> import numpy as np
>>> x = np.array([1, 2, 3, 4])
>>> np.shares_memory(x, np.array([5, 6, 7]))
False
>>> np.shares_memory(x[::2], x)
True
>>> np.shares_memory(x[::2], x[1::2])
False

Checking whether two arrays share memory is NP-complete, and runtimemay increase exponentially in the number
of dimensions. Hence, max_work should generally be set to a finite number, as it is possible to construct examples
that take extremely long to run:

>>> from numpy.lib.stride_tricks import as_strided
>>> x = np.zeros([192163377], dtype=np.int8)
>>> x1 = as_strided(
... x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049))
>>> x2 = as_strided(
... x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1))
>>> np.shares_memory(x1, x2, max_work=1000)
Traceback (most recent call last):
...
numpy.exceptions.TooHardError: Exceeded max_work

Running np.shares_memory(x1, x2) without max_work set takes around 1 minute for this case. It is
possible to find problems that take still significantly longer.

numpy.may_share_memory(a, b, / , max_work=None)
Determine if two arrays might share memory
A return of True does not necessarily mean that the two arrays share any element. It just means that they might.
Only the memory bounds of a and b are checked by default.

Parameters
a, b

[ndarray] Input arrays

1.4. Routines and objects by topic 1515

NumPy Reference, Release 2.2.0

max_work
[int, optional] Effort to spend on solving the overlap problem. See shares_memory for
details. Default for may_share_memory is to do a bounds check.

Returns
out

[bool]
See also:

shares_memory

Examples

>>> import numpy as np
>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
False
>>> x = np.zeros([3, 4])
>>> np.may_share_memory(x[:,0], x[:,1])
True

Utility

get_include() Return the directory that contains the NumPy *.h header
files.

show_config([mode]) Show libraries and system information on which NumPy
was built and is being used

show_runtime() Print information about various resources in the system
including available intrinsic support and BLAS/LAPACK
library in use

broadcast_shapes(*args) Broadcast the input shapes into a single shape.

numpy.get_include()

Return the directory that contains the NumPy *.h header files.
Extension modules that need to compile against NumPy may need to use this function to locate the appropriate
include directory.

Notes

When using setuptools, for example in setup.py:

import numpy as np
...
Extension('extension_name', ...

include_dirs=[np.get_include()])
...

Note that a CLI toolnumpy-configwas introduced in NumPy 2.0, using that is likely preferred for build systems
other than setuptools:

1516 1. Python API

NumPy Reference, Release 2.2.0

$ numpy-config --cflags
-I/path/to/site-packages/numpy/_core/include

Or rely on pkg-config:
$ export PKG_CONFIG_PATH=$(numpy-config --pkgconfigdir)
$ pkg-config --cflags
-I/path/to/site-packages/numpy/_core/include

Examples

>>> np.get_include()
'.../site-packages/numpy/core/include' # may vary

numpy.show_config(mode='stdout')
Show libraries and system information on which NumPy was built and is being used

Parameters
mode

[{‘stdout’, ‘dicts’}, optional.] Indicates how to display the config information. ‘stdout’ prints to
console, ‘dicts’ returns a dictionary of the configuration.

Returns
out

[{dict, None}] If mode is ‘dicts’, a dict is returned, else None
See also:

get_include
Returns the directory containing NumPy C header files.

Notes

1. The ‘stdout’ mode will give more readable output if pyyaml is installed

numpy.show_runtime()

Print information about various resources in the system including available intrinsic support and BLAS/LAPACK
library in use
New in version 1.24.0.
See also:

show_config
Show libraries in the system on which NumPy was built.

1.4. Routines and objects by topic 1517

NumPy Reference, Release 2.2.0

Notes

1. Information is derived with the help of threadpoolctl library if available.
2. SIMD related information is derived from __cpu_features__, __cpu_baseline__ and

__cpu_dispatch__

numpy.broadcast_shapes(*args)
Broadcast the input shapes into a single shape.
Learn more about broadcasting here.
New in version 1.20.0.

Parameters
*args

[tuples of ints, or ints] The shapes to be broadcast against each other.
Returns

tuple
Broadcasted shape.

Raises
ValueError

If the shapes are not compatible and cannot be broadcast according to NumPy’s broadcasting
rules.

See also:

broadcast
broadcast_arrays
broadcast_to

Examples

>>> import numpy as np
>>> np.broadcast_shapes((1, 2), (3, 1), (3, 2))
(3, 2)

>>> np.broadcast_shapes((6, 7), (5, 6, 1), (7,), (5, 1, 7))
(5, 6, 7)

NumPy-specific help function

info([object, maxwidth, output, toplevel]) Get help information for an array, function, class, or mod-
ule.

numpy.info(object=None, maxwidth=76, output=None, toplevel='numpy')
Get help information for an array, function, class, or module.

Parameters

1518 1. Python API

https://pypi.org/project/threadpoolctl/

NumPy Reference, Release 2.2.0

object
[object or str, optional] Input object or name to get information about. If object is an ndar-
ray instance, information about the array is printed. If object is a numpy object, its docstring
is given. If it is a string, available modules are searched for matching objects. If None, infor-
mation about info itself is returned.

maxwidth
[int, optional] Printing width.

output
[file like object, optional] File like object that the output is written to, default is None, in which
case sys.stdout will be used. The object has to be opened in ‘w’ or ‘a’ mode.

toplevel
[str, optional] Start search at this level.

Notes

When used interactively with an object, np.info(obj) is equivalent to help(obj) on the Python prompt or
obj? on the IPython prompt.

Examples

>>> np.info(np.polyval)
polyval(p, x)
Evaluate the polynomial p at x.
...

When using a string for object it is possible to get multiple results.

>>> np.info('fft')
*** Found in numpy ***

Core FFT routines
...

*** Found in numpy.fft ***
fft(a, n=None, axis=-1)
...

*** Repeat reference found in numpy.fft.fftpack ***
*** Total of 3 references found. ***

When the argument is an array, information about the array is printed.

>>> a = np.array([[1 + 2j, 3, -4], [-5j, 6, 0]], dtype=np.complex64)
>>> np.info(a)
class: ndarray
shape: (2, 3)
strides: (24, 8)
itemsize: 8
aligned: True
contiguous: True
fortran: False
data pointer: 0x562b6e0d2860 # may vary
byteorder: little
byteswap: False
type: complex64

1.4. Routines and objects by topic 1519

NumPy Reference, Release 2.2.0

1.4.14 Polynomials

Polynomials in NumPy can be created, manipulated, and even fitted using the convenience classes of the numpy.
polynomial package, introduced in NumPy 1.4.
Prior to NumPy 1.4, numpy.poly1d was the class of choice and it is still available in order to maintain backward
compatibility. However, the newer polynomial package is more complete and its convenience classes provide a
more consistent, better-behaved interface for working with polynomial expressions. Therefore numpy.polynomial
is recommended for new coding.

Note: Terminology
The term polynomial module refers to the old API defined in numpy.lib.polynomial, which includes the numpy.
poly1d class and the polynomial functions prefixed with poly accessible from the numpy namespace (e.g. numpy.
polyadd, numpy.polyval, numpy.polyfit, etc.).
The term polynomial package refers to the new API defined in numpy.polynomial, which includes the convenience
classes for the different kinds of polynomials (Polynomial, Chebyshev, etc.).

Transitioning from numpy.poly1d to numpy.polynomial

As noted above, the poly1d class and associated functions defined in numpy.lib.polynomial, such as
numpy.polyfit and numpy.poly, are considered legacy and should not be used in new code. Since NumPy
version 1.4, the numpy.polynomial package is preferred for working with polynomials.

Quick Reference
The following table highlights some of the main differences between the legacy polynomial module and the polynomial
package for common tasks. The Polynomial class is imported for brevity:

from numpy.polynomial import Polynomial

How to… Legacy (numpy.poly1d) numpy.polynomial
Create a polynomial object from
coefficients1

p = np.poly1d([1, 2, 3]) p = Polynomial([3, 2, 1])

Create a polynomial object from
roots

r = np.poly([-1, 1]) p = np.
poly1d(r)

p = Polynomial.
fromroots([-1, 1])

Fit a polynomial of degree deg
to data

np.polyfit(x, y, deg) Polynomial.fit(x, y,
deg)

Transition Guide
There are significant differences between numpy.lib.polynomial and numpy.polynomial. The most sig-
nificant difference is the ordering of the coefficients for the polynomial expressions. The various routines in numpy.
polynomial all deal with series whose coefficients go from degree zero upward, which is the reverse order of the
poly1d convention. The easy way to remember this is that indices correspond to degree, i.e., coef[i] is the coefficient
of the term of degree i.
Though the difference in convention may be confusing, it is straightforward to convert from the legacy polynomial API
to the new. For example, the following demonstrates how you would convert a numpy.poly1d instance representing
the expression x2 + 2x+ 3 to a Polynomial instance representing the same expression:

1 Note the reversed ordering of the coefficients

1520 1. Python API

NumPy Reference, Release 2.2.0

>>> import numpy as np

>>> p1d = np.poly1d([1, 2, 3])
>>> p = np.polynomial.Polynomial(p1d.coef[::-1])

In addition to thecoef attribute, polynomials from the polynomial package also havedomain andwindow
attributes. These attributes are most relevant when fitting polynomials to data, though it should be noted that
polynomials with different domain and window attributes are not considered equal, and can’t be mixed in
arithmetic:

>>> p1 = np.polynomial.Polynomial([1, 2, 3])
>>> p1
Polynomial([1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p2 = np.polynomial.Polynomial([1, 2, 3], domain=[-2, 2])
>>> p1 == p2
False
>>> p1 + p2
Traceback (most recent call last):

...
TypeError: Domains differ

See the documentation for the convenience classes for further details on the domain and window attributes.
Another major difference between the legacy polynomial module and the polynomial package is polynomial fitting. In the
old module, fitting was done via the polyfit function. In the polynomial package, the fit class method is preferred.
For example, consider a simple linear fit to the following data:

In [1]: rng = np.random.default_rng()

In [2]: x = np.arange(10)

In [3]: y = np.arange(10) + rng.standard_normal(10)

With the legacy polynomial module, a linear fit (i.e. polynomial of degree 1) could be applied to these data withpolyfit:

In [4]: np.polyfit(x, y, deg=1)
Out[4]: array([1.09956784, -1.06170122])

With the new polynomial API, the fit class method is preferred:

In [5]: p_fitted = np.polynomial.Polynomial.fit(x, y, deg=1)

In [6]: p_fitted
Out[6]: Polynomial([3.88635405, 4.94805526], domain=[0., 9.], window=[-1., 1.],␣
↪→symbol='x')

Note that the coefficients are given in the scaled domain defined by the linear mapping between the window and domain.
convert can be used to get the coefficients in the unscaled data domain.

In [7]: p_fitted.convert()
Out[7]: Polynomial([-1.06170122, 1.09956784], domain=[-1., 1.], window=[-1., 1.],␣
↪→symbol='x')

1.4. Routines and objects by topic 1521

routines.polynomials.classes

NumPy Reference, Release 2.2.0

Documentation for the polynomial package

In addition to standard power series polynomials, the polynomial package provides several additional kinds of polynomials
including Chebyshev, Hermite (two subtypes), Laguerre, and Legendre polynomials. Each of these has an associated
convenience class available from the numpy.polynomial namespace that provides a consistent interface for working
with polynomials regardless of their type.

Using the convenience classes
The convenience classes provided by the polynomial package are:

Name Provides
Polynomial Power series
Chebyshev Chebyshev series
Legendre Legendre series
Laguerre Laguerre series
Hermite Hermite series
HermiteE HermiteE series

The series in this context are finite sums of the corresponding polynomial basis functions multiplied by coefficients. For
instance, a power series looks like

p(x) = 1 + 2x+ 3x2

and has coefficients [1, 2, 3]. The Chebyshev series with the same coefficients looks like

p(x) = 1T0(x) + 2T1(x) + 3T2(x)

and more generally

p(x) =

n∑
i=0

ciTi(x)

where in this case the Tn are the Chebyshev functions of degree n, but could just as easily be the basis functions of any
of the other classes. The convention for all the classes is that the coefficient c[i] goes with the basis function of degree i.
All of the classes are immutable and have the same methods, and especially they implement the Python numeric operators
+, -, *, //, %, divmod, **, ==, and !=. The last two can be a bit problematic due to floating point roundoff errors. We
now give a quick demonstration of the various operations using NumPy version 1.7.0.

Basics

First we need a polynomial class and a polynomial instance to play with. The classes can be imported directly from the
polynomial package or from the module of the relevant type. Here we import from the package and use the conventional
Polynomial class because of its familiarity:

>>> from numpy.polynomial import Polynomial as P
>>> p = P([1,2,3])
>>> p
Polynomial([1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')

Note that there are three parts to the long version of the printout. The first is the coefficients, the second is the domain,
and the third is the window:

1522 1. Python API

NumPy Reference, Release 2.2.0

>>> p.coef
array([1., 2., 3.])
>>> p.domain
array([-1., 1.])
>>> p.window
array([-1., 1.])

Printing a polynomial yields the polynomial expression in a more familiar format:

>>> print(p)
1.0 + 2.0·x + 3.0·x²

Note that the string representation of polynomials uses Unicode characters by default (except on Windows) to express
powers and subscripts. An ASCII-based representation is also available (default on Windows). The polynomial string
format can be toggled at the package-level with the set_default_printstyle function:

>>> np.polynomial.set_default_printstyle('ascii')
>>> print(p)
1.0 + 2.0 x + 3.0 x**2

or controlled for individual polynomial instances with string formatting:

>>> print(f"{p:unicode}")
1.0 + 2.0·x + 3.0·x²

We will deal with the domain and window when we get to fitting, for the moment we ignore them and run through the
basic algebraic and arithmetic operations.
Addition and Subtraction:

>>> p + p
Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p - p
Polynomial([0.], domain=[-1., 1.], window=[-1., 1.], symbol='x')

Multiplication:

>>> p * p
Polynomial([1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.],␣
↪→symbol='x')

Powers:

>>> p**2
Polynomial([1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.], symbol='x
↪→')

Division:
Floor division, ‘//’, is the division operator for the polynomial classes, polynomials are treated like integers in this regard.
For Python versions < 3.x the ‘/’ operator maps to ‘//’, as it does for Python, for later versions the ‘/’ will only work for
division by scalars. At some point it will be deprecated:

>>> p // P([-1, 1])
Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')

Remainder:

1.4. Routines and objects by topic 1523

NumPy Reference, Release 2.2.0

>>> p % P([-1, 1])
Polynomial([6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')

Divmod:

>>> quo, rem = divmod(p, P([-1, 1]))
>>> quo
Polynomial([5., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> rem
Polynomial([6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')

Evaluation:

>>> x = np.arange(5)
>>> p(x)
array([1., 6., 17., 34., 57.])
>>> x = np.arange(6).reshape(3,2)
>>> p(x)
array([[1., 6.],

[17., 34.],
[57., 86.]])

Substitution:
Substitute a polynomial for x and expand the result. Here we substitute p in itself leading to a new polynomial of degree
4 after expansion. If the polynomials are regarded as functions this is composition of functions:

>>> p(p)
Polynomial([6., 16., 36., 36., 27.], domain=[-1., 1.], window=[-1., 1.], symbol='x
↪→')

Roots:

>>> p.roots()
array([-0.33333333-0.47140452j, -0.33333333+0.47140452j])

It isn’t always convenient to explicitly use Polynomial instances, so tuples, lists, arrays, and scalars are automatically cast
in the arithmetic operations:

>>> p + [1, 2, 3]
Polynomial([2., 4., 6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> [1, 2, 3] * p
Polynomial([1., 4., 10., 12., 9.], domain=[-1., 1.], window=[-1., 1.], symbol='x
↪→')
>>> p / 2
Polynomial([0.5, 1. , 1.5], domain=[-1., 1.], window=[-1., 1.], symbol='x')

Polynomials that differ in domain, window, or class can’t be mixed in arithmetic:

>>> from numpy.polynomial import Chebyshev as T
>>> p + P([1], domain=[0,1])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 213, in __add__

TypeError: Domains differ
>>> p + P([1], window=[0,1])
Traceback (most recent call last):

(continues on next page)

1524 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
File "<stdin>", line 1, in <module>
File "<string>", line 215, in __add__

TypeError: Windows differ
>>> p + T([1])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 211, in __add__

TypeError: Polynomial types differ

But different types can be used for substitution. In fact, this is how conversion of Polynomial classes among themselves
is done for type, domain, and window casting:

>>> p(T([0, 1]))
Chebyshev([2.5, 2. , 1.5], domain=[-1., 1.], window=[-1., 1.], symbol='x')

Which gives the polynomial p in Chebyshev form. This works because T1(x) = x and substituting x for x doesn’t change
the original polynomial. However, all the multiplications and divisions will be done using Chebyshev series, hence the
type of the result.
It is intended that all polynomial instances are immutable, therefore augmented operations (+=, -=, etc.) and any other
functionality that would violate the immutablity of a polynomial instance are intentionally unimplemented.

Calculus

Polynomial instances can be integrated and differentiated.:

>>> from numpy.polynomial import Polynomial as P
>>> p = P([2, 6])
>>> p.integ()
Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p.integ(2)
Polynomial([0., 0., 1., 1.], domain=[-1., 1.], window=[-1., 1.], symbol='x')

The first example integrates p once, the second example integrates it twice. By default, the lower bound of the integration
and the integration constant are 0, but both can be specified.:

>>> p.integ(lbnd=-1)
Polynomial([-1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p.integ(lbnd=-1, k=1)
Polynomial([0., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')

In the first case the lower bound of the integration is set to -1 and the integration constant is 0. In the second the constant
of integration is set to 1 as well. Differentiation is simpler since the only option is the number of times the polynomial is
differentiated:

>>> p = P([1, 2, 3])
>>> p.deriv(1)
Polynomial([2., 6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p.deriv(2)
Polynomial([6.], domain=[-1., 1.], window=[-1., 1.], symbol='x')

1.4. Routines and objects by topic 1525

NumPy Reference, Release 2.2.0

Other polynomial constructors

Constructing polynomials by specifying coefficients is just one way of obtaining a polynomial instance, they may also be
created by specifying their roots, by conversion from other polynomial types, and by least squares fits. Fitting is discussed
in its own section, the other methods are demonstrated below:

>>> from numpy.polynomial import Polynomial as P
>>> from numpy.polynomial import Chebyshev as T
>>> p = P.fromroots([1, 2, 3])
>>> p
Polynomial([-6., 11., -6., 1.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p.convert(kind=T)
Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.], symbol=
↪→'x')

The convert method can also convert domain and window:

>>> p.convert(kind=T, domain=[0, 1])
Chebyshev([-2.4375 , 2.96875, -0.5625 , 0.03125], domain=[0., 1.], window=[-1., 1.
↪→], symbol='x')
>>> p.convert(kind=P, domain=[0, 1])
Polynomial([-1.875, 2.875, -1.125, 0.125], domain=[0., 1.], window=[-1., 1.],␣
↪→symbol='x')

In numpy versions >= 1.7.0 the basis and cast class methods are also available. The cast method works like the convert
method while the basis method returns the basis polynomial of given degree:

>>> P.basis(3)
Polynomial([0., 0., 0., 1.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> T.cast(p)
Chebyshev([-9. , 11.75, -3. , 0.25], domain=[-1., 1.], window=[-1., 1.], symbol='x
↪→')

Conversions between types can be useful, but it is not recommended for routine use. The loss of numerical precision in
passing from a Chebyshev series of degree 50 to a Polynomial series of the same degree can make the results of numerical
evaluation essentially random.

Fitting

Fitting is the reason that the domain and window attributes are part of the convenience classes. To illustrate the problem,
the values of the Chebyshev polynomials up to degree 5 are plotted below.

>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-1, 1, 100)
>>> for i in range(6):
... ax = plt.plot(x, T.basis(i)(x), lw=2, label=f"T_{i}")
...
>>> plt.legend(loc="upper left")
>>> plt.show()

In the range -1 <= x <= 1 they are nice, equiripple functions lying between +/- 1. The same plots over the range -2 <= x
<= 2 look very different:

1526 1. Python API

NumPy Reference, Release 2.2.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0 T0
T1
T2
T3
T4
T5

>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> x = np.linspace(-2, 2, 100)
>>> for i in range(6):
... ax = plt.plot(x, T.basis(i)(x), lw=2, label=f"T_{i}")
...
>>> plt.legend(loc="lower right")
>>> plt.show()

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

300

200

100

0

100

200

300

T0
T1
T2
T3
T4
T5

As can be seen, the “good” parts have shrunk to insignificance. In using Chebyshev polynomials for fitting we want to use
the region where x is between -1 and 1 and that is what the window specifies. However, it is unlikely that the data to be fit
has all its data points in that interval, so we use domain to specify the interval where the data points lie. When the fit is
done, the domain is first mapped to the window by a linear transformation and the usual least squares fit is done using the
mapped data points. The window and domain of the fit are part of the returned series and are automatically used when
computing values, derivatives, and such. If they aren’t specified in the call the fitting routine will use the default window

1.4. Routines and objects by topic 1527

NumPy Reference, Release 2.2.0

and the smallest domain that holds all the data points. This is illustrated below for a fit to a noisy sine curve.

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from numpy.polynomial import Chebyshev as T
>>> np.random.seed(11)
>>> x = np.linspace(0, 2*np.pi, 20)
>>> y = np.sin(x) + np.random.normal(scale=.1, size=x.shape)
>>> p = T.fit(x, y, 5)
>>> plt.plot(x, y, 'o')
>>> xx, yy = p.linspace()
>>> plt.plot(xx, yy, lw=2)
>>> p.domain
array([0. , 6.28318531])
>>> p.window
array([-1., 1.])
>>> plt.show()

0 1 2 3 4 5 6

1.0

0.5

0.0

0.5

1.0

Documentation pertaining to specific functions defined for each kind of polynomial individually can be found in the
corresponding module documentation:

Power Series (numpy.polynomial.polynomial)
This module provides a number of objects (mostly functions) useful for dealing with polynomials, including a Polyno-
mial class that encapsulates the usual arithmetic operations. (General information on how this module represents and
works with polynomial objects is in the docstring for its “parent” sub-package, numpy.polynomial).

1528 1. Python API

NumPy Reference, Release 2.2.0

Classes

Polynomial(coef[, domain, window, symbol]) A power series class.

class numpy.polynomial.polynomial.Polynomial(coef, domain=None, window=None, symbol='x')
A power series class.
The Polynomial class provides the standard Python numerical methods ‘+’, ‘-’, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as
well as the attributes and methods listed below.

Parameters
coef

[array_like] Polynomial coefficients in order of increasing degree, i.e., (1, 2, 3) give 1 +
2*x + 3*x**2.

domain
[(2,) array_like, optional] Domain to use. The interval [domain[0], domain[1]] is
mapped to the interval [window[0], window[1]] by shifting and scaling. The default
value is [-1., 1.].

window
[(2,) array_like, optional] Window, see domain for its use. The default value is [-1., 1.].

symbol
[str, optional] Symbol used to represent the independent variable in string representations of
the polynomial expression, e.g. for printing. The symbol must be a valid Python identifier.
Default value is ‘x’.
New in version 1.24.

Attributes
basis_name
symbol

1.4. Routines and objects by topic 1529

NumPy Reference, Release 2.2.0

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window, symbol]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, ...]) Least squares fit to data.
fromroots(roots[, domain, window, symbol]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window, symbol]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

method
polynomial.polynomial.Polynomial.__call__(arg)

Call self as a function.
method
classmethod polynomial.polynomial.Polynomial.basis(deg, domain=None,

window=None, symbol='x')

Series basis polynomial of degree deg.
Returns the series representing the basis polynomial of degree deg.

Parameters
deg
[int] Degree of the basis polynomial for the series. Must be >= 0.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns

1530 1. Python API

NumPy Reference, Release 2.2.0

new_series
[series] A series with the coefficient of the deg term set to one and all others zero.

method
classmethod polynomial.polynomial.Polynomial.cast(series, domain=None,

window=None)

Convert series to series of this class.
The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

Parameters
series
[series] The series instance to be converted.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

Returns
new_series
[series] A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

method
polynomial.polynomial.Polynomial.convert(domain=None, kind=None, window=None)

Convert series to a different kind and/or domain and/or window.
Parameters

domain
[array_like, optional] The domain of the converted series. If the value is None, the default
domain of kind is used.

kind
[class, optional] The polynomial series type class to which the current instance should be
converted. If kind is None, then the class of the current instance is used.

window
[array_like, optional] The window of the converted series. If the value is None, the default
window of kind is used.

Returns
new_series
[series] The returned class can be of different type than the current instance and/or have a
different domain and/or different window.

1.4. Routines and objects by topic 1531

NumPy Reference, Release 2.2.0

Notes

Conversion between domains and class types can result in numerically ill defined series.
method
polynomial.polynomial.Polynomial.copy()

Return a copy.
Returns

new_series
[series] Copy of self.

method
polynomial.polynomial.Polynomial.cutdeg(deg)

Truncate series to the given degree.
Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

Parameters
deg
[non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns
new_series
[series] New instance of series with reduced degree.

method
polynomial.polynomial.Polynomial.degree()

The degree of the series.
Returns

degree
[int] Degree of the series, one less than the number of coefficients.

Examples

Create a polynomial object for 1 + 7*x + 4*x**2:

>>> poly = np.polynomial.Polynomial([1, 7, 4])
>>> print(poly)
1.0 + 7.0·x + 4.0·x²
>>> poly.degree()
2

Note that this method does not check for non-zero coefficients. You must trim the polynomial to remove any
trailing zeroes:

>>> poly = np.polynomial.Polynomial([1, 7, 0])
>>> print(poly)
1.0 + 7.0·x + 0.0·x²

(continues on next page)

1532 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> poly.degree()
2
>>> poly.trim().degree()
1

method
polynomial.polynomial.Polynomial.deriv(m=1)

Differentiate.
Return a series instance of that is the derivative of the current series.

Parameters
m
[non-negative int] Find the derivative of order m.

Returns
new_series
[series] A new series representing the derivative. The domain is the same as the domain of
the differentiated series.

method
classmethod polynomial.polynomial.Polynomial.fit(x, y, deg, domain=None, rcond=None,

full=False, w=None, window=None,
symbol='x')

Least squares fit to data.
Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,)] y-coordinates of the M sample points (x[i], y[i]).

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

domain
[{None, [beg, end], []}, optional] Domain to use for the returned series. If None, then a
minimal domain that covers the points x is chosen. If [] the class domain is used. The
default value was the class domain in NumPy 1.4 and None in later versions. The [] option
was added in numpy 1.5.0.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps
is the relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

1.4. Routines and objects by topic 1533

NumPy Reference, Release 2.2.0

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the
unsquared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that
the errors of the products w[i]*y[i] all have the same variance. When using inverse-
variance weighting, use w[i] = 1/sigma(y[i]). The default value is None.

window
[{[beg, end]}, optional]Window to use for the returned series. The default value is the default
class domain

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] A series that represents the least squares fit to the data and has the domain andwindow
specified in the call. If the coefficients for the unscaled and unshifted basis polynomials are
of interest, do new_series.convert().coef.

[resid, rank, sv, rcond]
[list] These values are only returned if full == True

• resid – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• sv – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see linalg.lstsq.

method
classmethod polynomial.polynomial.Polynomial.fromroots(roots, domain=[],

window=None, symbol='x')

Return series instance that has the specified roots.
Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots
[array_like] List of roots.

domain
[{[], None, array_like}, optional] Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the domain is the class domain. The default
is [].

window
[{None, array_like}, optional] Window for the returned series. If None the class window is
used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series with the specified roots.

1534 1. Python API

NumPy Reference, Release 2.2.0

method
polynomial.polynomial.Polynomial.has_samecoef(other)

Check if coefficients match.
Parameters

other
[class instance] The other class must have the coef attribute.

Returns
bool
[boolean] True if the coefficients are the same, False otherwise.

method
polynomial.polynomial.Polynomial.has_samedomain(other)

Check if domains match.
Parameters

other
[class instance] The other class must have the domain attribute.

Returns
bool
[boolean] True if the domains are the same, False otherwise.

method
polynomial.polynomial.Polynomial.has_sametype(other)

Check if types match.
Parameters

other
[object] Class instance.

Returns
bool
[boolean] True if other is same class as self

method
polynomial.polynomial.Polynomial.has_samewindow(other)

Check if windows match.
Parameters

other
[class instance] The other class must have the window attribute.

Returns
bool
[boolean] True if the windows are the same, False otherwise.

method

1.4. Routines and objects by topic 1535

NumPy Reference, Release 2.2.0

classmethod polynomial.polynomial.Polynomial.identity(domain=None,
window=None, symbol='x')

Identity function.
If p is the returned series, then p(x) == x for all values of x.

Parameters
domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series of representing the identity.

method
polynomial.polynomial.Polynomial.integ(m=1, k=[], lbnd=None)

Integrate.
Return a series instance that is the definite integral of the current series.

Parameters
m
[non-negative int] The number of integrations to perform.

k
[array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length and
any missing values are set to zero.

lbnd
[Scalar] The lower bound of the definite integral.

Returns
new_series
[series] A new series representing the integral. The domain is the same as the domain of the
integrated series.

method
polynomial.polynomial.Polynomial.linspace(n=100, domain=None)

Return x, y values at equally spaced points in domain.
Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial at
the points x. By default the domain is the same as that of the series instance. This method is intended mostly
as a plotting aid.

Parameters

1536 1. Python API

NumPy Reference, Release 2.2.0

n
[int, optional] Number of point pairs to return. The default value is 100.

domain
[{None, array_like}, optional] If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end]. The default is None which case
the class domain is used.

Returns
x, y
[ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated
at element of x.

method
polynomial.polynomial.Polynomial.mapparms()

Return the mapping parameters.
The returned values define a linear map off + scl*x that is applied to the input arguments before the
series is evaluated. The map depends on the domain and window; if the current domain is equal to the
window the resulting map is the identity. If the coefficients of the series instance are to be used by themselves
outside this class, then the linear function must be substituted for the x in the standard representation of the
base polynomials.

Returns
off, scl
[float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

method
polynomial.polynomial.Polynomial.roots()

Return the roots of the series polynomial.
Compute the roots for the series. Note that the accuracy of the roots decreases the further outside thedomain
they lie.

Returns
roots
[ndarray] Array containing the roots of the series.

method
polynomial.polynomial.Polynomial.trim(tol=0)

Remove trailing coefficients
Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the beginning
of the series is reached. If all the coefficients would be removed the series is set to [0]. A new series instance
is returned with the new coefficients. The current instance remains unchanged.

Parameters

1.4. Routines and objects by topic 1537

NumPy Reference, Release 2.2.0

tol
[non-negative number.] All trailing coefficients less than tol will be removed.

Returns
new_series
[series] New instance of series with trimmed coefficients.

method
polynomial.polynomial.Polynomial.truncate(size)

Truncate series to length size.
Reduce the series to length size by discarding the high degree terms. The value of sizemust be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very small.

Parameters
size
[positive int] The series is reduced to length size by discarding the high degree terms. The
value of size must be a positive integer.

Returns
new_series
[series] New instance of series with truncated coefficients.

Constants

polydomain An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polyzero An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polyone An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polyx An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polynomial.polynomial.polydomain = array([-1., 1.])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.

1538 1. Python API

NumPy Reference, Release 2.2.0

offset
[int, optional] Offset of array data in buffer.

strides
[tuple of ints, optional] Strides of data in memory.

order
[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.

1.4. Routines and objects by topic 1539

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

data
[buffer] The array’s elements, in memory.

dtype
[dtype object] Describes the format of the elements in the array.

flags
[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.polynomial.polyzero = array([0])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters

1540 1. Python API

NumPy Reference, Release 2.2.0

(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

1.4. Routines and objects by topic 1541

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

1542 1. Python API

NumPy Reference, Release 2.2.0

polynomial.polynomial.polyone = array([1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

1.4. Routines and objects by topic 1543

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For

1544 1. Python API

NumPy Reference, Release 2.2.0

example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.polynomial.polyx = array([0, 1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

1.4. Routines and objects by topic 1545

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

1546 1. Python API

NumPy Reference, Release 2.2.0

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

Arithmetic

polyadd(c1, c2) Add one polynomial to another.
polysub(c1, c2) Subtract one polynomial from another.
polymulx(c) Multiply a polynomial by x.
polymul(c1, c2) Multiply one polynomial by another.
polydiv(c1, c2) Divide one polynomial by another.
polypow(c, pow[, maxpower]) Raise a polynomial to a power.
polyval(x, c[, tensor]) Evaluate a polynomial at points x.
polyval2d(x, y, c) Evaluate a 2-D polynomial at points (x, y).
polyval3d(x, y, z, c) Evaluate a 3-D polynomial at points (x, y, z).
polygrid2d(x, y, c) Evaluate a 2-D polynomial on the Cartesian product of x

and y.
polygrid3d(x, y, z, c) Evaluate a 3-D polynomial on the Cartesian product of x,

y and z.

polynomial.polynomial.polyadd(c1, c2)
Add one polynomial to another.
Returns the sum of two polynomials c1 + c2. The arguments are sequences of coefficients from lowest order term
to highest, i.e., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters
c1, c2

[array_like] 1-D arrays of polynomial coefficients ordered from low to high.
Returns

out
[ndarray] The coefficient array representing their sum.

See also:

polysub, polymulx, polymul, polydiv, polypow

1.4. Routines and objects by topic 1547

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1, 2, 3)
>>> c2 = (3, 2, 1)
>>> sum = P.polyadd(c1,c2); sum
array([4., 4., 4.])
>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
28.0

polynomial.polynomial.polysub(c1, c2)
Subtract one polynomial from another.
Returns the difference of two polynomials c1 - c2. The arguments are sequences of coefficients from lowest order
term to highest, i.e., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters
c1, c2

[array_like] 1-D arrays of polynomial coefficients ordered from low to high.
Returns

out
[ndarray] Of coefficients representing their difference.

See also:

polyadd, polymulx, polymul, polydiv, polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1, 2, 3)
>>> c2 = (3, 2, 1)
>>> P.polysub(c1,c2)
array([-2., 0., 2.])
>>> P.polysub(c2, c1) # -P.polysub(c1,c2)
array([2., 0., -2.])

polynomial.polynomial.polymulx(c)
Multiply a polynomial by x.
Multiply the polynomial c by x, where x is the independent variable.

Parameters
c

[array_like] 1-D array of polynomial coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the result of the multiplication.

See also:

polyadd, polysub, polymul, polydiv, polypow

1548 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1, 2, 3)
>>> P.polymulx(c)
array([0., 1., 2., 3.])

polynomial.polynomial.polymul(c1, c2)
Multiply one polynomial by another.
Returns the product of two polynomials c1 * c2. The arguments are sequences of coefficients, from lowest order
term to highest, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2.

Parameters
c1, c2

[array_like] 1-D arrays of coefficients representing a polynomial, relative to the “standard”
basis, and ordered from lowest order term to highest.

Returns
out

[ndarray] Of the coefficients of their product.
See also:

polyadd, polysub, polymulx, polydiv, polypow

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1, 2, 3)
>>> c2 = (3, 2, 1)
>>> P.polymul(c1, c2)
array([3., 8., 14., 8., 3.])

polynomial.polynomial.polydiv(c1, c2)
Divide one polynomial by another.
Returns the quotient-with-remainder of two polynomials c1 / c2. The arguments are sequences of coefficients, from
lowest order term to highest, e.g., [1,2,3] represents 1 + 2*x + 3*x**2.

Parameters
c1, c2

[array_like] 1-D arrays of polynomial coefficients ordered from low to high.
Returns

[quo, rem]
[ndarrays] Of coefficient series representing the quotient and remainder.

See also:

polyadd, polysub, polymulx, polymul, polypow

1.4. Routines and objects by topic 1549

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import polynomial as P
>>> c1 = (1, 2, 3)
>>> c2 = (3, 2, 1)
>>> P.polydiv(c1, c2)
(array([3.]), array([-8., -4.]))
>>> P.polydiv(c2, c1)
(array([0.33333333]), array([2.66666667, 1.33333333])) # may vary

polynomial.polynomial.polypow(c, pow, maxpower=None)
Raise a polynomial to a power.
Returns the polynomial c raised to the power pow. The argument c is a sequence of coefficients ordered from low
to high. i.e., [1,2,3] is the series 1 + 2*x + 3*x**2.

Parameters
c

[array_like] 1-D array of array of series coefficients ordered from low to high degree.
pow

[integer] Power to which the series will be raised
maxpower

[integer, optional] Maximum power allowed. This is mainly to limit growth of the series to
unmanageable size. Default is 16

Returns
coef

[ndarray] Power series of power.
See also:

polyadd, polysub, polymulx, polymul, polydiv

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polypow([1, 2, 3], 2)
array([1., 4., 10., 12., 9.])

polynomial.polynomial.polyval(x, c, tensor=True)
Evaluate a polynomial at points x.
If c is of length n + 1, this function returns the value

p(x) = c0 + c1 ∗ x+ ...+ cn ∗ xn

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of c.
If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the shape
will be c.shape[1:]. Note that scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.

1550 1. Python API

NumPy Reference, Release 2.2.0

Parameters
x

[array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise it
is left unchanged and treated as a scalar. In either case, x or its elements must support addition
and multiplication with with themselves and with the elements of c.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polyno-
mials. In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor
[boolean, optional] If True, the shape of the coefficient array is extended with ones on the right,
one for each dimension of x. Scalars have dimension 0 for this action. The result is that every
column of coefficients in c is evaluated for every element of x. If False, x is broadcast over
the columns of c for the evaluation. This keyword is useful when c is multidimensional. The
default value is True.

Returns
values

[ndarray, compatible object] The shape of the returned array is described above.
See also:

polyval2d, polygrid2d, polyval3d, polygrid3d

Notes

The evaluation uses Horner’s method.

Examples

>>> import numpy as np
>>> from numpy.polynomial.polynomial import polyval
>>> polyval(1, [1,2,3])
6.0
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],

[2, 3]])
>>> polyval(a, [1, 2, 3])
array([[1., 6.],

[17., 34.]])
>>> coef = np.arange(4).reshape(2, 2) # multidimensional coefficients
>>> coef
array([[0, 1],

[2, 3]])
>>> polyval([1, 2], coef, tensor=True)
array([[2., 4.],

[4., 7.]])
>>> polyval([1, 2], coef, tensor=False)
array([2., 7.])

1.4. Routines and objects by topic 1551

NumPy Reference, Release 2.2.0

polynomial.polynomial.polyval2d(x, y, c)
Evaluate a 2-D polynomial at points (x, y).
This function returns the value

p(x, y) =
∑
i,j

ci,j ∗ xi ∗ yj

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the result
will be c.shape[2:] + x.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points formed
with pairs of corresponding values from x and y.

See also:

polyval, polygrid2d, polyval3d, polygrid3d

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = ((1, 2, 3), (4, 5, 6))
>>> P.polyval2d(1, 1, c)
21.0

polynomial.polynomial.polyval3d(x, y, z, c)
Evaluate a 3-D polynomial at points (x, y, z).
This function returns the values:

p(x, y, z) =
∑
i,j,k

ci,j,k ∗ xi ∗ yj ∗ zk

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result
will be c.shape[3:] + x.shape.

Parameters

1552 1. Python API

NumPy Reference, Release 2.2.0

x, y, z
[array_like, compatible object] The three dimensional series is evaluated at the points (x, y,
z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as
a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the multidimensional polynomial on points formed
with triples of corresponding values from x, y, and z.

See also:

polyval, polyval2d, polygrid2d, polygrid3d

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = ((1, 2, 3), (4, 5, 6), (7, 8, 9))
>>> P.polyval3d(1, 1, 1, c)
45.0

polynomial.polynomial.polygrid2d(x, y, c)
Evaluate a 2-D polynomial on the Cartesian product of x and y.
This function returns the values:

p(a, b) =
∑
i,j

ci,j ∗ ai ∗ bj

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.
The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars.
In either case, either x and y or their elements must support multiplication and addition both with themselves and
with the elements of c.
If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the result
will be c.shape[2:] + x.shape + y.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

1.4. Routines and objects by topic 1553

NumPy Reference, Release 2.2.0

values
[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

polyval, polyval2d, polyval3d, polygrid3d

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = ((1, 2, 3), (4, 5, 6))
>>> P.polygrid2d([0, 1], [0, 1], c)
array([[1., 6.],

[5., 21.]])

polynomial.polynomial.polygrid3d(x, y, z, c)
Evaluate a 3-D polynomial on the Cartesian product of x, y and z.
This function returns the values:

p(a, b, c) =
∑
i,j,k

ci,j,k ∗ ai ∗ bj ∗ ck

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.
The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.
If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z

[array_like, compatible objects] The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x, y, or z is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

polyval, polyval2d, polygrid2d, polyval3d

1554 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = ((1, 2, 3), (4, 5, 6), (7, 8, 9))
>>> P.polygrid3d([0, 1], [0, 1], [0, 1], c)
array([[1., 13.],

[6., 51.]])

Calculus

polyder(c[, m, scl, axis]) Differentiate a polynomial.
polyint(c[, m, k, lbnd, scl, axis]) Integrate a polynomial.

polynomial.polynomial.polyder(c, m=1, scl=1, axis=0)
Differentiate a polynomial.
Returns the polynomial coefficients c differentiated m times along axis. At each iteration the result is multiplied by
scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients from low
to high degree along each axis, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2 while [[1,2],[1,2]]
represents 1 + 1*x + 2*y + 2*x*y if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] Array of polynomial coefficients. If c is multidimensional the different axis cor-
respond to different variables with the degree in each axis given by the corresponding index.

m
[int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl
[scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication by
scl**m. This is for use in a linear change of variable. (Default: 1)

axis
[int, optional] Axis over which the derivative is taken. (Default: 0).

Returns
der

[ndarray] Polynomial coefficients of the derivative.
See also:

polyint

1.4. Routines and objects by topic 1555

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1, 2, 3, 4)
>>> P.polyder(c) # (d/dx)(c)
array([2., 6., 12.])
>>> P.polyder(c, 3) # (d**3/dx**3)(c)
array([24.])
>>> P.polyder(c, scl=-1) # (d/d(-x))(c)
array([-2., -6., -12.])
>>> P.polyder(c, 2, -1) # (d**2/d(-x)**2)(c)
array([6., 24.])

polynomial.polynomial.polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a polynomial.
Returns the polynomial coefficients c integrated m times from lbnd along axis. At each iteration the resulting
series ismultiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change of
variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the reciprocal of what
one might expect; for more information, see the Notes section below.) The argument c is an array of coefficients,
from low to high degree along each axis, e.g., [1,2,3] represents the polynomial 1 + 2*x + 3*x**2 while
[[1,2],[1,2]] represents 1 + 1*x + 2*y + 2*x*y if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] 1-D array of polynomial coefficients, ordered from low to high.
m

[int, optional] Order of integration, must be positive. (Default: 1)
k

[{[], list, scalar}, optional] Integration constant(s). The value of the first integral at zero is the
first value in the list, the value of the second integral at zero is the second value, etc. If k ==
[] (the default), all constants are set to zero. If m == 1, a single scalar can be given instead
of a list.

lbnd
[scalar, optional] The lower bound of the integral. (Default: 0)

scl
[scalar, optional] Following each integration the result ismultiplied by scl before the integration
constant is added. (Default: 1)

axis
[int, optional] Axis over which the integral is taken. (Default: 0).

Returns
S

[ndarray] Coefficient array of the integral.
Raises

ValueError
If m < 1, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) != 0.

See also:

polyder

1556 1. Python API

NumPy Reference, Release 2.2.0

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable u = ax+ b in an integral relative to x. Then dx = du/a, so one will need to set scl equal
to 1/a - perhaps not what one would have first thought.

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1, 2, 3)
>>> P.polyint(c) # should return array([0, 1, 1, 1])
array([0., 1., 1., 1.])
>>> P.polyint(c, 3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
array([0. , 0. , 0. , 0.16666667, 0.08333333, # may␣
↪→vary

0.05])
>>> P.polyint(c, k=3) # should return array([3, 1, 1, 1])
array([3., 1., 1., 1.])
>>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
array([6., 1., 1., 1.])
>>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
array([0., -2., -2., -2.])

Misc Functions

polyfromroots(roots) Generate a monic polynomial with given roots.
polyroots(c) Compute the roots of a polynomial.
polyvalfromroots(x, r[, tensor]) Evaluate a polynomial specified by its roots at points x.
polyvander(x, deg) Vandermonde matrix of given degree.
polyvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
polyvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.
polycompanion(c) Return the companion matrix of c.
polyfit(x, y, deg[, rcond, full, w]) Least-squares fit of a polynomial to data.
polytrim(c[, tol]) Remove "small" "trailing" coefficients from a polynomial.
polyline(off, scl) Returns an array representing a linear polynomial.

polynomial.polynomial.polyfromroots(roots)
Generate a monic polynomial with given roots.
Return the coefficients of the polynomial

p(x) = (x− r0) ∗ (x− r1) ∗ ... ∗ (x− rn),

where the rn are the roots specified in roots. If a zero has multiplicity n, then it must appear in roots n times.
For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks something like
[2, 2, 2, 3, 3]. The roots can appear in any order.
If the returned coefficients are c, then

p(x) = c0 + c1 ∗ x+ ...+ xn

The coefficient of the last term is 1 for monic polynomials in this form.

1.4. Routines and objects by topic 1557

NumPy Reference, Release 2.2.0

Parameters
roots

[array_like] Sequence containing the roots.
Returns

out
[ndarray] 1-D array of the polynomial’s coefficients If all the roots are real, then out is also
real, otherwise it is complex. (see Examples below).

See also:

numpy.polynomial.chebyshev.chebfromroots
numpy.polynomial.legendre.legfromroots
numpy.polynomial.laguerre.lagfromroots
numpy.polynomial.hermite.hermfromroots
numpy.polynomial.hermite_e.hermefromroots

Notes

The coefficients are determined by multiplying together linear factors of the form (x - r_i), i.e.

p(x) = (x− r0)(x− r1)...(x− rn)

where n == len(roots) - 1; note that this implies that 1 is always returned for an.

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
array([0., -1., 0., 1.])
>>> j = complex(0,1)
>>> P.polyfromroots((-j,j)) # complex returned, though values are real
array([1.+0.j, 0.+0.j, 1.+0.j])

polynomial.polynomial.polyroots(c)
Compute the roots of a polynomial.
Return the roots (a.k.a. “zeros”) of the polynomial

p(x) =
∑
i

c[i] ∗ xi.

Parameters
c

[1-D array_like] 1-D array of polynomial coefficients.
Returns

out
[ndarray] Array of the roots of the polynomial. If all the roots are real, then out is also real,
otherwise it is complex.

See also:

1558 1. Python API

NumPy Reference, Release 2.2.0

numpy.polynomial.chebyshev.chebroots
numpy.polynomial.legendre.legroots
numpy.polynomial.laguerre.lagroots
numpy.polynomial.hermite.hermroots
numpy.polynomial.hermite_e.hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the
complex plane may have large errors due to the numerical instability of the power series for such values. Roots
with multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s
method.

Examples

>>> import numpy.polynomial.polynomial as poly
>>> poly.polyroots(poly.polyfromroots((-1,0,1)))
array([-1., 0., 1.])
>>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
dtype('float64')
>>> j = complex(0,1)
>>> poly.polyroots(poly.polyfromroots((-j,0,j)))
array([0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) # may␣
↪→vary

polynomial.polynomial.polyvalfromroots(x, r, tensor=True)
Evaluate a polynomial specified by its roots at points x.
If r is of length N, this function returns the value

p(x) =

N∏
n=1

(x− rn)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of r.
If r is a 1-D array, then p(x) will have the same shape as x. If r is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is True the shape will be r.shape[1:] + x.shape; that is, each polynomial is
evaluated at every value of x. If tensor is False, the shape will be r.shape[1:]; that is, each polynomial is evaluated
only for the corresponding broadcast value of x. Note that scalars have shape (,).

Parameters
x

[array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise it
is left unchanged and treated as a scalar. In either case, x or its elements must support addition
and multiplication with with themselves and with the elements of r.

r
[array_like] Array of roots. If r is multidimensional the first index is the root index, while the
remaining indices enumerate multiple polynomials. For instance, in the two dimensional case
the roots of each polynomial may be thought of as stored in the columns of r.

1.4. Routines and objects by topic 1559

NumPy Reference, Release 2.2.0

tensor
[boolean, optional] If True, the shape of the roots array is extended with ones on the right,
one for each dimension of x. Scalars have dimension 0 for this action. The result is that every
column of coefficients in r is evaluated for every element of x. If False, x is broadcast over
the columns of r for the evaluation. This keyword is useful when r is multidimensional. The
default value is True.

Returns
values

[ndarray, compatible object] The shape of the returned array is described above.
See also:

polyroots, polyfromroots, polyval

Examples

>>> from numpy.polynomial.polynomial import polyvalfromroots
>>> polyvalfromroots(1, [1, 2, 3])
0.0
>>> a = np.arange(4).reshape(2, 2)
>>> a
array([[0, 1],

[2, 3]])
>>> polyvalfromroots(a, [-1, 0, 1])
array([[-0., 0.],

[6., 24.]])
>>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
>>> r # each column of r defines one polynomial
array([[-2, -1],

[0, 1]])
>>> b = [-2, 1]
>>> polyvalfromroots(b, r, tensor=True)
array([[-0., 3.],

[3., 0.]])
>>> polyvalfromroots(b, r, tensor=False)
array([-0., 0.])

polynomial.polynomial.polyvander(x, deg)
Vandermonde matrix of given degree.
Returns the Vandermonde matrix of degree deg and sample points x. The Vandermonde matrix is defined by

V [..., i] = xi,

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the power of x.
If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = polyvander(x, n), then
np.dot(V, c) and polyval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of polynomials of the same degree and sample points.

Parameters
x

[array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

1560 1. Python API

NumPy Reference, Release 2.2.0

deg
[int] Degree of the resulting matrix.

Returns
vander

[ndarray.] The Vandermondematrix. The shape of the returnedmatrix is x.shape + (deg
+ 1,), where the last index is the power of x. The dtype will be the same as the converted x.

See also:

polyvander2d, polyvander3d

Examples

The Vandermonde matrix of degree deg = 5 and sample points x = [-1, 2, 3] contains the element-wise
powers of x from 0 to 5 as its columns.

>>> from numpy.polynomial import polynomial as P
>>> x, deg = [-1, 2, 3], 5
>>> P.polyvander(x=x, deg=deg)
array([[1., -1., 1., -1., 1., -1.],

[1., 2., 4., 8., 16., 32.],
[1., 3., 9., 27., 81., 243.]])

polynomial.polynomial.polyvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

V [..., (deg[1] + 1) ∗ i+ j] = xi ∗ yj ,

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y)
and the last index encodes the powers of x and y.
If V = polyvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

c00, c01, c02..., c10, c11, c12...

and np.dot(V, c.flat) and polyval2d(x, y, c) will be the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large number of 2-D polynomials of the same degrees
and sample points.

Parameters
x, y

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg([1] + 1). The dtype will be the same as the converted x and y.

1.4. Routines and objects by topic 1561

NumPy Reference, Release 2.2.0

See also:

polyvander, polyvander3d, polyval2d, polyval3d

Examples

>>> import numpy as np

The 2-D pseudo-Vandermonde matrix of degree [1, 2] and sample points x = [-1, 2] and y = [1, 3]
is as follows:

>>> from numpy.polynomial import polynomial as P
>>> x = np.array([-1, 2])
>>> y = np.array([1, 3])
>>> m, n = 1, 2
>>> deg = np.array([m, n])
>>> V = P.polyvander2d(x=x, y=y, deg=deg)
>>> V
array([[1., 1., 1., -1., -1., -1.],

[1., 3., 9., 2., 6., 18.]])

We can verify the columns for any 0 <= i <= m and 0 <= j <= n:

>>> i, j = 0, 1
>>> V[:, (deg[1]+1)*i + j] == x**i * y**j
array([True, True])

The (1D) Vandermonde matrix of sample points x and degree m is a special case of the (2D) pseudo-Vandermonde
matrix with y points all zero and degree [m, 0].

>>> P.polyvander2d(x=x, y=0*x, deg=(m, 0)) == P.polyvander(x=x, deg=m)
array([[True, True],

[True, True]])

polynomial.polynomial.polyvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

V [..., (m+ 1)(n+ 1)i+ (n+ 1)j + k] = xi ∗ yj ∗ zk,

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x,
y, z) and the last index encodes the powers of x, y, and z.
If V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

c000, c001, c002, ..., c010, c011, c012, ...

andnp.dot(V, c.flat) andpolyval3d(x, y, z, c)will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 3-D polynomials of the same
degrees and sample points.

Parameters

1562 1. Python API

NumPy Reference, Release 2.2.0

x, y, z
[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg([1] + 1) ∗ (deg[2] + 1). The dtype will be the same as the converted x,
y, and z.

See also:

polyvander, polyvander3d, polyval2d, polyval3d

Examples

>>> import numpy as np
>>> from numpy.polynomial import polynomial as P
>>> x = np.asarray([-1, 2, 1])
>>> y = np.asarray([1, -2, -3])
>>> z = np.asarray([2, 2, 5])
>>> l, m, n = [2, 2, 1]
>>> deg = [l, m, n]
>>> V = P.polyvander3d(x=x, y=y, z=z, deg=deg)
>>> V
array([[1., 2., 1., 2., 1., 2., -1., -2., -1.,

-2., -1., -2., 1., 2., 1., 2., 1., 2.],
[1., 2., -2., -4., 4., 8., 2., 4., -4.,
-8., 8., 16., 4., 8., -8., -16., 16., 32.],

[1., 5., -3., -15., 9., 45., 1., 5., -3.,
-15., 9., 45., 1., 5., -3., -15., 9., 45.]])

We can verify the columns for any 0 <= i <= l, 0 <= j <= m, and 0 <= k <= n

>>> i, j, k = 2, 1, 0
>>> V[:, (m+1)*(n+1)*i + (n+1)*j + k] == x**i * y**j * z**k
array([True, True, True])

polynomial.polynomial.polycompanion(c)
Return the companion matrix of c.
The companion matrix for power series cannot be made symmetric by scaling the basis, so this function differs
from those for the orthogonal polynomials.

Parameters
c

[array_like] 1-D array of polynomial coefficients ordered from low to high degree.
Returns

mat
[ndarray] Companion matrix of dimensions (deg, deg).

1.4. Routines and objects by topic 1563

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import polynomial as P
>>> c = (1, 2, 3)
>>> P.polycompanion(c)
array([[0. , -0.33333333],

[1. , -0.66666667]])

polynomial.polynomial.polyfit(x, y, deg, rcond=None, full=False, w=None)
Least-squares fit of a polynomial to data.
Return the coefficients of a polynomial of degree deg that is the least squares fit to the data values y given at points
x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each column of
y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted polynomial(s)
are in the form

p(x) = c0 + c1 ∗ x+ ...+ cn ∗ xn,

where n is deg.
Parameters

x
[array_like, shape (M,)] x-coordinates of the M sample (data) points (x[i], y[i]).

y
[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several sets of sample
points sharing the same x-coordinates can be (independently) fit with one call to polyfit by
passing in for y a 2-D array that contains one data set per column.

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than rcond, rel-
ative to the largest singular value, will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the platform’s float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining the nature of the return value. When False (the default)
just the coefficients are returned; when True, diagnostic information from the singular value
decomposition (used to solve the fit’s matrix equation) is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the un-
squared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. When using inverse-variance
weighting, use w[i] = 1/sigma(y[i]). The default value is None.

Returns
coef

[ndarray, shape (deg + 1,) or (deg + 1, K)] Polynomial coefficients ordered from low to high.
If y was 2-D, the coefficients in column k of coef represent the polynomial fit to the data in y’s
k-th column.

[residuals, rank, singular_values, rcond]
[list] These values are only returned if full == True

1564 1. Python API

NumPy Reference, Release 2.2.0

• residuals – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• singular_values – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see numpy.linalg.lstsq.

Raises
RankWarning

Raised if the matrix in the least-squares fit is rank deficient. The warning is only raised if
full == False. The warnings can be turned off by:

>>> import warnings
>>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See also:

numpy.polynomial.chebyshev.chebfit
numpy.polynomial.legendre.legfit
numpy.polynomial.laguerre.lagfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.hermite_e.hermefit
polyval

Evaluates a polynomial.
polyvander

Vandermonde matrix for powers.
numpy.linalg.lstsq

Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline

Computes spline fits.

Notes

The solution is the coefficients of the polynomial p that minimizes the sum of the weighted squared errors

E =
∑
j

w2
j ∗ |yj − p(xj)|2,

where thewj are the weights. This problem is solved by setting up the (typically) over-determined matrix equation:

V (x) ∗ c = w ∗ y,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the weights,
and y are the observed values. This equation is then solved using the singular value decomposition of V.
If some of the singular values of V are so small that they are neglected (and full == False), a RankWarning
will be raised. This means that the coefficient values may be poorly determined. Fitting to a lower order polynomial
will usually get rid of the warning (but may not be what you want, of course; if you have independent reason(s) for
choosing the degree which isn’t working, you may have to: a) reconsider those reasons, and/or b) reconsider the
quality of your data). The rcond parameter can also be set to a value smaller than its default, but the resulting fit
may be spurious and have large contributions from roundoff error.

1.4. Routines and objects by topic 1565

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 2.2.0

Polynomial fits using double precision tend to “fail” at about (polynomial) degree 20. Fits using Chebyshev or
Legendre series are generally better conditioned, but much can still depend on the distribution of the sample points
and the smoothness of the data. If the quality of the fit is inadequate, splines may be a good alternative.

Examples

>>> import numpy as np
>>> from numpy.polynomial import polynomial as P
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
>>> rng = np.random.default_rng()
>>> err = rng.normal(size=len(x))
>>> y = x**3 - x + err # x^3 - x + Gaussian noise
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[1] approx. -1, c[2] should be approx. 0, c[3] approx. 1
array([0.23111996, -1.02785049, -0.2241444 , 1.08405657]) # may vary
>>> stats # note the large SSR, explaining the rather poor results
[array([48.312088]), # may vary
4,
array([1.38446749, 1.32119158, 0.50443316, 0.28853036]),
1.1324274851176597e-14]

Same thing without the added noise

>>> y = x**3 - x
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[1] ~= -1, c[2] should be "very close to 0", c[3] ~= 1
array([-6.73496154e-17, -1.00000000e+00, 0.00000000e+00, 1.00000000e+00])
>>> stats # note the minuscule SSR
[array([8.79579319e-31]),
np.int32(4),
array([1.38446749, 1.32119158, 0.50443316, 0.28853036]),
1.1324274851176597e-14]

polynomial.polynomial.polytrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.
“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4) both
the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c

[array_like] 1-d array of coefficients, ordered from lowest order to highest.
tol

[number, optional] Trailing (i.e., highest order) elements with absolute value less than or equal
to tol (default value is zero) are removed.

Returns
trimmed

[ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

1566 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.001 -0.001j])

polynomial.polynomial.polyline(off, scl)
Returns an array representing a linear polynomial.

Parameters
off, scl

[scalars] The “y-intercept” and “slope” of the line, respectively.
Returns

y
[ndarray] This module’s representation of the linear polynomial off + scl*x.

See also:

numpy.polynomial.chebyshev.chebline
numpy.polynomial.legendre.legline
numpy.polynomial.laguerre.lagline
numpy.polynomial.hermite.hermline
numpy.polynomial.hermite_e.hermeline

Examples

>>> from numpy.polynomial import polynomial as P
>>> P.polyline(1, -1)
array([1, -1])
>>> P.polyval(1, P.polyline(1, -1)) # should be 0
0.0

See Also

numpy.polynomial

Chebyshev Series (numpy.polynomial.chebyshev)
This module provides a number of objects (mostly functions) useful for dealing with Chebyshev series, including a
Chebyshev class that encapsulates the usual arithmetic operations. (General information on how this module rep-
resents and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

1.4. Routines and objects by topic 1567

NumPy Reference, Release 2.2.0

Classes

Chebyshev(coef[, domain, window, symbol]) A Chebyshev series class.

class numpy.polynomial.chebyshev.Chebyshev(coef, domain=None, window=None, symbol='x')
A Chebyshev series class.
The Chebyshev class provides the standard Python numerical methods ‘+’, ‘-’, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as
well as the attributes and methods listed below.

Parameters
coef

[array_like] Chebyshev coefficients in order of increasing degree, i.e., (1, 2, 3) gives
1*T_0(x) + 2*T_1(x) + 3*T_2(x).

domain
[(2,) array_like, optional] Domain to use. The interval [domain[0], domain[1]] is
mapped to the interval [window[0], window[1]] by shifting and scaling. The default
value is [-1., 1.].

window
[(2,) array_like, optional] Window, see domain for its use. The default value is [-1., 1.].

symbol
[str, optional] Symbol used to represent the independent variable in string representations of
the polynomial expression, e.g. for printing. The symbol must be a valid Python identifier.
Default value is ‘x’.
New in version 1.24.

Attributes
symbol

1568 1. Python API

NumPy Reference, Release 2.2.0

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window, symbol]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, ...]) Least squares fit to data.
fromroots(roots[, domain, window, symbol]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window, symbol]) Identity function.
integ([m, k, lbnd]) Integrate.
interpolate(func, deg[, domain, args]) Interpolate a function at the Chebyshev points of the

first kind.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

method
polynomial.chebyshev.Chebyshev.__call__(arg)

Call self as a function.
method
classmethod polynomial.chebyshev.Chebyshev.basis(deg, domain=None, window=None,

symbol='x')

Series basis polynomial of degree deg.
Returns the series representing the basis polynomial of degree deg.

Parameters
deg
[int] Degree of the basis polynomial for the series. Must be >= 0.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

1.4. Routines and objects by topic 1569

NumPy Reference, Release 2.2.0

Returns
new_series
[series] A series with the coefficient of the deg term set to one and all others zero.

method
classmethod polynomial.chebyshev.Chebyshev.cast(series, domain=None, window=None)

Convert series to series of this class.
The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

Parameters
series
[series] The series instance to be converted.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

Returns
new_series
[series] A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

method
polynomial.chebyshev.Chebyshev.convert(domain=None, kind=None, window=None)

Convert series to a different kind and/or domain and/or window.
Parameters

domain
[array_like, optional] The domain of the converted series. If the value is None, the default
domain of kind is used.

kind
[class, optional] The polynomial series type class to which the current instance should be
converted. If kind is None, then the class of the current instance is used.

window
[array_like, optional] The window of the converted series. If the value is None, the default
window of kind is used.

Returns
new_series
[series] The returned class can be of different type than the current instance and/or have a
different domain and/or different window.

1570 1. Python API

NumPy Reference, Release 2.2.0

Notes

Conversion between domains and class types can result in numerically ill defined series.
method
polynomial.chebyshev.Chebyshev.copy()

Return a copy.
Returns

new_series
[series] Copy of self.

method
polynomial.chebyshev.Chebyshev.cutdeg(deg)

Truncate series to the given degree.
Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

Parameters
deg
[non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns
new_series
[series] New instance of series with reduced degree.

method
polynomial.chebyshev.Chebyshev.degree()

The degree of the series.
Returns

degree
[int] Degree of the series, one less than the number of coefficients.

Examples

Create a polynomial object for 1 + 7*x + 4*x**2:

>>> poly = np.polynomial.Polynomial([1, 7, 4])
>>> print(poly)
1.0 + 7.0·x + 4.0·x²
>>> poly.degree()
2

Note that this method does not check for non-zero coefficients. You must trim the polynomial to remove any
trailing zeroes:

>>> poly = np.polynomial.Polynomial([1, 7, 0])
>>> print(poly)
1.0 + 7.0·x + 0.0·x²

(continues on next page)

1.4. Routines and objects by topic 1571

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> poly.degree()
2
>>> poly.trim().degree()
1

method
polynomial.chebyshev.Chebyshev.deriv(m=1)

Differentiate.
Return a series instance of that is the derivative of the current series.

Parameters
m
[non-negative int] Find the derivative of order m.

Returns
new_series
[series] A new series representing the derivative. The domain is the same as the domain of
the differentiated series.

method
classmethod polynomial.chebyshev.Chebyshev.fit(x, y, deg, domain=None, rcond=None,

full=False, w=None, window=None,
symbol='x')

Least squares fit to data.
Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,)] y-coordinates of the M sample points (x[i], y[i]).

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

domain
[{None, [beg, end], []}, optional] Domain to use for the returned series. If None, then a
minimal domain that covers the points x is chosen. If [] the class domain is used. The
default value was the class domain in NumPy 1.4 and None in later versions. The [] option
was added in numpy 1.5.0.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps
is the relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

1572 1. Python API

NumPy Reference, Release 2.2.0

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the
unsquared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that
the errors of the products w[i]*y[i] all have the same variance. When using inverse-
variance weighting, use w[i] = 1/sigma(y[i]). The default value is None.

window
[{[beg, end]}, optional]Window to use for the returned series. The default value is the default
class domain

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] A series that represents the least squares fit to the data and has the domain andwindow
specified in the call. If the coefficients for the unscaled and unshifted basis polynomials are
of interest, do new_series.convert().coef.

[resid, rank, sv, rcond]
[list] These values are only returned if full == True

• resid – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• sv – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see linalg.lstsq.

method
classmethod polynomial.chebyshev.Chebyshev.fromroots(roots, domain=[],

window=None, symbol='x')

Return series instance that has the specified roots.
Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots
[array_like] List of roots.

domain
[{[], None, array_like}, optional] Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the domain is the class domain. The default
is [].

window
[{None, array_like}, optional] Window for the returned series. If None the class window is
used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series with the specified roots.

1.4. Routines and objects by topic 1573

NumPy Reference, Release 2.2.0

method
polynomial.chebyshev.Chebyshev.has_samecoef(other)

Check if coefficients match.
Parameters

other
[class instance] The other class must have the coef attribute.

Returns
bool
[boolean] True if the coefficients are the same, False otherwise.

method
polynomial.chebyshev.Chebyshev.has_samedomain(other)

Check if domains match.
Parameters

other
[class instance] The other class must have the domain attribute.

Returns
bool
[boolean] True if the domains are the same, False otherwise.

method
polynomial.chebyshev.Chebyshev.has_sametype(other)

Check if types match.
Parameters

other
[object] Class instance.

Returns
bool
[boolean] True if other is same class as self

method
polynomial.chebyshev.Chebyshev.has_samewindow(other)

Check if windows match.
Parameters

other
[class instance] The other class must have the window attribute.

Returns
bool
[boolean] True if the windows are the same, False otherwise.

method

1574 1. Python API

NumPy Reference, Release 2.2.0

classmethod polynomial.chebyshev.Chebyshev.identity(domain=None, window=None,
symbol='x')

Identity function.
If p is the returned series, then p(x) == x for all values of x.

Parameters
domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series of representing the identity.

method
polynomial.chebyshev.Chebyshev.integ(m=1, k=[], lbnd=None)

Integrate.
Return a series instance that is the definite integral of the current series.

Parameters
m
[non-negative int] The number of integrations to perform.

k
[array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length and
any missing values are set to zero.

lbnd
[Scalar] The lower bound of the definite integral.

Returns
new_series
[series] A new series representing the integral. The domain is the same as the domain of the
integrated series.

method
classmethod polynomial.chebyshev.Chebyshev.interpolate(func, deg, domain=None,

args=())

Interpolate a function at the Chebyshev points of the first kind.
Returns the series that interpolates func at the Chebyshev points of the first kind scaled and shifted to the
domain. The resulting series tends to a minmax approximation of func when the function is continuous in
the domain.

Parameters

1.4. Routines and objects by topic 1575

NumPy Reference, Release 2.2.0

func
[function] The function to be interpolated. It must be a function of a single variable of the
form f(x, a, b, c...), where a, b, c... are extra arguments passed in the args
parameter.

deg
[int] Degree of the interpolating polynomial.

domain
[{None, [beg, end]}, optional] Domain over which func is interpolated. The default is None,
in which case the domain is [-1, 1].

args
[tuple, optional] Extra arguments to be used in the function call. Default is no extra argu-
ments.

Returns
polynomial
[Chebyshev instance] Interpolating Chebyshev instance.

Notes

See numpy.polynomial.chebinterpolate for more details.
method
polynomial.chebyshev.Chebyshev.linspace(n=100, domain=None)

Return x, y values at equally spaced points in domain.
Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial at
the points x. By default the domain is the same as that of the series instance. This method is intended mostly
as a plotting aid.

Parameters
n
[int, optional] Number of point pairs to return. The default value is 100.

domain
[{None, array_like}, optional] If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end]. The default is None which case
the class domain is used.

Returns
x, y
[ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated
at element of x.

method
polynomial.chebyshev.Chebyshev.mapparms()

Return the mapping parameters.
The returned values define a linear map off + scl*x that is applied to the input arguments before the
series is evaluated. The map depends on the domain and window; if the current domain is equal to the
window the resulting map is the identity. If the coefficients of the series instance are to be used by themselves
outside this class, then the linear function must be substituted for the x in the standard representation of the
base polynomials.

1576 1. Python API

NumPy Reference, Release 2.2.0

Returns
off, scl
[float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

method
polynomial.chebyshev.Chebyshev.roots()

Return the roots of the series polynomial.
Compute the roots for the series. Note that the accuracy of the roots decreases the further outside thedomain
they lie.

Returns
roots
[ndarray] Array containing the roots of the series.

method
polynomial.chebyshev.Chebyshev.trim(tol=0)

Remove trailing coefficients
Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the beginning
of the series is reached. If all the coefficients would be removed the series is set to [0]. A new series instance
is returned with the new coefficients. The current instance remains unchanged.

Parameters
tol
[non-negative number.] All trailing coefficients less than tol will be removed.

Returns
new_series
[series] New instance of series with trimmed coefficients.

method
polynomial.chebyshev.Chebyshev.truncate(size)

Truncate series to length size.
Reduce the series to length size by discarding the high degree terms. The value of sizemust be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very small.

Parameters
size
[positive int] The series is reduced to length size by discarding the high degree terms. The
value of size must be a positive integer.

Returns

1.4. Routines and objects by topic 1577

NumPy Reference, Release 2.2.0

new_series
[series] New instance of series with truncated coefficients.

Constants

chebdomain An array object represents a multidimensional, homoge-
neous array of fixed-size items.

chebzero An array object represents a multidimensional, homoge-
neous array of fixed-size items.

chebone An array object represents a multidimensional, homoge-
neous array of fixed-size items.

chebx An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polynomial.chebyshev.chebdomain = array([-1., 1.])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

1578 1. Python API

NumPy Reference, Release 2.2.0

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

1.4. Routines and objects by topic 1579

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.chebyshev.chebzero = array([0])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

1580 1. Python API

NumPy Reference, Release 2.2.0

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

1.4. Routines and objects by topic 1581

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.chebyshev.chebone = array([1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.

1582 1. Python API

NumPy Reference, Release 2.2.0

order
[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.

1.4. Routines and objects by topic 1583

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

flags
[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.chebyshev.chebx = array([0, 1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.

1584 1. Python API

NumPy Reference, Release 2.2.0

buffer
[object exposing buffer interface, optional] Used to fill the array with data.

offset
[int, optional] Offset of array data in buffer.

strides
[tuple of ints, optional] Strides of data in memory.

order
[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes

1.4. Routines and objects by topic 1585

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

T
[ndarray] Transpose of the array.

data
[buffer] The array’s elements, in memory.

dtype
[dtype object] Describes the format of the elements in the array.

flags
[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

1586 1. Python API

NumPy Reference, Release 2.2.0

Arithmetic

chebadd(c1, c2) Add one Chebyshev series to another.
chebsub(c1, c2) Subtract one Chebyshev series from another.
chebmulx(c) Multiply a Chebyshev series by x.
chebmul(c1, c2) Multiply one Chebyshev series by another.
chebdiv(c1, c2) Divide one Chebyshev series by another.
chebpow(c, pow[, maxpower]) Raise a Chebyshev series to a power.
chebval(x, c[, tensor]) Evaluate a Chebyshev series at points x.
chebval2d(x, y, c) Evaluate a 2-D Chebyshev series at points (x, y).
chebval3d(x, y, z, c) Evaluate a 3-D Chebyshev series at points (x, y, z).
chebgrid2d(x, y, c) Evaluate a 2-D Chebyshev series on the Cartesian product

of x and y.
chebgrid3d(x, y, z, c) Evaluate a 3-D Chebyshev series on the Cartesian product

of x, y, and z.

polynomial.chebyshev.chebadd(c1, c2)
Add one Chebyshev series to another.
Returns the sum of two Chebyshev series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters
c1, c2

[array_like] 1-D arrays of Chebyshev series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the Chebyshev series of their sum.

See also:

chebsub, chebmulx, chebmul, chebdiv, chebpow

Notes

Unlike multiplication, division, etc., the sum of two Chebyshev series is a Chebyshev series (without having to
“reproject” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebadd(c1,c2)
array([4., 4., 4.])

polynomial.chebyshev.chebsub(c1, c2)
Subtract one Chebyshev series from another.

1.4. Routines and objects by topic 1587

NumPy Reference, Release 2.2.0

Returns the difference of two Chebyshev series c1 - c2. The sequences of coefficients are from lowest order term
to highest, i.e., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters
c1, c2

[array_like] 1-D arrays of Chebyshev series coefficients ordered from low to high.
Returns

out
[ndarray] Of Chebyshev series coefficients representing their difference.

See also:

chebadd, chebmulx, chebmul, chebdiv, chebpow

Notes

Unlike multiplication, division, etc., the difference of two Chebyshev series is a Chebyshev series (without hav-
ing to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebsub(c1,c2)
array([-2., 0., 2.])
>>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
array([2., 0., -2.])

polynomial.chebyshev.chebmulx(c)
Multiply a Chebyshev series by x.
Multiply the polynomial c by x, where x is the independent variable.

Parameters
c

[array_like] 1-D array of Chebyshev series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the result of the multiplication.

See also:

chebadd, chebsub, chebmul, chebdiv, chebpow

1588 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import chebyshev as C
>>> C.chebmulx([1,2,3])
array([1. , 2.5, 1. , 1.5])

polynomial.chebyshev.chebmul(c1, c2)
Multiply one Chebyshev series by another.
Returns the product of two Chebyshev series c1 * c2. The arguments are sequences of coefficients, from lowest
order “term” to highest, e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters
c1, c2

[array_like] 1-D arrays of Chebyshev series coefficients ordered from low to high.
Returns

out
[ndarray] Of Chebyshev series coefficients representing their product.

See also:

chebadd, chebsub, chebmulx, chebdiv, chebpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Chebyshev polynomial basis
set. Thus, to express the product as a C-series, it is typically necessary to “reproject” the product onto said basis
set, which typically produces “unintuitive live” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebmul(c1,c2) # multiplication requires "reprojection"
array([6.5, 12. , 12. , 4. , 1.5])

polynomial.chebyshev.chebdiv(c1, c2)
Divide one Chebyshev series by another.
Returns the quotient-with-remainder of two Chebyshev series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2.

Parameters
c1, c2

[array_like] 1-D arrays of Chebyshev series coefficients ordered from low to high.
Returns

[quo, rem]
[ndarrays] Of Chebyshev series coefficients representing the quotient and remainder.

See also:

1.4. Routines and objects by topic 1589

NumPy Reference, Release 2.2.0

chebadd, chebsub, chebmulx, chebmul, chebpow

Notes

In general, the (polynomial) division of one C-series by another results in quotient and remainder terms that are
not in the Chebyshev polynomial basis set. Thus, to express these results as C-series, it is typically necessary to
“reproject” the results onto said basis set, which typically produces “unintuitive” (but correct) results; see Examples
section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
(array([3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> C.chebdiv(c2,c1) # neither "intuitive"
(array([0., 2.]), array([-2., -4.]))

polynomial.chebyshev.chebpow(c, pow, maxpower=16)
Raise a Chebyshev series to a power.
Returns the Chebyshev series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series T_0 + 2*T_1 + 3*T_2.

Parameters
c

[array_like] 1-D array of Chebyshev series coefficients ordered from low to high.
pow

[integer] Power to which the series will be raised
maxpower

[integer, optional] Maximum power allowed. This is mainly to limit growth of the series to
unmanageable size. Default is 16

Returns
coef

[ndarray] Chebyshev series of power.
See also:

chebadd, chebsub, chebmulx, chebmul, chebdiv

1590 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import chebyshev as C
>>> C.chebpow([1, 2, 3, 4], 2)
array([15.5, 22. , 16. , ..., 12.5, 12. , 8.])

polynomial.chebyshev.chebval(x, c, tensor=True)
Evaluate a Chebyshev series at points x.
If c is of length n + 1, this function returns the value:

p(x) = c0 ∗ T0(x) + c1 ∗ T1(x) + ...+ cn ∗ Tn(x)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of c.
If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the shape
will be c.shape[1:]. Note that scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.

Parameters
x

[array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise it
is left unchanged and treated as a scalar. In either case, x or its elements must support addition
and multiplication with themselves and with the elements of c.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polyno-
mials. In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor
[boolean, optional] If True, the shape of the coefficient array is extended with ones on the right,
one for each dimension of x. Scalars have dimension 0 for this action. The result is that every
column of coefficients in c is evaluated for every element of x. If False, x is broadcast over
the columns of c for the evaluation. This keyword is useful when c is multidimensional. The
default value is True.

Returns
values

[ndarray, algebra_like] The shape of the return value is described above.
See also:

chebval2d, chebgrid2d, chebval3d, chebgrid3d

1.4. Routines and objects by topic 1591

NumPy Reference, Release 2.2.0

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.
polynomial.chebyshev.chebval2d(x, y, c)

Evaluate a 2-D Chebyshev series at points (x, y).
This function returns the values:

p(x, y) =
∑
i,j

ci,j ∗ Ti(x) ∗ Tj(y)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be c.shape[2:]
+ x.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than 2 the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional Chebyshev series at points
formed from pairs of corresponding values from x and y.

See also:

chebval, chebgrid2d, chebval3d, chebgrid3d

polynomial.chebyshev.chebval3d(x, y, z, c)
Evaluate a 3-D Chebyshev series at points (x, y, z).
This function returns the values:

p(x, y, z) =
∑
i,j,k

ci,j,k ∗ Ti(x) ∗ Tj(y) ∗ Tk(z)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result
will be c.shape[3:] + x.shape.

Parameters
x, y, z

[array_like, compatible object] The three dimensional series is evaluated at the points (x, y,
z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first

1592 1. Python API

NumPy Reference, Release 2.2.0

converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as
a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the multidimensional polynomial on points formed
with triples of corresponding values from x, y, and z.

See also:

chebval, chebval2d, chebgrid2d, chebgrid3d

polynomial.chebyshev.chebgrid2d(x, y, c)
Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.
This function returns the values:

p(a, b) =
∑
i,j

ci,j ∗ Ti(a) ∗ Tj(b),

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a grid
with x in the first dimension and y in the second.
The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars.
In either case, either x and y or their elements must support multiplication and addition both with themselves and
with the elements of c.
If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the result
will be c.shape[2:] + x.shape + y.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional Chebyshev series at points in
the Cartesian product of x and y.

See also:

chebval, chebval2d, chebval3d, chebgrid3d

1.4. Routines and objects by topic 1593

NumPy Reference, Release 2.2.0

polynomial.chebyshev.chebgrid3d(x, y, z, c)
Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.
This function returns the values:

p(a, b, c) =
∑
i,j,k

ci,j,k ∗ Ti(a) ∗ Tj(b) ∗ Tk(c)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.
The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.
If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z

[array_like, compatible objects] The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x, y, or z is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

chebval, chebval2d, chebgrid2d, chebval3d

Calculus

chebder(c[, m, scl, axis]) Differentiate a Chebyshev series.
chebint(c[, m, k, lbnd, scl, axis]) Integrate a Chebyshev series.

polynomial.chebyshev.chebder(c, m=1, scl=1, axis=0)
Differentiate a Chebyshev series.
Returns the Chebyshev series coefficients c differentiatedm times along axis. At each iteration the result is multiplied
by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients from low
to high degree along each axis, e.g., [1,2,3] represents the series 1*T_0 + 2*T_1 + 3*T_2 while [[1,2],[1,2]]
represents1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)
if axis=0 is x and axis=1 is y.

Parameters

1594 1. Python API

NumPy Reference, Release 2.2.0

c
[array_like] Array of Chebyshev series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

m
[int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl
[scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication by
scl**m. This is for use in a linear change of variable. (Default: 1)

axis
[int, optional] Axis over which the derivative is taken. (Default: 0).

Returns
der

[ndarray] Chebyshev series of the derivative.
See also:

chebint

Notes

In general, the result of differentiating a C-series needs to be “reprojected” onto the C-series basis set. Thus,
typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3,4)
>>> C.chebder(c)
array([14., 12., 24.])
>>> C.chebder(c,3)
array([96.])
>>> C.chebder(c,scl=-1)
array([-14., -12., -24.])
>>> C.chebder(c,2,-1)
array([12., 96.])

polynomial.chebyshev.chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Chebyshev series.
Returns the Chebyshev series coefficients c integrated m times from lbnd along axis. At each iteration the resulting
series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change
of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the reciprocal
of what one might expect; for more information, see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series T_0 + 2*T_1 + 3*T_2
while [[1,2],[1,2]] represents 1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
2*T_1(x)*T_1(y) if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] Array of Chebyshev series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

1.4. Routines and objects by topic 1595

NumPy Reference, Release 2.2.0

m
[int, optional] Order of integration, must be positive. (Default: 1)

k
[{[], list, scalar}, optional] Integration constant(s). The value of the first integral at zero is the
first value in the list, the value of the second integral at zero is the second value, etc. If k ==
[] (the default), all constants are set to zero. If m == 1, a single scalar can be given instead
of a list.

lbnd
[scalar, optional] The lower bound of the integral. (Default: 0)

scl
[scalar, optional] Following each integration the result ismultiplied by scl before the integration
constant is added. (Default: 1)

axis
[int, optional] Axis over which the integral is taken. (Default: 0).

Returns
S

[ndarray] C-series coefficients of the integral.
Raises

ValueError
If m < 1, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) != 0.

See also:

chebder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable u = ax+ b in an integral relative to x. Then dx = du/a, so one will need to set scl equal
to 1/a- perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis set.
Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3)
>>> C.chebint(c)
array([0.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,3)
array([0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667, # may vary

0.00625])
>>> C.chebint(c, k=3)
array([3.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,lbnd=-2)
array([8.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,scl=-2)
array([-1., 1., -1., -1.])

1596 1. Python API

NumPy Reference, Release 2.2.0

Misc Functions

chebfromroots(roots) Generate a Chebyshev series with given roots.
chebroots(c) Compute the roots of a Chebyshev series.
chebvander(x, deg) Pseudo-Vandermonde matrix of given degree.
chebvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
chebvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.
chebgauss(deg) Gauss-Chebyshev quadrature.
chebweight(x) The weight function of the Chebyshev polynomials.
chebcompanion(c) Return the scaled companion matrix of c.
chebfit(x, y, deg[, rcond, full, w]) Least squares fit of Chebyshev series to data.
chebpts1(npts) Chebyshev points of the first kind.
chebpts2(npts) Chebyshev points of the second kind.
chebtrim(c[, tol]) Remove "small" "trailing" coefficients from a polynomial.
chebline(off, scl) Chebyshev series whose graph is a straight line.
cheb2poly(c) Convert a Chebyshev series to a polynomial.
poly2cheb(pol) Convert a polynomial to a Chebyshev series.
chebinterpolate(func, deg[, args]) Interpolate a function at the Chebyshev points of the first

kind.

polynomial.chebyshev.chebfromroots(roots)
Generate a Chebyshev series with given roots.
The function returns the coefficients of the polynomial

p(x) = (x− r0) ∗ (x− r1) ∗ ... ∗ (x− rn),

in Chebyshev form, where the rn are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots
looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.
If the returned coefficients are c, then

p(x) = c0 + c1 ∗ T1(x) + ...+ cn ∗ Tn(x)

The coefficient of the last term is not generally 1 for monic polynomials in Chebyshev form.
Parameters

roots
[array_like] Sequence containing the roots.

Returns
out

[ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of the
roots are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

numpy.polynomial.polynomial.polyfromroots
numpy.polynomial.legendre.legfromroots
numpy.polynomial.laguerre.lagfromroots
numpy.polynomial.hermite.hermfromroots
numpy.polynomial.hermite_e.hermefromroots

1.4. Routines and objects by topic 1597

NumPy Reference, Release 2.2.0

Examples

>>> import numpy.polynomial.chebyshev as C
>>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([0. , -0.25, 0. , 0.25])
>>> j = complex(0,1)
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([1.5+0.j, 0. +0.j, 0.5+0.j])

polynomial.chebyshev.chebroots(c)
Compute the roots of a Chebyshev series.
Return the roots (a.k.a. “zeros”) of the polynomial

p(x) =
∑
i

c[i] ∗ Ti(x).

Parameters
c

[1-D array_like] 1-D array of coefficients.
Returns

out
[ndarray] Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

numpy.polynomial.polynomial.polyroots
numpy.polynomial.legendre.legroots
numpy.polynomial.laguerre.lagroots
numpy.polynomial.hermite.hermroots
numpy.polynomial.hermite_e.hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companionmatrix, Roots far from the origin of the complex
plane may have large errors due to the numerical instability of the series for such values. Roots with multiplicity
greater than 1 will also show larger errors as the value of the series near such points is relatively insensitive to errors
in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s method.
The Chebyshev series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> import numpy.polynomial.chebyshev as cheb
>>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
array([-5.00000000e-01, 2.60860684e-17, 1.00000000e+00]) # may vary

polynomial.chebyshev.chebvander(x, deg)
Pseudo-Vandermonde matrix of given degree.

1598 1. Python API

NumPy Reference, Release 2.2.0

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is
defined by

V [..., i] = Ti(x),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Chebyshev polynomial.
If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = chebvander(x, n), then
np.dot(V, c) and chebval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of Chebyshev series of the same degree and sample points.

Parameters
x

[array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg
[int] Degree of the resulting matrix.

Returns
vander

[ndarray] The pseudo Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding Chebyshev polynomial.
The dtype will be the same as the converted x.

polynomial.chebyshev.chebvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

V [..., (deg[1] + 1) ∗ i+ j] = Ti(x) ∗ Tj(y),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y)
and the last index encodes the degrees of the Chebyshev polynomials.
If V = chebvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

c00, c01, c02..., c10, c11, c12...

and np.dot(V, c.flat) and chebval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Chebyshev series of the same
degrees and sample points.

Parameters
x, y

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns

1.4. Routines and objects by topic 1599

NumPy Reference, Release 2.2.0

vander2d
[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1). The dtype will be the same as the converted x and y.

See also:

chebvander, chebvander3d, chebval2d, chebval3d

polynomial.chebyshev.chebvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

V [..., (m+ 1)(n+ 1)i+ (n+ 1)j + k] = Ti(x) ∗ Tj(y) ∗ Tk(z),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x,
y, z) and the last index encodes the degrees of the Chebyshev polynomials.
If V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

c000, c001, c002, ..., c010, c011, c012, ...

andnp.dot(V, c.flat) andchebval3d(x, y, z, c)will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 3-D Chebyshev series of the same
degrees and sample points.

Parameters
x, y, z

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1) ∗ (deg[2] + 1). The dtype will be the same as the converted x, y,
and z.

See also:

chebvander, chebvander3d, chebval2d, chebval3d

polynomial.chebyshev.chebgauss(deg)
Gauss-Chebyshev quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 ∗ deg − 1 or less over the interval [−1, 1] with the weight function
f(x) = 1/

√
1− x2.

Parameters
deg

[int] Number of sample points and weights. It must be >= 1.

1600 1. Python API

NumPy Reference, Release 2.2.0

Returns
x

[ndarray] 1-D ndarray containing the sample points.
y

[ndarray] 1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may be problematic. For Gauss-Chebyshev
there are closed form solutions for the sample points and weights. If n = deg, then

xi = cos(π(2i− 1)/(2n))

wi = π/n

polynomial.chebyshev.chebweight(x)
The weight function of the Chebyshev polynomials.
The weight function is 1/

√
1− x2 and the interval of integration is [−1, 1]. The Chebyshev polynomials are

orthogonal, but not normalized, with respect to this weight function.
Parameters

x
[array_like] Values at which the weight function will be computed.

Returns
w

[ndarray] The weight function at x.
polynomial.chebyshev.chebcompanion(c)

Return the scaled companion matrix of c.
The basis polynomials are scaled so that the companionmatrix is symmetric when c is a Chebyshev basis polynomial.
This provides better eigenvalue estimates than the unscaled case and for basis polynomials the eigenvalues are
guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters
c

[array_like] 1-D array of Chebyshev series coefficients ordered from low to high degree.
Returns

mat
[ndarray] Scaled companion matrix of dimensions (deg, deg).

polynomial.chebyshev.chebfit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Chebyshev series to data.
Return the coefficients of a Chebyshev series of degree deg that is the least squares fit to the data values y given
at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each
column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted
polynomial(s) are in the form

p(x) = c0 + c1 ∗ T1(x) + ...+ cn ∗ Tn(x),

where n is deg.

1.4. Routines and objects by topic 1601

NumPy Reference, Release 2.2.0

Parameters
x

[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).
y

[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer, all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps is
the relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the un-
squared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. When using inverse-variance
weighting, use w[i] = 1/sigma(y[i]). The default value is None.

Returns
coef

[ndarray, shape (M,) or (M, K)] Chebyshev coefficients ordered from low to high. If y was
2-D, the coefficients for the data in column k of y are in column k.

[residuals, rank, singular_values, rcond]
[list] These values are only returned if full == True

• residuals – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• singular_values – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see numpy.linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised
if full == False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See also:

1602 1. Python API

NumPy Reference, Release 2.2.0

numpy.polynomial.polynomial.polyfit
numpy.polynomial.legendre.legfit
numpy.polynomial.laguerre.lagfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.hermite_e.hermefit
chebval

Evaluates a Chebyshev series.
chebvander

Vandermonde matrix of Chebyshev series.
chebweight

Chebyshev weight function.
numpy.linalg.lstsq

Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline

Computes spline fits.

Notes

The solution is the coefficients of the Chebyshev series p that minimizes the sum of the weighted squared errors

E =
∑
j

w2
j ∗ |yj − p(xj)|2,

where wj are the weights. This problem is solved by setting up as the (typically) overdetermined matrix equation

V (x) ∗ c = w ∗ y,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the weights,
and y are the observed values. This equation is then solved using the singular value decomposition of V.
If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued.
This means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of
the warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.
Fits using Chebyshev series are usually better conditioned than fits using power series, but much can depend on the
distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate splines may
be a good alternative.

References

[1]
polynomial.chebyshev.chebpts1(npts)

Chebyshev points of the first kind.
The Chebyshev points of the first kind are the points cos(x), where x = [pi*(k + .5)/npts for k
in range(npts)].

Parameters
npts

[int] Number of sample points desired.
Returns

1.4. Routines and objects by topic 1603

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 2.2.0

pts
[ndarray] The Chebyshev points of the first kind.

See also:

chebpts2

polynomial.chebyshev.chebpts2(npts)
Chebyshev points of the second kind.
The Chebyshev points of the second kind are the points cos(x), where x = [pi*k/(npts - 1) for k
in range(npts)] sorted in ascending order.

Parameters
npts

[int] Number of sample points desired.
Returns

pts
[ndarray] The Chebyshev points of the second kind.

polynomial.chebyshev.chebtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.
“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4) both
the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c

[array_like] 1-d array of coefficients, ordered from lowest order to highest.
tol

[number, optional] Trailing (i.e., highest order) elements with absolute value less than or equal
to tol (default value is zero) are removed.

Returns
trimmed

[ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.001 -0.001j])

1604 1. Python API

NumPy Reference, Release 2.2.0

polynomial.chebyshev.chebline(off, scl)
Chebyshev series whose graph is a straight line.

Parameters
off, scl

[scalars] The specified line is given by off + scl*x.
Returns

y
[ndarray] This module’s representation of the Chebyshev series for off + scl*x.

See also:

numpy.polynomial.polynomial.polyline
numpy.polynomial.legendre.legline
numpy.polynomial.laguerre.lagline
numpy.polynomial.hermite.hermline
numpy.polynomial.hermite_e.hermeline

Examples

>>> import numpy.polynomial.chebyshev as C
>>> C.chebline(3,2)
array([3, 2])
>>> C.chebval(-3, C.chebline(3,2)) # should be -3
-3.0

polynomial.chebyshev.cheb2poly(c)
Convert a Chebyshev series to a polynomial.
Convert an array representing the coefficients of a Chebyshev series, ordered from lowest degree to highest, to
an array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters
c

[array_like] 1-D array containing the Chebyshev series coefficients, ordered from lowest order
term to highest.

Returns
pol

[ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2cheb

1.4. Routines and objects by topic 1605

NumPy Reference, Release 2.2.0

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> c = P.Chebyshev(range(4))
>>> c
Chebyshev([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([-2., -8., 4., 12.], domain=[-1., 1.], window=[-1., 1.], ...
>>> P.chebyshev.cheb2poly(range(4))
array([-2., -8., 4., 12.])

polynomial.chebyshev.poly2cheb(pol)
Convert a polynomial to a Chebyshev series.
Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from lowest
degree to highest, to an array of the coefficients of the equivalent Chebyshev series, ordered from lowest to highest
degree.

Parameters
pol

[array_like] 1-D array containing the polynomial coefficients
Returns

c
[ndarray] 1-D array containing the coefficients of the equivalent Chebyshev series.

See also:

cheb2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> p = P.Polynomial(range(4))
>>> p
Polynomial([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> c = p.convert(kind=P.Chebyshev)
>>> c
Chebyshev([1. , 3.25, 1. , 0.75], domain=[-1., 1.], window=[-1., ...
>>> P.chebyshev.poly2cheb(range(4))
array([1. , 3.25, 1. , 0.75])

1606 1. Python API

NumPy Reference, Release 2.2.0

polynomial.chebyshev.chebinterpolate(func, deg, args=())
Interpolate a function at the Chebyshev points of the first kind.
Returns the Chebyshev series that interpolates func at the Chebyshev points of the first kind in the interval [-1, 1].
The interpolating series tends to a minmax approximation to func with increasing deg if the function is continuous
in the interval.

Parameters
func

[function] The function to be approximated. It must be a function of a single variable of the
form f(x, a, b, c...), where a, b, c... are extra arguments passed in the args
parameter.

deg
[int] Degree of the interpolating polynomial

args
[tuple, optional] Extra arguments to be used in the function call. Default is no extra arguments.

Returns
coef

[ndarray, shape (deg + 1,)] Chebyshev coefficients of the interpolating series ordered from low
to high.

Notes

The Chebyshev polynomials used in the interpolation are orthogonal when sampled at the Chebyshev points of the
first kind. If it is desired to constrain some of the coefficients they can simply be set to the desired value after the
interpolation, no new interpolation or fit is needed. This is especially useful if it is known apriori that some of
coefficients are zero. For instance, if the function is even then the coefficients of the terms of odd degree in the
result can be set to zero.

Examples

>>> import numpy.polynomial.chebyshev as C
>>> C.chebinterpolate(lambda x: np.tanh(x) + 0.5, 8)
array([5.00000000e-01, 8.11675684e-01, -9.86864911e-17,

-5.42457905e-02, -2.71387850e-16, 4.51658839e-03,
2.46716228e-17, -3.79694221e-04, -3.26899002e-16])

See also

numpy.polynomial

1.4. Routines and objects by topic 1607

NumPy Reference, Release 2.2.0

Notes

The implementations of multiplication, division, integration, and differentiation use the algebraic identities [1]:

Tn(x) =
zn + z−n

2

z
dx

dz
=

z − z−1

2
.

where

x =
z + z−1

2
.

These identities allow a Chebyshev series to be expressed as a finite, symmetric Laurent series. In this module, this sort
of Laurent series is referred to as a “z-series.”

References

Hermite Series, “Physicists” (numpy.polynomial.hermite)
This module provides a number of objects (mostly functions) useful for dealing with Hermite series, including a Hermite
class that encapsulates the usual arithmetic operations. (General information on how this module represents and works
with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Classes

Hermite(coef[, domain, window, symbol]) An Hermite series class.

class numpy.polynomial.hermite.Hermite(coef, domain=None, window=None, symbol='x')
An Hermite series class.
The Hermite class provides the standard Python numerical methods ‘+’, ‘-’, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as
well as the attributes and methods listed below.

Parameters
coef

[array_like] Hermite coefficients in order of increasing degree, i.e, (1, 2, 3) gives
1*H_0(x) + 2*H_1(x) + 3*H_2(x).

domain
[(2,) array_like, optional] Domain to use. The interval [domain[0], domain[1]] is
mapped to the interval [window[0], window[1]] by shifting and scaling. The default
value is [-1., 1.].

window
[(2,) array_like, optional] Window, see domain for its use. The default value is [-1., 1.].

symbol
[str, optional] Symbol used to represent the independent variable in string representations of
the polynomial expression, e.g. for printing. The symbol must be a valid Python identifier.
Default value is ‘x’.
New in version 1.24.

1608 1. Python API

NumPy Reference, Release 2.2.0

Attributes
symbol

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window, symbol]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, ...]) Least squares fit to data.
fromroots(roots[, domain, window, symbol]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window, symbol]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

method
polynomial.hermite.Hermite.__call__(arg)

Call self as a function.
method
classmethod polynomial.hermite.Hermite.basis(deg, domain=None, window=None,

symbol='x')

Series basis polynomial of degree deg.
Returns the series representing the basis polynomial of degree deg.

Parameters
deg
[int] Degree of the basis polynomial for the series. Must be >= 0.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

1.4. Routines and objects by topic 1609

NumPy Reference, Release 2.2.0

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] A series with the coefficient of the deg term set to one and all others zero.

method
classmethod polynomial.hermite.Hermite.cast(series, domain=None, window=None)

Convert series to series of this class.
The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

Parameters
series
[series] The series instance to be converted.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

Returns
new_series
[series] A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

method
polynomial.hermite.Hermite.convert(domain=None, kind=None, window=None)

Convert series to a different kind and/or domain and/or window.
Parameters

domain
[array_like, optional] The domain of the converted series. If the value is None, the default
domain of kind is used.

kind
[class, optional] The polynomial series type class to which the current instance should be
converted. If kind is None, then the class of the current instance is used.

window
[array_like, optional] The window of the converted series. If the value is None, the default
window of kind is used.

Returns

1610 1. Python API

NumPy Reference, Release 2.2.0

new_series
[series] The returned class can be of different type than the current instance and/or have a
different domain and/or different window.

Notes

Conversion between domains and class types can result in numerically ill defined series.
method
polynomial.hermite.Hermite.copy()

Return a copy.
Returns

new_series
[series] Copy of self.

method
polynomial.hermite.Hermite.cutdeg(deg)

Truncate series to the given degree.
Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

Parameters
deg
[non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns
new_series
[series] New instance of series with reduced degree.

method
polynomial.hermite.Hermite.degree()

The degree of the series.
Returns

degree
[int] Degree of the series, one less than the number of coefficients.

Examples

Create a polynomial object for 1 + 7*x + 4*x**2:

>>> poly = np.polynomial.Polynomial([1, 7, 4])
>>> print(poly)
1.0 + 7.0·x + 4.0·x²
>>> poly.degree()
2

Note that this method does not check for non-zero coefficients. You must trim the polynomial to remove any
trailing zeroes:

1.4. Routines and objects by topic 1611

NumPy Reference, Release 2.2.0

>>> poly = np.polynomial.Polynomial([1, 7, 0])
>>> print(poly)
1.0 + 7.0·x + 0.0·x²
>>> poly.degree()
2
>>> poly.trim().degree()
1

method
polynomial.hermite.Hermite.deriv(m=1)

Differentiate.
Return a series instance of that is the derivative of the current series.

Parameters
m
[non-negative int] Find the derivative of order m.

Returns
new_series
[series] A new series representing the derivative. The domain is the same as the domain of
the differentiated series.

method
classmethod polynomial.hermite.Hermite.fit(x, y, deg, domain=None, rcond=None,

full=False, w=None, window=None,
symbol='x')

Least squares fit to data.
Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,)] y-coordinates of the M sample points (x[i], y[i]).

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

domain
[{None, [beg, end], []}, optional] Domain to use for the returned series. If None, then a
minimal domain that covers the points x is chosen. If [] the class domain is used. The
default value was the class domain in NumPy 1.4 and None in later versions. The [] option
was added in numpy 1.5.0.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps
is the relative precision of the float type, about 2e-16 in most cases.

1612 1. Python API

NumPy Reference, Release 2.2.0

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the
unsquared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that
the errors of the products w[i]*y[i] all have the same variance. When using inverse-
variance weighting, use w[i] = 1/sigma(y[i]). The default value is None.

window
[{[beg, end]}, optional]Window to use for the returned series. The default value is the default
class domain

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] A series that represents the least squares fit to the data and has the domain andwindow
specified in the call. If the coefficients for the unscaled and unshifted basis polynomials are
of interest, do new_series.convert().coef.

[resid, rank, sv, rcond]
[list] These values are only returned if full == True

• resid – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• sv – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see linalg.lstsq.

method
classmethod polynomial.hermite.Hermite.fromroots(roots, domain=[], window=None,

symbol='x')

Return series instance that has the specified roots.
Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots
[array_like] List of roots.

domain
[{[], None, array_like}, optional] Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the domain is the class domain. The default
is [].

window
[{None, array_like}, optional] Window for the returned series. If None the class window is
used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

1.4. Routines and objects by topic 1613

NumPy Reference, Release 2.2.0

Returns
new_series
[series] Series with the specified roots.

method
polynomial.hermite.Hermite.has_samecoef(other)

Check if coefficients match.
Parameters

other
[class instance] The other class must have the coef attribute.

Returns
bool
[boolean] True if the coefficients are the same, False otherwise.

method
polynomial.hermite.Hermite.has_samedomain(other)

Check if domains match.
Parameters

other
[class instance] The other class must have the domain attribute.

Returns
bool
[boolean] True if the domains are the same, False otherwise.

method
polynomial.hermite.Hermite.has_sametype(other)

Check if types match.
Parameters

other
[object] Class instance.

Returns
bool
[boolean] True if other is same class as self

method
polynomial.hermite.Hermite.has_samewindow(other)

Check if windows match.
Parameters

other
[class instance] The other class must have the window attribute.

Returns
bool
[boolean] True if the windows are the same, False otherwise.

method

1614 1. Python API

NumPy Reference, Release 2.2.0

classmethod polynomial.hermite.Hermite.identity(domain=None, window=None,
symbol='x')

Identity function.
If p is the returned series, then p(x) == x for all values of x.

Parameters
domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series of representing the identity.

method
polynomial.hermite.Hermite.integ(m=1, k=[], lbnd=None)

Integrate.
Return a series instance that is the definite integral of the current series.

Parameters
m
[non-negative int] The number of integrations to perform.

k
[array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length and
any missing values are set to zero.

lbnd
[Scalar] The lower bound of the definite integral.

Returns
new_series
[series] A new series representing the integral. The domain is the same as the domain of the
integrated series.

method
polynomial.hermite.Hermite.linspace(n=100, domain=None)

Return x, y values at equally spaced points in domain.
Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial at
the points x. By default the domain is the same as that of the series instance. This method is intended mostly
as a plotting aid.

Parameters

1.4. Routines and objects by topic 1615

NumPy Reference, Release 2.2.0

n
[int, optional] Number of point pairs to return. The default value is 100.

domain
[{None, array_like}, optional] If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end]. The default is None which case
the class domain is used.

Returns
x, y
[ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated
at element of x.

method
polynomial.hermite.Hermite.mapparms()

Return the mapping parameters.
The returned values define a linear map off + scl*x that is applied to the input arguments before the
series is evaluated. The map depends on the domain and window; if the current domain is equal to the
window the resulting map is the identity. If the coefficients of the series instance are to be used by themselves
outside this class, then the linear function must be substituted for the x in the standard representation of the
base polynomials.

Returns
off, scl
[float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

method
polynomial.hermite.Hermite.roots()

Return the roots of the series polynomial.
Compute the roots for the series. Note that the accuracy of the roots decreases the further outside thedomain
they lie.

Returns
roots
[ndarray] Array containing the roots of the series.

method
polynomial.hermite.Hermite.trim(tol=0)

Remove trailing coefficients
Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the beginning
of the series is reached. If all the coefficients would be removed the series is set to [0]. A new series instance
is returned with the new coefficients. The current instance remains unchanged.

Parameters

1616 1. Python API

NumPy Reference, Release 2.2.0

tol
[non-negative number.] All trailing coefficients less than tol will be removed.

Returns
new_series
[series] New instance of series with trimmed coefficients.

method
polynomial.hermite.Hermite.truncate(size)

Truncate series to length size.
Reduce the series to length size by discarding the high degree terms. The value of sizemust be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very small.

Parameters
size
[positive int] The series is reduced to length size by discarding the high degree terms. The
value of size must be a positive integer.

Returns
new_series
[series] New instance of series with truncated coefficients.

Constants

hermdomain An array object represents a multidimensional, homoge-
neous array of fixed-size items.

hermzero An array object represents a multidimensional, homoge-
neous array of fixed-size items.

hermone An array object represents a multidimensional, homoge-
neous array of fixed-size items.

hermx An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polynomial.hermite.hermdomain = array([-1., 1.])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.

1.4. Routines and objects by topic 1617

NumPy Reference, Release 2.2.0

offset
[int, optional] Offset of array data in buffer.

strides
[tuple of ints, optional] Strides of data in memory.

order
[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.

1618 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

data
[buffer] The array’s elements, in memory.

dtype
[dtype object] Describes the format of the elements in the array.

flags
[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.hermite.hermzero = array([0])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters

1.4. Routines and objects by topic 1619

NumPy Reference, Release 2.2.0

(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

1620 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

1.4. Routines and objects by topic 1621

NumPy Reference, Release 2.2.0

polynomial.hermite.hermone = array([1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

1622 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For

1.4. Routines and objects by topic 1623

NumPy Reference, Release 2.2.0

example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.hermite.hermx = array([0. , 0.5])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

1624 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

1.4. Routines and objects by topic 1625

NumPy Reference, Release 2.2.0

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

Arithmetic

hermadd(c1, c2) Add one Hermite series to another.
hermsub(c1, c2) Subtract one Hermite series from another.
hermmulx(c) Multiply a Hermite series by x.
hermmul(c1, c2) Multiply one Hermite series by another.
hermdiv(c1, c2) Divide one Hermite series by another.
hermpow(c, pow[, maxpower]) Raise a Hermite series to a power.
hermval(x, c[, tensor]) Evaluate an Hermite series at points x.
hermval2d(x, y, c) Evaluate a 2-D Hermite series at points (x, y).
hermval3d(x, y, z, c) Evaluate a 3-D Hermite series at points (x, y, z).
hermgrid2d(x, y, c) Evaluate a 2-D Hermite series on the Cartesian product

of x and y.
hermgrid3d(x, y, z, c) Evaluate a 3-D Hermite series on the Cartesian product

of x, y, and z.

polynomial.hermite.hermadd(c1, c2)
Add one Hermite series to another.
Returns the sum of two Hermite series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Hermite series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the Hermite series of their sum.

See also:

hermsub, hermmulx, hermmul, hermdiv, hermpow

1626 1. Python API

NumPy Reference, Release 2.2.0

Notes

Unlikemultiplication, division, etc., the sum of twoHermite series is a Hermite series (without having to “reproject”
the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial.hermite import hermadd
>>> hermadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

polynomial.hermite.hermsub(c1, c2)
Subtract one Hermite series from another.
Returns the difference of two Hermite series c1 - c2. The sequences of coefficients are from lowest order term to
highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Hermite series coefficients ordered from low to high.
Returns

out
[ndarray] Of Hermite series coefficients representing their difference.

See also:

hermadd, hermmulx, hermmul, hermdiv, hermpow

Notes

Unlike multiplication, division, etc., the difference of two Hermite series is a Hermite series (without having to “re-
project” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial.hermite import hermsub
>>> hermsub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

polynomial.hermite.hermmulx(c)
Multiply a Hermite series by x.
Multiply the Hermite series c by x, where x is the independent variable.

Parameters
c

[array_like] 1-D array of Hermite series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the result of the multiplication.

1.4. Routines and objects by topic 1627

NumPy Reference, Release 2.2.0

See also:

hermadd, hermsub, hermmul, hermdiv, hermpow

Notes

The multiplication uses the recursion relationship for Hermite polynomials in the form

xPi(x) = (Pi+1(x)/2 + i ∗ Pi−1(x))

Examples

>>> from numpy.polynomial.hermite import hermmulx
>>> hermmulx([1, 2, 3])
array([2. , 6.5, 1. , 1.5])

polynomial.hermite.hermmul(c1, c2)
Multiply one Hermite series by another.
Returns the product of two Hermite series c1 * c2. The arguments are sequences of coefficients, from lowest order
“term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Hermite series coefficients ordered from low to high.
Returns

out
[ndarray] Of Hermite series coefficients representing their product.

See also:

hermadd, hermsub, hermmulx, hermdiv, hermpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Hermite polynomial basis
set. Thus, to express the product as a Hermite series, it is necessary to “reproject” the product onto said basis set,
which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermmul
>>> hermmul([1, 2, 3], [0, 1, 2])
array([52., 29., 52., 7., 6.])

polynomial.hermite.hermdiv(c1, c2)
Divide one Hermite series by another.
Returns the quotient-with-remainder of two Hermite series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

1628 1. Python API

NumPy Reference, Release 2.2.0

Parameters
c1, c2

[array_like] 1-D arrays of Hermite series coefficients ordered from low to high.
Returns

[quo, rem]
[ndarrays] Of Hermite series coefficients representing the quotient and remainder.

See also:

hermadd, hermsub, hermmulx, hermmul, hermpow

Notes

In general, the (polynomial) division of one Hermite series by another results in quotient and remainder terms that
are not in the Hermite polynomial basis set. Thus, to express these results as a Hermite series, it is necessary
to “reproject” the results onto the Hermite basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermdiv
>>> hermdiv([52., 29., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> hermdiv([54., 31., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([2., 2.]))
>>> hermdiv([53., 30., 52., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 1.]))

polynomial.hermite.hermpow(c, pow, maxpower=16)
Raise a Hermite series to a power.
Returns the Hermite series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters
c

[array_like] 1-D array of Hermite series coefficients ordered from low to high.
pow

[integer] Power to which the series will be raised
maxpower

[integer, optional] Maximum power allowed. This is mainly to limit growth of the series to
unmanageable size. Default is 16

Returns
coef

[ndarray] Hermite series of power.
See also:

hermadd, hermsub, hermmulx, hermmul, hermdiv

1.4. Routines and objects by topic 1629

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.hermite import hermpow
>>> hermpow([1, 2, 3], 2)
array([81., 52., 82., 12., 9.])

polynomial.hermite.hermval(x, c, tensor=True)
Evaluate an Hermite series at points x.
If c is of length n + 1, this function returns the value:

p(x) = c0 ∗H0(x) + c1 ∗H1(x) + ...+ cn ∗Hn(x)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of c.
If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the shape
will be c.shape[1:]. Note that scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.

Parameters
x

[array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise it
is left unchanged and treated as a scalar. In either case, x or its elements must support addition
and multiplication with themselves and with the elements of c.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polyno-
mials. In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor
[boolean, optional] If True, the shape of the coefficient array is extended with ones on the right,
one for each dimension of x. Scalars have dimension 0 for this action. The result is that every
column of coefficients in c is evaluated for every element of x. If False, x is broadcast over
the columns of c for the evaluation. This keyword is useful when c is multidimensional. The
default value is True.

Returns
values

[ndarray, algebra_like] The shape of the return value is described above.
See also:

hermval2d, hermgrid2d, hermval3d, hermgrid3d

1630 1. Python API

NumPy Reference, Release 2.2.0

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.hermite import hermval
>>> coef = [1,2,3]
>>> hermval(1, coef)
11.0
>>> hermval([[1,2],[3,4]], coef)
array([[11., 51.],

[115., 203.]])

polynomial.hermite.hermval2d(x, y, c)
Evaluate a 2-D Hermite series at points (x, y).
This function returns the values:

p(x, y) =
∑
i,j

ci,j ∗Hi(x) ∗Hj(y)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be c.shape[2:]
+ x.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points formed
with pairs of corresponding values from x and y.

See also:

hermval, hermgrid2d, hermval3d, hermgrid3d

1.4. Routines and objects by topic 1631

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.hermite import hermval2d
>>> x = [1, 2]
>>> y = [4, 5]
>>> c = [[1, 2, 3], [4, 5, 6]]
>>> hermval2d(x, y, c)
array([1035., 2883.])

polynomial.hermite.hermval3d(x, y, z, c)
Evaluate a 3-D Hermite series at points (x, y, z).
This function returns the values:

p(x, y, z) =
∑
i,j,k

ci,j,k ∗Hi(x) ∗Hj(y) ∗Hk(z)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result
will be c.shape[3:] + x.shape.

Parameters
x, y, z

[array_like, compatible object] The three dimensional series is evaluated at the points (x, y,
z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as
a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the multidimensional polynomial on points formed
with triples of corresponding values from x, y, and z.

See also:

hermval, hermval2d, hermgrid2d, hermgrid3d

Examples

>>> from numpy.polynomial.hermite import hermval3d
>>> x = [1, 2]
>>> y = [4, 5]
>>> z = [6, 7]
>>> c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]
>>> hermval3d(x, y, z, c)
array([40077., 120131.])

1632 1. Python API

NumPy Reference, Release 2.2.0

polynomial.hermite.hermgrid2d(x, y, c)
Evaluate a 2-D Hermite series on the Cartesian product of x and y.
This function returns the values:

p(a, b) =
∑
i,j

ci,j ∗Hi(a) ∗Hj(b)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.
The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars.
In either case, either x and y or their elements must support multiplication and addition both with themselves and
with the elements of c.
If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the result
will be c.shape[2:] + x.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

hermval, hermval2d, hermval3d, hermgrid3d

Examples

>>> from numpy.polynomial.hermite import hermgrid2d
>>> x = [1, 2, 3]
>>> y = [4, 5]
>>> c = [[1, 2, 3], [4, 5, 6]]
>>> hermgrid2d(x, y, c)
array([[1035., 1599.],

[1867., 2883.],
[2699., 4167.]])

polynomial.hermite.hermgrid3d(x, y, z, c)
Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.
This function returns the values:

p(a, b, c) =
∑
i,j,k

ci,j,k ∗Hi(a) ∗Hj(b) ∗Hk(c)

1.4. Routines and objects by topic 1633

NumPy Reference, Release 2.2.0

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.
The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.
If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z

[array_like, compatible objects] The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x, y, or z is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

hermval, hermval2d, hermgrid2d, hermval3d

Examples

>>> from numpy.polynomial.hermite import hermgrid3d
>>> x = [1, 2]
>>> y = [4, 5]
>>> z = [6, 7]
>>> c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]
>>> hermgrid3d(x, y, z, c)
array([[[40077., 54117.],

[49293., 66561.]],
[[72375., 97719.],
[88975., 120131.]]])

Calculus

hermder(c[, m, scl, axis]) Differentiate a Hermite series.
hermint(c[, m, k, lbnd, scl, axis]) Integrate a Hermite series.

polynomial.hermite.hermder(c, m=1, scl=1, axis=0)
Differentiate a Hermite series.
Returns the Hermite series coefficients c differentiated m times along axis. At each iteration the result is multiplied
by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients from low

1634 1. Python API

NumPy Reference, Release 2.2.0

to high degree along each axis, e.g., [1,2,3] represents the series 1*H_0 + 2*H_1 + 3*H_2 while [[1,2],[1,2]]
represents1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)
if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] Array of Hermite series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

m
[int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl
[scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication by
scl**m. This is for use in a linear change of variable. (Default: 1)

axis
[int, optional] Axis over which the derivative is taken. (Default: 0).

Returns
der

[ndarray] Hermite series of the derivative.
See also:

hermint

Notes

In general, the result of differentiating a Hermite series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermder
>>> hermder([1. , 0.5, 0.5, 0.5])
array([1., 2., 3.])
>>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2)
array([1., 2., 3.])

polynomial.hermite.hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Hermite series.
Returns the Hermite series coefficients c integrated m times from lbnd along axis. At each iteration the resulting
series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change
of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the reciprocal
of what one might expect; for more information, see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series H_0 + 2*H_1 + 3*H_2
while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] Array of Hermite series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

1.4. Routines and objects by topic 1635

NumPy Reference, Release 2.2.0

m
[int, optional] Order of integration, must be positive. (Default: 1)

k
[{[], list, scalar}, optional] Integration constant(s). The value of the first integral at lbnd is
the first value in the list, the value of the second integral at lbnd is the second value, etc. If
k == [] (the default), all constants are set to zero. If m == 1, a single scalar can be given
instead of a list.

lbnd
[scalar, optional] The lower bound of the integral. (Default: 0)

scl
[scalar, optional] Following each integration the result ismultiplied by scl before the integration
constant is added. (Default: 1)

axis
[int, optional] Axis over which the integral is taken. (Default: 0).

Returns
S

[ndarray] Hermite series coefficients of the integral.
Raises

ValueError
If m < 0, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) != 0.

See also:

hermder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable u = ax+ b in an integral relative to x. Then dx = du/a, so one will need to set scl equal
to 1/a - perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis set.
Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite import hermint
>>> hermint([1,2,3]) # integrate once, value 0 at 0.
array([1. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625]) # may␣
↪→vary
>>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
array([2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
array([-2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
array([1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625]) # may␣
↪→vary

1636 1. Python API

NumPy Reference, Release 2.2.0

Misc Functions

hermfromroots(roots) Generate a Hermite series with given roots.
hermroots(c) Compute the roots of a Hermite series.
hermvander(x, deg) Pseudo-Vandermonde matrix of given degree.
hermvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
hermvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.
hermgauss(deg) Gauss-Hermite quadrature.
hermweight(x) Weight function of the Hermite polynomials.
hermcompanion(c) Return the scaled companion matrix of c.
hermfit(x, y, deg[, rcond, full, w]) Least squares fit of Hermite series to data.
hermtrim(c[, tol]) Remove "small" "trailing" coefficients from a polynomial.
hermline(off, scl) Hermite series whose graph is a straight line.
herm2poly(c) Convert a Hermite series to a polynomial.
poly2herm(pol) Convert a polynomial to a Hermite series.

polynomial.hermite.hermfromroots(roots)
Generate a Hermite series with given roots.
The function returns the coefficients of the polynomial

p(x) = (x− r0) ∗ (x− r1) ∗ ... ∗ (x− rn),

in Hermite form, where the rn are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots
looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.
If the returned coefficients are c, then

p(x) = c0 + c1 ∗H1(x) + ...+ cn ∗Hn(x)

The coefficient of the last term is not generally 1 for monic polynomials in Hermite form.
Parameters

roots
[array_like] Sequence containing the roots.

Returns
out

[ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of the
roots are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

numpy.polynomial.polynomial.polyfromroots
numpy.polynomial.legendre.legfromroots
numpy.polynomial.laguerre.lagfromroots
numpy.polynomial.chebyshev.chebfromroots
numpy.polynomial.hermite_e.hermefromroots

1.4. Routines and objects by topic 1637

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.hermite import hermfromroots, hermval
>>> coef = hermfromroots((-1, 0, 1))
>>> hermval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = hermfromroots((-1j, 1j))
>>> hermval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

polynomial.hermite.hermroots(c)
Compute the roots of a Hermite series.
Return the roots (a.k.a. “zeros”) of the polynomial

p(x) =
∑
i

c[i] ∗Hi(x).

Parameters
c

[1-D array_like] 1-D array of coefficients.
Returns

out
[ndarray] Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

numpy.polynomial.polynomial.polyroots
numpy.polynomial.legendre.legroots
numpy.polynomial.laguerre.lagroots
numpy.polynomial.chebyshev.chebroots
numpy.polynomial.hermite_e.hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companionmatrix, Roots far from the origin of the complex
plane may have large errors due to the numerical instability of the series for such values. Roots with multiplicity
greater than 1 will also show larger errors as the value of the series near such points is relatively insensitive to errors
in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s method.
The Hermite series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.hermite import hermroots, hermfromroots
>>> coef = hermfromroots([-1, 0, 1])
>>> coef
array([0. , 0.25 , 0. , 0.125])
>>> hermroots(coef)
array([-1.00000000e+00, -1.38777878e-17, 1.00000000e+00])

1638 1. Python API

NumPy Reference, Release 2.2.0

polynomial.hermite.hermvander(x, deg)
Pseudo-Vandermonde matrix of given degree.
Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is
defined by

V [..., i] = Hi(x),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Hermite polynomial.
If c is a 1-D array of coefficients of length n + 1 and V is the array V = hermvander(x, n), then np.
dot(V, c) and hermval(x, c) are the same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of Hermite series of the same degree and sample points.

Parameters
x

[array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg
[int] Degree of the resulting matrix.

Returns
vander

[ndarray] The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding Hermite polynomial.
The dtype will be the same as the converted x.

Examples

>>> import numpy as np
>>> from numpy.polynomial.hermite import hermvander
>>> x = np.array([-1, 0, 1])
>>> hermvander(x, 3)
array([[1., -2., 2., 4.],

[1., 0., -2., -0.],
[1., 2., 2., -4.]])

polynomial.hermite.hermvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

V [..., (deg[1] + 1) ∗ i+ j] = Hi(x) ∗Hj(y),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y)
and the last index encodes the degrees of the Hermite polynomials.
If V = hermvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

c00, c01, c02..., c10, c11, c12...

and np.dot(V, c.flat) and hermval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Hermite series of the same
degrees and sample points.

1.4. Routines and objects by topic 1639

NumPy Reference, Release 2.2.0

Parameters
x, y

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1). The dtype will be the same as the converted x and y.

See also:

hermvander, hermvander3d, hermval2d, hermval3d

Examples

>>> import numpy as np
>>> from numpy.polynomial.hermite import hermvander2d
>>> x = np.array([-1, 0, 1])
>>> y = np.array([-1, 0, 1])
>>> hermvander2d(x, y, [2, 2])
array([[1., -2., 2., -2., 4., -4., 2., -4., 4.],

[1., 0., -2., 0., 0., -0., -2., -0., 4.],
[1., 2., 2., 2., 4., 4., 2., 4., 4.]])

polynomial.hermite.hermvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

V [..., (m+ 1)(n+ 1)i+ (n+ 1)j + k] = Hi(x) ∗Hj(y) ∗Hk(z),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x,
y, z) and the last index encodes the degrees of the Hermite polynomials.
If V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

c000, c001, c002, ..., c010, c011, c012, ...

andnp.dot(V, c.flat) andhermval3d(x, y, z, c)will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 3-D Hermite series of the same
degrees and sample points.

Parameters
x, y, z

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

1640 1. Python API

NumPy Reference, Release 2.2.0

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1) ∗ (deg[2] + 1). The dtype will be the same as the converted x, y,
and z.

See also:

hermvander, hermvander3d, hermval2d, hermval3d

Examples

>>> from numpy.polynomial.hermite import hermvander3d
>>> x = np.array([-1, 0, 1])
>>> y = np.array([-1, 0, 1])
>>> z = np.array([-1, 0, 1])
>>> hermvander3d(x, y, z, [0, 1, 2])
array([[1., -2., 2., -2., 4., -4.],

[1., 0., -2., 0., 0., -0.],
[1., 2., 2., 2., 4., 4.]])

polynomial.hermite.hermgauss(deg)
Gauss-Hermite quadrature.
Computes the sample points and weights for Gauss-Hermite quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 ∗ deg − 1 or less over the interval [− inf, inf] with the weight function
f(x) = exp(−x2).

Parameters
deg

[int] Number of sample points and weights. It must be >= 1.
Returns

x
[ndarray] 1-D ndarray containing the sample points.

y
[ndarray] 1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are determined
by using the fact that

wk = c/(H ′
n(xk) ∗Hn−1(xk))

where c is a constant independent of k and xk is the k’th root of Hn, and then scaling the results to get the right
value when integrating 1.

1.4. Routines and objects by topic 1641

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.hermite import hermgauss
>>> hermgauss(2)
(array([-0.70710678, 0.70710678]), array([0.88622693, 0.88622693]))

polynomial.hermite.hermweight(x)
Weight function of the Hermite polynomials.
The weight function is exp(−x2) and the interval of integration is [− inf, inf]. the Hermite polynomials are or-
thogonal, but not normalized, with respect to this weight function.

Parameters
x

[array_like] Values at which the weight function will be computed.
Returns

w
[ndarray] The weight function at x.

Examples

>>> import numpy as np
>>> from numpy.polynomial.hermite import hermweight
>>> x = np.arange(-2, 2)
>>> hermweight(x)
array([0.01831564, 0.36787944, 1. , 0.36787944])

polynomial.hermite.hermcompanion(c)
Return the scaled companion matrix of c.
The basis polynomials are scaled so that the companion matrix is symmetric when c is an Hermite basis polynomial.
This provides better eigenvalue estimates than the unscaled case and for basis polynomials the eigenvalues are
guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters
c

[array_like] 1-D array of Hermite series coefficients ordered from low to high degree.
Returns

mat
[ndarray] Scaled companion matrix of dimensions (deg, deg).

Examples

>>> from numpy.polynomial.hermite import hermcompanion
>>> hermcompanion([1, 0, 1])
array([[0. , 0.35355339],

[0.70710678, 0.]])

1642 1. Python API

NumPy Reference, Release 2.2.0

polynomial.hermite.hermfit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Hermite series to data.
Return the coefficients of a Hermite series of degree deg that is the least squares fit to the data values y given at
points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each column
of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted polynomial(s)
are in the form

p(x) = c0 + c1 ∗H1(x) + ...+ cn ∗Hn(x),

where n is deg.
Parameters

x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the un-
squared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. When using inverse-variance
weighting, use w[i] = 1/sigma(y[i]). The default value is None.

Returns
coef

[ndarray, shape (M,) or (M, K)] Hermite coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column k.

[residuals, rank, singular_values, rcond]
[list] These values are only returned if full == True

• residuals – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• singular_values – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see numpy.linalg.lstsq.

Warns

1.4. Routines and objects by topic 1643

NumPy Reference, Release 2.2.0

RankWarning
The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised
if full == False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See also:

numpy.polynomial.chebyshev.chebfit
numpy.polynomial.legendre.legfit
numpy.polynomial.laguerre.lagfit
numpy.polynomial.polynomial.polyfit
numpy.polynomial.hermite_e.hermefit
hermval

Evaluates a Hermite series.
hermvander

Vandermonde matrix of Hermite series.
hermweight

Hermite weight function
numpy.linalg.lstsq

Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline

Computes spline fits.

Notes

The solution is the coefficients of the Hermite series p that minimizes the sum of the weighted squared errors

E =
∑
j

w2
j ∗ |yj − p(xj)|2,

where the wj are the weights. This problem is solved by setting up the (typically) overdetermined matrix equation

V (x) ∗ c = w ∗ y,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the weights,
y are the observed values. This equation is then solved using the singular value decomposition of V.
If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued.
This means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of
the warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.
Fits using Hermite series are probably most useful when the data can be approximated by sqrt(w(x)) * p(x),
where w(x) is the Hermite weight. In that case the weight sqrt(w(x[i])) should be used together with data
values y[i]/sqrt(w(x[i])). The weight function is available as hermweight.

1644 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 2.2.0

References

[1]

Examples

>>> import numpy as np
>>> from numpy.polynomial.hermite import hermfit, hermval
>>> x = np.linspace(-10, 10)
>>> rng = np.random.default_rng()
>>> err = rng.normal(scale=1./10, size=len(x))
>>> y = hermval(x, [1, 2, 3]) + err
>>> hermfit(x, y, 2)
array([1.02294967, 2.00016403, 2.99994614]) # may vary

polynomial.hermite.hermtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.
“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4) both
the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c

[array_like] 1-d array of coefficients, ordered from lowest order to highest.
tol

[number, optional] Trailing (i.e., highest order) elements with absolute value less than or equal
to tol (default value is zero) are removed.

Returns
trimmed

[ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.001 -0.001j])

polynomial.hermite.hermline(off, scl)
Hermite series whose graph is a straight line.

Parameters

1.4. Routines and objects by topic 1645

NumPy Reference, Release 2.2.0

off, scl
[scalars] The specified line is given by off + scl*x.

Returns
y

[ndarray] This module’s representation of the Hermite series for off + scl*x.
See also:

numpy.polynomial.polynomial.polyline
numpy.polynomial.chebyshev.chebline
numpy.polynomial.legendre.legline
numpy.polynomial.laguerre.lagline
numpy.polynomial.hermite_e.hermeline

Examples

>>> from numpy.polynomial.hermite import hermline, hermval
>>> hermval(0,hermline(3, 2))
3.0
>>> hermval(1,hermline(3, 2))
5.0

polynomial.hermite.herm2poly(c)
Convert a Hermite series to a polynomial.
Convert an array representing the coefficients of a Hermite series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters
c

[array_like] 1-D array containing the Hermite series coefficients, ordered from lowest order
term to highest.

Returns
pol

[ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2herm

1646 1. Python API

NumPy Reference, Release 2.2.0

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite import herm2poly
>>> herm2poly([1. , 2.75 , 0.5 , 0.375])
array([0., 1., 2., 3.])

polynomial.hermite.poly2herm(pol)
Convert a polynomial to a Hermite series.
Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from lowest
degree to highest, to an array of the coefficients of the equivalent Hermite series, ordered from lowest to highest
degree.

Parameters
pol

[array_like] 1-D array containing the polynomial coefficients
Returns

c
[ndarray] 1-D array containing the coefficients of the equivalent Hermite series.

See also:

herm2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite import poly2herm
>>> poly2herm(np.arange(4))
array([1. , 2.75 , 0.5 , 0.375])

See also

numpy.polynomial

1.4. Routines and objects by topic 1647

NumPy Reference, Release 2.2.0

HermiteE Series, “Probabilists” (numpy.polynomial.hermite_e)
This module provides a number of objects (mostly functions) useful for dealing with Hermite_e series, including a Her-
miteE class that encapsulates the usual arithmetic operations. (General information on how this module represents and
works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Classes

HermiteE(coef[, domain, window, symbol]) An HermiteE series class.

class numpy.polynomial.hermite_e.HermiteE(coef, domain=None, window=None, symbol='x')
An HermiteE series class.
The HermiteE class provides the standard Python numerical methods ‘+’, ‘-’, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as
well as the attributes and methods listed below.

Parameters
coef

[array_like] HermiteE coefficients in order of increasing degree, i.e, (1, 2, 3) gives
1*He_0(x) + 2*He_1(X) + 3*He_2(x).

domain
[(2,) array_like, optional] Domain to use. The interval [domain[0], domain[1]] is
mapped to the interval [window[0], window[1]] by shifting and scaling. The default
value is [-1., 1.].

window
[(2,) array_like, optional] Window, see domain for its use. The default value is [-1., 1.].

symbol
[str, optional] Symbol used to represent the independent variable in string representations of
the polynomial expression, e.g. for printing. The symbol must be a valid Python identifier.
Default value is ‘x’.
New in version 1.24.

Attributes
symbol

1648 1. Python API

NumPy Reference, Release 2.2.0

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window, symbol]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, ...]) Least squares fit to data.
fromroots(roots[, domain, window, symbol]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window, symbol]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

method
polynomial.hermite_e.HermiteE.__call__(arg)

Call self as a function.
method
classmethod polynomial.hermite_e.HermiteE.basis(deg, domain=None, window=None,

symbol='x')

Series basis polynomial of degree deg.
Returns the series representing the basis polynomial of degree deg.

Parameters
deg
[int] Degree of the basis polynomial for the series. Must be >= 0.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns

1.4. Routines and objects by topic 1649

NumPy Reference, Release 2.2.0

new_series
[series] A series with the coefficient of the deg term set to one and all others zero.

method
classmethod polynomial.hermite_e.HermiteE.cast(series, domain=None, window=None)

Convert series to series of this class.
The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

Parameters
series
[series] The series instance to be converted.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

Returns
new_series
[series] A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

method
polynomial.hermite_e.HermiteE.convert(domain=None, kind=None, window=None)

Convert series to a different kind and/or domain and/or window.
Parameters

domain
[array_like, optional] The domain of the converted series. If the value is None, the default
domain of kind is used.

kind
[class, optional] The polynomial series type class to which the current instance should be
converted. If kind is None, then the class of the current instance is used.

window
[array_like, optional] The window of the converted series. If the value is None, the default
window of kind is used.

Returns
new_series
[series] The returned class can be of different type than the current instance and/or have a
different domain and/or different window.

1650 1. Python API

NumPy Reference, Release 2.2.0

Notes

Conversion between domains and class types can result in numerically ill defined series.
method
polynomial.hermite_e.HermiteE.copy()

Return a copy.
Returns

new_series
[series] Copy of self.

method
polynomial.hermite_e.HermiteE.cutdeg(deg)

Truncate series to the given degree.
Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

Parameters
deg
[non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns
new_series
[series] New instance of series with reduced degree.

method
polynomial.hermite_e.HermiteE.degree()

The degree of the series.
Returns

degree
[int] Degree of the series, one less than the number of coefficients.

Examples

Create a polynomial object for 1 + 7*x + 4*x**2:

>>> poly = np.polynomial.Polynomial([1, 7, 4])
>>> print(poly)
1.0 + 7.0·x + 4.0·x²
>>> poly.degree()
2

Note that this method does not check for non-zero coefficients. You must trim the polynomial to remove any
trailing zeroes:

>>> poly = np.polynomial.Polynomial([1, 7, 0])
>>> print(poly)
1.0 + 7.0·x + 0.0·x²

(continues on next page)

1.4. Routines and objects by topic 1651

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> poly.degree()
2
>>> poly.trim().degree()
1

method
polynomial.hermite_e.HermiteE.deriv(m=1)

Differentiate.
Return a series instance of that is the derivative of the current series.

Parameters
m
[non-negative int] Find the derivative of order m.

Returns
new_series
[series] A new series representing the derivative. The domain is the same as the domain of
the differentiated series.

method
classmethod polynomial.hermite_e.HermiteE.fit(x, y, deg, domain=None, rcond=None,

full=False, w=None, window=None,
symbol='x')

Least squares fit to data.
Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,)] y-coordinates of the M sample points (x[i], y[i]).

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

domain
[{None, [beg, end], []}, optional] Domain to use for the returned series. If None, then a
minimal domain that covers the points x is chosen. If [] the class domain is used. The
default value was the class domain in NumPy 1.4 and None in later versions. The [] option
was added in numpy 1.5.0.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps
is the relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

1652 1. Python API

NumPy Reference, Release 2.2.0

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the
unsquared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that
the errors of the products w[i]*y[i] all have the same variance. When using inverse-
variance weighting, use w[i] = 1/sigma(y[i]). The default value is None.

window
[{[beg, end]}, optional]Window to use for the returned series. The default value is the default
class domain

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] A series that represents the least squares fit to the data and has the domain andwindow
specified in the call. If the coefficients for the unscaled and unshifted basis polynomials are
of interest, do new_series.convert().coef.

[resid, rank, sv, rcond]
[list] These values are only returned if full == True

• resid – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• sv – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see linalg.lstsq.

method
classmethod polynomial.hermite_e.HermiteE.fromroots(roots, domain=[], window=None,

symbol='x')

Return series instance that has the specified roots.
Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots
[array_like] List of roots.

domain
[{[], None, array_like}, optional] Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the domain is the class domain. The default
is [].

window
[{None, array_like}, optional] Window for the returned series. If None the class window is
used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series with the specified roots.

1.4. Routines and objects by topic 1653

NumPy Reference, Release 2.2.0

method
polynomial.hermite_e.HermiteE.has_samecoef(other)

Check if coefficients match.
Parameters

other
[class instance] The other class must have the coef attribute.

Returns
bool
[boolean] True if the coefficients are the same, False otherwise.

method
polynomial.hermite_e.HermiteE.has_samedomain(other)

Check if domains match.
Parameters

other
[class instance] The other class must have the domain attribute.

Returns
bool
[boolean] True if the domains are the same, False otherwise.

method
polynomial.hermite_e.HermiteE.has_sametype(other)

Check if types match.
Parameters

other
[object] Class instance.

Returns
bool
[boolean] True if other is same class as self

method
polynomial.hermite_e.HermiteE.has_samewindow(other)

Check if windows match.
Parameters

other
[class instance] The other class must have the window attribute.

Returns
bool
[boolean] True if the windows are the same, False otherwise.

method

1654 1. Python API

NumPy Reference, Release 2.2.0

classmethod polynomial.hermite_e.HermiteE.identity(domain=None, window=None,
symbol='x')

Identity function.
If p is the returned series, then p(x) == x for all values of x.

Parameters
domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series of representing the identity.

method
polynomial.hermite_e.HermiteE.integ(m=1, k=[], lbnd=None)

Integrate.
Return a series instance that is the definite integral of the current series.

Parameters
m
[non-negative int] The number of integrations to perform.

k
[array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length and
any missing values are set to zero.

lbnd
[Scalar] The lower bound of the definite integral.

Returns
new_series
[series] A new series representing the integral. The domain is the same as the domain of the
integrated series.

method
polynomial.hermite_e.HermiteE.linspace(n=100, domain=None)

Return x, y values at equally spaced points in domain.
Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial at
the points x. By default the domain is the same as that of the series instance. This method is intended mostly
as a plotting aid.

Parameters

1.4. Routines and objects by topic 1655

NumPy Reference, Release 2.2.0

n
[int, optional] Number of point pairs to return. The default value is 100.

domain
[{None, array_like}, optional] If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end]. The default is None which case
the class domain is used.

Returns
x, y
[ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated
at element of x.

method
polynomial.hermite_e.HermiteE.mapparms()

Return the mapping parameters.
The returned values define a linear map off + scl*x that is applied to the input arguments before the
series is evaluated. The map depends on the domain and window; if the current domain is equal to the
window the resulting map is the identity. If the coefficients of the series instance are to be used by themselves
outside this class, then the linear function must be substituted for the x in the standard representation of the
base polynomials.

Returns
off, scl
[float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

method
polynomial.hermite_e.HermiteE.roots()

Return the roots of the series polynomial.
Compute the roots for the series. Note that the accuracy of the roots decreases the further outside thedomain
they lie.

Returns
roots
[ndarray] Array containing the roots of the series.

method
polynomial.hermite_e.HermiteE.trim(tol=0)

Remove trailing coefficients
Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the beginning
of the series is reached. If all the coefficients would be removed the series is set to [0]. A new series instance
is returned with the new coefficients. The current instance remains unchanged.

Parameters

1656 1. Python API

NumPy Reference, Release 2.2.0

tol
[non-negative number.] All trailing coefficients less than tol will be removed.

Returns
new_series
[series] New instance of series with trimmed coefficients.

method
polynomial.hermite_e.HermiteE.truncate(size)

Truncate series to length size.
Reduce the series to length size by discarding the high degree terms. The value of sizemust be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very small.

Parameters
size
[positive int] The series is reduced to length size by discarding the high degree terms. The
value of size must be a positive integer.

Returns
new_series
[series] New instance of series with truncated coefficients.

Constants

hermedomain An array object represents a multidimensional, homoge-
neous array of fixed-size items.

hermezero An array object represents a multidimensional, homoge-
neous array of fixed-size items.

hermeone An array object represents a multidimensional, homoge-
neous array of fixed-size items.

hermex An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polynomial.hermite_e.hermedomain = array([-1., 1.])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.

1.4. Routines and objects by topic 1657

NumPy Reference, Release 2.2.0

offset
[int, optional] Offset of array data in buffer.

strides
[tuple of ints, optional] Strides of data in memory.

order
[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.

1658 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

data
[buffer] The array’s elements, in memory.

dtype
[dtype object] Describes the format of the elements in the array.

flags
[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.hermite_e.hermezero = array([0])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters

1.4. Routines and objects by topic 1659

NumPy Reference, Release 2.2.0

(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

1660 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

1.4. Routines and objects by topic 1661

NumPy Reference, Release 2.2.0

polynomial.hermite_e.hermeone = array([1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

1662 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For

1.4. Routines and objects by topic 1663

NumPy Reference, Release 2.2.0

example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.hermite_e.hermex = array([0, 1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

1664 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

1.4. Routines and objects by topic 1665

NumPy Reference, Release 2.2.0

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

Arithmetic

hermeadd(c1, c2) Add one Hermite series to another.
hermesub(c1, c2) Subtract one Hermite series from another.
hermemulx(c) Multiply a Hermite series by x.
hermemul(c1, c2) Multiply one Hermite series by another.
hermediv(c1, c2) Divide one Hermite series by another.
hermepow(c, pow[, maxpower]) Raise a Hermite series to a power.
hermeval(x, c[, tensor]) Evaluate an HermiteE series at points x.
hermeval2d(x, y, c) Evaluate a 2-D HermiteE series at points (x, y).
hermeval3d(x, y, z, c) Evaluate a 3-D Hermite_e series at points (x, y, z).
hermegrid2d(x, y, c) Evaluate a 2-D HermiteE series on the Cartesian product

of x and y.
hermegrid3d(x, y, z, c) Evaluate a 3-D HermiteE series on the Cartesian product

of x, y, and z.

polynomial.hermite_e.hermeadd(c1, c2)
Add one Hermite series to another.
Returns the sum of two Hermite series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Hermite series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the Hermite series of their sum.

See also:

hermesub, hermemulx, hermemul, hermediv, hermepow

1666 1. Python API

NumPy Reference, Release 2.2.0

Notes

Unlikemultiplication, division, etc., the sum of twoHermite series is a Hermite series (without having to “reproject”
the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial.hermite_e import hermeadd
>>> hermeadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

polynomial.hermite_e.hermesub(c1, c2)
Subtract one Hermite series from another.
Returns the difference of two Hermite series c1 - c2. The sequences of coefficients are from lowest order term to
highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Hermite series coefficients ordered from low to high.
Returns

out
[ndarray] Of Hermite series coefficients representing their difference.

See also:

hermeadd, hermemulx, hermemul, hermediv, hermepow

Notes

Unlike multiplication, division, etc., the difference of two Hermite series is a Hermite series (without having to “re-
project” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply “component-
wise.”

Examples

>>> from numpy.polynomial.hermite_e import hermesub
>>> hermesub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

polynomial.hermite_e.hermemulx(c)
Multiply a Hermite series by x.
Multiply the Hermite series c by x, where x is the independent variable.

Parameters
c

[array_like] 1-D array of Hermite series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the result of the multiplication.

1.4. Routines and objects by topic 1667

NumPy Reference, Release 2.2.0

See also:

hermeadd, hermesub, hermemul, hermediv, hermepow

Notes

The multiplication uses the recursion relationship for Hermite polynomials in the form

xPi(x) = (Pi+1(x) + iPi−1(x)))

Examples

>>> from numpy.polynomial.hermite_e import hermemulx
>>> hermemulx([1, 2, 3])
array([2., 7., 2., 3.])

polynomial.hermite_e.hermemul(c1, c2)
Multiply one Hermite series by another.
Returns the product of two Hermite series c1 * c2. The arguments are sequences of coefficients, from lowest order
“term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Hermite series coefficients ordered from low to high.
Returns

out
[ndarray] Of Hermite series coefficients representing their product.

See also:

hermeadd, hermesub, hermemulx, hermediv, hermepow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Hermite polynomial basis
set. Thus, to express the product as a Hermite series, it is necessary to “reproject” the product onto said basis set,
which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermemul
>>> hermemul([1, 2, 3], [0, 1, 2])
array([14., 15., 28., 7., 6.])

polynomial.hermite_e.hermediv(c1, c2)
Divide one Hermite series by another.
Returns the quotient-with-remainder of two Hermite series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

1668 1. Python API

NumPy Reference, Release 2.2.0

Parameters
c1, c2

[array_like] 1-D arrays of Hermite series coefficients ordered from low to high.
Returns

[quo, rem]
[ndarrays] Of Hermite series coefficients representing the quotient and remainder.

See also:

hermeadd, hermesub, hermemulx, hermemul, hermepow

Notes

In general, the (polynomial) division of one Hermite series by another results in quotient and remainder terms that
are not in the Hermite polynomial basis set. Thus, to express these results as a Hermite series, it is necessary
to “reproject” the results onto the Hermite basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermediv
>>> hermediv([14., 15., 28., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> hermediv([15., 17., 28., 7., 6.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 2.]))

polynomial.hermite_e.hermepow(c, pow, maxpower=16)
Raise a Hermite series to a power.
Returns the Hermite series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters
c

[array_like] 1-D array of Hermite series coefficients ordered from low to high.
pow

[integer] Power to which the series will be raised
maxpower

[integer, optional] Maximum power allowed. This is mainly to limit growth of the series to
unmanageable size. Default is 16

Returns
coef

[ndarray] Hermite series of power.
See also:

hermeadd, hermesub, hermemulx, hermemul, hermediv

1.4. Routines and objects by topic 1669

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.hermite_e import hermepow
>>> hermepow([1, 2, 3], 2)
array([23., 28., 46., 12., 9.])

polynomial.hermite_e.hermeval(x, c, tensor=True)
Evaluate an HermiteE series at points x.
If c is of length n + 1, this function returns the value:

p(x) = c0 ∗He0(x) + c1 ∗He1(x) + ...+ cn ∗Hen(x)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of c.
If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the shape
will be c.shape[1:]. Note that scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.

Parameters
x

[array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise it
is left unchanged and treated as a scalar. In either case, x or its elements must support addition
and multiplication with with themselves and with the elements of c.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polyno-
mials. In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor
[boolean, optional] If True, the shape of the coefficient array is extended with ones on the right,
one for each dimension of x. Scalars have dimension 0 for this action. The result is that every
column of coefficients in c is evaluated for every element of x. If False, x is broadcast over
the columns of c for the evaluation. This keyword is useful when c is multidimensional. The
default value is True.

Returns
values

[ndarray, algebra_like] The shape of the return value is described above.
See also:

hermeval2d, hermegrid2d, hermeval3d, hermegrid3d

1670 1. Python API

NumPy Reference, Release 2.2.0

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.hermite_e import hermeval
>>> coef = [1,2,3]
>>> hermeval(1, coef)
3.0
>>> hermeval([[1,2],[3,4]], coef)
array([[3., 14.],

[31., 54.]])

polynomial.hermite_e.hermeval2d(x, y, c)
Evaluate a 2-D HermiteE series at points (x, y).
This function returns the values:

p(x, y) =
∑
i,j

ci,j ∗Hei(x) ∗Hej(y)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be c.shape[2:]
+ x.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points formed
with pairs of corresponding values from x and y.

See also:

hermeval, hermegrid2d, hermeval3d, hermegrid3d

polynomial.hermite_e.hermeval3d(x, y, z, c)
Evaluate a 3-D Hermite_e series at points (x, y, z).
This function returns the values:

p(x, y, z) =
∑
i,j,k

ci,j,k ∗Hei(x) ∗Hej(y) ∗Hek(z)

1.4. Routines and objects by topic 1671

NumPy Reference, Release 2.2.0

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result
will be c.shape[3:] + x.shape.

Parameters
x, y, z

[array_like, compatible object] The three dimensional series is evaluated at the points (x, y,
z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as
a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the multidimensional polynomial on points formed
with triples of corresponding values from x, y, and z.

See also:

hermeval, hermeval2d, hermegrid2d, hermegrid3d

polynomial.hermite_e.hermegrid2d(x, y, c)
Evaluate a 2-D HermiteE series on the Cartesian product of x and y.
This function returns the values:

p(a, b) =
∑
i,j

ci,j ∗Hi(a) ∗Hj(b)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.
The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars.
In either case, either x and y or their elements must support multiplication and addition both with themselves and
with the elements of c.
If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the result
will be c.shape[2:] + x.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns

1672 1. Python API

NumPy Reference, Release 2.2.0

values
[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

hermeval, hermeval2d, hermeval3d, hermegrid3d

polynomial.hermite_e.hermegrid3d(x, y, z, c)
Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z.
This function returns the values:

p(a, b, c) =
∑
i,j,k

ci,j,k ∗Hei(a) ∗Hej(b) ∗Hek(c)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.
The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.
If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z

[array_like, compatible objects] The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x, y, or z is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

hermeval, hermeval2d, hermegrid2d, hermeval3d

Calculus

hermeder(c[, m, scl, axis]) Differentiate a Hermite_e series.
hermeint(c[, m, k, lbnd, scl, axis]) Integrate a Hermite_e series.

1.4. Routines and objects by topic 1673

NumPy Reference, Release 2.2.0

polynomial.hermite_e.hermeder(c, m=1, scl=1, axis=0)
Differentiate a Hermite_e series.
Returns the series coefficients c differentiated m times along axis. At each iteration the result is multiplied by
scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients from
low to high degree along each axis, e.g., [1,2,3] represents the series 1*He_0 + 2*He_1 + 3*He_2 while
[[1,2],[1,2]] represents 1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y) + 2*He_0(x)*He_1(y) +
2*He_1(x)*He_1(y) if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] Array of Hermite_e series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

m
[int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl
[scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication by
scl**m. This is for use in a linear change of variable. (Default: 1)

axis
[int, optional] Axis over which the derivative is taken. (Default: 0).

Returns
der

[ndarray] Hermite series of the derivative.
See also:

hermeint

Notes

In general, the result of differentiating a Hermite series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermeder
>>> hermeder([1., 1., 1., 1.])
array([1., 2., 3.])
>>> hermeder([-0.25, 1., 1./2., 1./3., 1./4], m=2)
array([1., 2., 3.])

polynomial.hermite_e.hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Hermite_e series.
Returns the Hermite_e series coefficients c integrated m times from lbnd along axis. At each iteration the resulting
series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change
of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the reciprocal
of what one might expect; for more information, see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series H_0 + 2*H_1 + 3*H_2
while [[1,2],[1,2]] represents 1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
2*H_1(x)*H_1(y) if axis=0 is x and axis=1 is y.

1674 1. Python API

NumPy Reference, Release 2.2.0

Parameters
c

[array_like] Array of Hermite_e series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

m
[int, optional] Order of integration, must be positive. (Default: 1)

k
[{[], list, scalar}, optional] Integration constant(s). The value of the first integral at lbnd is
the first value in the list, the value of the second integral at lbnd is the second value, etc. If
k == [] (the default), all constants are set to zero. If m == 1, a single scalar can be given
instead of a list.

lbnd
[scalar, optional] The lower bound of the integral. (Default: 0)

scl
[scalar, optional] Following each integration the result ismultiplied by scl before the integration
constant is added. (Default: 1)

axis
[int, optional] Axis over which the integral is taken. (Default: 0).

Returns
S

[ndarray] Hermite_e series coefficients of the integral.
Raises

ValueError
If m < 0, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) != 0.

See also:

hermeder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable u = ax+ b in an integral relative to x. Then dx = du/a, so one will need to set scl equal
to 1/a - perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis set.
Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.hermite_e import hermeint
>>> hermeint([1, 2, 3]) # integrate once, value 0 at 0.
array([1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0
array([-0.25 , 1. , 0.5 , 0.33333333, 0.25]) # may␣
↪→vary
>>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0.
array([2., 1., 1., 1.])

(continues on next page)

1.4. Routines and objects by topic 1675

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1
array([-1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1)
array([1.83333333, 0. , 0.5 , 0.33333333, 0.25]) # may␣
↪→vary

Misc Functions

hermefromroots(roots) Generate a HermiteE series with given roots.
hermeroots(c) Compute the roots of a HermiteE series.
hermevander(x, deg) Pseudo-Vandermonde matrix of given degree.
hermevander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
hermevander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.
hermegauss(deg) Gauss-HermiteE quadrature.
hermeweight(x) Weight function of the Hermite_e polynomials.
hermecompanion(c) Return the scaled companion matrix of c.
hermefit(x, y, deg[, rcond, full, w]) Least squares fit of Hermite series to data.
hermetrim(c[, tol]) Remove "small" "trailing" coefficients from a polynomial.
hermeline(off, scl) Hermite series whose graph is a straight line.
herme2poly(c) Convert a Hermite series to a polynomial.
poly2herme(pol) Convert a polynomial to a Hermite series.

polynomial.hermite_e.hermefromroots(roots)
Generate a HermiteE series with given roots.
The function returns the coefficients of the polynomial

p(x) = (x− r0) ∗ (x− r1) ∗ ... ∗ (x− rn),

in HermiteE form, where the rn are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots
looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.
If the returned coefficients are c, then

p(x) = c0 + c1 ∗He1(x) + ...+ cn ∗Hen(x)

The coefficient of the last term is not generally 1 for monic polynomials in HermiteE form.
Parameters

roots
[array_like] Sequence containing the roots.

Returns
out

[ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of the
roots are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

1676 1. Python API

NumPy Reference, Release 2.2.0

numpy.polynomial.polynomial.polyfromroots
numpy.polynomial.legendre.legfromroots
numpy.polynomial.laguerre.lagfromroots
numpy.polynomial.hermite.hermfromroots
numpy.polynomial.chebyshev.chebfromroots

Examples

>>> from numpy.polynomial.hermite_e import hermefromroots, hermeval
>>> coef = hermefromroots((-1, 0, 1))
>>> hermeval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = hermefromroots((-1j, 1j))
>>> hermeval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

polynomial.hermite_e.hermeroots(c)
Compute the roots of a HermiteE series.
Return the roots (a.k.a. “zeros”) of the polynomial

p(x) =
∑
i

c[i] ∗Hei(x).

Parameters
c

[1-D array_like] 1-D array of coefficients.
Returns

out
[ndarray] Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

numpy.polynomial.polynomial.polyroots
numpy.polynomial.legendre.legroots
numpy.polynomial.laguerre.lagroots
numpy.polynomial.hermite.hermroots
numpy.polynomial.chebyshev.chebroots

Notes

The root estimates are obtained as the eigenvalues of the companionmatrix, Roots far from the origin of the complex
plane may have large errors due to the numerical instability of the series for such values. Roots with multiplicity
greater than 1 will also show larger errors as the value of the series near such points is relatively insensitive to errors
in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s method.
The HermiteE series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

1.4. Routines and objects by topic 1677

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots
>>> coef = hermefromroots([-1, 0, 1])
>>> coef
array([0., 2., 0., 1.])
>>> hermeroots(coef)
array([-1., 0., 1.]) # may vary

polynomial.hermite_e.hermevander(x, deg)
Pseudo-Vandermonde matrix of given degree.
Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is
defined by

V [..., i] = Hei(x),

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
HermiteE polynomial.
If c is a 1-D array of coefficients of length n + 1 and V is the array V = hermevander(x, n), then
np.dot(V, c) and hermeval(x, c) are the same up to roundoff. This equivalence is useful both for least
squares fitting and for the evaluation of a large number of HermiteE series of the same degree and sample points.

Parameters
x

[array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg
[int] Degree of the resulting matrix.

Returns
vander

[ndarray] The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding HermiteE polynomial.
The dtype will be the same as the converted x.

Examples

>>> import numpy as np
>>> from numpy.polynomial.hermite_e import hermevander
>>> x = np.array([-1, 0, 1])
>>> hermevander(x, 3)
array([[1., -1., 0., 2.],

[1., 0., -1., -0.],
[1., 1., 0., -2.]])

polynomial.hermite_e.hermevander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

V [..., (deg[1] + 1) ∗ i+ j] = Hei(x) ∗Hej(y),

1678 1. Python API

NumPy Reference, Release 2.2.0

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y)
and the last index encodes the degrees of the HermiteE polynomials.
If V = hermevander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of
a 2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

c00, c01, c02..., c10, c11, c12...

and np.dot(V, c.flat) and hermeval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D HermiteE series of the same
degrees and sample points.

Parameters
x, y

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1). The dtype will be the same as the converted x and y.

See also:

hermevander, hermevander3d, hermeval2d, hermeval3d

polynomial.hermite_e.hermevander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then Hehe pseudo-Vandermonde matrix is defined by

V [..., (m+ 1)(n+ 1)i+ (n+ 1)j + k] = Hei(x) ∗Hej(y) ∗Hek(z),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x,
y, z) and the last index encodes the degrees of the HermiteE polynomials.
If V = hermevander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

c000, c001, c002, ..., c010, c011, c012, ...

and np.dot(V, c.flat) and hermeval3d(x, y, z, c) will be the same up to roundoff. This
equivalence is useful both for least squares fitting and for the evaluation of a large number of 3-D HermiteE series
of the same degrees and sample points.

Parameters
x, y, z

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

1.4. Routines and objects by topic 1679

NumPy Reference, Release 2.2.0

Returns
vander3d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1) ∗ (deg[2] + 1). The dtype will be the same as the converted x, y,
and z.

See also:

hermevander, hermevander3d, hermeval2d, hermeval3d

polynomial.hermite_e.hermegauss(deg)
Gauss-HermiteE quadrature.
Computes the sample points and weights for Gauss-HermiteE quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 ∗ deg − 1 or less over the interval [− inf, inf] with the weight function
f(x) = exp(−x2/2).

Parameters
deg

[int] Number of sample points and weights. It must be >= 1.
Returns

x
[ndarray] 1-D ndarray containing the sample points.

y
[ndarray] 1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are determined
by using the fact that

wk = c/(He′n(xk) ∗Hen−1(xk))

where c is a constant independent of k and xk is the k’th root of Hen, and then scaling the results to get the right
value when integrating 1.

polynomial.hermite_e.hermeweight(x)
Weight function of the Hermite_e polynomials.
The weight function is exp(−x2/2) and the interval of integration is [− inf, inf]. the HermiteE polynomials are
orthogonal, but not normalized, with respect to this weight function.

Parameters
x

[array_like] Values at which the weight function will be computed.
Returns

w
[ndarray] The weight function at x.

1680 1. Python API

NumPy Reference, Release 2.2.0

polynomial.hermite_e.hermecompanion(c)
Return the scaled companion matrix of c.
The basis polynomials are scaled so that the companion matrix is symmetric when c is an HermiteE basis polyno-
mial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the eigenvalues
are guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters
c

[array_like] 1-D array of HermiteE series coefficients ordered from low to high degree.
Returns

mat
[ndarray] Scaled companion matrix of dimensions (deg, deg).

polynomial.hermite_e.hermefit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Hermite series to data.
Return the coefficients of a HermiteE series of degree deg that is the least squares fit to the data values y given at
points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each column
of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted polynomial(s)
are in the form

p(x) = c0 + c1 ∗He1(x) + ...+ cn ∗Hen(x),

where n is deg.
Parameters

x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the un-
squared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. When using inverse-variance
weighting, use w[i] = 1/sigma(y[i]). The default value is None.

Returns

1.4. Routines and objects by topic 1681

NumPy Reference, Release 2.2.0

coef
[ndarray, shape (M,) or (M, K)] Hermite coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column k.

[residuals, rank, singular_values, rcond]
[list] These values are only returned if full == True

• residuals – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• singular_values – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see numpy.linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised
if full = False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See also:

numpy.polynomial.chebyshev.chebfit
numpy.polynomial.legendre.legfit
numpy.polynomial.polynomial.polyfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.laguerre.lagfit
hermeval

Evaluates a Hermite series.
hermevander

pseudo Vandermonde matrix of Hermite series.
hermeweight

HermiteE weight function.
numpy.linalg.lstsq

Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline

Computes spline fits.

Notes

The solution is the coefficients of the HermiteE series p that minimizes the sum of the weighted squared errors

E =
∑
j

w2
j ∗ |yj − p(xj)|2,

where the wj are the weights. This problem is solved by setting up the (typically) overdetermined matrix equation

V (x) ∗ c = w ∗ y,

where V is the pseudo Vandermonde matrix of x, the elements of c are the coefficients to be solved for, and the
elements of y are the observed values. This equation is then solved using the singular value decomposition of V.

1682 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 2.2.0

If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued.
This means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of
the warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.
Fits using HermiteE series are probably most useful when the data can be approximated by sqrt(w(x)) *
p(x), where w(x) is the HermiteE weight. In that case the weight sqrt(w(x[i])) should be used together
with data values y[i]/sqrt(w(x[i])). The weight function is available as hermeweight.

References

[1]

Examples

>>> import numpy as np
>>> from numpy.polynomial.hermite_e import hermefit, hermeval
>>> x = np.linspace(-10, 10)
>>> rng = np.random.default_rng()
>>> err = rng.normal(scale=1./10, size=len(x))
>>> y = hermeval(x, [1, 2, 3]) + err
>>> hermefit(x, y, 2)
array([1.02284196, 2.00032805, 2.99978457]) # may vary

polynomial.hermite_e.hermetrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.
“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4) both
the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c

[array_like] 1-d array of coefficients, ordered from lowest order to highest.
tol

[number, optional] Trailing (i.e., highest order) elements with absolute value less than or equal
to tol (default value is zero) are removed.

Returns
trimmed

[ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

1.4. Routines and objects by topic 1683

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.001 -0.001j])

polynomial.hermite_e.hermeline(off, scl)
Hermite series whose graph is a straight line.

Parameters
off, scl

[scalars] The specified line is given by off + scl*x.
Returns

y
[ndarray] This module’s representation of the Hermite series for off + scl*x.

See also:

numpy.polynomial.polynomial.polyline
numpy.polynomial.chebyshev.chebline
numpy.polynomial.legendre.legline
numpy.polynomial.laguerre.lagline
numpy.polynomial.hermite.hermline

Examples

>>> from numpy.polynomial.hermite_e import hermeline
>>> from numpy.polynomial.hermite_e import hermeline, hermeval
>>> hermeval(0,hermeline(3, 2))
3.0
>>> hermeval(1,hermeline(3, 2))
5.0

polynomial.hermite_e.herme2poly(c)
Convert a Hermite series to a polynomial.
Convert an array representing the coefficients of a Hermite series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to
highest degree.

Parameters
c

[array_like] 1-D array containing the Hermite series coefficients, ordered from lowest order
term to highest.

Returns

1684 1. Python API

NumPy Reference, Release 2.2.0

pol
[ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2herme

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.hermite_e import herme2poly
>>> herme2poly([2., 10., 2., 3.])
array([0., 1., 2., 3.])

polynomial.hermite_e.poly2herme(pol)
Convert a polynomial to a Hermite series.
Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from lowest
degree to highest, to an array of the coefficients of the equivalent Hermite series, ordered from lowest to highest
degree.

Parameters
pol

[array_like] 1-D array containing the polynomial coefficients
Returns

c
[ndarray] 1-D array containing the coefficients of the equivalent Hermite series.

See also:

herme2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> import numpy as np
>>> from numpy.polynomial.hermite_e import poly2herme
>>> poly2herme(np.arange(4))
array([2., 10., 2., 3.])

1.4. Routines and objects by topic 1685

NumPy Reference, Release 2.2.0

See also

numpy.polynomial

Laguerre Series (numpy.polynomial.laguerre)
This module provides a number of objects (mostly functions) useful for dealing with Laguerre series, including a La-
guerre class that encapsulates the usual arithmetic operations. (General information on how this module represents
and works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Classes

Laguerre(coef[, domain, window, symbol]) A Laguerre series class.

class numpy.polynomial.laguerre.Laguerre(coef, domain=None, window=None, symbol='x')
A Laguerre series class.
The Laguerre class provides the standard Python numerical methods ‘+’, ‘-’, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as
well as the attributes and methods listed below.

Parameters
coef

[array_like] Laguerre coefficients in order of increasing degree, i.e, (1, 2, 3) gives
1*L_0(x) + 2*L_1(X) + 3*L_2(x).

domain
[(2,) array_like, optional] Domain to use. The interval [domain[0], domain[1]] is
mapped to the interval [window[0], window[1]] by shifting and scaling. The default
value is [0., 1.].

window
[(2,) array_like, optional] Window, see domain for its use. The default value is [0., 1.].

symbol
[str, optional] Symbol used to represent the independent variable in string representations of
the polynomial expression, e.g. for printing. The symbol must be a valid Python identifier.
Default value is ‘x’.
New in version 1.24.

Attributes
symbol

1686 1. Python API

NumPy Reference, Release 2.2.0

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window, symbol]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, ...]) Least squares fit to data.
fromroots(roots[, domain, window, symbol]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window, symbol]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

method
polynomial.laguerre.Laguerre.__call__(arg)

Call self as a function.
method
classmethod polynomial.laguerre.Laguerre.basis(deg, domain=None, window=None,

symbol='x')

Series basis polynomial of degree deg.
Returns the series representing the basis polynomial of degree deg.

Parameters
deg
[int] Degree of the basis polynomial for the series. Must be >= 0.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns

1.4. Routines and objects by topic 1687

NumPy Reference, Release 2.2.0

new_series
[series] A series with the coefficient of the deg term set to one and all others zero.

method
classmethod polynomial.laguerre.Laguerre.cast(series, domain=None, window=None)

Convert series to series of this class.
The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

Parameters
series
[series] The series instance to be converted.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

Returns
new_series
[series] A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

method
polynomial.laguerre.Laguerre.convert(domain=None, kind=None, window=None)

Convert series to a different kind and/or domain and/or window.
Parameters

domain
[array_like, optional] The domain of the converted series. If the value is None, the default
domain of kind is used.

kind
[class, optional] The polynomial series type class to which the current instance should be
converted. If kind is None, then the class of the current instance is used.

window
[array_like, optional] The window of the converted series. If the value is None, the default
window of kind is used.

Returns
new_series
[series] The returned class can be of different type than the current instance and/or have a
different domain and/or different window.

1688 1. Python API

NumPy Reference, Release 2.2.0

Notes

Conversion between domains and class types can result in numerically ill defined series.
method
polynomial.laguerre.Laguerre.copy()

Return a copy.
Returns

new_series
[series] Copy of self.

method
polynomial.laguerre.Laguerre.cutdeg(deg)

Truncate series to the given degree.
Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

Parameters
deg
[non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns
new_series
[series] New instance of series with reduced degree.

method
polynomial.laguerre.Laguerre.degree()

The degree of the series.
Returns

degree
[int] Degree of the series, one less than the number of coefficients.

Examples

Create a polynomial object for 1 + 7*x + 4*x**2:

>>> poly = np.polynomial.Polynomial([1, 7, 4])
>>> print(poly)
1.0 + 7.0·x + 4.0·x²
>>> poly.degree()
2

Note that this method does not check for non-zero coefficients. You must trim the polynomial to remove any
trailing zeroes:

>>> poly = np.polynomial.Polynomial([1, 7, 0])
>>> print(poly)
1.0 + 7.0·x + 0.0·x²

(continues on next page)

1.4. Routines and objects by topic 1689

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> poly.degree()
2
>>> poly.trim().degree()
1

method
polynomial.laguerre.Laguerre.deriv(m=1)

Differentiate.
Return a series instance of that is the derivative of the current series.

Parameters
m
[non-negative int] Find the derivative of order m.

Returns
new_series
[series] A new series representing the derivative. The domain is the same as the domain of
the differentiated series.

method
classmethod polynomial.laguerre.Laguerre.fit(x, y, deg, domain=None, rcond=None,

full=False, w=None, window=None,
symbol='x')

Least squares fit to data.
Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,)] y-coordinates of the M sample points (x[i], y[i]).

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

domain
[{None, [beg, end], []}, optional] Domain to use for the returned series. If None, then a
minimal domain that covers the points x is chosen. If [] the class domain is used. The
default value was the class domain in NumPy 1.4 and None in later versions. The [] option
was added in numpy 1.5.0.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps
is the relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

1690 1. Python API

NumPy Reference, Release 2.2.0

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the
unsquared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that
the errors of the products w[i]*y[i] all have the same variance. When using inverse-
variance weighting, use w[i] = 1/sigma(y[i]). The default value is None.

window
[{[beg, end]}, optional]Window to use for the returned series. The default value is the default
class domain

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] A series that represents the least squares fit to the data and has the domain andwindow
specified in the call. If the coefficients for the unscaled and unshifted basis polynomials are
of interest, do new_series.convert().coef.

[resid, rank, sv, rcond]
[list] These values are only returned if full == True

• resid – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• sv – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see linalg.lstsq.

method
classmethod polynomial.laguerre.Laguerre.fromroots(roots, domain=[], window=None,

symbol='x')

Return series instance that has the specified roots.
Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots
[array_like] List of roots.

domain
[{[], None, array_like}, optional] Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the domain is the class domain. The default
is [].

window
[{None, array_like}, optional] Window for the returned series. If None the class window is
used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series with the specified roots.

1.4. Routines and objects by topic 1691

NumPy Reference, Release 2.2.0

method
polynomial.laguerre.Laguerre.has_samecoef(other)

Check if coefficients match.
Parameters

other
[class instance] The other class must have the coef attribute.

Returns
bool
[boolean] True if the coefficients are the same, False otherwise.

method
polynomial.laguerre.Laguerre.has_samedomain(other)

Check if domains match.
Parameters

other
[class instance] The other class must have the domain attribute.

Returns
bool
[boolean] True if the domains are the same, False otherwise.

method
polynomial.laguerre.Laguerre.has_sametype(other)

Check if types match.
Parameters

other
[object] Class instance.

Returns
bool
[boolean] True if other is same class as self

method
polynomial.laguerre.Laguerre.has_samewindow(other)

Check if windows match.
Parameters

other
[class instance] The other class must have the window attribute.

Returns
bool
[boolean] True if the windows are the same, False otherwise.

method

1692 1. Python API

NumPy Reference, Release 2.2.0

classmethod polynomial.laguerre.Laguerre.identity(domain=None, window=None,
symbol='x')

Identity function.
If p is the returned series, then p(x) == x for all values of x.

Parameters
domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series of representing the identity.

method
polynomial.laguerre.Laguerre.integ(m=1, k=[], lbnd=None)

Integrate.
Return a series instance that is the definite integral of the current series.

Parameters
m
[non-negative int] The number of integrations to perform.

k
[array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length and
any missing values are set to zero.

lbnd
[Scalar] The lower bound of the definite integral.

Returns
new_series
[series] A new series representing the integral. The domain is the same as the domain of the
integrated series.

method
polynomial.laguerre.Laguerre.linspace(n=100, domain=None)

Return x, y values at equally spaced points in domain.
Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial at
the points x. By default the domain is the same as that of the series instance. This method is intended mostly
as a plotting aid.

Parameters

1.4. Routines and objects by topic 1693

NumPy Reference, Release 2.2.0

n
[int, optional] Number of point pairs to return. The default value is 100.

domain
[{None, array_like}, optional] If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end]. The default is None which case
the class domain is used.

Returns
x, y
[ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated
at element of x.

method
polynomial.laguerre.Laguerre.mapparms()

Return the mapping parameters.
The returned values define a linear map off + scl*x that is applied to the input arguments before the
series is evaluated. The map depends on the domain and window; if the current domain is equal to the
window the resulting map is the identity. If the coefficients of the series instance are to be used by themselves
outside this class, then the linear function must be substituted for the x in the standard representation of the
base polynomials.

Returns
off, scl
[float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

method
polynomial.laguerre.Laguerre.roots()

Return the roots of the series polynomial.
Compute the roots for the series. Note that the accuracy of the roots decreases the further outside thedomain
they lie.

Returns
roots
[ndarray] Array containing the roots of the series.

method
polynomial.laguerre.Laguerre.trim(tol=0)

Remove trailing coefficients
Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the beginning
of the series is reached. If all the coefficients would be removed the series is set to [0]. A new series instance
is returned with the new coefficients. The current instance remains unchanged.

Parameters

1694 1. Python API

NumPy Reference, Release 2.2.0

tol
[non-negative number.] All trailing coefficients less than tol will be removed.

Returns
new_series
[series] New instance of series with trimmed coefficients.

method
polynomial.laguerre.Laguerre.truncate(size)

Truncate series to length size.
Reduce the series to length size by discarding the high degree terms. The value of sizemust be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very small.

Parameters
size
[positive int] The series is reduced to length size by discarding the high degree terms. The
value of size must be a positive integer.

Returns
new_series
[series] New instance of series with truncated coefficients.

Constants

lagdomain An array object represents a multidimensional, homoge-
neous array of fixed-size items.

lagzero An array object represents a multidimensional, homoge-
neous array of fixed-size items.

lagone An array object represents a multidimensional, homoge-
neous array of fixed-size items.

lagx An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polynomial.laguerre.lagdomain = array([0., 1.])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.

1.4. Routines and objects by topic 1695

NumPy Reference, Release 2.2.0

offset
[int, optional] Offset of array data in buffer.

strides
[tuple of ints, optional] Strides of data in memory.

order
[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.

1696 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

data
[buffer] The array’s elements, in memory.

dtype
[dtype object] Describes the format of the elements in the array.

flags
[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.laguerre.lagzero = array([0])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters

1.4. Routines and objects by topic 1697

NumPy Reference, Release 2.2.0

(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

1698 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

1.4. Routines and objects by topic 1699

NumPy Reference, Release 2.2.0

polynomial.laguerre.lagone = array([1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

1700 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For

1.4. Routines and objects by topic 1701

NumPy Reference, Release 2.2.0

example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.laguerre.lagx = array([1, -1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

1702 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

1.4. Routines and objects by topic 1703

NumPy Reference, Release 2.2.0

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

Arithmetic

lagadd(c1, c2) Add one Laguerre series to another.
lagsub(c1, c2) Subtract one Laguerre series from another.
lagmulx(c) Multiply a Laguerre series by x.
lagmul(c1, c2) Multiply one Laguerre series by another.
lagdiv(c1, c2) Divide one Laguerre series by another.
lagpow(c, pow[, maxpower]) Raise a Laguerre series to a power.
lagval(x, c[, tensor]) Evaluate a Laguerre series at points x.
lagval2d(x, y, c) Evaluate a 2-D Laguerre series at points (x, y).
lagval3d(x, y, z, c) Evaluate a 3-D Laguerre series at points (x, y, z).
laggrid2d(x, y, c) Evaluate a 2-D Laguerre series on the Cartesian product

of x and y.
laggrid3d(x, y, z, c) Evaluate a 3-D Laguerre series on the Cartesian product

of x, y, and z.

polynomial.laguerre.lagadd(c1, c2)
Add one Laguerre series to another.
Returns the sum of two Laguerre series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the Laguerre series of their sum.

See also:

lagsub, lagmulx, lagmul, lagdiv, lagpow

1704 1. Python API

NumPy Reference, Release 2.2.0

Notes

Unlike multiplication, division, etc., the sum of two Laguerre series is a Laguerre series (without having to “repro-
ject” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial.laguerre import lagadd
>>> lagadd([1, 2, 3], [1, 2, 3, 4])
array([2., 4., 6., 4.])

polynomial.laguerre.lagsub(c1, c2)
Subtract one Laguerre series from another.
Returns the difference of two Laguerre series c1 - c2. The sequences of coefficients are from lowest order term to
highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high.
Returns

out
[ndarray] Of Laguerre series coefficients representing their difference.

See also:

lagadd, lagmulx, lagmul, lagdiv, lagpow

Notes

Unlike multiplication, division, etc., the difference of two Laguerre series is a Laguerre series (without having
to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial.laguerre import lagsub
>>> lagsub([1, 2, 3, 4], [1, 2, 3])
array([0., 0., 0., 4.])

polynomial.laguerre.lagmulx(c)
Multiply a Laguerre series by x.
Multiply the Laguerre series c by x, where x is the independent variable.

Parameters
c

[array_like] 1-D array of Laguerre series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the result of the multiplication.

1.4. Routines and objects by topic 1705

NumPy Reference, Release 2.2.0

See also:

lagadd, lagsub, lagmul, lagdiv, lagpow

Notes

The multiplication uses the recursion relationship for Laguerre polynomials in the form

xPi(x) = (−(i+ 1) ∗ Pi+1(x) + (2i+ 1)Pi(x)− iPi−1(x))

Examples

>>> from numpy.polynomial.laguerre import lagmulx
>>> lagmulx([1, 2, 3])
array([-1., -1., 11., -9.])

polynomial.laguerre.lagmul(c1, c2)
Multiply one Laguerre series by another.
Returns the product of two Laguerre series c1 * c2. The arguments are sequences of coefficients, from lowest order
“term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high.
Returns

out
[ndarray] Of Laguerre series coefficients representing their product.

See also:

lagadd, lagsub, lagmulx, lagdiv, lagpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Laguerre polynomial basis
set. Thus, to express the product as a Laguerre series, it is necessary to “reproject” the product onto said basis set,
which may produce “unintuitive” (but correct) results; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagmul
>>> lagmul([1, 2, 3], [0, 1, 2])
array([8., -13., 38., -51., 36.])

polynomial.laguerre.lagdiv(c1, c2)
Divide one Laguerre series by another.
Returns the quotient-with-remainder of two Laguerre series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

1706 1. Python API

NumPy Reference, Release 2.2.0

Parameters
c1, c2

[array_like] 1-D arrays of Laguerre series coefficients ordered from low to high.
Returns

[quo, rem]
[ndarrays] Of Laguerre series coefficients representing the quotient and remainder.

See also:

lagadd, lagsub, lagmulx, lagmul, lagpow

Notes

In general, the (polynomial) division of one Laguerre series by another results in quotient and remainder terms that
are not in the Laguerre polynomial basis set. Thus, to express these results as a Laguerre series, it is necessary
to “reproject” the results onto the Laguerre basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagdiv
>>> lagdiv([8., -13., 38., -51., 36.], [0, 1, 2])
(array([1., 2., 3.]), array([0.]))
>>> lagdiv([9., -12., 38., -51., 36.], [0, 1, 2])
(array([1., 2., 3.]), array([1., 1.]))

polynomial.laguerre.lagpow(c, pow, maxpower=16)
Raise a Laguerre series to a power.
Returns the Laguerre series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters
c

[array_like] 1-D array of Laguerre series coefficients ordered from low to high.
pow

[integer] Power to which the series will be raised
maxpower

[integer, optional] Maximum power allowed. This is mainly to limit growth of the series to
unmanageable size. Default is 16

Returns
coef

[ndarray] Laguerre series of power.
See also:

lagadd, lagsub, lagmulx, lagmul, lagdiv

1.4. Routines and objects by topic 1707

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.laguerre import lagpow
>>> lagpow([1, 2, 3], 2)
array([14., -16., 56., -72., 54.])

polynomial.laguerre.lagval(x, c, tensor=True)
Evaluate a Laguerre series at points x.
If c is of length n + 1, this function returns the value:

p(x) = c0 ∗ L0(x) + c1 ∗ L1(x) + ...+ cn ∗ Ln(x)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of c.
If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the shape
will be c.shape[1:]. Note that scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.

Parameters
x

[array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise it
is left unchanged and treated as a scalar. In either case, x or its elements must support addition
and multiplication with themselves and with the elements of c.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polyno-
mials. In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor
[boolean, optional] If True, the shape of the coefficient array is extended with ones on the right,
one for each dimension of x. Scalars have dimension 0 for this action. The result is that every
column of coefficients in c is evaluated for every element of x. If False, x is broadcast over
the columns of c for the evaluation. This keyword is useful when c is multidimensional. The
default value is True.

Returns
values

[ndarray, algebra_like] The shape of the return value is described above.
See also:

lagval2d, laggrid2d, lagval3d, laggrid3d

1708 1. Python API

NumPy Reference, Release 2.2.0

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.

Examples

>>> from numpy.polynomial.laguerre import lagval
>>> coef = [1, 2, 3]
>>> lagval(1, coef)
-0.5
>>> lagval([[1, 2],[3, 4]], coef)
array([[-0.5, -4.],

[-4.5, -2.]])

polynomial.laguerre.lagval2d(x, y, c)
Evaluate a 2-D Laguerre series at points (x, y).
This function returns the values:

p(x, y) =
∑
i,j

ci,j ∗ Li(x) ∗ Lj(y)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be c.shape[2:]
+ x.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points formed
with pairs of corresponding values from x and y.

See also:

lagval, laggrid2d, lagval3d, laggrid3d

1.4. Routines and objects by topic 1709

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.laguerre import lagval2d
>>> c = [[1, 2],[3, 4]]
>>> lagval2d(1, 1, c)
1.0

polynomial.laguerre.lagval3d(x, y, z, c)
Evaluate a 3-D Laguerre series at points (x, y, z).
This function returns the values:

p(x, y, z) =
∑
i,j,k

ci,j,k ∗ Li(x) ∗ Lj(y) ∗ Lk(z)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result
will be c.shape[3:] + x.shape.

Parameters
x, y, z

[array_like, compatible object] The three dimensional series is evaluated at the points (x, y,
z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first
converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as
a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the multidimensional polynomial on points formed
with triples of corresponding values from x, y, and z.

See also:

lagval, lagval2d, laggrid2d, laggrid3d

Examples

>>> from numpy.polynomial.laguerre import lagval3d
>>> c = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> lagval3d(1, 1, 2, c)
-1.0

polynomial.laguerre.laggrid2d(x, y, c)
Evaluate a 2-D Laguerre series on the Cartesian product of x and y.
This function returns the values:

p(a, b) =
∑
i,j

ci,j ∗ Li(a) ∗ Lj(b)

1710 1. Python API

NumPy Reference, Release 2.2.0

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.
The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars.
In either case, either x and y or their elements must support multiplication and addition both with themselves and
with the elements of c.
If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the result
will be c.shape[2:] + x.shape + y.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional Chebyshev series at points in
the Cartesian product of x and y.

See also:

lagval, lagval2d, lagval3d, laggrid3d

Examples

>>> from numpy.polynomial.laguerre import laggrid2d
>>> c = [[1, 2], [3, 4]]
>>> laggrid2d([0, 1], [0, 1], c)
array([[10., 4.],

[3., 1.]])

polynomial.laguerre.laggrid3d(x, y, z, c)
Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z.
This function returns the values:

p(a, b, c) =
∑
i,j,k

ci,j,k ∗ Li(a) ∗ Lj(b) ∗ Lk(c)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.
The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.
If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters

1.4. Routines and objects by topic 1711

NumPy Reference, Release 2.2.0

x, y, z
[array_like, compatible objects] The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x, y, or z is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

lagval, lagval2d, laggrid2d, lagval3d

Examples

>>> from numpy.polynomial.laguerre import laggrid3d
>>> c = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> laggrid3d([0, 1], [0, 1], [2, 4], c)
array([[[-4., -44.],

[-2., -18.]],
[[-2., -14.],
[-1., -5.]]])

Calculus

lagder(c[, m, scl, axis]) Differentiate a Laguerre series.
lagint(c[, m, k, lbnd, scl, axis]) Integrate a Laguerre series.

polynomial.laguerre.lagder(c, m=1, scl=1, axis=0)
Differentiate a Laguerre series.
Returns the Laguerre series coefficients c differentiatedm times along axis. At each iteration the result is multiplied
by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients from low
to high degree along each axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]]
represents1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)
if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] Array of Laguerre series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

m
[int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

1712 1. Python API

NumPy Reference, Release 2.2.0

scl
[scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication by
scl**m. This is for use in a linear change of variable. (Default: 1)

axis
[int, optional] Axis over which the derivative is taken. (Default: 0).

Returns
der

[ndarray] Laguerre series of the derivative.
See also:

lagint

Notes

In general, the result of differentiating a Laguerre series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagder
>>> lagder([1., 1., 1., -3.])
array([1., 2., 3.])
>>> lagder([1., 0., 0., -4., 3.], m=2)
array([1., 2., 3.])

polynomial.laguerre.lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Laguerre series.
Returns the Laguerre series coefficients c integrated m times from lbnd along axis. At each iteration the resulting
series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change
of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the reciprocal
of what one might expect; for more information, see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] Array of Laguerre series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

m
[int, optional] Order of integration, must be positive. (Default: 1)

k
[{[], list, scalar}, optional] Integration constant(s). The value of the first integral at lbnd is
the first value in the list, the value of the second integral at lbnd is the second value, etc. If
k == [] (the default), all constants are set to zero. If m == 1, a single scalar can be given
instead of a list.

lbnd
[scalar, optional] The lower bound of the integral. (Default: 0)

1.4. Routines and objects by topic 1713

NumPy Reference, Release 2.2.0

scl
[scalar, optional] Following each integration the result ismultiplied by scl before the integration
constant is added. (Default: 1)

axis
[int, optional] Axis over which the integral is taken. (Default: 0).

Returns
S

[ndarray] Laguerre series coefficients of the integral.
Raises

ValueError
If m < 0, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) != 0.

See also:

lagder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable u = ax+ b in an integral relative to x. Then dx = du/a, so one will need to set scl equal
to 1/a - perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis set.
Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial.laguerre import lagint
>>> lagint([1,2,3])
array([1., 1., 1., -3.])
>>> lagint([1,2,3], m=2)
array([1., 0., 0., -4., 3.])
>>> lagint([1,2,3], k=1)
array([2., 1., 1., -3.])
>>> lagint([1,2,3], lbnd=-1)
array([11.5, 1. , 1. , -3.])
>>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
array([11.16666667, -5. , -3. , 2.]) # may vary

1714 1. Python API

NumPy Reference, Release 2.2.0

Misc Functions

lagfromroots(roots) Generate a Laguerre series with given roots.
lagroots(c) Compute the roots of a Laguerre series.
lagvander(x, deg) Pseudo-Vandermonde matrix of given degree.
lagvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
lagvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.
laggauss(deg) Gauss-Laguerre quadrature.
lagweight(x) Weight function of the Laguerre polynomials.
lagcompanion(c) Return the companion matrix of c.
lagfit(x, y, deg[, rcond, full, w]) Least squares fit of Laguerre series to data.
lagtrim(c[, tol]) Remove "small" "trailing" coefficients from a polynomial.
lagline(off, scl) Laguerre series whose graph is a straight line.
lag2poly(c) Convert a Laguerre series to a polynomial.
poly2lag(pol) Convert a polynomial to a Laguerre series.

polynomial.laguerre.lagfromroots(roots)
Generate a Laguerre series with given roots.
The function returns the coefficients of the polynomial

p(x) = (x− r0) ∗ (x− r1) ∗ ... ∗ (x− rn),

in Laguerre form, where the rn are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots
looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.
If the returned coefficients are c, then

p(x) = c0 + c1 ∗ L1(x) + ...+ cn ∗ Ln(x)

The coefficient of the last term is not generally 1 for monic polynomials in Laguerre form.
Parameters

roots
[array_like] Sequence containing the roots.

Returns
out

[ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of the
roots are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

numpy.polynomial.polynomial.polyfromroots
numpy.polynomial.legendre.legfromroots
numpy.polynomial.chebyshev.chebfromroots
numpy.polynomial.hermite.hermfromroots
numpy.polynomial.hermite_e.hermefromroots

1.4. Routines and objects by topic 1715

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.laguerre import lagfromroots, lagval
>>> coef = lagfromroots((-1, 0, 1))
>>> lagval((-1, 0, 1), coef)
array([0., 0., 0.])
>>> coef = lagfromroots((-1j, 1j))
>>> lagval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])

polynomial.laguerre.lagroots(c)
Compute the roots of a Laguerre series.
Return the roots (a.k.a. “zeros”) of the polynomial

p(x) =
∑
i

c[i] ∗ Li(x).

Parameters
c

[1-D array_like] 1-D array of coefficients.
Returns

out
[ndarray] Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

numpy.polynomial.polynomial.polyroots
numpy.polynomial.legendre.legroots
numpy.polynomial.chebyshev.chebroots
numpy.polynomial.hermite.hermroots
numpy.polynomial.hermite_e.hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companionmatrix, Roots far from the origin of the complex
plane may have large errors due to the numerical instability of the series for such values. Roots with multiplicity
greater than 1 will also show larger errors as the value of the series near such points is relatively insensitive to errors
in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s method.
The Laguerre series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> from numpy.polynomial.laguerre import lagroots, lagfromroots
>>> coef = lagfromroots([0, 1, 2])
>>> coef
array([2., -8., 12., -6.])
>>> lagroots(coef)
array([-4.4408921e-16, 1.0000000e+00, 2.0000000e+00])

1716 1. Python API

NumPy Reference, Release 2.2.0

polynomial.laguerre.lagvander(x, deg)
Pseudo-Vandermonde matrix of given degree.
Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is
defined by

V [..., i] = Li(x)

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Laguerre polynomial.
If c is a 1-D array of coefficients of length n + 1 and V is the array V = lagvander(x, n), then np.
dot(V, c) and lagval(x, c) are the same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of Laguerre series of the same degree and sample points.

Parameters
x

[array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg
[int] Degree of the resulting matrix.

Returns
vander

[ndarray] The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding Laguerre polynomial.
The dtype will be the same as the converted x.

Examples

>>> import numpy as np
>>> from numpy.polynomial.laguerre import lagvander
>>> x = np.array([0, 1, 2])
>>> lagvander(x, 3)
array([[1. , 1. , 1. , 1.],

[1. , 0. , -0.5 , -0.66666667],
[1. , -1. , -1. , -0.33333333]])

polynomial.laguerre.lagvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

V [..., (deg[1] + 1) ∗ i+ j] = Li(x) ∗ Lj(y),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y)
and the last index encodes the degrees of the Laguerre polynomials.
If V = lagvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

c00, c01, c02..., c10, c11, c12...

and np.dot(V, c.flat) and lagval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Laguerre series of the same
degrees and sample points.

1.4. Routines and objects by topic 1717

NumPy Reference, Release 2.2.0

Parameters
x, y

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns
vander2d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1). The dtype will be the same as the converted x and y.

See also:

lagvander, lagvander3d, lagval2d, lagval3d

Examples

>>> import numpy as np
>>> from numpy.polynomial.laguerre import lagvander2d
>>> x = np.array([0])
>>> y = np.array([2])
>>> lagvander2d(x, y, [2, 1])
array([[1., -1., 1., -1., 1., -1.]])

polynomial.laguerre.lagvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

V [..., (m+ 1)(n+ 1)i+ (n+ 1)j + k] = Li(x) ∗ Lj(y) ∗ Lk(z),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x,
y, z) and the last index encodes the degrees of the Laguerre polynomials.
If V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

c000, c001, c002, ..., c010, c011, c012, ...

and np.dot(V, c.flat) and lagval3d(x, y, z, c)will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 3-D Laguerre series of the same
degrees and sample points.

Parameters
x, y, z

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

1718 1. Python API

NumPy Reference, Release 2.2.0

Returns
vander3d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1) ∗ (deg[2] + 1). The dtype will be the same as the converted x, y,
and z.

See also:

lagvander, lagvander3d, lagval2d, lagval3d

Examples

>>> import numpy as np
>>> from numpy.polynomial.laguerre import lagvander3d
>>> x = np.array([0])
>>> y = np.array([2])
>>> z = np.array([0])
>>> lagvander3d(x, y, z, [2, 1, 3])
array([[1., 1., 1., 1., -1., -1., -1., -1., 1., 1., 1., 1., -1.,

-1., -1., -1., 1., 1., 1., 1., -1., -1., -1., -1.]])

polynomial.laguerre.laggauss(deg)
Gauss-Laguerre quadrature.
Computes the sample points and weights for Gauss-Laguerre quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 ∗ deg − 1 or less over the interval [0, inf] with the weight function
f(x) = exp(−x).

Parameters
deg

[int] Number of sample points and weights. It must be >= 1.
Returns

x
[ndarray] 1-D ndarray containing the sample points.

y
[ndarray] 1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100 higher degrees may be problematic. The weights are determined
by using the fact that

wk = c/(L′
n(xk) ∗ Ln−1(xk))

where c is a constant independent of k and xk is the k’th root of Ln, and then scaling the results to get the right
value when integrating 1.

1.4. Routines and objects by topic 1719

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial.laguerre import laggauss
>>> laggauss(2)
(array([0.58578644, 3.41421356]), array([0.85355339, 0.14644661]))

polynomial.laguerre.lagweight(x)
Weight function of the Laguerre polynomials.
The weight function is exp(−x) and the interval of integration is [0, inf]. The Laguerre polynomials are orthogonal,
but not normalized, with respect to this weight function.

Parameters
x

[array_like] Values at which the weight function will be computed.
Returns

w
[ndarray] The weight function at x.

Examples

>>> from numpy.polynomial.laguerre import lagweight
>>> x = np.array([0, 1, 2])
>>> lagweight(x)
array([1. , 0.36787944, 0.13533528])

polynomial.laguerre.lagcompanion(c)
Return the companion matrix of c.
The usual companion matrix of the Laguerre polynomials is already symmetric when c is a basis Laguerre polyno-
mial, so no scaling is applied.

Parameters
c

[array_like] 1-D array of Laguerre series coefficients ordered from low to high degree.
Returns

mat
[ndarray] Companion matrix of dimensions (deg, deg).

Examples

>>> from numpy.polynomial.laguerre import lagcompanion
>>> lagcompanion([1, 2, 3])
array([[1. , -0.33333333],

[-1. , 4.33333333]])

polynomial.laguerre.lagfit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Laguerre series to data.
Return the coefficients of a Laguerre series of degree deg that is the least squares fit to the data values y given at
points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each column

1720 1. Python API

NumPy Reference, Release 2.2.0

of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted polynomial(s)
are in the form

p(x) = c0 + c1 ∗ L1(x) + ...+ cn ∗ Ln(x),

where n is deg.
Parameters

x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the un-
squared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. When using inverse-variance
weighting, use w[i] = 1/sigma(y[i]). The default value is None.

Returns
coef

[ndarray, shape (M,) or (M, K)] Laguerre coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column k.

[residuals, rank, singular_values, rcond]
[list] These values are only returned if full == True

• residuals – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• singular_values – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see numpy.linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised
if full == False. The warnings can be turned off by

1.4. Routines and objects by topic 1721

NumPy Reference, Release 2.2.0

>>> import warnings
>>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See also:

numpy.polynomial.polynomial.polyfit
numpy.polynomial.legendre.legfit
numpy.polynomial.chebyshev.chebfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.hermite_e.hermefit
lagval

Evaluates a Laguerre series.
lagvander

pseudo Vandermonde matrix of Laguerre series.
lagweight

Laguerre weight function.
numpy.linalg.lstsq

Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline

Computes spline fits.

Notes

The solution is the coefficients of the Laguerre series p that minimizes the sum of the weighted squared errors

E =
∑
j

w2
j ∗ |yj − p(xj)|2,

where thewj are the weights. This problem is solved by setting up as the (typically) overdeterminedmatrix equation

V (x) ∗ c = w ∗ y,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the weights,
and y are the observed values. This equation is then solved using the singular value decomposition of V.
If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued.
This means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of
the warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.
Fits using Laguerre series are probably most useful when the data can be approximated by sqrt(w(x)) *
p(x), where w(x) is the Laguerre weight. In that case the weight sqrt(w(x[i])) should be used together
with data values y[i]/sqrt(w(x[i])). The weight function is available as lagweight.

1722 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 2.2.0

References

[1]

Examples

>>> import numpy as np
>>> from numpy.polynomial.laguerre import lagfit, lagval
>>> x = np.linspace(0, 10)
>>> rng = np.random.default_rng()
>>> err = rng.normal(scale=1./10, size=len(x))
>>> y = lagval(x, [1, 2, 3]) + err
>>> lagfit(x, y, 2)
array([1.00578369, 1.99417356, 2.99827656]) # may vary

polynomial.laguerre.lagtrim(c, tol=0)
Remove “small” “trailing” coefficients from a polynomial.
“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4) both
the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c

[array_like] 1-d array of coefficients, ordered from lowest order to highest.
tol

[number, optional] Trailing (i.e., highest order) elements with absolute value less than or equal
to tol (default value is zero) are removed.

Returns
trimmed

[ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.001 -0.001j])

polynomial.laguerre.lagline(off, scl)
Laguerre series whose graph is a straight line.

Parameters

1.4. Routines and objects by topic 1723

NumPy Reference, Release 2.2.0

off, scl
[scalars] The specified line is given by off + scl*x.

Returns
y

[ndarray] This module’s representation of the Laguerre series for off + scl*x.
See also:

numpy.polynomial.polynomial.polyline
numpy.polynomial.chebyshev.chebline
numpy.polynomial.legendre.legline
numpy.polynomial.hermite.hermline
numpy.polynomial.hermite_e.hermeline

Examples

>>> from numpy.polynomial.laguerre import lagline, lagval
>>> lagval(0,lagline(3, 2))
3.0
>>> lagval(1,lagline(3, 2))
5.0

polynomial.laguerre.lag2poly(c)
Convert a Laguerre series to a polynomial.
Convert an array representing the coefficients of a Laguerre series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to highest
degree.

Parameters
c

[array_like] 1-D array containing the Laguerre series coefficients, ordered from lowest order
term to highest.

Returns
pol

[ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2lag

1724 1. Python API

NumPy Reference, Release 2.2.0

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy.polynomial.laguerre import lag2poly
>>> lag2poly([23., -63., 58., -18.])
array([0., 1., 2., 3.])

polynomial.laguerre.poly2lag(pol)
Convert a polynomial to a Laguerre series.
Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from lowest
degree to highest, to an array of the coefficients of the equivalent Laguerre series, ordered from lowest to highest
degree.

Parameters
pol

[array_like] 1-D array containing the polynomial coefficients
Returns

c
[ndarray] 1-D array containing the coefficients of the equivalent Laguerre series.

See also:

lag2poly

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> import numpy as np
>>> from numpy.polynomial.laguerre import poly2lag
>>> poly2lag(np.arange(4))
array([23., -63., 58., -18.])

See also

numpy.polynomial

1.4. Routines and objects by topic 1725

NumPy Reference, Release 2.2.0

Legendre Series (numpy.polynomial.legendre)
This module provides a number of objects (mostly functions) useful for dealing with Legendre series, including a Leg-
endre class that encapsulates the usual arithmetic operations. (General information on how this module represents and
works with such polynomials is in the docstring for its “parent” sub-package, numpy.polynomial).

Classes

Legendre(coef[, domain, window, symbol]) A Legendre series class.

class numpy.polynomial.legendre.Legendre(coef, domain=None, window=None, symbol='x')
A Legendre series class.
The Legendre class provides the standard Python numerical methods ‘+’, ‘-’, ‘*’, ‘//’, ‘%’, ‘divmod’, ‘**’, and ‘()’ as
well as the attributes and methods listed below.

Parameters
coef

[array_like] Legendre coefficients in order of increasing degree, i.e., (1, 2, 3) gives
1*P_0(x) + 2*P_1(x) + 3*P_2(x).

domain
[(2,) array_like, optional] Domain to use. The interval [domain[0], domain[1]] is
mapped to the interval [window[0], window[1]] by shifting and scaling. The default
value is [-1., 1.].

window
[(2,) array_like, optional] Window, see domain for its use. The default value is [-1., 1.].

symbol
[str, optional] Symbol used to represent the independent variable in string representations of
the polynomial expression, e.g. for printing. The symbol must be a valid Python identifier.
Default value is ‘x’.
New in version 1.24.

Attributes
symbol

1726 1. Python API

NumPy Reference, Release 2.2.0

Methods

__call__(arg) Call self as a function.
basis(deg[, domain, window, symbol]) Series basis polynomial of degree deg.
cast(series[, domain, window]) Convert series to series of this class.
convert([domain, kind, window]) Convert series to a different kind and/or domain and/or

window.
copy() Return a copy.
cutdeg(deg) Truncate series to the given degree.
degree() The degree of the series.
deriv([m]) Differentiate.
fit(x, y, deg[, domain, rcond, full, w, ...]) Least squares fit to data.
fromroots(roots[, domain, window, symbol]) Return series instance that has the specified roots.
has_samecoef(other) Check if coefficients match.
has_samedomain(other) Check if domains match.
has_sametype(other) Check if types match.
has_samewindow(other) Check if windows match.
identity([domain, window, symbol]) Identity function.
integ([m, k, lbnd]) Integrate.
linspace([n, domain]) Return x, y values at equally spaced points in domain.
mapparms() Return the mapping parameters.
roots() Return the roots of the series polynomial.
trim([tol]) Remove trailing coefficients
truncate(size) Truncate series to length size.

method
polynomial.legendre.Legendre.__call__(arg)

Call self as a function.
method
classmethod polynomial.legendre.Legendre.basis(deg, domain=None, window=None,

symbol='x')

Series basis polynomial of degree deg.
Returns the series representing the basis polynomial of degree deg.

Parameters
deg
[int] Degree of the basis polynomial for the series. Must be >= 0.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns

1.4. Routines and objects by topic 1727

NumPy Reference, Release 2.2.0

new_series
[series] A series with the coefficient of the deg term set to one and all others zero.

method
classmethod polynomial.legendre.Legendre.cast(series, domain=None, window=None)

Convert series to series of this class.
The series is expected to be an instance of some polynomial series of one of the types supported by by the
numpy.polynomial module, but could be some other class that supports the convert method.

Parameters
series
[series] The series instance to be converted.

domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

Returns
new_series
[series] A series of the same kind as the calling class and equal to series when evaluated.

See also:

convert
similar instance method

method
polynomial.legendre.Legendre.convert(domain=None, kind=None, window=None)

Convert series to a different kind and/or domain and/or window.
Parameters

domain
[array_like, optional] The domain of the converted series. If the value is None, the default
domain of kind is used.

kind
[class, optional] The polynomial series type class to which the current instance should be
converted. If kind is None, then the class of the current instance is used.

window
[array_like, optional] The window of the converted series. If the value is None, the default
window of kind is used.

Returns
new_series
[series] The returned class can be of different type than the current instance and/or have a
different domain and/or different window.

1728 1. Python API

NumPy Reference, Release 2.2.0

Notes

Conversion between domains and class types can result in numerically ill defined series.
method
polynomial.legendre.Legendre.copy()

Return a copy.
Returns

new_series
[series] Copy of self.

method
polynomial.legendre.Legendre.cutdeg(deg)

Truncate series to the given degree.
Reduce the degree of the series to deg by discarding the high order terms. If deg is greater than the current
degree a copy of the current series is returned. This can be useful in least squares where the coefficients of
the high degree terms may be very small.

Parameters
deg
[non-negative int] The series is reduced to degree deg by discarding the high order terms.
The value of deg must be a non-negative integer.

Returns
new_series
[series] New instance of series with reduced degree.

method
polynomial.legendre.Legendre.degree()

The degree of the series.
Returns

degree
[int] Degree of the series, one less than the number of coefficients.

Examples

Create a polynomial object for 1 + 7*x + 4*x**2:

>>> poly = np.polynomial.Polynomial([1, 7, 4])
>>> print(poly)
1.0 + 7.0·x + 4.0·x²
>>> poly.degree()
2

Note that this method does not check for non-zero coefficients. You must trim the polynomial to remove any
trailing zeroes:

>>> poly = np.polynomial.Polynomial([1, 7, 0])
>>> print(poly)
1.0 + 7.0·x + 0.0·x²

(continues on next page)

1.4. Routines and objects by topic 1729

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> poly.degree()
2
>>> poly.trim().degree()
1

method
polynomial.legendre.Legendre.deriv(m=1)

Differentiate.
Return a series instance of that is the derivative of the current series.

Parameters
m
[non-negative int] Find the derivative of order m.

Returns
new_series
[series] A new series representing the derivative. The domain is the same as the domain of
the differentiated series.

method
classmethod polynomial.legendre.Legendre.fit(x, y, deg, domain=None, rcond=None,

full=False, w=None, window=None,
symbol='x')

Least squares fit to data.
Return a series instance that is the least squares fit to the data y sampled at x. The domain of the returned
instance can be specified and this will often result in a superior fit with less chance of ill conditioning.

Parameters
x
[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).

y
[array_like, shape (M,)] y-coordinates of the M sample points (x[i], y[i]).

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

domain
[{None, [beg, end], []}, optional] Domain to use for the returned series. If None, then a
minimal domain that covers the points x is chosen. If [] the class domain is used. The
default value was the class domain in NumPy 1.4 and None in later versions. The [] option
was added in numpy 1.5.0.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps
is the relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

1730 1. Python API

NumPy Reference, Release 2.2.0

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the
unsquared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that
the errors of the products w[i]*y[i] all have the same variance. When using inverse-
variance weighting, use w[i] = 1/sigma(y[i]). The default value is None.

window
[{[beg, end]}, optional]Window to use for the returned series. The default value is the default
class domain

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] A series that represents the least squares fit to the data and has the domain andwindow
specified in the call. If the coefficients for the unscaled and unshifted basis polynomials are
of interest, do new_series.convert().coef.

[resid, rank, sv, rcond]
[list] These values are only returned if full == True

• resid – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• sv – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see linalg.lstsq.

method
classmethod polynomial.legendre.Legendre.fromroots(roots, domain=[], window=None,

symbol='x')

Return series instance that has the specified roots.
Returns a series representing the product (x - r[0])*(x - r[1])*...*(x - r[n-1]), where
r is a list of roots.

Parameters
roots
[array_like] List of roots.

domain
[{[], None, array_like}, optional] Domain for the resulting series. If None the domain is the
interval from the smallest root to the largest. If [] the domain is the class domain. The default
is [].

window
[{None, array_like}, optional] Window for the returned series. If None the class window is
used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series with the specified roots.

1.4. Routines and objects by topic 1731

NumPy Reference, Release 2.2.0

method
polynomial.legendre.Legendre.has_samecoef(other)

Check if coefficients match.
Parameters

other
[class instance] The other class must have the coef attribute.

Returns
bool
[boolean] True if the coefficients are the same, False otherwise.

method
polynomial.legendre.Legendre.has_samedomain(other)

Check if domains match.
Parameters

other
[class instance] The other class must have the domain attribute.

Returns
bool
[boolean] True if the domains are the same, False otherwise.

method
polynomial.legendre.Legendre.has_sametype(other)

Check if types match.
Parameters

other
[object] Class instance.

Returns
bool
[boolean] True if other is same class as self

method
polynomial.legendre.Legendre.has_samewindow(other)

Check if windows match.
Parameters

other
[class instance] The other class must have the window attribute.

Returns
bool
[boolean] True if the windows are the same, False otherwise.

method

1732 1. Python API

NumPy Reference, Release 2.2.0

classmethod polynomial.legendre.Legendre.identity(domain=None, window=None,
symbol='x')

Identity function.
If p is the returned series, then p(x) == x for all values of x.

Parameters
domain
[{None, array_like}, optional] If given, the array must be of the form [beg, end], where
beg and end are the endpoints of the domain. If None is given then the class domain is
used. The default is None.

window
[{None, array_like}, optional] If given, the resulting array must be if the form [beg,
end], where beg and end are the endpoints of the window. If None is given then the
class window is used. The default is None.

symbol
[str, optional] Symbol representing the independent variable. Default is ‘x’.

Returns
new_series
[series] Series of representing the identity.

method
polynomial.legendre.Legendre.integ(m=1, k=[], lbnd=None)

Integrate.
Return a series instance that is the definite integral of the current series.

Parameters
m
[non-negative int] The number of integrations to perform.

k
[array_like] Integration constants. The first constant is applied to the first integration, the
second to the second, and so on. The list of values must less than or equal to m in length and
any missing values are set to zero.

lbnd
[Scalar] The lower bound of the definite integral.

Returns
new_series
[series] A new series representing the integral. The domain is the same as the domain of the
integrated series.

method
polynomial.legendre.Legendre.linspace(n=100, domain=None)

Return x, y values at equally spaced points in domain.
Returns the x, y values at n linearly spaced points across the domain. Here y is the value of the polynomial at
the points x. By default the domain is the same as that of the series instance. This method is intended mostly
as a plotting aid.

Parameters

1.4. Routines and objects by topic 1733

NumPy Reference, Release 2.2.0

n
[int, optional] Number of point pairs to return. The default value is 100.

domain
[{None, array_like}, optional] If not None, the specified domain is used instead of that of
the calling instance. It should be of the form [beg,end]. The default is None which case
the class domain is used.

Returns
x, y
[ndarray] x is equal to linspace(self.domain[0], self.domain[1], n) and y is the series evaluated
at element of x.

method
polynomial.legendre.Legendre.mapparms()

Return the mapping parameters.
The returned values define a linear map off + scl*x that is applied to the input arguments before the
series is evaluated. The map depends on the domain and window; if the current domain is equal to the
window the resulting map is the identity. If the coefficients of the series instance are to be used by themselves
outside this class, then the linear function must be substituted for the x in the standard representation of the
base polynomials.

Returns
off, scl
[float or complex] The mapping function is defined by off + scl*x.

Notes

If the current domain is the interval [l1, r1] and the window is [l2, r2], then the linear mapping
function L is defined by the equations:

L(l1) = l2
L(r1) = r2

method
polynomial.legendre.Legendre.roots()

Return the roots of the series polynomial.
Compute the roots for the series. Note that the accuracy of the roots decreases the further outside thedomain
they lie.

Returns
roots
[ndarray] Array containing the roots of the series.

method
polynomial.legendre.Legendre.trim(tol=0)

Remove trailing coefficients
Remove trailing coefficients until a coefficient is reached whose absolute value greater than tol or the beginning
of the series is reached. If all the coefficients would be removed the series is set to [0]. A new series instance
is returned with the new coefficients. The current instance remains unchanged.

Parameters

1734 1. Python API

NumPy Reference, Release 2.2.0

tol
[non-negative number.] All trailing coefficients less than tol will be removed.

Returns
new_series
[series] New instance of series with trimmed coefficients.

method
polynomial.legendre.Legendre.truncate(size)

Truncate series to length size.
Reduce the series to length size by discarding the high degree terms. The value of sizemust be a positive
integer. This can be useful in least squares where the coefficients of the high degree terms may be very small.

Parameters
size
[positive int] The series is reduced to length size by discarding the high degree terms. The
value of size must be a positive integer.

Returns
new_series
[series] New instance of series with truncated coefficients.

Constants

legdomain An array object represents a multidimensional, homoge-
neous array of fixed-size items.

legzero An array object represents a multidimensional, homoge-
neous array of fixed-size items.

legone An array object represents a multidimensional, homoge-
neous array of fixed-size items.

legx An array object represents a multidimensional, homoge-
neous array of fixed-size items.

polynomial.legendre.legdomain = array([-1., 1.])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.

1.4. Routines and objects by topic 1735

NumPy Reference, Release 2.2.0

offset
[int, optional] Offset of array data in buffer.

strides
[tuple of ints, optional] Strides of data in memory.

order
[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.

1736 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

data
[buffer] The array’s elements, in memory.

dtype
[dtype object] Describes the format of the elements in the array.

flags
[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.legendre.legzero = array([0])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters

1.4. Routines and objects by topic 1737

NumPy Reference, Release 2.2.0

(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

1738 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

1.4. Routines and objects by topic 1739

NumPy Reference, Release 2.2.0

polynomial.legendre.legone = array([1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

1740 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For

1.4. Routines and objects by topic 1741

NumPy Reference, Release 2.2.0

example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

polynomial.legendre.legx = array([0, 1])

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The param-
eters given here refer to a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the methods and attributes of an array.

Parameters
(for the __new__ method; see Notes below)
shape

[tuple of ints] Shape of created array.
dtype

[data-type, optional] Any object that can be interpreted as a numpy data type.
buffer

[object exposing buffer interface, optional] Used to fill the array with data.
offset

[int, optional] Offset of array data in buffer.
strides

[tuple of ints, optional] Strides of data in memory.
order

[{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.
See also:

array
Construct an array.

zeros
Create an array, each element of which is zero.

empty
Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype
Create a data-type.

numpy.typing.NDArray
An ndarray alias generic w.r.t. its dtype.type.

1742 1. Python API

https://docs.python.org/3/glossary.html#term-generic-type

NumPy Reference, Release 2.2.0

Notes

There are two modes of creating an array using __new__:
1. If buffer is None, then only shape, dtype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No __init__ method is needed because the array is fully initialized after the __new__ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways
of constructing an ndarray.
First mode, buffer is None:

>>> import numpy as np
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random

[nan, 2.5e-323]])

Second mode:

>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])

Attributes
T

[ndarray] Transpose of the array.
data

[buffer] The array’s elements, in memory.
dtype

[dtype object] Describes the format of the elements in the array.
flags

[dict] Dictionary containing information related to memory use, e.g., ‘C_CONTIGUOUS’,
‘OWNDATA’, ‘WRITEABLE’, etc.

flat
[numpy.flatiter object] Flattened version of the array as an iterator. The iterator allows assign-
ments, e.g., x.flat = 3 (See ndarray.flat for assignment examples; TODO).

imag
[ndarray] Imaginary part of the array.

real
[ndarray] Real part of the array.

size
[int] Number of elements in the array.

itemsize
[int] The memory use of each array element in bytes.

1.4. Routines and objects by topic 1743

NumPy Reference, Release 2.2.0

nbytes
[int] The total number of bytes required to store the array data, i.e., itemsize * size.

ndim
[int] The array’s number of dimensions.

shape
[tuple of ints] Shape of the array.

strides
[tuple of ints] The step-size required to move from one element to the next in memory. For
example, a contiguous (3, 4) array of type int16 in C-order has strides (8, 2). This
implies that to move from element to element in memory requires jumps of 2 bytes. To move
from row-to-row, one needs to jump 8 bytes at a time (2 * 4).

ctypes
[ctypes object] Class containing properties of the array needed for interaction with ctypes.

base
[ndarray] If the array is a view into another array, that array is its base (unless that array is also
a view). The base array is where the array data is actually stored.

Arithmetic

legadd(c1, c2) Add one Legendre series to another.
legsub(c1, c2) Subtract one Legendre series from another.
legmulx(c) Multiply a Legendre series by x.
legmul(c1, c2) Multiply one Legendre series by another.
legdiv(c1, c2) Divide one Legendre series by another.
legpow(c, pow[, maxpower]) Raise a Legendre series to a power.
legval(x, c[, tensor]) Evaluate a Legendre series at points x.
legval2d(x, y, c) Evaluate a 2-D Legendre series at points (x, y).
legval3d(x, y, z, c) Evaluate a 3-D Legendre series at points (x, y, z).
leggrid2d(x, y, c) Evaluate a 2-D Legendre series on the Cartesian product

of x and y.
leggrid3d(x, y, z, c) Evaluate a 3-D Legendre series on the Cartesian product

of x, y, and z.

polynomial.legendre.legadd(c1, c2)
Add one Legendre series to another.
Returns the sum of two Legendre series c1 + c2. The arguments are sequences of coefficients ordered from lowest
order term to highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Legendre series coefficients ordered from low to high.
Returns

out
[ndarray] Array representing the Legendre series of their sum.

See also:

legsub, legmulx, legmul, legdiv, legpow

1744 1. Python API

NumPy Reference, Release 2.2.0

Notes

Unlike multiplication, division, etc., the sum of two Legendre series is a Legendre series (without having to “repro-
ject” the result onto the basis set) so addition, just like that of “standard” polynomials, is simply “component-wise.”

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legadd(c1,c2)
array([4., 4., 4.])

polynomial.legendre.legsub(c1, c2)
Subtract one Legendre series from another.
Returns the difference of two Legendre series c1 - c2. The sequences of coefficients are from lowest order term to
highest, i.e., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Legendre series coefficients ordered from low to high.
Returns

out
[ndarray] Of Legendre series coefficients representing their difference.

See also:

legadd, legmulx, legmul, legdiv, legpow

Notes

Unlike multiplication, division, etc., the difference of two Legendre series is a Legendre series (without hav-
ing to “reproject” the result onto the basis set) so subtraction, just like that of “standard” polynomials, is simply
“component-wise.”

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legsub(c1,c2)
array([-2., 0., 2.])
>>> L.legsub(c2,c1) # -C.legsub(c1,c2)
array([2., 0., -2.])

polynomial.legendre.legmulx(c)
Multiply a Legendre series by x.
Multiply the Legendre series c by x, where x is the independent variable.

Parameters

1.4. Routines and objects by topic 1745

NumPy Reference, Release 2.2.0

c
[array_like] 1-D array of Legendre series coefficients ordered from low to high.

Returns
out

[ndarray] Array representing the result of the multiplication.
See also:

legadd, legsub, legmul, legdiv, legpow

Notes

The multiplication uses the recursion relationship for Legendre polynomials in the form

xPi(x) = ((i+ 1) ∗ Pi+1(x) + i ∗ Pi−1(x))/(2i+ 1)

Examples

>>> from numpy.polynomial import legendre as L
>>> L.legmulx([1,2,3])
array([0.66666667, 2.2, 1.33333333, 1.8]) # may vary

polynomial.legendre.legmul(c1, c2)
Multiply one Legendre series by another.
Returns the product of two Legendre series c1 * c2. The arguments are sequences of coefficients, from lowest order
“term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Legendre series coefficients ordered from low to high.
Returns

out
[ndarray] Of Legendre series coefficients representing their product.

See also:

legadd, legsub, legmulx, legdiv, legpow

Notes

In general, the (polynomial) product of two C-series results in terms that are not in the Legendre polynomial basis
set. Thus, to express the product as a Legendre series, it is necessary to “reproject” the product onto said basis set,
which may produce “unintuitive” (but correct) results; see Examples section below.

1746 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2)
>>> L.legmul(c1,c2) # multiplication requires "reprojection"
array([4.33333333, 10.4 , 11.66666667, 3.6]) # may vary

polynomial.legendre.legdiv(c1, c2)
Divide one Legendre series by another.
Returns the quotient-with-remainder of two Legendre series c1 / c2. The arguments are sequences of coefficients
from lowest order “term” to highest, e.g., [1,2,3] represents the series P_0 + 2*P_1 + 3*P_2.

Parameters
c1, c2

[array_like] 1-D arrays of Legendre series coefficients ordered from low to high.
Returns

quo, rem
[ndarrays] Of Legendre series coefficients representing the quotient and remainder.

See also:

legadd, legsub, legmulx, legmul, legpow

Notes

In general, the (polynomial) division of one Legendre series by another results in quotient and remainder terms that
are not in the Legendre polynomial basis set. Thus, to express these results as a Legendre series, it is necessary
to “reproject” the results onto the Legendre basis set, which may produce “unintuitive” (but correct) results; see
Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legdiv(c1,c2) # quotient "intuitive," remainder not
(array([3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> L.legdiv(c2,c1) # neither "intuitive"
(array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852])) # may vary

polynomial.legendre.legpow(c, pow, maxpower=16)
Raise a Legendre series to a power.
Returns the Legendre series c raised to the power pow. The argument c is a sequence of coefficients ordered from
low to high. i.e., [1,2,3] is the series P_0 + 2*P_1 + 3*P_2.

Parameters
c

[array_like] 1-D array of Legendre series coefficients ordered from low to high.

1.4. Routines and objects by topic 1747

NumPy Reference, Release 2.2.0

pow
[integer] Power to which the series will be raised

maxpower
[integer, optional] Maximum power allowed. This is mainly to limit growth of the series to
unmanageable size. Default is 16

Returns
coef

[ndarray] Legendre series of power.
See also:

legadd, legsub, legmulx, legmul, legdiv

polynomial.legendre.legval(x, c, tensor=True)
Evaluate a Legendre series at points x.
If c is of length n + 1, this function returns the value:

p(x) = c0 ∗ L0(x) + c1 ∗ L1(x) + ...+ cn ∗ Ln(x)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of c.
If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the shape
will be c.shape[1:]. Note that scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.

Parameters
x

[array_like, compatible object] If x is a list or tuple, it is converted to an ndarray, otherwise it
is left unchanged and treated as a scalar. In either case, x or its elements must support addition
and multiplication with themselves and with the elements of c.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree n are
contained in c[n]. If c is multidimensional the remaining indices enumerate multiple polyno-
mials. In the two dimensional case the coefficients may be thought of as stored in the columns
of c.

tensor
[boolean, optional] If True, the shape of the coefficient array is extended with ones on the right,
one for each dimension of x. Scalars have dimension 0 for this action. The result is that every
column of coefficients in c is evaluated for every element of x. If False, x is broadcast over
the columns of c for the evaluation. This keyword is useful when c is multidimensional. The
default value is True.

Returns
values

[ndarray, algebra_like] The shape of the return value is described above.
See also:

legval2d, leggrid2d, legval3d, leggrid3d

1748 1. Python API

NumPy Reference, Release 2.2.0

Notes

The evaluation uses Clenshaw recursion, aka synthetic division.
polynomial.legendre.legval2d(x, y, c)

Evaluate a 2-D Legendre series at points (x, y).
This function returns the values:

p(x, y) =
∑
i,j

ci,j ∗ Li(x) ∗ Lj(y)

The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x and y or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be c.shape[2:]
+ x.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points (x, y),
where x and y must have the same shape. If x or y is a list or tuple, it is first converted to an
ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional Legendre series at points
formed from pairs of corresponding values from x and y.

See also:

legval, leggrid2d, legval3d, leggrid3d

polynomial.legendre.legval3d(x, y, z, c)
Evaluate a 3-D Legendre series at points (x, y, z).
This function returns the values:

p(x, y, z) =
∑
i,j,k

ci,j,k ∗ Li(x) ∗ Lj(y) ∗ Lk(z)

The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as a
scalars and they must have the same shape after conversion. In either case, either x, y, and z or their elements must
support multiplication and addition both with themselves and with the elements of c.
If c has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result
will be c.shape[3:] + x.shape.

Parameters
x, y, z

[array_like, compatible object] The three dimensional series is evaluated at the points (x, y,
z), where x, y, and z must have the same shape. If any of x, y, or z is a list or tuple, it is first

1.4. Routines and objects by topic 1749

NumPy Reference, Release 2.2.0

converted to an ndarray, otherwise it is left unchanged and if it isn’t an ndarray it is treated as
a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree
i,j,k is contained in c[i,j,k]. If c has dimension greater than 3 the remaining indices
enumerate multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the multidimensional polynomial on points formed
with triples of corresponding values from x, y, and z.

See also:

legval, legval2d, leggrid2d, leggrid3d

polynomial.legendre.leggrid2d(x, y, c)
Evaluate a 2-D Legendre series on the Cartesian product of x and y.
This function returns the values:

p(a, b) =
∑
i,j

ci,j ∗ Li(a) ∗ Lj(b)

where the points (a, b) consist of all pairs formed by taking a from x and b from y. The resulting points form a
grid with x in the first dimension and y in the second.
The parameters x and y are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars.
In either case, either x and y or their elements must support multiplication and addition both with themselves and
with the elements of c.
If c has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the result
will be c.shape[2:] + x.shape + y.shape.

Parameters
x, y

[array_like, compatible objects] The two dimensional series is evaluated at the points in the
Cartesian product of x and y. If x or y is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficient of the term of multi-degree i,j
is contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional Chebyshev series at points in
the Cartesian product of x and y.

See also:

legval, legval2d, legval3d, leggrid3d

1750 1. Python API

NumPy Reference, Release 2.2.0

polynomial.legendre.leggrid3d(x, y, z, c)
Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z.
This function returns the values:

p(a, b, c) =
∑
i,j,k

ci,j,k ∗ Li(a) ∗ Lj(b) ∗ Lk(c)

where the points (a, b, c) consist of all triples formed by taking a from x, b from y, and c from z. The resulting
points form a grid with x in the first dimension, y in the second, and z in the third.
The parameters x, y, and z are converted to arrays only if they are tuples or a lists, otherwise they are treated as
a scalars. In either case, either x, y, and z or their elements must support multiplication and addition both with
themselves and with the elements of c.
If c has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the
result will be c.shape[3:] + x.shape + y.shape + z.shape.

Parameters
x, y, z

[array_like, compatible objects] The three dimensional series is evaluated at the points in the
Cartesian product of x, y, and z. If x, y, or z is a list or tuple, it is first converted to an ndarray,
otherwise it is left unchanged and, if it isn’t an ndarray, it is treated as a scalar.

c
[array_like] Array of coefficients ordered so that the coefficients for terms of degree i,j are
contained in c[i,j]. If c has dimension greater than two the remaining indices enumerate
multiple sets of coefficients.

Returns
values

[ndarray, compatible object] The values of the two dimensional polynomial at points in the
Cartesian product of x and y.

See also:

legval, legval2d, leggrid2d, legval3d

Calculus

legder(c[, m, scl, axis]) Differentiate a Legendre series.
legint(c[, m, k, lbnd, scl, axis]) Integrate a Legendre series.

polynomial.legendre.legder(c, m=1, scl=1, axis=0)
Differentiate a Legendre series.
Returns the Legendre series coefficients c differentiatedm times along axis. At each iteration the result is multiplied
by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients from low
to high degree along each axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]]
represents1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)
if axis=0 is x and axis=1 is y.

Parameters

1.4. Routines and objects by topic 1751

NumPy Reference, Release 2.2.0

c
[array_like] Array of Legendre series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

m
[int, optional] Number of derivatives taken, must be non-negative. (Default: 1)

scl
[scalar, optional] Each differentiation is multiplied by scl. The end result is multiplication by
scl**m. This is for use in a linear change of variable. (Default: 1)

axis
[int, optional] Axis over which the derivative is taken. (Default: 0).

Returns
der

[ndarray] Legendre series of the derivative.
See also:

legint

Notes

In general, the result of differentiating a Legendre series does not resemble the same operation on a power series.
Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3,4)
>>> L.legder(c)
array([6., 9., 20.])
>>> L.legder(c, 3)
array([60.])
>>> L.legder(c, scl=-1)
array([-6., -9., -20.])
>>> L.legder(c, 2,-1)
array([9., 60.])

polynomial.legendre.legint(c, m=1, k=[], lbnd=0, scl=1, axis=0)
Integrate a Legendre series.
Returns the Legendre series coefficients c integrated m times from lbnd along axis. At each iteration the resulting
series is multiplied by scl and an integration constant, k, is added. The scaling factor is for use in a linear change
of variable. (“Buyer beware”: note that, depending on what one is doing, one may want scl to be the reciprocal
of what one might expect; for more information, see the Notes section below.) The argument c is an array of
coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series L_0 + 2*L_1 + 3*L_2
while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) +
2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.

Parameters
c

[array_like] Array of Legendre series coefficients. If c is multidimensional the different axis
correspond to different variables with the degree in each axis given by the corresponding index.

1752 1. Python API

NumPy Reference, Release 2.2.0

m
[int, optional] Order of integration, must be positive. (Default: 1)

k
[{[], list, scalar}, optional] Integration constant(s). The value of the first integral at lbnd is
the first value in the list, the value of the second integral at lbnd is the second value, etc. If
k == [] (the default), all constants are set to zero. If m == 1, a single scalar can be given
instead of a list.

lbnd
[scalar, optional] The lower bound of the integral. (Default: 0)

scl
[scalar, optional] Following each integration the result ismultiplied by scl before the integration
constant is added. (Default: 1)

axis
[int, optional] Axis over which the integral is taken. (Default: 0).

Returns
S

[ndarray] Legendre series coefficient array of the integral.
Raises

ValueError
If m < 0, len(k) > m, np.ndim(lbnd) != 0, or np.ndim(scl) != 0.

See also:

legder

Notes

Note that the result of each integration is multiplied by scl. Why is this important to note? Say one is making a
linear change of variable u = ax+ b in an integral relative to x. Then dx = du/a, so one will need to set scl equal
to 1/a - perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs to be “reprojected” onto the C-series basis set.
Thus, typically, the result of this function is “unintuitive,” albeit correct; see Examples section below.

Examples

>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3)
>>> L.legint(c)
array([0.33333333, 0.4 , 0.66666667, 0.6]) # may vary
>>> L.legint(c, 3)
array([1.66666667e-02, -1.78571429e-02, 4.76190476e-02, # may vary

-1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
>>> L.legint(c, k=3)
array([3.33333333, 0.4 , 0.66666667, 0.6]) # may vary
>>> L.legint(c, lbnd=-2)
array([7.33333333, 0.4 , 0.66666667, 0.6]) # may vary
>>> L.legint(c, scl=2)
array([0.66666667, 0.8 , 1.33333333, 1.2]) # may vary

1.4. Routines and objects by topic 1753

NumPy Reference, Release 2.2.0

Misc Functions

legfromroots(roots) Generate a Legendre series with given roots.
legroots(c) Compute the roots of a Legendre series.
legvander(x, deg) Pseudo-Vandermonde matrix of given degree.
legvander2d(x, y, deg) Pseudo-Vandermonde matrix of given degrees.
legvander3d(x, y, z, deg) Pseudo-Vandermonde matrix of given degrees.
leggauss(deg) Gauss-Legendre quadrature.
legweight(x) Weight function of the Legendre polynomials.
legcompanion(c) Return the scaled companion matrix of c.
legfit(x, y, deg[, rcond, full, w]) Least squares fit of Legendre series to data.
legtrim(c[, tol]) Remove "small" "trailing" coefficients from a polynomial.
legline(off, scl) Legendre series whose graph is a straight line.
leg2poly(c) Convert a Legendre series to a polynomial.
poly2leg(pol) Convert a polynomial to a Legendre series.

polynomial.legendre.legfromroots(roots)
Generate a Legendre series with given roots.
The function returns the coefficients of the polynomial

p(x) = (x− r0) ∗ (x− r1) ∗ ... ∗ (x− rn),

in Legendre form, where the rn are the roots specified in roots. If a zero has multiplicity n, then it must appear
in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots
looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.
If the returned coefficients are c, then

p(x) = c0 + c1 ∗ L1(x) + ...+ cn ∗ Ln(x)

The coefficient of the last term is not generally 1 for monic polynomials in Legendre form.
Parameters

roots
[array_like] Sequence containing the roots.

Returns
out

[ndarray] 1-D array of coefficients. If all roots are real then out is a real array, if some of the
roots are complex, then out is complex even if all the coefficients in the result are real (see
Examples below).

See also:

numpy.polynomial.polynomial.polyfromroots
numpy.polynomial.chebyshev.chebfromroots
numpy.polynomial.laguerre.lagfromroots
numpy.polynomial.hermite.hermfromroots
numpy.polynomial.hermite_e.hermefromroots

1754 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy.polynomial.legendre as L
>>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([0. , -0.4, 0. , 0.4])
>>> j = complex(0,1)
>>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j]) # may vary

polynomial.legendre.legroots(c)
Compute the roots of a Legendre series.
Return the roots (a.k.a. “zeros”) of the polynomial

p(x) =
∑
i

c[i] ∗ Li(x).

Parameters
c

[1-D array_like] 1-D array of coefficients.
Returns

out
[ndarray] Array of the roots of the series. If all the roots are real, then out is also real, otherwise
it is complex.

See also:

numpy.polynomial.polynomial.polyroots
numpy.polynomial.chebyshev.chebroots
numpy.polynomial.laguerre.lagroots
numpy.polynomial.hermite.hermroots
numpy.polynomial.hermite_e.hermeroots

Notes

The root estimates are obtained as the eigenvalues of the companionmatrix, Roots far from the origin of the complex
plane may have large errors due to the numerical instability of the series for such values. Roots with multiplicity
greater than 1 will also show larger errors as the value of the series near such points is relatively insensitive to errors
in the roots. Isolated roots near the origin can be improved by a few iterations of Newton’s method.
The Legendre series basis polynomials aren’t powers of x so the results of this function may seem unintuitive.

Examples

>>> import numpy.polynomial.legendre as leg
>>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
array([-0.85099543, -0.11407192, 0.51506735]) # may vary

polynomial.legendre.legvander(x, deg)
Pseudo-Vandermonde matrix of given degree.

1.4. Routines and objects by topic 1755

NumPy Reference, Release 2.2.0

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is
defined by

V [..., i] = Li(x)

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the
Legendre polynomial.
If c is a 1-D array of coefficients of length n + 1 and V is the array V = legvander(x, n), then np.
dot(V, c) and legval(x, c) are the same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of Legendre series of the same degree and sample points.

Parameters
x

[array_like] Array of points. The dtype is converted to float64 or complex128 depending on
whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg
[int] Degree of the resulting matrix.

Returns
vander

[ndarray] The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape +
(deg + 1,), where The last index is the degree of the corresponding Legendre polynomial.
The dtype will be the same as the converted x.

polynomial.legendre.legvander2d(x, y, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). The pseudo-Vandermonde
matrix is defined by

V [..., (deg[1] + 1) ∗ i+ j] = Li(x) ∗ Lj(y),

where 0 <= i <= deg[0] and 0 <= j <= deg[1]. The leading indices of V index the points (x, y)
and the last index encodes the degrees of the Legendre polynomials.
If V = legvander2d(x, y, [xdeg, ydeg]), then the columns of V correspond to the elements of a
2-D coefficient array c of shape (xdeg + 1, ydeg + 1) in the order

c00, c01, c02..., c10, c11, c12...

and np.dot(V, c.flat) and legval2d(x, y, c) will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 2-D Legendre series of the same
degrees and sample points.

Parameters
x, y

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg].

Returns

1756 1. Python API

NumPy Reference, Release 2.2.0

vander2d
[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1). The dtype will be the same as the converted x and y.

See also:

legvander, legvander3d, legval2d, legval3d

polynomial.legendre.legvander3d(x, y, z, deg)
Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y, z). If l, m, n are the given
degrees in x, y, z, then The pseudo-Vandermonde matrix is defined by

V [..., (m+ 1)(n+ 1)i+ (n+ 1)j + k] = Li(x) ∗ Lj(y) ∗ Lk(z),

where 0 <= i <= l, 0 <= j <= m, and 0 <= j <= n. The leading indices of V index the points (x,
y, z) and the last index encodes the degrees of the Legendre polynomials.
If V = legvander3d(x, y, z, [xdeg, ydeg, zdeg]), then the columns of V correspond to the
elements of a 3-D coefficient array c of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

c000, c001, c002, ..., c010, c011, c012, ...

and np.dot(V, c.flat) and legval3d(x, y, z, c)will be the same up to roundoff. This equivalence
is useful both for least squares fitting and for the evaluation of a large number of 3-D Legendre series of the same
degrees and sample points.

Parameters
x, y, z

[array_like] Arrays of point coordinates, all of the same shape. The dtypes will be converted to
either float64 or complex128 depending on whether any of the elements are complex. Scalars
are converted to 1-D arrays.

deg
[list of ints] List of maximum degrees of the form [x_deg, y_deg, z_deg].

Returns
vander3d

[ndarray] The shape of the returned matrix is x.shape + (order,), where order =
(deg[0] + 1) ∗ (deg[1] + 1) ∗ (deg[2] + 1). The dtype will be the same as the converted x, y,
and z.

See also:

legvander, legvander3d, legval2d, legval3d

polynomial.legendre.leggauss(deg)
Gauss-Legendre quadrature.
Computes the sample points and weights for Gauss-Legendre quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 ∗ deg − 1 or less over the interval [−1, 1] with the weight function
f(x) = 1.

Parameters
deg

[int] Number of sample points and weights. It must be >= 1.

1.4. Routines and objects by topic 1757

NumPy Reference, Release 2.2.0

Returns
x

[ndarray] 1-D ndarray containing the sample points.
y

[ndarray] 1-D ndarray containing the weights.

Notes

The results have only been tested up to degree 100, higher degrees may be problematic. The weights are determined
by using the fact that

wk = c/(L′
n(xk) ∗ Ln−1(xk))

where c is a constant independent of k and xk is the k’th root of Ln, and then scaling the results to get the right
value when integrating 1.

polynomial.legendre.legweight(x)
Weight function of the Legendre polynomials.
The weight function is 1 and the interval of integration is [−1, 1]. The Legendre polynomials are orthogonal, but
not normalized, with respect to this weight function.

Parameters
x

[array_like] Values at which the weight function will be computed.
Returns

w
[ndarray] The weight function at x.

polynomial.legendre.legcompanion(c)
Return the scaled companion matrix of c.
The basis polynomials are scaled so that the companionmatrix is symmetric when c is an Legendre basis polynomial.
This provides better eigenvalue estimates than the unscaled case and for basis polynomials the eigenvalues are
guaranteed to be real if numpy.linalg.eigvalsh is used to obtain them.

Parameters
c

[array_like] 1-D array of Legendre series coefficients ordered from low to high degree.
Returns

mat
[ndarray] Scaled companion matrix of dimensions (deg, deg).

polynomial.legendre.legfit(x, y, deg, rcond=None, full=False, w=None)
Least squares fit of Legendre series to data.
Return the coefficients of a Legendre series of degree deg that is the least squares fit to the data values y given at
points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each column
of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted polynomial(s)
are in the form

p(x) = c0 + c1 ∗ L1(x) + ...+ cn ∗ Ln(x),

where n is deg.

1758 1. Python API

NumPy Reference, Release 2.2.0

Parameters
x

[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).
y

[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg
[int or 1-D array_like] Degree(s) of the fitting polynomials. If deg is a single integer all terms
up to and including the deg’th term are included in the fit. For NumPy versions >= 1.11.0 a
list of integers specifying the degrees of the terms to include may be used instead.

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the un-
squared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. When using inverse-variance
weighting, use w[i] = 1/sigma(y[i]). The default value is None.

Returns
coef

[ndarray, shape (M,) or (M, K)] Legendre coefficients ordered from low to high. If y was 2-D,
the coefficients for the data in column k of y are in column k. If deg is specified as a list,
coefficients for terms not included in the fit are set equal to zero in the returned coef.

[residuals, rank, singular_values, rcond]
[list] These values are only returned if full == True

• residuals – sum of squared residuals of the least squares fit
• rank – the numerical rank of the scaled Vandermonde matrix
• singular_values – singular values of the scaled Vandermonde matrix
• rcond – value of rcond.
For more details, see numpy.linalg.lstsq.

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised
if full == False. The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See also:

1.4. Routines and objects by topic 1759

NumPy Reference, Release 2.2.0

numpy.polynomial.polynomial.polyfit
numpy.polynomial.chebyshev.chebfit
numpy.polynomial.laguerre.lagfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.hermite_e.hermefit
legval

Evaluates a Legendre series.
legvander

Vandermonde matrix of Legendre series.
legweight

Legendre weight function (= 1).
numpy.linalg.lstsq

Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline

Computes spline fits.

Notes

The solution is the coefficients of the Legendre series p that minimizes the sum of the weighted squared errors

E =
∑
j

w2
j ∗ |yj − p(xj)|2,

where wj are the weights. This problem is solved by setting up as the (typically) overdetermined matrix equation

V (x) ∗ c = w ∗ y,

where V is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the weights,
and y are the observed values. This equation is then solved using the singular value decomposition of V.
If some of the singular values of V are so small that they are neglected, then a RankWarning will be issued.
This means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of
the warning. The rcond parameter can also be set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.
Fits using Legendre series are usually better conditioned than fits using power series, but much can depend on the
distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate splines may
be a good alternative.

References

[1]
polynomial.legendre.legtrim(c, tol=0)

Remove “small” “trailing” coefficients from a polynomial.
“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4) both
the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters
c

[array_like] 1-d array of coefficients, ordered from lowest order to highest.

1760 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 2.2.0

tol
[number, optional] Trailing (i.e., highest order) elements with absolute value less than or equal
to tol (default value is zero) are removed.

Returns
trimmed

[ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.001 -0.001j])

polynomial.legendre.legline(off, scl)
Legendre series whose graph is a straight line.

Parameters
off, scl

[scalars] The specified line is given by off + scl*x.
Returns

y
[ndarray] This module’s representation of the Legendre series for off + scl*x.

See also:

numpy.polynomial.polynomial.polyline
numpy.polynomial.chebyshev.chebline
numpy.polynomial.laguerre.lagline
numpy.polynomial.hermite.hermline
numpy.polynomial.hermite_e.hermeline

Examples

>>> import numpy.polynomial.legendre as L
>>> L.legline(3,2)
array([3, 2])
>>> L.legval(-3, L.legline(3,2)) # should be -3
-3.0

1.4. Routines and objects by topic 1761

NumPy Reference, Release 2.2.0

polynomial.legendre.leg2poly(c)
Convert a Legendre series to a polynomial.
Convert an array representing the coefficients of a Legendre series, ordered from lowest degree to highest, to an
array of the coefficients of the equivalent polynomial (relative to the “standard” basis) ordered from lowest to highest
degree.

Parameters
c

[array_like] 1-D array containing the Legendre series coefficients, ordered from lowest order
term to highest.

Returns
pol

[ndarray] 1-D array containing the coefficients of the equivalent polynomial (relative to the
“standard” basis) ordered from lowest order term to highest.

See also:

poly2leg

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> from numpy import polynomial as P
>>> c = P.Legendre(range(4))
>>> c
Legendre([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x')
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([-1. , -3.5, 3. , 7.5], domain=[-1., 1.], window=[-1., ...
>>> P.legendre.leg2poly(range(4))
array([-1. , -3.5, 3. , 7.5])

polynomial.legendre.poly2leg(pol)
Convert a polynomial to a Legendre series.
Convert an array representing the coefficients of a polynomial (relative to the “standard” basis) ordered from lowest
degree to highest, to an array of the coefficients of the equivalent Legendre series, ordered from lowest to highest
degree.

Parameters
pol

[array_like] 1-D array containing the polynomial coefficients
Returns

c
[ndarray] 1-D array containing the coefficients of the equivalent Legendre series.

See also:

leg2poly

1762 1. Python API

NumPy Reference, Release 2.2.0

Notes

The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance.

Examples

>>> import numpy as np
>>> from numpy import polynomial as P
>>> p = P.Polynomial(np.arange(4))
>>> p
Polynomial([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], ...
>>> c = P.Legendre(P.legendre.poly2leg(p.coef))
>>> c
Legendre([1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1]) # may␣
↪→vary

See also

numpy.polynomial

Polyutils
Utility classes and functions for the polynomial modules.
This module provides: error and warning objects; a polynomial base class; and some routines used in both the polynomial
and chebyshev modules.

Functions

as_series(alist[, trim]) Return argument as a list of 1-d arrays.
trimseq(seq) Remove small Poly series coefficients.
trimcoef(c[, tol]) Remove "small" "trailing" coefficients from a polynomial.
getdomain(x) Return a domain suitable for given abscissae.
mapdomain(x, old, new) Apply linear map to input points.
mapparms(old, new) Linear map parameters between domains.

polynomial.polyutils.as_series(alist, trim=True)
Return argument as a list of 1-d arrays.
The returned list contains array(s) of dtype double, complex double, or object. A 1-d argument of shape (N,) is
parsed into N arrays of size one; a 2-d argument of shape (M,N) is parsed into M arrays of size N (i.e., is “parsed
by row”); and a higher dimensional array raises a Value Error if it is not first reshaped into either a 1-d or 2-d array.

Parameters
alist

[array_like] A 1- or 2-d array_like
trim

[boolean, optional] When True, trailing zeros are removed from the inputs. When False, the
inputs are passed through intact.

Returns

1.4. Routines and objects by topic 1763

NumPy Reference, Release 2.2.0

[a1, a2,…]
[list of 1-D arrays] A copy of the input data as a list of 1-d arrays.

Raises
ValueError

Raised when as_series cannot convert its input to 1-d arrays, or at least one of the resulting
arrays is empty.

Examples

>>> import numpy as np
>>> from numpy.polynomial import polyutils as pu
>>> a = np.arange(4)
>>> pu.as_series(a)
[array([0.]), array([1.]), array([2.]), array([3.])]
>>> b = np.arange(6).reshape((2,3))
>>> pu.as_series(b)
[array([0., 1., 2.]), array([3., 4., 5.])]

>>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
[array([1.]), array([0., 1., 2.]), array([0., 1.])]

>>> pu.as_series([2, [1.1, 0.]])
[array([2.]), array([1.1])]

>>> pu.as_series([2, [1.1, 0.]], trim=False)
[array([2.]), array([1.1, 0.])]

polynomial.polyutils.trimseq(seq)
Remove small Poly series coefficients.

Parameters
seq

[sequence] Sequence of Poly series coefficients.
Returns

series
[sequence] Subsequence with trailing zeros removed. If the resulting sequence would be
empty, return the first element. The returned sequence may or may not be a view.

Notes

Do not lose the type info if the sequence contains unknown objects.
polynomial.polyutils.trimcoef(c, tol=0)

Remove “small” “trailing” coefficients from a polynomial.
“Small” means “small in absolute value” and is controlled by the parameter tol; “trailing” means highest order
coefficient(s), e.g., in [0, 1, 1, 0, 0] (which represents 0 + x + x**2 + 0*x**3 + 0*x**4) both
the 3-rd and 4-th order coefficients would be “trimmed.”

Parameters

1764 1. Python API

NumPy Reference, Release 2.2.0

c
[array_like] 1-d array of coefficients, ordered from lowest order to highest.

tol
[number, optional] Trailing (i.e., highest order) elements with absolute value less than or equal
to tol (default value is zero) are removed.

Returns
trimmed

[ndarray] 1-d array with trailing zeros removed. If the resulting series would be empty, a series
containing a single zero is returned.

Raises
ValueError

If tol < 0

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([0.0003+0.j , 0.001 -0.001j])

polynomial.polyutils.getdomain(x)
Return a domain suitable for given abscissae.
Find a domain suitable for a polynomial or Chebyshev series defined at the values supplied.

Parameters
x

[array_like] 1-d array of abscissae whose domain will be determined.
Returns

domain
[ndarray] 1-d array containing two values. If the inputs are complex, then the two returned
points are the lower left and upper right corners of the smallest rectangle (aligned with the
axes) in the complex plane containing the points x. If the inputs are real, then the two points
are the ends of the smallest interval containing the points x.

See also:

mapparms, mapdomain

1.4. Routines and objects by topic 1765

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> from numpy.polynomial import polyutils as pu
>>> points = np.arange(4)**2 - 5; points
array([-5, -4, -1, 4])
>>> pu.getdomain(points)
array([-5., 4.])
>>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
>>> pu.getdomain(c)
array([-1.-1.j, 1.+1.j])

polynomial.polyutils.mapdomain(x, old, new)
Apply linear map to input points.
The linear map offset + scale*x that maps the domain old to the domain new is applied to the points x.

Parameters
x

[array_like] Points to be mapped. If x is a subtype of ndarray the subtype will be preserved.
old, new

[array_like] The two domains that determine the map. Each must (successfully) convert to 1-d
arrays containing precisely two values.

Returns
x_out

[ndarray] Array of points of the same shape as x, after application of the linear map between
the two domains.

See also:

getdomain, mapparms

Notes

Effectively, this implements:

x_out = new[0] +m(x− old[0])

where

m =
new[1]− new[0]

old[1]− old[0]

Examples

>>> import numpy as np
>>> from numpy.polynomial import polyutils as pu
>>> old_domain = (-1,1)
>>> new_domain = (0,2*np.pi)
>>> x = np.linspace(-1,1,6); x
array([-1. , -0.6, -0.2, 0.2, 0.6, 1.])
>>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out

(continues on next page)

1766 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
array([0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825, # may vary

6.28318531])
>>> x - pu.mapdomain(x_out, new_domain, old_domain)
array([0., 0., 0., 0., 0., 0.])

Also works for complex numbers (and thus can be used to map any line in the complex plane to any other line
therein).

>>> i = complex(0,1)
>>> old = (-1 - i, 1 + i)
>>> new = (-1 + i, 1 - i)
>>> z = np.linspace(old[0], old[1], 6); z
array([-1. -1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1. +1.j])
>>> new_z = pu.mapdomain(z, old, new); new_z
array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j]) # may␣
↪→vary

polynomial.polyutils.mapparms(old, new)
Linear map parameters between domains.
Return the parameters of the linear map offset + scale*x that maps old to new such that old[i] ->
new[i], i = 0, 1.

Parameters
old, new

[array_like] Domains. Each domain must (successfully) convert to a 1-d array containing pre-
cisely two values.

Returns
offset, scale

[scalars] The map L(x) = offset + scale*x maps the first domain to the second.
See also:

getdomain, mapdomain

Notes

Also works for complex numbers, and thus can be used to calculate the parameters required to map any line in the
complex plane to any other line therein.

Examples

>>> from numpy.polynomial import polyutils as pu
>>> pu.mapparms((-1,1),(-1,1))
(0.0, 1.0)
>>> pu.mapparms((1,-1),(-1,1))
(-0.0, -1.0)
>>> i = complex(0,1)
>>> pu.mapparms((-i,-1),(1,i))
((1+1j), (1-0j))

1.4. Routines and objects by topic 1767

NumPy Reference, Release 2.2.0

Documentation for legacy polynomials

Poly1d
Basics

poly1d(c_or_r[, r, variable]) A one-dimensional polynomial class.
polyval(p, x) Evaluate a polynomial at specific values.
poly(seq_of_zeros) Find the coefficients of a polynomial with the given se-

quence of roots.
roots(p) Return the roots of a polynomial with coefficients given

in p.

class numpy.poly1d(c_or_r, r=False, variable=None)
A one-dimensional polynomial class.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

A convenience class, used to encapsulate “natural” operations on polynomials so that said operations may take on
their customary form in code (see Examples).

Parameters
c_or_r

[array_like] The polynomial’s coefficients, in decreasing powers, or if the value of the second
parameter is True, the polynomial’s roots (values where the polynomial evaluates to 0). For
example, poly1d([1, 2, 3]) returns an object that represents x2 + 2x + 3, whereas
poly1d([1, 2, 3], True) returns one that represents (x − 1)(x − 2)(x − 3) =
x3 − 6x2 + 11x− 6.

r
[bool, optional] If True, c_or_r specifies the polynomial’s roots; the default is False.

variable
[str, optional] Changes the variable usedwhen printing p from x tovariable (see Examples).

Examples

Construct the polynomial x2 + 2x+ 3:

>>> import numpy as np

>>> p = np.poly1d([1, 2, 3])
>>> print(np.poly1d(p))

2
1 x + 2 x + 3

Evaluate the polynomial at x = 0.5:

>>> p(0.5)
4.25

1768 1. Python API

NumPy Reference, Release 2.2.0

Find the roots:

>>> p.r
array([-1.+1.41421356j, -1.-1.41421356j])
>>> p(p.r)
array([-4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary

These numbers in the previous line represent (0, 0) to machine precision
Show the coefficients:

>>> p.c
array([1, 2, 3])

Display the order (the leading zero-coefficients are removed):

>>> p.order
2

Show the coefficient of the k-th power in the polynomial (which is equivalent to p.c[-(i+1)]):

>>> p[1]
2

Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder):

>>> p * p
poly1d([1, 4, 10, 12, 9])

>>> (p**3 + 4) / p
(poly1d([1., 4., 10., 12., 9.]), poly1d([4.]))

asarray(p) gives the coefficient array, so polynomials can be used in all functions that accept arrays:

>>> p**2 # square of polynomial
poly1d([1, 4, 10, 12, 9])

>>> np.square(p) # square of individual coefficients
array([1, 4, 9])

The variable used in the string representation of p can be modified, using the variable parameter:

>>> p = np.poly1d([1,2,3], variable='z')
>>> print(p)

2
1 z + 2 z + 3

Construct a polynomial from its roots:

>>> np.poly1d([1, 2], True)
poly1d([1., -3., 2.])

This is the same polynomial as obtained by:

>>> np.poly1d([1, -1]) * np.poly1d([1, -2])
poly1d([1, -3, 2])

Attributes

1.4. Routines and objects by topic 1769

NumPy Reference, Release 2.2.0

c
The polynomial coefficients

coef
The polynomial coefficients

coefficients
The polynomial coefficients

coeffs
The polynomial coefficients

o
The order or degree of the polynomial

order
The order or degree of the polynomial

r
The roots of the polynomial, where self(x) == 0

roots
The roots of the polynomial, where self(x) == 0

variable
The name of the polynomial variable

Methods

__call__(val) Call self as a function.
deriv([m]) Return a derivative of this polynomial.
integ([m, k]) Return an antiderivative (indefinite integral) of this

polynomial.

method
poly1d.__call__(val)

Call self as a function.
method
poly1d.deriv(m=1)

Return a derivative of this polynomial.
Refer to polyder for full documentation.
See also:

polyder
equivalent function

method
poly1d.integ(m=1, k=0)

Return an antiderivative (indefinite integral) of this polynomial.
Refer to polyint for full documentation.
See also:

1770 1. Python API

NumPy Reference, Release 2.2.0

polyint
equivalent function

numpy.polyval(p, x)
Evaluate a polynomial at specific values.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

If p is of length N, this function returns the value:

p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]

If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite
polynomial p(x(t)) is returned.

Parameters
p

[array_like or poly1d object] 1D array of polynomial coefficients (including coefficients equal
to zero) from highest degree to the constant term, or an instance of poly1d.

x
[array_like or poly1d object] A number, an array of numbers, or an instance of poly1d, at
which to evaluate p.

Returns
values

[ndarray or poly1d] If x is a poly1d instance, the result is the composition of the two polyno-
mials, i.e., x is “substituted” in p and the simplified result is returned. In addition, the type of
x - array_like or poly1d - governs the type of the output: x array_like => values array_like, x
a poly1d object => values is also.

See also:

poly1d
A polynomial class.

Notes

Horner’s scheme [1] is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be
inaccurate due to rounding errors. Use carefully.
If x is a subtype of ndarray the return value will be of the same type.

1.4. Routines and objects by topic 1771

NumPy Reference, Release 2.2.0

References

[1]

Examples

>>> import numpy as np
>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
76
>>> np.polyval([3,0,1], np.poly1d(5))
poly1d([76])
>>> np.polyval(np.poly1d([3,0,1]), 5)
76
>>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
poly1d([76])

numpy.poly(seq_of_zeros)
Find the coefficients of a polynomial with the given sequence of roots.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple
roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or
array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic
polynomial of the matrix are returned.

Parameters
seq_of_zeros

[array_like, shape (N,) or (N, N)] A sequence of polynomial roots, or a square array or matrix
object.

Returns
c

[ndarray] 1D array of polynomial coefficients from highest to lowest degree:
c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N] where
c[0] always equals 1.

Raises
ValueError

If input is the wrong shape (the input must be a 1-D or square 2-D array).
See also:

polyval
Compute polynomial values.

roots
Return the roots of a polynomial.

polyfit
Least squares polynomial fit.

1772 1. Python API

NumPy Reference, Release 2.2.0

poly1d
A one-dimensional polynomial class.

Notes

Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined
leading coefficient. [1] In the case of this function, that coefficient - the first one in the returned array - is always
taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that
information is to use polyfit.)
The characteristic polynomial, pa(t), of an n-by-n matrix A is given by
pa(t) = det(t I− A),
where I is the n-by-n identity matrix. [2]

References

[1], [2]

Examples

Given a sequence of a polynomial’s zeros:

>>> import numpy as np

>>> np.poly((0, 0, 0)) # Multiple root example
array([1., 0., 0., 0.])

The line above represents z**3 + 0*z**2 + 0*z + 0.

>>> np.poly((-1./2, 0, 1./2))
array([1. , 0. , -0.25, 0.])

The line above represents z**3 - z/4

>>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0]))
array([1. , -0.77086955, 0.08618131, 0.]) # random

Given a square array object:

>>> P = np.array([[0, 1./3], [-1./2, 0]])
>>> np.poly(P)
array([1. , 0. , 0.16666667])

Note how in all cases the leading coefficient is always 1.
numpy.roots(p)

Return the roots of a polynomial with coefficients given in p.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

1.4. Routines and objects by topic 1773

NumPy Reference, Release 2.2.0

The values in the rank-1 array p are coefficients of a polynomial. If the length of p is n+1 then the polynomial is
described by:

p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]

Parameters
p

[array_like] Rank-1 array of polynomial coefficients.
Returns

out
[ndarray] An array containing the roots of the polynomial.

Raises
ValueError

When p cannot be converted to a rank-1 array.

See also:

poly
Find the coefficients of a polynomial with a given sequence of roots.

polyval
Compute polynomial values.

polyfit
Least squares polynomial fit.

poly1d
A one-dimensional polynomial class.

Notes

The algorithm relies on computing the eigenvalues of the companion matrix [1].

References

[1]

Examples

>>> import numpy as np
>>> coeff = [3.2, 2, 1]
>>> np.roots(coeff)
array([-0.3125+0.46351241j, -0.3125-0.46351241j])

1774 1. Python API

NumPy Reference, Release 2.2.0

Fitting

polyfit(x, y, deg[, rcond, full, w, cov]) Least squares polynomial fit.

numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
Least squares polynomial fit.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

Fit a polynomial p(x) = p[0] * x**deg + ... + p[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error in the order deg, deg-1, … 0.
The Polynomial.fit class method is recommended for new code as it is more stable numerically. See the
documentation of the method for more information.

Parameters
x

[array_like, shape (M,)] x-coordinates of the M sample points (x[i], y[i]).
y

[array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg
[int] Degree of the fitting polynomial

rcond
[float, optional] Relative condition number of the fit. Singular values smaller than this relative
to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the
relative precision of the float type, about 2e-16 in most cases.

full
[bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w
[array_like, shape (M,), optional] Weights. If not None, the weight w[i] applies to the un-
squared residual y[i] - y_hat[i] at x[i]. Ideally the weights are chosen so that the
errors of the products w[i]*y[i] all have the same variance. When using inverse-variance
weighting, use w[i] = 1/sigma(y[i]). The default value is None.

cov
[bool or str, optional] If given and not False, return not just the estimate but also its covariance
matrix. By default, the covariance are scaled by chi2/dof, where dof = M - (deg + 1), i.e., the
weights are presumed to be unreliable except in a relative sense and everything is scaled such
that the reduced chi2 is unity. This scaling is omitted if cov='unscaled', as is relevant
for the case that the weights are w = 1/sigma, with sigma known to be a reliable estimate of
the uncertainty.

Returns

1.4. Routines and objects by topic 1775

NumPy Reference, Release 2.2.0

p
[ndarray, shape (deg + 1,) or (deg + 1, K)] Polynomial coefficients, highest power first. If y
was 2-D, the coefficients for k-th data set are in p[:,k].

residuals, rank, singular_values, rcond
These values are only returned if full == True

• residuals – sum of squared residuals of the least squares fit
• rank – the effective rank of the scaled Vandermonde

coefficient matrix
• singular_values – singular values of the scaled Vandermonde

coefficient matrix
• rcond – value of rcond.
For more details, see numpy.linalg.lstsq.

V
[ndarray, shape (deg + 1, deg + 1) or (deg + 1, deg + 1, K)] Present only if full == False
and cov == True. The covariance matrix of the polynomial coefficient estimates. The
diagonal of this matrix are the variance estimates for each coefficient. If y is a 2-D array, then
the covariance matrix for the k-th data set are in V[:,:,k]

Warns
RankWarning

The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised
if full == False.
The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See also:

polyval
Compute polynomial values.

linalg.lstsq
Computes a least-squares fit.

scipy.interpolate.UnivariateSpline
Computes spline fits.

Notes

The solution minimizes the squared error

E =

k∑
j=0

|p(xj)− yj |2

in the equations:

x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
...
x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]

1776 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 2.2.0

The coefficient matrix of the coefficients p is a Vandermonde matrix.
polyfit issues a RankWarning when the least-squares fit is badly conditioned. This implies that the best fit
is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by
replacing x by x - x.mean(). The rcond parameter can also be set to a value smaller than its default, but the resulting
fit may be spurious: including contributions from the small singular values can add numerical noise to the result.
Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large
or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases.
When polynomial fits are not satisfactory, splines may be a good alternative.

References

[1], [2]

Examples

>>> import numpy as np
>>> import warnings
>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary

It is convenient to use poly1d objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179 # may vary
>>> p(3.5)
-0.34732142857143039 # may vary
>>> p(10)
22.579365079365115 # may vary

High-order polynomials may oscillate wildly:

>>> with warnings.catch_warnings():
... warnings.simplefilter('ignore', np.exceptions.RankWarning)
... p30 = np.poly1d(np.polyfit(x, y, 30))
...
>>> p30(4)
-0.80000000000000204 # may vary
>>> p30(5)
-0.99999999999999445 # may vary
>>> p30(4.5)
-0.10547061179440398 # may vary

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()

1.4. Routines and objects by topic 1777

NumPy Reference, Release 2.2.0

2 1 0 1 2 3 4 5 6
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Calculus

polyder(p[, m]) Return the derivative of the specified order of a polyno-
mial.

polyint(p[, m, k]) Return an antiderivative (indefinite integral) of a polyno-
mial.

numpy.polyder(p, m=1)
Return the derivative of the specified order of a polynomial.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

Parameters
p

[poly1d or sequence] Polynomial to differentiate. A sequence is interpreted as polynomial
coefficients, see poly1d.

m
[int, optional] Order of differentiation (default: 1)

Returns
der

[poly1d] A new polynomial representing the derivative.

See also:

polyint
Anti-derivative of a polynomial.

1778 1. Python API

NumPy Reference, Release 2.2.0

poly1d
Class for one-dimensional polynomials.

Examples

The derivative of the polynomial x3 + x2 + x1 + 1 is:

>>> import numpy as np

>>> p = np.poly1d([1,1,1,1])
>>> p2 = np.polyder(p)
>>> p2
poly1d([3, 2, 1])

which evaluates to:

>>> p2(2.)
17.0

We can verify this, approximating the derivative with (f(x + h) - f(x))/h:

>>> (p(2. + 0.001) - p(2.)) / 0.001
17.007000999997857

The fourth-order derivative of a 3rd-order polynomial is zero:

>>> np.polyder(p, 2)
poly1d([6, 2])
>>> np.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
poly1d([0])

numpy.polyint(p, m=1, k=None)
Return an antiderivative (indefinite integral) of a polynomial.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

The returned order m antiderivative P of polynomial p satisfies dm

dxmP (x) = p(x) and is defined up to m - 1
integration constants k. The constants determine the low-order polynomial part

km−1

0!
x0 + . . .+

k0
(m− 1)!

xm−1

of P so that P (j)(0) = km−j−1.
Parameters

p
[array_like or poly1d] Polynomial to integrate. A sequence is interpreted as polynomial coef-
ficients, see poly1d.

m
[int, optional] Order of the antiderivative. (Default: 1)

1.4. Routines and objects by topic 1779

NumPy Reference, Release 2.2.0

k
[list of m scalars or scalar, optional] Integration constants. They are given in the order of
integration: those corresponding to highest-order terms come first.
If None (default), all constants are assumed to be zero. If m = 1, a single scalar can be given
instead of a list.

See also:

polyder
derivative of a polynomial

poly1d.integ
equivalent method

Examples

The defining property of the antiderivative:

>>> import numpy as np

>>> p = np.poly1d([1,1,1])
>>> P = np.polyint(p)
>>> P
poly1d([0.33333333, 0.5 , 1. , 0.]) # may vary
>>> np.polyder(P) == p
True

The integration constants default to zero, but can be specified:

>>> P = np.polyint(p, 3)
>>> P(0)
0.0
>>> np.polyder(P)(0)
0.0
>>> np.polyder(P, 2)(0)
0.0
>>> P = np.polyint(p, 3, k=[6,5,3])
>>> P
poly1d([0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3.]) # may vary

Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order
polynomial term comes first:

>>> np.polyder(P, 2)(0)
6.0
>>> np.polyder(P, 1)(0)
5.0
>>> P(0)
3.0

1780 1. Python API

NumPy Reference, Release 2.2.0

Arithmetic

polyadd(a1, a2) Find the sum of two polynomials.
polydiv(u, v) Returns the quotient and remainder of polynomial divi-

sion.
polymul(a1, a2) Find the product of two polynomials.
polysub(a1, a2) Difference (subtraction) of two polynomials.

numpy.polyadd(a1, a2)
Find the sum of two polynomials.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object
or a 1D sequence of polynomial coefficients, from highest to lowest degree.

Parameters
a1, a2

[array_like or poly1d object] Input polynomials.
Returns

out
[ndarray or poly1d object] The sum of the inputs. If either input is a poly1d object, then the
output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from
highest to lowest degree.

See also:

poly1d
A one-dimensional polynomial class.

poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

Examples

>>> import numpy as np
>>> np.polyadd([1, 2], [9, 5, 4])
array([9, 6, 6])

Using poly1d objects:

>>> p1 = np.poly1d([1, 2])
>>> p2 = np.poly1d([9, 5, 4])
>>> print(p1)
1 x + 2
>>> print(p2)

2
9 x + 5 x + 4
>>> print(np.polyadd(p1, p2))

2
9 x + 6 x + 6

1.4. Routines and objects by topic 1781

NumPy Reference, Release 2.2.0

numpy.polydiv(u, v)
Returns the quotient and remainder of polynomial division.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

The input arrays are the coefficients (including any coefficients equal to zero) of the “numerator” (dividend) and
“denominator” (divisor) polynomials, respectively.

Parameters
u

[array_like or poly1d] Dividend polynomial’s coefficients.
v

[array_like or poly1d] Divisor polynomial’s coefficients.
Returns

q
[ndarray] Coefficients, including those equal to zero, of the quotient.

r
[ndarray] Coefficients, including those equal to zero, of the remainder.

See also:

poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub
polyval

Notes

Both u and vmust be 0-d or 1-d (ndim = 0 or 1), but u.ndim need not equal v.ndim. In other words, all four possible
combinations - u.ndim = v.ndim = 0, u.ndim = v.ndim = 1, u.ndim = 1, v.ndim = 0, and
u.ndim = 0, v.ndim = 1 - work.

Examples

3x2 + 5x+ 2

2x+ 1
= 1.5x+ 1.75, remainder0.25

>>> import numpy as np
>>> x = np.array([3.0, 5.0, 2.0])
>>> y = np.array([2.0, 1.0])
>>> np.polydiv(x, y)
(array([1.5 , 1.75]), array([0.25]))

numpy.polymul(a1, a2)
Find the product of two polynomials.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

1782 1. Python API

NumPy Reference, Release 2.2.0

Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a
poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree.

Parameters
a1, a2

[array_like or poly1d object] Input polynomials.
Returns

out
[ndarray or poly1d object] The polynomial resulting from the multiplication of the inputs. If
either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D
array of polynomial coefficients from highest to lowest degree.

See also:

poly1d
A one-dimensional polynomial class.

poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval
convolve

Array convolution. Same output as polymul, but has parameter for overlap mode.

Examples

>>> import numpy as np
>>> np.polymul([1, 2, 3], [9, 5, 1])
array([9, 23, 38, 17, 3])

Using poly1d objects:

>>> p1 = np.poly1d([1, 2, 3])
>>> p2 = np.poly1d([9, 5, 1])
>>> print(p1)

2
1 x + 2 x + 3
>>> print(p2)

2
9 x + 5 x + 1
>>> print(np.polymul(p1, p2))

4 3 2
9 x + 23 x + 38 x + 17 x + 3

numpy.polysub(a1, a2)
Difference (subtraction) of two polynomials.

Note: This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in numpy.
polynomial is preferred. A summary of the differences can be found in the transition guide.

Given two polynomials a1 and a2, returns a1 - a2. a1 and a2 can be either array_like sequences of the
polynomials’ coefficients (including coefficients equal to zero), or poly1d objects.

Parameters
a1, a2

[array_like or poly1d] Minuend and subtrahend polynomials, respectively.

1.4. Routines and objects by topic 1783

NumPy Reference, Release 2.2.0

Returns
out

[ndarray or poly1d] Array or poly1d object of the difference polynomial’s coefficients.
See also:

polyval, polydiv, polymul, polyadd

Examples

(2x2 + 10x− 2)− (3x2 + 10x− 4) = (−x2 + 2)

>>> import numpy as np

>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1, 0, 2])

1.4.15 Set routines

Making proper sets

unique(ar[, return_index, return_inverse, ...]) Find the unique elements of an array.
unique_all(x) Find the unique elements of an array, and counts, inverse,

and indices.
unique_counts(x) Find the unique elements and counts of an input array x.
unique_inverse(x) Find the unique elements of x and indices to reconstruct

x.
unique_values(x) Returns the unique elements of an input array x.

numpy.unique_all(x)
Find the unique elements of an array, and counts, inverse, and indices.
This function is an Array API compatible alternative to:

np.unique(x, return_index=True, return_inverse=True,
return_counts=True, equal_nan=False)

but returns a namedtuple for easier access to each output.
Parameters

x
[array_like] Input array. It will be flattened if it is not already 1-D.

Returns
out

[namedtuple] The result containing:
• values - The unique elements of an input array.
• indices - The first occurring indices for each unique element.
• inverse_indices - The indices from the set of unique elements that reconstruct x.

1784 1. Python API

NumPy Reference, Release 2.2.0

• counts - The corresponding counts for each unique element.
See also:

unique
Find the unique elements of an array.

Examples

>>> import numpy as np
>>> x = [1, 1, 2]
>>> uniq = np.unique_all(x)
>>> uniq.values
array([1, 2])
>>> uniq.indices
array([0, 2])
>>> uniq.inverse_indices
array([0, 0, 1])
>>> uniq.counts
array([2, 1])

numpy.unique_counts(x)
Find the unique elements and counts of an input array x.
This function is an Array API compatible alternative to:

np.unique(x, return_counts=True, equal_nan=False)

but returns a namedtuple for easier access to each output.
Parameters

x
[array_like] Input array. It will be flattened if it is not already 1-D.

Returns
out

[namedtuple] The result containing:
• values - The unique elements of an input array.
• counts - The corresponding counts for each unique element.

See also:

unique
Find the unique elements of an array.

1.4. Routines and objects by topic 1785

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> x = [1, 1, 2]
>>> uniq = np.unique_counts(x)
>>> uniq.values
array([1, 2])
>>> uniq.counts
array([2, 1])

numpy.unique_inverse(x)
Find the unique elements of x and indices to reconstruct x.
This function is an Array API compatible alternative to:

np.unique(x, return_inverse=True, equal_nan=False)

but returns a namedtuple for easier access to each output.
Parameters

x
[array_like] Input array. It will be flattened if it is not already 1-D.

Returns
out

[namedtuple] The result containing:
• values - The unique elements of an input array.
• inverse_indices - The indices from the set of unique elements that reconstruct x.

See also:

unique
Find the unique elements of an array.

Examples

>>> import numpy as np
>>> x = [1, 1, 2]
>>> uniq = np.unique_inverse(x)
>>> uniq.values
array([1, 2])
>>> uniq.inverse_indices
array([0, 0, 1])

numpy.unique_values(x)
Returns the unique elements of an input array x.
This function is an Array API compatible alternative to:

np.unique(x, equal_nan=False)

Parameters

1786 1. Python API

NumPy Reference, Release 2.2.0

x
[array_like] Input array. It will be flattened if it is not already 1-D.

Returns
out

[ndarray] The unique elements of an input array.

See also:

unique
Find the unique elements of an array.

Examples

>>> import numpy as np
>>> np.unique_values([1, 1, 2])
array([1, 2])

Boolean operations

in1d(ar1, ar2[, assume_unique, invert, kind]) Test whether each element of a 1-D array is also present
in a second array.

intersect1d(ar1, ar2[, assume_unique, ...]) Find the intersection of two arrays.
isin(element, test_elements[, ...]) Calculates element in test_elements, broad-

casting over element only.
setdiff1d(ar1, ar2[, assume_unique]) Find the set difference of two arrays.
setxor1d(ar1, ar2[, assume_unique]) Find the set exclusive-or of two arrays.
union1d(ar1, ar2) Find the union of two arrays.

numpy.in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None)
Test whether each element of a 1-D array is also present in a second array.
Deprecated since version 2.0: Use isin instead of in1d for new code.
Returns a boolean array the same length as ar1 that is True where an element of ar1 is in ar2 and False otherwise.

Parameters
ar1

[(M,) array_like] Input array.
ar2

[array_like] The values against which to test each value of ar1.
assume_unique

[bool, optional] If True, the input arrays are both assumed to be unique, which can speed up
the calculation. Default is False.

invert
[bool, optional] If True, the values in the returned array are inverted (that is, False where an
element of ar1 is in ar2 and True otherwise). Default is False. np.in1d(a, b, in-
vert=True) is equivalent to (but is faster than) np.invert(in1d(a, b)).

1.4. Routines and objects by topic 1787

NumPy Reference, Release 2.2.0

kind
[{None, ‘sort’, ‘table’}, optional] The algorithm to use. This will not affect the final result, but
will affect the speed and memory use. The default, None, will select automatically based on
memory considerations.
• If ‘sort’, will use a mergesort-based approach. This will have a memory usage of roughly 6
times the sum of the sizes of ar1 and ar2, not accounting for size of dtypes.

• If ‘table’, will use a lookup table approach similar to a counting sort. This is only available
for boolean and integer arrays. This will have a memory usage of the size of ar1 plus the
max-min value of ar2. assume_unique has no effect when the ‘table’ option is used.

• If None, will automatically choose ‘table’ if the required memory allocation is less than or
equal to 6 times the sum of the sizes of ar1 and ar2, otherwise will use ‘sort’. This is done
to not use a large amount of memory by default, even though ‘table’ may be faster in most
cases. If ‘table’ is chosen, assume_unique will have no effect.

Returns
in1d

[(M,) ndarray, bool] The values ar1[in1d] are in ar2.
See also:

isin
Version of this function that preserves the shape of ar1.

Notes

in1d can be considered as an element-wise function version of the python keyword in, for 1-D sequences.
in1d(a, b) is roughly equivalent to np.array([item in b for item in a]). However, this
idea fails if ar2 is a set, or similar (non-sequence) container: As ar2 is converted to an array, in those cases
asarray(ar2) is an object array rather than the expected array of contained values.
Using kind='table' tends to be faster than kind=’sort’ if the following relationship is true:
log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927, but may use
greater memory. The default value for kind will be automatically selected based only on memory usage, so one
may manually set kind='table' if memory constraints can be relaxed.

Examples

>>> import numpy as np
>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([True, False, True, False, True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
array([False, True, False, True, False])
>>> test[mask]
array([1, 5])

1788 1. Python API

NumPy Reference, Release 2.2.0

numpy.intersect1d(ar1, ar2, assume_unique=False, return_indices=False)
Find the intersection of two arrays.
Return the sorted, unique values that are in both of the input arrays.

Parameters
ar1, ar2

[array_like] Input arrays. Will be flattened if not already 1D.
assume_unique

[bool] If True, the input arrays are both assumed to be unique, which can speed up the cal-
culation. If True but ar1 or ar2 are not unique, incorrect results and out-of-bounds indices
could result. Default is False.

return_indices
[bool] If True, the indices which correspond to the intersection of the two arrays are returned.
The first instance of a value is used if there are multiple. Default is False.

Returns
intersect1d

[ndarray] Sorted 1D array of common and unique elements.
comm1

[ndarray] The indices of the first occurrences of the common values in ar1. Only provided if
return_indices is True.

comm2
[ndarray] The indices of the first occurrences of the common values in ar2. Only provided if
return_indices is True.

Examples

>>> import numpy as np
>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])

To intersect more than two arrays, use functools.reduce:

>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])

To return the indices of the values common to the input arrays along with the intersected values:

>>> x = np.array([1, 1, 2, 3, 4])
>>> y = np.array([2, 1, 4, 6])
>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
>>> x_ind, y_ind
(array([0, 2, 4]), array([1, 0, 2]))
>>> xy, x[x_ind], y[y_ind]
(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))

numpy.isin(element, test_elements, assume_unique=False, invert=False, *, kind=None)
Calculates element in test_elements, broadcasting over element only. Returns a boolean array of the
same shape as element that is True where an element of element is in test_elements and False otherwise.

Parameters

1.4. Routines and objects by topic 1789

NumPy Reference, Release 2.2.0

element
[array_like] Input array.

test_elements
[array_like] The values against which to test each value of element. This argument is flattened
if it is an array or array_like. See notes for behavior with non-array-like parameters.

assume_unique
[bool, optional] If True, the input arrays are both assumed to be unique, which can speed up
the calculation. Default is False.

invert
[bool, optional] If True, the values in the returned array are inverted, as if calculating element
not in test_elements. Default is False. np.isin(a, b, invert=True) is equivalent to
(but faster than) np.invert(np.isin(a, b)).

kind
[{None, ‘sort’, ‘table’}, optional] The algorithm to use. This will not affect the final result, but
will affect the speed and memory use. The default, None, will select automatically based on
memory considerations.
• If ‘sort’, will use a mergesort-based approach. This will have a memory usage of roughly 6
times the sum of the sizes of element and test_elements, not accounting for size of dtypes.

• If ‘table’, will use a lookup table approach similar to a counting sort. This is only available
for boolean and integer arrays. This will have a memory usage of the size of element plus
the max-min value of test_elements. assume_unique has no effect when the ‘table’ option is
used.

• If None, will automatically choose ‘table’ if the required memory allocation is less than or
equal to 6 times the sum of the sizes of element and test_elements, otherwise will use ‘sort’.
This is done to not use a large amount of memory by default, even though ‘table’ may be
faster in most cases. If ‘table’ is chosen, assume_unique will have no effect.

Returns
isin

[ndarray, bool] Has the same shape as element. The values element[isin] are in test_elements.

Notes

isin is an element-wise function version of the python keyword in. isin(a, b) is roughly equivalent to
np.array([item in b for item in a]) if a and b are 1-D sequences.
element and test_elements are converted to arrays if they are not already. If test_elements is a set (or other non-
sequence collection) it will be converted to an object array with one element, rather than an array of the values
contained in test_elements. This is a consequence of the array constructor’s way of handling non-sequence col-
lections. Converting the set to a list usually gives the desired behavior.
Using kind='table' tends to be faster than kind=’sort’ if the following relationship is true:
log10(len(test_elements)) > (log10(max(test_elements)-min(test_elements))
- 2.27) / 0.927, but may use greater memory. The default value for kind will be automatically selected
based only on memory usage, so one may manually set kind='table' if memory constraints can be relaxed.

1790 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> element = 2*np.arange(4).reshape((2, 2))
>>> element
array([[0, 2],

[4, 6]])
>>> test_elements = [1, 2, 4, 8]
>>> mask = np.isin(element, test_elements)
>>> mask
array([[False, True],

[True, False]])
>>> element[mask]
array([2, 4])

The indices of the matched values can be obtained with nonzero:

>>> np.nonzero(mask)
(array([0, 1]), array([1, 0]))

The test can also be inverted:

>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[True, False],

[False, True]])
>>> element[mask]
array([0, 6])

Because of how array handles sets, the following does not work as expected:

>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[False, False],

[False, False]])

Casting the set to a list gives the expected result:

>>> np.isin(element, list(test_set))
array([[False, True],

[True, False]])

numpy.setdiff1d(ar1, ar2, assume_unique=False)
Find the set difference of two arrays.
Return the unique values in ar1 that are not in ar2.

Parameters
ar1

[array_like] Input array.
ar2

[array_like] Input comparison array.
assume_unique

[bool] If True, the input arrays are both assumed to be unique, which can speed up the calcu-
lation. Default is False.

1.4. Routines and objects by topic 1791

NumPy Reference, Release 2.2.0

Returns
setdiff1d

[ndarray] 1D array of values in ar1 that are not in ar2. The result is sorted when as-
sume_unique=False, but otherwise only sorted if the input is sorted.

Examples

>>> import numpy as np
>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])

numpy.setxor1d(ar1, ar2, assume_unique=False)
Find the set exclusive-or of two arrays.
Return the sorted, unique values that are in only one (not both) of the input arrays.

Parameters
ar1, ar2

[array_like] Input arrays.
assume_unique

[bool] If True, the input arrays are both assumed to be unique, which can speed up the calcu-
lation. Default is False.

Returns
setxor1d

[ndarray] Sorted 1D array of unique values that are in only one of the input arrays.

Examples

>>> import numpy as np
>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])

numpy.union1d(ar1, ar2)
Find the union of two arrays.
Return the unique, sorted array of values that are in either of the two input arrays.

Parameters
ar1, ar2

[array_like] Input arrays. They are flattened if they are not already 1D.
Returns

union1d
[ndarray] Unique, sorted union of the input arrays.

1792 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1, 0, 1, 2])

To find the union of more than two arrays, use functools.reduce:

>>> from functools import reduce
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([1, 2, 3, 4, 6])

1.4.16 Sorting, searching, and counting

Sorting

sort(a[, axis, kind, order, stable]) Return a sorted copy of an array.
lexsort(keys[, axis]) Perform an indirect stable sort using a sequence of keys.
argsort(a[, axis, kind, order, stable]) Returns the indices that would sort an array.
ndarray.sort([axis, kind, order]) Sort an array in-place.
sort_complex(a) Sort a complex array using the real part first, then the

imaginary part.
partition(a, kth[, axis, kind, order]) Return a partitioned copy of an array.
argpartition(a, kth[, axis, kind, order]) Perform an indirect partition along the given axis using

the algorithm specified by the kind keyword.

numpy.sort(a, axis=-1, kind=None, order=None, *, stable=None)
Return a sorted copy of an array.

Parameters
a

[array_like] Array to be sorted.
axis

[int or None, optional] Axis along which to sort. If None, the array is flattened before sorting.
The default is -1, which sorts along the last axis.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is
‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort or radix sort under the cov-
ers and, in general, the actual implementation will vary with data type. The ‘mergesort’ option
is retained for backwards compatibility.

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up
in the dtype, to break ties.

stable
[bool, optional] Sort stability. If True, the returned array will maintain the relative order of
a values which compare as equal. If False or None, this is not guaranteed. Internally, this
option selects kind='stable'. Default: None.

1.4. Routines and objects by topic 1793

NumPy Reference, Release 2.2.0

New in version 2.0.0.
Returns

sorted_array
[ndarray] Array of the same type and shape as a.

See also:

ndarray.sort
Method to sort an array in-place.

argsort
Indirect sort.

lexsort
Indirect stable sort on multiple keys.

searchsorted
Find elements in a sorted array.

partition
Partial sort.

Notes

The various sorting algorithms are characterized by their average speed, worst case performance, work space size,
and whether they are stable. A stable sort keeps items with the same key in the same relative order. The four
algorithms implemented in NumPy have the following properties:

kind speed worst case work space stable
‘quicksort’ 1 O(n^2) 0 no
‘heapsort’ 3 O(n*log(n)) 0 no
‘mergesort’ 2 O(n*log(n)) ~n/2 yes
‘timsort’ 2 O(n*log(n)) ~n/2 yes

Note: The datatype determines which of ‘mergesort’ or ‘timsort’ is actually used, even if ‘mergesort’ is specified.
User selection at a finer scale is not currently available.

For performance, sort makes a temporary copy if needed to make the data contiguous in memory along the sort
axis. For even better performance and reduced memory consumption, ensure that the array is already contiguous
along the sort axis.
The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the
order is determined by the real parts except when they are equal, in which case the order is determined by the
imaginary parts.
Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour. In
numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is:

• Real: [R, nan]
• Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]

where R is a non-nan real value. Complex values with the same nan placements are sorted according to the non-nan
part if it exists. Non-nan values are sorted as before.

1794 1. Python API

https://numpy.org/doc/stable/glossary.html#term-contiguous

NumPy Reference, Release 2.2.0

quicksort has been changed to: introsort. When sorting does not make enough progress it switches to heapsort.
This implementation makes quicksort O(n*log(n)) in the worst case.
‘stable’ automatically chooses the best stable sorting algorithm for the data type being sorted. It, along with ‘merge-
sort’ is currently mapped to timsort or radix sort depending on the data type. API forward compatibility currently
limits the ability to select the implementation and it is hardwired for the different data types.
Timsort is added for better performance on already or nearly sorted data. On random data timsort is almost identical
to mergesort. It is now used for stable sort while quicksort is still the default sort if none is chosen. For timsort
details, refer to CPython listsort.txt ‘mergesort’ and ‘stable’ are mapped to radix sort for integer data types. Radix
sort is an O(n) sort instead of O(n log n).
NaT now sorts to the end of arrays for consistency with NaN.

Examples

>>> import numpy as np
>>> a = np.array([[1,4],[3,1]])
>>> np.sort(a) # sort along the last axis
array([[1, 4],

[1, 3]])
>>> np.sort(a, axis=None) # sort the flattened array
array([1, 1, 3, 4])
>>> np.sort(a, axis=0) # sort along the first axis
array([[1, 1],

[3, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
>>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
... ('Galahad', 1.7, 38)]
>>> a = np.array(values, dtype=dtype) # create a structured array
>>> np.sort(a, order='height')
array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),

('Lancelot', 1.8999999999999999, 38)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

Sort by age, then height if ages are equal:

>>> np.sort(a, order=['age', 'height'])
array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),

('Arthur', 1.8, 41)],
dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

numpy.lexsort(keys, axis=-1)
Perform an indirect stable sort using a sequence of keys.
Given multiple sorting keys, lexsort returns an array of integer indices that describes the sort order by multiple keys.
The last key in the sequence is used for the primary sort order, ties are broken by the second-to-last key, and so on.

Parameters
keys

[(k, m, n, …) array-like] The k keys to be sorted. The last key (e.g, the last row if keys is a 2D
array) is the primary sort key. Each element of keys along the zeroth axis must be an array-like
object of the same shape.

1.4. Routines and objects by topic 1795

https://en.wikipedia.org/wiki/Introsort
https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Timsort
https://en.wikipedia.org/wiki/Radix_sort
https://github.com/python/cpython/blob/3.7/Objects/listsort.txt

NumPy Reference, Release 2.2.0

axis
[int, optional] Axis to be indirectly sorted. By default, sort over the last axis of each sequence.
Separate slices along axis sorted over independently; see last example.

Returns
indices

[(m, n, …) ndarray of ints] Array of indices that sort the keys along the specified axis.
See also:

argsort
Indirect sort.

ndarray.sort
In-place sort.

sort
Return a sorted copy of an array.

Examples

Sort names: first by surname, then by name.

>>> import numpy as np
>>> surnames = ('Hertz', 'Galilei', 'Hertz')
>>> first_names = ('Heinrich', 'Galileo', 'Gustav')
>>> ind = np.lexsort((first_names, surnames))
>>> ind
array([1, 2, 0])

>>> [surnames[i] + ", " + first_names[i] for i in ind]
['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']

Sort according to two numerical keys, first by elements of a, then breaking ties according to elements of b:

>>> a = [1, 5, 1, 4, 3, 4, 4] # First sequence
>>> b = [9, 4, 0, 4, 0, 2, 1] # Second sequence
>>> ind = np.lexsort((b, a)) # Sort by `a`, then by `b`
>>> ind
array([2, 0, 4, 6, 5, 3, 1])
>>> [(a[i], b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]

Compare against argsort, which would sort each key independently.

>>> np.argsort((b, a), kind='stable')
array([[2, 4, 6, 5, 1, 3, 0],

[0, 2, 4, 3, 5, 6, 1]])

To sort lexicographically with argsort, we would need to provide a structured array.

>>> x = np.array([(ai, bi) for ai, bi in zip(a, b)],
... dtype = np.dtype([('x', int), ('y', int)]))
>>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
array([2, 0, 4, 6, 5, 3, 1])

1796 1. Python API

NumPy Reference, Release 2.2.0

The zeroth axis of keys always corresponds with the sequence of keys, so 2D arrays are treated just like other
sequences of keys.

>>> arr = np.asarray([b, a])
>>> ind2 = np.lexsort(arr)
>>> np.testing.assert_equal(ind2, ind)

Accordingly, the axis parameter refers to an axis of each key, not of the keys argument itself. For instance, the
array arr is treated as a sequence of two 1-D keys, so specifying axis=0 is equivalent to using the default axis,
axis=-1.

>>> np.testing.assert_equal(np.lexsort(arr, axis=0),
... np.lexsort(arr, axis=-1))

For higher-dimensional arrays, the axis parameter begins to matter. The resulting array has the same shape as each
key, and the values are what we would expect if lexsort were performed on corresponding slices of the keys
independently. For instance,

>>> x = [[1, 2, 3, 4],
... [4, 3, 2, 1],
... [2, 1, 4, 3]]
>>> y = [[2, 2, 1, 1],
... [1, 2, 1, 2],
... [1, 1, 2, 1]]
>>> np.lexsort((x, y), axis=1)
array([[2, 3, 0, 1],

[2, 0, 3, 1],
[1, 0, 3, 2]])

Each row of the result is what we would expect if we were to perform lexsort on the corresponding row of the
keys:

>>> for i in range(3):
... print(np.lexsort((x[i], y[i])))
[2 3 0 1]
[2 0 3 1]
[1 0 3 2]

numpy.argsort(a, axis=-1, kind=None, order=None, *, stable=None)
Returns the indices that would sort an array.
Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array
of indices of the same shape as a that index data along the given axis in sorted order.

Parameters
a

[array_like] Array to sort.
axis

[int or None, optional] Axis along which to sort. The default is -1 (the last axis). If None, the
flattened array is used.

kind
[{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The default is
‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers and, in gen-
eral, the actual implementation will vary with data type. The ‘mergesort’ option is retained for
backwards compatibility.

1.4. Routines and objects by topic 1797

NumPy Reference, Release 2.2.0

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up
in the dtype, to break ties.

stable
[bool, optional] Sort stability. If True, the returned array will maintain the relative order of
a values which compare as equal. If False or None, this is not guaranteed. Internally, this
option selects kind='stable'. Default: None.
New in version 2.0.0.

Returns
index_array

[ndarray, int] Array of indices that sort a along the specified axis. If a is one-dimensional,
a[index_array] yields a sorted a. More generally, np.take_along_axis(a,
index_array, axis=axis) always yields the sorted a, irrespective of dimensionality.

See also:

sort
Describes sorting algorithms used.

lexsort
Indirect stable sort with multiple keys.

ndarray.sort
Inplace sort.

argpartition
Indirect partial sort.

take_along_axis
Apply index_array from argsort to an array as if by calling sort.

Notes

See sort for notes on the different sorting algorithms.
As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order is
documented in sort.

Examples

One dimensional array:

>>> import numpy as np
>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])

Two-dimensional array:

1798 1. Python API

NumPy Reference, Release 2.2.0

>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],

[2, 2]])

>>> ind = np.argsort(x, axis=0) # sorts along first axis (down)
>>> ind
array([[0, 1],

[1, 0]])
>>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0)
array([[0, 2],

[2, 3]])

>>> ind = np.argsort(x, axis=1) # sorts along last axis (across)
>>> ind
array([[0, 1],

[0, 1]])
>>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1)
array([[0, 3],

[2, 2]])

Indices of the sorted elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
>>> ind
(array([0, 1, 1, 0]), array([0, 0, 1, 1]))
>>> x[ind] # same as np.sort(x, axis=None)
array([0, 2, 2, 3])

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],

dtype=[('x', '<i4'), ('y', '<i4')])

>>> np.argsort(x, order=('x','y'))
array([1, 0])

>>> np.argsort(x, order=('y','x'))
array([0, 1])

numpy.sort_complex(a)
Sort a complex array using the real part first, then the imaginary part.

Parameters
a

[array_like] Input array
Returns

out
[complex ndarray] Always returns a sorted complex array.

1.4. Routines and objects by topic 1799

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.sort_complex([5, 3, 6, 2, 1])
array([1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])

>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
array([1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])

numpy.partition(a, kth, axis=-1, kind='introselect', order=None)
Return a partitioned copy of an array.
Creates a copy of the array and partially sorts it in such a way that the value of the element in k-th position is in the
position it would be in a sorted array. In the output array, all elements smaller than the k-th element are located
to the left of this element and all equal or greater are located to its right. The ordering of the elements in the two
partitions on the either side of the k-th element in the output array is undefined.

Parameters
a

[array_like] Array to be sorted.
kth

[int or sequence of ints] Element index to partition by. The k-th value of the element will be in
its final sorted position and all smaller elements will be moved before it and all equal or greater
elements behind it. The order of all elements in the partitions is undefined. If provided with a
sequence of k-th it will partition all elements indexed by k-th of them into their sorted position
at once.
Deprecated since version 1.22.0: Passing booleans as index is deprecated.

axis
[int or None, optional] Axis along which to sort. If None, the array is flattened before sorting.
The default is -1, which sorts along the last axis.

kind
[{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string. Not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up
in the dtype, to break ties.

Returns
partitioned_array

[ndarray] Array of the same type and shape as a.
See also:

ndarray.partition
Method to sort an array in-place.

argpartition
Indirect partition.

sort
Full sorting

1800 1. Python API

NumPy Reference, Release 2.2.0

Notes

The various selection algorithms are characterized by their average speed, worst case performance, work space size,
and whether they are stable. A stable sort keeps items with the same key in the same relative order. The available
algorithms have the following properties:

kind speed worst case work space stable
‘introselect’ 1 O(n) 0 no

All the partition algorithms make temporary copies of the data when partitioning along any but the last axis. Con-
sequently, partitioning along the last axis is faster and uses less space than partitioning along any other axis.
The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the
order is determined by the real parts except when they are equal, in which case the order is determined by the
imaginary parts.
The sort order of np.nan is bigger than np.inf.

Examples

>>> import numpy as np
>>> a = np.array([7, 1, 7, 7, 1, 5, 7, 2, 3, 2, 6, 2, 3, 0])
>>> p = np.partition(a, 4)
>>> p
array([0, 1, 2, 1, 2, 5, 2, 3, 3, 6, 7, 7, 7, 7]) # may vary

p[4] is 2; all elements in p[:4] are less than or equal to p[4], and all elements in p[5:] are greater than or
equal to p[4]. The partition is:

[0, 1, 2, 1], [2], [5, 2, 3, 3, 6, 7, 7, 7, 7]

The next example shows the use of multiple values passed to kth.

>>> p2 = np.partition(a, (4, 8))
>>> p2
array([0, 1, 2, 1, 2, 3, 3, 2, 5, 6, 7, 7, 7, 7])

p2[4] is 2 and p2[8] is 5. All elements in p2[:4] are less than or equal to p2[4], all elements in p2[5:8]
are greater than or equal to p2[4] and less than or equal to p2[8], and all elements in p2[9:] are greater than
or equal to p2[8]. The partition is:

[0, 1, 2, 1], [2], [3, 3, 2], [5], [6, 7, 7, 7, 7]

numpy.argpartition(a, kth, axis=-1, kind='introselect', order=None)
Perform an indirect partition along the given axis using the algorithm specified by the kind keyword. It returns an
array of indices of the same shape as a that index data along the given axis in partitioned order.

Parameters
a

[array_like] Array to sort.
kth

[int or sequence of ints] Element index to partition by. The k-th element will be in its final
sorted position and all smaller elements will be moved before it and all larger elements behind

1.4. Routines and objects by topic 1801

NumPy Reference, Release 2.2.0

it. The order of all elements in the partitions is undefined. If provided with a sequence of k-th
it will partition all of them into their sorted position at once.
Deprecated since version 1.22.0: Passing booleans as index is deprecated.

axis
[int or None, optional] Axis along which to sort. The default is -1 (the last axis). If None, the
flattened array is used.

kind
[{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’

order
[str or list of str, optional] When a is an array with fields defined, this argument specifies which
fields to compare first, second, etc. A single field can be specified as a string, and not all fields
need be specified, but unspecified fields will still be used, in the order in which they come up
in the dtype, to break ties.

Returns
index_array

[ndarray, int] Array of indices that partition a along the specified axis. If a is one-dimensional,
a[index_array] yields a partitioned a. More generally, np.take_along_axis(a,
index_array, axis=axis) always yields the partitioned a, irrespective of dimension-
ality.

See also:

partition
Describes partition algorithms used.

ndarray.partition
Inplace partition.

argsort
Full indirect sort.

take_along_axis
Apply index_array from argpartition to an array as if by calling partition.

Notes

The returned indices are not guaranteed to be sorted according to the values. Furthermore, the default selection
algorithm introselect is unstable, and hence the returned indices are not guaranteed to be the earliest/latest
occurrence of the element.
argpartition works for real/complex inputs with nan values, see partition for notes on the enhanced sort
order and different selection algorithms.

1802 1. Python API

NumPy Reference, Release 2.2.0

Examples

One dimensional array:

>>> import numpy as np
>>> x = np.array([3, 4, 2, 1])
>>> x[np.argpartition(x, 3)]
array([2, 1, 3, 4]) # may vary
>>> x[np.argpartition(x, (1, 3))]
array([1, 2, 3, 4]) # may vary

>>> x = [3, 4, 2, 1]
>>> np.array(x)[np.argpartition(x, 3)]
array([2, 1, 3, 4]) # may vary

Multi-dimensional array:

>>> x = np.array([[3, 4, 2], [1, 3, 1]])
>>> index_array = np.argpartition(x, kth=1, axis=-1)
>>> # below is the same as np.partition(x, kth=1)
>>> np.take_along_axis(x, index_array, axis=-1)
array([[2, 3, 4],

[1, 1, 3]])

Searching

argmax(a[, axis, out, keepdims]) Returns the indices of the maximum values along an axis.
nanargmax(a[, axis, out, keepdims]) Return the indices of the maximum values in the specified

axis ignoring NaNs.
argmin(a[, axis, out, keepdims]) Returns the indices of the minimum values along an axis.
nanargmin(a[, axis, out, keepdims]) Return the indices of the minimum values in the specified

axis ignoring NaNs.
argwhere(a) Find the indices of array elements that are non-zero,

grouped by element.
nonzero(a) Return the indices of the elements that are non-zero.
flatnonzero(a) Return indices that are non-zero in the flattened version

of a.
where(condition, [x, y], /) Return elements chosen from x or y depending on condi-

tion.
searchsorted(a, v[, side, sorter]) Find indices where elements should be inserted to main-

tain order.
extract(condition, arr) Return the elements of an array that satisfy some condi-

tion.

numpy.argmax(a, axis=None, out=None, *, keepdims=<no value>)
Returns the indices of the maximum values along an axis.

Parameters
a

[array_like] Input array.

1.4. Routines and objects by topic 1803

NumPy Reference, Release 2.2.0

axis
[int, optional] By default, the index is into the flattened array, otherwise along the specified
axis.

out
[array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.
New in version 1.22.0.

Returns
index_array

[ndarray of ints] Array of indices into the array. It has the same shape as a.shape with the
dimension along axis removed. If keepdims is set to True, then the size of axis will be 1 with
the resulting array having same shape as a.shape.

See also:

ndarray.argmax, argmin
amax

The maximum value along a given axis.
unravel_index

Convert a flat index into an index tuple.
take_along_axis

Apply np.expand_dims(index_array, axis) from argmax to an array as if by calling max.

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are
returned.

Examples

>>> import numpy as np
>>> a = np.arange(6).reshape(2,3) + 10
>>> a
array([[10, 11, 12],

[13, 14, 15]])
>>> np.argmax(a)
5
>>> np.argmax(a, axis=0)
array([1, 1, 1])
>>> np.argmax(a, axis=1)
array([2, 2])

Indexes of the maximal elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape)
>>> ind
(1, 2)

(continues on next page)

1804 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> a[ind]
15

>>> b = np.arange(6)
>>> b[1] = 5
>>> b
array([0, 5, 2, 3, 4, 5])
>>> np.argmax(b) # Only the first occurrence is returned.
1

>>> x = np.array([[4,2,3], [1,0,3]])
>>> index_array = np.argmax(x, axis=-1)
>>> # Same as np.amax(x, axis=-1, keepdims=True)
>>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)
array([[4],

[3]])
>>> # Same as np.amax(x, axis=-1)
>>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1),
... axis=-1).squeeze(axis=-1)
array([4, 3])

Setting keepdims to True,

>>> x = np.arange(24).reshape((2, 3, 4))
>>> res = np.argmax(x, axis=1, keepdims=True)
>>> res.shape
(2, 1, 4)

numpy.nanargmax(a, axis=None, out=None, *, keepdims=<no value>)
Return the indices of the maximum values in the specified axis ignoring NaNs. For all-NaN slices ValueError
is raised. Warning: the results cannot be trusted if a slice contains only NaNs and -Infs.

Parameters
a

[array_like] Input data.
axis

[int, optional] Axis along which to operate. By default flattened input is used.
out

[array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.
New in version 1.22.0.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.
New in version 1.22.0.

Returns
index_array

[ndarray] An array of indices or a single index value.
See also:

1.4. Routines and objects by topic 1805

NumPy Reference, Release 2.2.0

argmax, nanargmin

Examples

>>> import numpy as np
>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmax(a)
0
>>> np.nanargmax(a)
1
>>> np.nanargmax(a, axis=0)
array([1, 0])
>>> np.nanargmax(a, axis=1)
array([1, 1])

numpy.argmin(a, axis=None, out=None, *, keepdims=<no value>)
Returns the indices of the minimum values along an axis.

Parameters
a

[array_like] Input array.
axis

[int, optional] By default, the index is into the flattened array, otherwise along the specified
axis.

out
[array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.
New in version 1.22.0.

Returns
index_array

[ndarray of ints] Array of indices into the array. It has the same shape as a.shape with the
dimension along axis removed. If keepdims is set to True, then the size of axis will be 1 with
the resulting array having same shape as a.shape.

See also:

ndarray.argmin, argmax
amin

The minimum value along a given axis.
unravel_index

Convert a flat index into an index tuple.
take_along_axis

Apply np.expand_dims(index_array, axis) from argmin to an array as if by calling min.

1806 1. Python API

NumPy Reference, Release 2.2.0

Notes

In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are re-
turned.

Examples

>>> import numpy as np
>>> a = np.arange(6).reshape(2,3) + 10
>>> a
array([[10, 11, 12],

[13, 14, 15]])
>>> np.argmin(a)
0
>>> np.argmin(a, axis=0)
array([0, 0, 0])
>>> np.argmin(a, axis=1)
array([0, 0])

Indices of the minimum elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape)
>>> ind
(0, 0)
>>> a[ind]
10

>>> b = np.arange(6) + 10
>>> b[4] = 10
>>> b
array([10, 11, 12, 13, 10, 15])
>>> np.argmin(b) # Only the first occurrence is returned.
0

>>> x = np.array([[4,2,3], [1,0,3]])
>>> index_array = np.argmin(x, axis=-1)
>>> # Same as np.amin(x, axis=-1, keepdims=True)
>>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)
array([[2],

[0]])
>>> # Same as np.amax(x, axis=-1)
>>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1),
... axis=-1).squeeze(axis=-1)
array([2, 0])

Setting keepdims to True,

>>> x = np.arange(24).reshape((2, 3, 4))
>>> res = np.argmin(x, axis=1, keepdims=True)
>>> res.shape
(2, 1, 4)

numpy.nanargmin(a, axis=None, out=None, *, keepdims=<no value>)
Return the indices of the minimum values in the specified axis ignoring NaNs. For all-NaN slices ValueError
is raised. Warning: the results cannot be trusted if a slice contains only NaNs and Infs.

1.4. Routines and objects by topic 1807

NumPy Reference, Release 2.2.0

Parameters
a

[array_like] Input data.
axis

[int, optional] Axis along which to operate. By default flattened input is used.
out

[array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.
New in version 1.22.0.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the array.
New in version 1.22.0.

Returns
index_array

[ndarray] An array of indices or a single index value.
See also:

argmin, nanargmax

Examples

>>> import numpy as np
>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmin(a)
0
>>> np.nanargmin(a)
2
>>> np.nanargmin(a, axis=0)
array([1, 1])
>>> np.nanargmin(a, axis=1)
array([1, 0])

numpy.argwhere(a)
Find the indices of array elements that are non-zero, grouped by element.

Parameters
a

[array_like] Input data.
Returns

index_array
[(N, a.ndim) ndarray] Indices of elements that are non-zero. Indices are grouped by element.
This array will have shape (N, a.ndim) where N is the number of non-zero items.

See also:

where, nonzero

1808 1. Python API

NumPy Reference, Release 2.2.0

Notes

np.argwhere(a) is almost the same as np.transpose(np.nonzero(a)), but produces a result of the
correct shape for a 0D array.
The output of argwhere is not suitable for indexing arrays. For this purpose use nonzero(a) instead.

Examples

>>> import numpy as np
>>> x = np.arange(6).reshape(2,3)
>>> x
array([[0, 1, 2],

[3, 4, 5]])
>>> np.argwhere(x>1)
array([[0, 2],

[1, 0],
[1, 1],
[1, 2]])

numpy.flatnonzero(a)
Return indices that are non-zero in the flattened version of a.
This is equivalent to np.nonzero(np.ravel(a))[0].

Parameters
a

[array_like] Input data.
Returns

res
[ndarray] Output array, containing the indices of the elements of a.ravel() that are non-
zero.

See also:

nonzero
Return the indices of the non-zero elements of the input array.

ravel
Return a 1-D array containing the elements of the input array.

Examples

>>> import numpy as np
>>> x = np.arange(-2, 3)
>>> x
array([-2, -1, 0, 1, 2])
>>> np.flatnonzero(x)
array([0, 1, 3, 4])

Use the indices of the non-zero elements as an index array to extract these elements:

>>> x.ravel()[np.flatnonzero(x)]
array([-2, -1, 1, 2])

1.4. Routines and objects by topic 1809

NumPy Reference, Release 2.2.0

numpy.searchsorted(a, v, side='left', sorter=None)
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the indices,
the order of a would be preserved.
Assuming that a is sorted:

side returned index i satisfies
left a[i-1] < v <= a[i]
right a[i-1] <= v < a[i]

Parameters
a

[1-D array_like] Input array. If sorter is None, then it must be sorted in ascending order,
otherwise sorter must be an array of indices that sort it.

v
[array_like] Values to insert into a.

side
[{‘left’, ‘right’}, optional] If ‘left’, the index of the first suitable location found is given. If ‘right’,
return the last such index. If there is no suitable index, return either 0 or N (where N is the
length of a).

sorter
[1-D array_like, optional] Optional array of integer indices that sort array a into ascending
order. They are typically the result of argsort.

Returns
indices

[int or array of ints] Array of insertion points with the same shape as v, or an integer if v is a
scalar.

See also:

sort
Return a sorted copy of an array.

histogram
Produce histogram from 1-D data.

Notes

Binary search is used to find the required insertion points.
As of NumPy 1.4.0 searchsorted works with real/complex arrays containing nan values. The enhanced sort
order is documented in sort.
This function uses the same algorithm as the builtin python bisect.bisect_left (side='left') and
bisect.bisect_right (side='right') functions, which is also vectorized in the v argument.

1810 1. Python API

https://docs.python.org/3/library/bisect.html#bisect.bisect_left
https://docs.python.org/3/library/bisect.html#bisect.bisect_right

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.searchsorted([11,12,13,14,15], 13)
2
>>> np.searchsorted([11,12,13,14,15], 13, side='right')
3
>>> np.searchsorted([11,12,13,14,15], [-10, 20, 12, 13])
array([0, 5, 1, 2])

When sorter is used, the returned indices refer to the sorted array of a and not a itself:

>>> a = np.array([40, 10, 20, 30])
>>> sorter = np.argsort(a)
>>> sorter
array([1, 2, 3, 0]) # Indices that would sort the array 'a'
>>> result = np.searchsorted(a, 25, sorter=sorter)
>>> result
2
>>> a[sorter[result]]
30 # The element at index 2 of the sorted array is 30.

numpy.extract(condition, arr)
Return the elements of an array that satisfy some condition.
This is equivalent to np.compress(ravel(condition), ravel(arr)). If condition is boolean np.
extract is equivalent to arr[condition].
Note that place does the exact opposite of extract.

Parameters
condition

[array_like] An array whose nonzero or True entries indicate the elements of arr to extract.
arr

[array_like] Input array of the same size as condition.
Returns

extract
[ndarray] Rank 1 array of values from arr where condition is True.

See also:

take, put, copyto, compress, place

Examples

>>> import numpy as np
>>> arr = np.arange(12).reshape((3, 4))
>>> arr
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> condition = np.mod(arr, 3)==0
>>> condition
array([[True, False, False, True],

(continues on next page)

1.4. Routines and objects by topic 1811

NumPy Reference, Release 2.2.0

(continued from previous page)
[False, False, True, False],
[False, True, False, False]])

>>> np.extract(condition, arr)
array([0, 3, 6, 9])

If condition is boolean:

>>> arr[condition]
array([0, 3, 6, 9])

Counting

count_nonzero(a[, axis, keepdims]) Counts the number of non-zero values in the array a.

numpy.count_nonzero(a, axis=None, *, keepdims=False)
Counts the number of non-zero values in the array a.
The word “non-zero” is in reference to the Python 2.x built-in method __nonzero__() (renamed
__bool__() in Python 3.x) of Python objects that tests an object’s “truthfulness”. For example, any number is
considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty string. Thus, this
function (recursively) counts how many elements in a (and in sub-arrays thereof) have their __nonzero__()
or __bool__() method evaluated to True.

Parameters
a

[array_like] The array for which to count non-zeros.
axis

[int or tuple, optional] Axis or tuple of axes along which to count non-zeros. Default is None,
meaning that non-zeros will be counted along a flattened version of a.

keepdims
[bool, optional] If this is set to True, the axes that are counted are left in the result as dimensions
with size one. With this option, the result will broadcast correctly against the input array.

Returns
count

[int or array of int] Number of non-zero values in the array along a given axis. Otherwise, the
total number of non-zero values in the array is returned.

See also:

nonzero
Return the coordinates of all the non-zero values.

1812 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> np.count_nonzero(np.eye(4))
4
>>> a = np.array([[0, 1, 7, 0],
... [3, 0, 2, 19]])
>>> np.count_nonzero(a)
5
>>> np.count_nonzero(a, axis=0)
array([1, 1, 2, 1])
>>> np.count_nonzero(a, axis=1)
array([2, 3])
>>> np.count_nonzero(a, axis=1, keepdims=True)
array([[2],

[3]])

1.4.17 Statistics

Order statistics

ptp(a[, axis, out, keepdims]) Range of values (maximum - minimum) along an axis.
percentile(a, q[, axis, out, ...]) Compute the q-th percentile of the data along the speci-

fied axis.
nanpercentile(a, q[, axis, out, ...]) Compute the qth percentile of the data along the specified

axis, while ignoring nan values.
quantile(a, q[, axis, out, overwrite_input, ...]) Compute the q-th quantile of the data along the specified

axis.
nanquantile(a, q[, axis, out, ...]) Compute the qth quantile of the data along the specified

axis, while ignoring nan values.

numpy.ptp(a, axis=None, out=None, keepdims=<no value>)
Range of values (maximum - minimum) along an axis.
The name of the function comes from the acronym for ‘peak to peak’.

Warning: ptp preserves the data type of the array. This means the return value for an input of signed
integers with n bits (e.g. numpy.int8, numpy.int16, etc) is also a signed integer with n bits. In that
case, peak-to-peak values greater than 2**(n-1)-1 will be returned as negative values. An example with a
work-around is shown below.

Parameters
a

[array_like] Input values.
axis

[None or int or tuple of ints, optional] Axis along which to find the peaks. By default, flatten
the array. axis may be negative, in which case it counts from the last to the first axis. If this
is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis or all the
axes as before.

1.4. Routines and objects by topic 1813

NumPy Reference, Release 2.2.0

out
[array_like] Alternative output array in which to place the result. It must have the same shape
and buffer length as the expected output, but the type of the output values will be cast if
necessary.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the ptp method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns
ptp

[ndarray or scalar] The range of a given array - scalar if array is one-dimensional or a new
array holding the result along the given axis

Examples

>>> import numpy as np
>>> x = np.array([[4, 9, 2, 10],
... [6, 9, 7, 12]])

>>> np.ptp(x, axis=1)
array([8, 6])

>>> np.ptp(x, axis=0)
array([2, 0, 5, 2])

>>> np.ptp(x)
10

This example shows that a negative value can be returned when the input is an array of signed integers.

>>> y = np.array([[1, 127],
... [0, 127],
... [-1, 127],
... [-2, 127]], dtype=np.int8)
>>> np.ptp(y, axis=1)
array([126, 127, -128, -127], dtype=int8)

A work-around is to use the view() method to view the result as unsigned integers with the same bit width:

>>> np.ptp(y, axis=1).view(np.uint8)
array([126, 127, 128, 129], dtype=uint8)

numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *,
weights=None, interpolation=None)

Compute the q-th percentile of the data along the specified axis.
Returns the q-th percentile(s) of the array elements.

Parameters

1814 1. Python API

NumPy Reference, Release 2.2.0

a
[array_like of real numbers] Input array or object that can be converted to an array.

q
[array_like of float] Percentage or sequence of percentages for the percentiles to compute.
Values must be between 0 and 100 inclusive.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the percentiles are computed.
The default is to compute the percentile(s) along a flattened version of the array.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output, but the type (of the output) will be cast if
necessary.

overwrite_input
[bool, optional] If True, then allow the input array a to be modified by intermediate calcula-
tions, to save memory. In this case, the contents of the input a after this function completes is
undefined.

method
[str, optional] This parameter specifies the method to use for estimating the percentile. There
are many different methods, some unique to NumPy. See the notes for explanation. The
options sorted by their R type as summarized in the H&F paper [1] are:
1. ‘inverted_cdf’
2. ‘averaged_inverted_cdf’
3. ‘closest_observation’
4. ‘interpolated_inverted_cdf’
5. ‘hazen’
6. ‘weibull’
7. ‘linear’ (default)
8. ‘median_unbiased’
9. ‘normal_unbiased’
The first three methods are discontinuous. NumPy further defines the following discontinuous
variations of the default ‘linear’ (7.) option:
• ‘lower’
• ‘higher’,
• ‘midpoint’
• ‘nearest’
Changed in version 1.22.0: This argument was previously called “interpolation” and only of-
fered the “linear” default and last four options.

keepdims
[bool, optional]
If this is set to True, the axes which are reduced are left in the result as dimensions with
size one. With this option, the result will broadcast correctly against the original array a.

1.4. Routines and objects by topic 1815

NumPy Reference, Release 2.2.0

weights
[array_like, optional] An array of weights associated with the values in a. Each value in a
contributes to the percentile according to its associated weight. The weights array can either
be 1-D (in which case its length must be the size of a along the given axis) or of the same
shape as a. If weights=None, then all data in a are assumed to have a weight equal to one.
Only method=”inverted_cdf” supports weights. See the notes for more details.
New in version 2.0.0.

interpolation
[str, optional] Deprecated name for the method keyword argument.
Deprecated since version 1.22.0.

Returns
percentile

[scalar or ndarray] If q is a single percentile and axis=None, then the result is a scalar. If
multiple percentiles are given, first axis of the result corresponds to the percentiles. The other
axes are the axes that remain after the reduction of a. If the input contains integers or floats
smaller than float64, the output data-type is float64. Otherwise, the output data-type
is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean
median

equivalent to percentile(..., 50)

nanpercentile
quantile

equivalent to percentile, except q in the range [0, 1].

Notes

The behavior of numpy.percentilewith percentage q is that of numpy.quantilewith argument q/100.
For more information, please see numpy.quantile.

References

[1]

Examples

>>> import numpy as np
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],

[3, 2, 1]])
>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 50, axis=0)
array([6.5, 4.5, 2.5])
>>> np.percentile(a, 50, axis=1)

(continues on next page)

1816 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
array([7., 2.])
>>> np.percentile(a, 50, axis=1, keepdims=True)
array([[7.],

[2.]])

>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=out)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])

>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a == b)

The different methods can be visualized graphically:

import matplotlib.pyplot as plt

a = np.arange(4)
p = np.linspace(0, 100, 6001)
ax = plt.gca()
lines = [

('linear', '-', 'C0'),
('inverted_cdf', ':', 'C1'),
Almost the same as `inverted_cdf`:
('averaged_inverted_cdf', '-.', 'C1'),
('closest_observation', ':', 'C2'),
('interpolated_inverted_cdf', '--', 'C1'),
('hazen', '--', 'C3'),
('weibull', '-.', 'C4'),
('median_unbiased', '--', 'C5'),
('normal_unbiased', '-.', 'C6'),
]

for method, style, color in lines:
ax.plot(

p, np.percentile(a, p, method=method),
label=method, linestyle=style, color=color)

ax.set(
title='Percentiles for different methods and data: ' + str(a),
xlabel='Percentile',
ylabel='Estimated percentile value',
yticks=a)

ax.legend(bbox_to_anchor=(1.03, 1))
plt.tight_layout()
plt.show()

numpy.nanpercentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=<no
value>, *, weights=None, interpolation=None)

Compute the qth percentile of the data along the specified axis, while ignoring nan values.
Returns the qth percentile(s) of the array elements.

Parameters

1.4. Routines and objects by topic 1817

NumPy Reference, Release 2.2.0

0 20 40 60 80 100
Percentile

0

1

2

3

Es
tim

at
ed

 p
er

ce
nt

ile
 v

al
ue

Percentiles for different methods and data: [0 1 2 3]

linear
inverted_cdf
averaged_inverted_cdf
closest_observation
interpolated_inverted_cdf
hazen
weibull
median_unbiased
normal_unbiased

a
[array_like] Input array or object that can be converted to an array, containing nan values to
be ignored.

q
[array_like of float] Percentile or sequence of percentiles to compute, which must be between
0 and 100 inclusive.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the percentiles are computed.
The default is to compute the percentile(s) along a flattened version of the array.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output, but the type (of the output) will be cast if
necessary.

overwrite_input
[bool, optional] If True, then allow the input array a to be modified by intermediate calcula-
tions, to save memory. In this case, the contents of the input a after this function completes is
undefined.

method
[str, optional] This parameter specifies the method to use for estimating the percentile. There
are many different methods, some unique to NumPy. See the notes for explanation. The
options sorted by their R type as summarized in the H&F paper [1] are:
1. ‘inverted_cdf’
2. ‘averaged_inverted_cdf’
3. ‘closest_observation’
4. ‘interpolated_inverted_cdf’
5. ‘hazen’
6. ‘weibull’
7. ‘linear’ (default)

1818 1. Python API

NumPy Reference, Release 2.2.0

8. ‘median_unbiased’
9. ‘normal_unbiased’
The first three methods are discontinuous. NumPy further defines the following discontinuous
variations of the default ‘linear’ (7.) option:
• ‘lower’
• ‘higher’,
• ‘midpoint’
• ‘nearest’
Changed in version 1.22.0: This argument was previously called “interpolation” and only of-
fered the “linear” default and last four options.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
array a.
If this is anything but the default value it will be passed through (in the special case of an empty
array) to the mean function of the underlying array. If the array is a sub-class and mean does
not have the kwarg keepdims this will raise a RuntimeError.

weights
[array_like, optional] An array of weights associated with the values in a. Each value in a
contributes to the percentile according to its associated weight. The weights array can either
be 1-D (in which case its length must be the size of a along the given axis) or of the same
shape as a. If weights=None, then all data in a are assumed to have a weight equal to one.
Only method=”inverted_cdf” supports weights.
New in version 2.0.0.

interpolation
[str, optional] Deprecated name for the method keyword argument.
Deprecated since version 1.22.0.

Returns
percentile

[scalar or ndarray] If q is a single percentile and axis=None, then the result is a scalar. If
multiple percentiles are given, first axis of the result corresponds to the percentiles. The other
axes are the axes that remain after the reduction of a. If the input contains integers or floats
smaller than float64, the output data-type is float64. Otherwise, the output data-type
is the same as that of the input. If out is specified, that array is returned instead.

See also:

nanmean
nanmedian

equivalent to nanpercentile(..., 50)

percentile, median, mean
nanquantile

equivalent to nanpercentile, except q in range [0, 1].

1.4. Routines and objects by topic 1819

NumPy Reference, Release 2.2.0

Notes

The behavior of numpy.nanpercentile with percentage q is that of numpy.quantile with argument
q/100 (ignoring nan values). For more information, please see numpy.quantile.

References

[1]

Examples

>>> import numpy as np
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
array([[10., nan, 4.],

[3., 2., 1.]])
>>> np.percentile(a, 50)
np.float64(nan)
>>> np.nanpercentile(a, 50)
3.0
>>> np.nanpercentile(a, 50, axis=0)
array([6.5, 2. , 2.5])
>>> np.nanpercentile(a, 50, axis=1, keepdims=True)
array([[7.],

[2.]])
>>> m = np.nanpercentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanpercentile(a, 50, axis=0, out=out)
array([6.5, 2. , 2.5])
>>> m
array([6.5, 2. , 2.5])

>>> b = a.copy()
>>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)

numpy.quantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *,
weights=None, interpolation=None)

Compute the q-th quantile of the data along the specified axis.
Parameters

a
[array_like of real numbers] Input array or object that can be converted to an array.

q
[array_like of float] Probability or sequence of probabilities of the quantiles to compute. Val-
ues must be between 0 and 1 inclusive.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the quantiles are computed. The
default is to compute the quantile(s) along a flattened version of the array.

1820 1. Python API

NumPy Reference, Release 2.2.0

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output, but the type (of the output) will be cast if
necessary.

overwrite_input
[bool, optional] If True, then allow the input array a to be modified by intermediate calcula-
tions, to save memory. In this case, the contents of the input a after this function completes is
undefined.

method
[str, optional] This parameter specifies the method to use for estimating the quantile. There
are many different methods, some unique to NumPy. The recommended options, numbered
as they appear in [1], are:
1. ‘inverted_cdf’
2. ‘averaged_inverted_cdf’
3. ‘closest_observation’
4. ‘interpolated_inverted_cdf’
5. ‘hazen’
6. ‘weibull’
7. ‘linear’ (default)
8. ‘median_unbiased’
9. ‘normal_unbiased’
The first three methods are discontinuous. For backward compatibility with previous versions
of NumPy, the following discontinuous variations of the default ‘linear’ (7.) option are avail-
able:
• ‘lower’
• ‘higher’,
• ‘midpoint’
• ‘nearest’
See Notes for details.
Changed in version 1.22.0: This argument was previously called “interpolation” and only of-
fered the “linear” default and last four options.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
array a.

weights
[array_like, optional] An array of weights associated with the values in a. Each value in a
contributes to the quantile according to its associated weight. The weights array can either be
1-D (in which case its length must be the size of a along the given axis) or of the same shape
as a. If weights=None, then all data in a are assumed to have a weight equal to one. Only
method=”inverted_cdf” supports weights. See the notes for more details.
New in version 2.0.0.

1.4. Routines and objects by topic 1821

NumPy Reference, Release 2.2.0

interpolation
[str, optional] Deprecated name for the method keyword argument.
Deprecated since version 1.22.0.

Returns
quantile

[scalar or ndarray] If q is a single probability and axis=None, then the result is a scalar. If
multiple probability levels are given, first axis of the result corresponds to the quantiles. The
other axes are the axes that remain after the reduction of a. If the input contains integers
or floats smaller than float64, the output data-type is float64. Otherwise, the output
data-type is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean
percentile

equivalent to quantile, but with q in the range [0, 100].
median

equivalent to quantile(..., 0.5)

nanquantile

Notes

Given a sample a from an underlying distribution, quantile provides a nonparametric estimate of the inverse
cumulative distribution function.
By default, this is done by interpolating between adjacent elements in y, a sorted copy of a:

(1-g)*y[j] + g*y[j+1]

where the index j and coefficient g are the integral and fractional components of q * (n-1), and n is the number
of elements in the sample.
This is a special case of Equation 1 of H&F [1]. More generally,

• j = (q*n + m - 1) // 1, and
• g = (q*n + m - 1) % 1,

where mmay be defined according to several different conventions. The preferred convention may be selected using
the method parameter:

method number in H&F m

interpolated_inverted_cdf 4 0
hazen 5 1/2
weibull 6 q
linear (default) 7 1 - q
median_unbiased 8 q/3 + 1/3
normal_unbiased 9 q/4 + 3/8

Note that indices j and j + 1 are clipped to the range 0 to n - 1 when the results of the formula would be
outside the allowed range of non-negative indices. The - 1 in the formulas for j and g accounts for Python’s
0-based indexing.

1822 1. Python API

NumPy Reference, Release 2.2.0

The table above includes only the estimators from H&F that are continuous functions of probability q (estimators
4-9). NumPy also provides the three discontinuous estimators from H&F (estimators 1-3), where j is defined as
above, m is defined as follows, and g is a function of the real-valued index = q*n + m - 1 and j.
1. inverted_cdf: m = 0 and g = int(index - j > 0)

2. averaged_inverted_cdf: m = 0 and g = (1 + int(index - j > 0)) / 2

3. closest_observation: m = -1/2 and g = 1 - int((index == j) & (j%2 == 1))

For backward compatibility with previous versions of NumPy, quantile provides four additional discontinuous
estimators. Like method='linear', all have m = 1 - q so that j = q*(n-1) // 1, but g is defined
as follows.

• lower: g = 0

• midpoint: g = 0.5

• higher: g = 1

• nearest: g = (q*(n-1) % 1) > 0.5

Weighted quantiles: More formally, the quantile at probability level q of a cumulative distribution function
F (y) = P (Y ≤ y) with probability measure P is defined as any number x that fulfills the coverage conditions

P (Y < x) ≤ q and P (Y ≤ x) ≥ q

with random variable Y ∼ P . Sample quantiles, the result of quantile, provide nonparametric estimation of
the underlying population counterparts, represented by the unknown F , given a data vector a of length n.
Some of the estimators above arise when one considers F as the empirical distribution function of the data, i.e.
F (y) = 1

n

∑
i 1ai≤y . Then, different methods correspond to different choices of x that fulfill the above coverage

conditions. Methods that follow this approach are inverted_cdf and averaged_inverted_cdf.
For weighted quantiles, the coverage conditions still hold. The empirical cumulative distribution is simply replaced
by its weighted version, i.e. P (Y ≤ t) = 1∑

i wi

∑
i wi1xi≤t. Only method="inverted_cdf" supports

weights.

References

[1]

Examples

>>> import numpy as np
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],

[3, 2, 1]])
>>> np.quantile(a, 0.5)
3.5
>>> np.quantile(a, 0.5, axis=0)
array([6.5, 4.5, 2.5])
>>> np.quantile(a, 0.5, axis=1)
array([7., 2.])
>>> np.quantile(a, 0.5, axis=1, keepdims=True)
array([[7.],

[2.]])

(continues on next page)

1.4. Routines and objects by topic 1823

NumPy Reference, Release 2.2.0

(continued from previous page)
>>> m = np.quantile(a, 0.5, axis=0)
>>> out = np.zeros_like(m)
>>> np.quantile(a, 0.5, axis=0, out=out)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.quantile(b, 0.5, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a == b)

See also numpy.percentile for a visualization of most methods.
numpy.nanquantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=<no value>,

*, weights=None, interpolation=None)
Compute the qth quantile of the data along the specified axis, while ignoring nan values. Returns the qth quantile(s)
of the array elements.

Parameters
a

[array_like] Input array or object that can be converted to an array, containing nan values to
be ignored

q
[array_like of float] Probability or sequence of probabilities for the quantiles to compute. Val-
ues must be between 0 and 1 inclusive.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the quantiles are computed. The
default is to compute the quantile(s) along a flattened version of the array.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output, but the type (of the output) will be cast if
necessary.

overwrite_input
[bool, optional] If True, then allow the input array a to be modified by intermediate calcula-
tions, to save memory. In this case, the contents of the input a after this function completes is
undefined.

method
[str, optional] This parameter specifies the method to use for estimating the quantile. There are
many different methods, some unique to NumPy. See the notes for explanation. The options
sorted by their R type as summarized in the H&F paper [1] are:
1. ‘inverted_cdf’
2. ‘averaged_inverted_cdf’
3. ‘closest_observation’
4. ‘interpolated_inverted_cdf’
5. ‘hazen’
6. ‘weibull’
7. ‘linear’ (default)

1824 1. Python API

NumPy Reference, Release 2.2.0

8. ‘median_unbiased’
9. ‘normal_unbiased’
The first three methods are discontinuous. NumPy further defines the following discontinuous
variations of the default ‘linear’ (7.) option:
• ‘lower’
• ‘higher’,
• ‘midpoint’
• ‘nearest’
Changed in version 1.22.0: This argument was previously called “interpolation” and only of-
fered the “linear” default and last four options.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
array a.
If this is anything but the default value it will be passed through (in the special case of an empty
array) to the mean function of the underlying array. If the array is a sub-class and mean does
not have the kwarg keepdims this will raise a RuntimeError.

weights
[array_like, optional] An array of weights associated with the values in a. Each value in a
contributes to the quantile according to its associated weight. The weights array can either be
1-D (in which case its length must be the size of a along the given axis) or of the same shape
as a. If weights=None, then all data in a are assumed to have a weight equal to one. Only
method=”inverted_cdf” supports weights.
New in version 2.0.0.

interpolation
[str, optional] Deprecated name for the method keyword argument.
Deprecated since version 1.22.0.

Returns
quantile

[scalar or ndarray] If q is a single probability and axis=None, then the result is a scalar. If
multiple probability levels are given, first axis of the result corresponds to the quantiles. The
other axes are the axes that remain after the reduction of a. If the input contains integers
or floats smaller than float64, the output data-type is float64. Otherwise, the output
data-type is the same as that of the input. If out is specified, that array is returned instead.

See also:

quantile
nanmean, nanmedian
nanmedian

equivalent to nanquantile(..., 0.5)

nanpercentile
same as nanquantile, but with q in the range [0, 100].

1.4. Routines and objects by topic 1825

NumPy Reference, Release 2.2.0

Notes

The behavior of numpy.nanquantile is the same as that of numpy.quantile (ignoring nan values). For
more information, please see numpy.quantile.

References

[1]

Examples

>>> import numpy as np
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
array([[10., nan, 4.],

[3., 2., 1.]])
>>> np.quantile(a, 0.5)
np.float64(nan)
>>> np.nanquantile(a, 0.5)
3.0
>>> np.nanquantile(a, 0.5, axis=0)
array([6.5, 2. , 2.5])
>>> np.nanquantile(a, 0.5, axis=1, keepdims=True)
array([[7.],

[2.]])
>>> m = np.nanquantile(a, 0.5, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanquantile(a, 0.5, axis=0, out=out)
array([6.5, 2. , 2.5])
>>> m
array([6.5, 2. , 2.5])
>>> b = a.copy()
>>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)

Averages and variances

median(a[, axis, out, overwrite_input, keepdims]) Compute the median along the specified axis.
average(a[, axis, weights, returned, keepdims]) Compute the weighted average along the specified axis.
mean(a[, axis, dtype, out, keepdims, where]) Compute the arithmetic mean along the specified axis.
std(a[, axis, dtype, out, ddof, keepdims, ...]) Compute the standard deviation along the specified axis.
var(a[, axis, dtype, out, ddof, keepdims, ...]) Compute the variance along the specified axis.
nanmedian(a[, axis, out, overwrite_input, ...]) Compute the median along the specified axis, while ig-

noring NaNs.
nanmean(a[, axis, dtype, out, keepdims, where]) Compute the arithmetic mean along the specified axis, ig-

noring NaNs.
nanstd(a[, axis, dtype, out, ddof, ...]) Compute the standard deviation along the specified axis,

while ignoring NaNs.
nanvar(a[, axis, dtype, out, ddof, ...]) Compute the variance along the specified axis, while ig-

noring NaNs.

1826 1. Python API

NumPy Reference, Release 2.2.0

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Compute the median along the specified axis.
Returns the median of the array elements.

Parameters
a

[array_like] Input array or object that can be converted to an array.
axis

[{int, sequence of int, None}, optional] Axis or axes along which the medians are computed.
The default, axis=None, will compute the median along a flattened version of the array. If a
sequence of axes, the array is first flattened along the given axes, then the median is computed
along the resulting flattened axis.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output, but the type (of the output) will be cast if
necessary.

overwrite_input
[bool, optional] If True, then allow use of memory of input array a for calculations. The input
array will be modified by the call to median. This will save memory when you do not need
to preserve the contents of the input array. Treat the input as undefined, but it will probably
be fully or partially sorted. Default is False. If overwrite_input is True and a is not already
an ndarray, an error will be raised.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
arr.

Returns
median

[ndarray] A new array holding the result. If the input contains integers or floats smaller than
float64, then the output data-type isnp.float64. Otherwise, the data-type of the output
is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean, percentile

Notes

Given a vector V of length N, the median of V is the middle value of a sorted copy of V, V_sorted - i e.,
V_sorted[(N-1)/2], when N is odd, and the average of the two middle values of V_sorted when N is
even.

1.4. Routines and objects by topic 1827

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],

[3, 2, 1]])
>>> np.median(a)
np.float64(3.5)
>>> np.median(a, axis=0)
array([6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
array([7., 2.])
>>> np.median(a, axis=(0, 1))
np.float64(3.5)
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
np.float64(3.5)
>>> assert not np.all(a==b)

numpy.average(a, axis=None, weights=None, returned=False, *, keepdims=<no value>)
Compute the weighted average along the specified axis.

Parameters
a

[array_like] Array containing data to be averaged. If a is not an array, a conversion is at-
tempted.

axis
[None or int or tuple of ints, optional] Axis or axes along which to average a. The default,
axis=None, will average over all of the elements of the input array. If axis is negative it counts
from the last to the first axis. If axis is a tuple of ints, averaging is performed on all of the axes
specified in the tuple instead of a single axis or all the axes as before.

weights
[array_like, optional] An array of weights associated with the values in a. Each value in a
contributes to the average according to its associated weight. The array of weights must be the
same shape as a if no axis is specified, otherwise the weights must have dimensions and shape
consistent with a along the specified axis. If weights=None, then all data in a are assumed to
have a weight equal to one. The calculation is:

avg = sum(a * weights) / sum(weights)

where the sum is over all included elements. The only constraint on the values of weights is
that sum(weights) must not be 0.

returned
[bool, optional] Default is False. If True, the tuple (average, sum_of_weights) is returned,

1828 1. Python API

NumPy Reference, Release 2.2.0

otherwise only the average is returned. If weights=None, sum_of_weights is equivalent to the
number of elements over which the average is taken.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a. Note: keepdims will not work with instances of numpy.matrix or other classes whose
methods do not support keepdims.
New in version 1.23.0.

Returns
retval, [sum_of_weights]

[array_type or double] Return the average along the specified axis. When returned is True,
return a tuple with the average as the first element and the sum of the weights as the second
element. sum_of_weights is of the same type as retval. The result dtype follows a general
pattern. If weights is None, the result dtype will be that of a , or float64 if a is integral.
Otherwise, ifweights is not None and a is non- integral, the result type will be the type of lowest
precision capable of representing values of both a and weights. If a happens to be integral, the
previous rules still applies but the result dtype will at least be float64.

Raises
ZeroDivisionError

When all weights along axis are zero. See numpy.ma.average for a version robust to this
type of error.

TypeError
When weights does not have the same shape as a, and axis=None.

ValueError
When weights does not have dimensions and shape consistent with a along specified axis.

See also:

mean
ma.average

average for masked arrays – useful if your data contains “missing” values
numpy.result_type

Returns the type that results from applying the numpy type promotion rules to the arguments.

Examples

>>> import numpy as np
>>> data = np.arange(1, 5)
>>> data
array([1, 2, 3, 4])
>>> np.average(data)
2.5
>>> np.average(np.arange(1, 11), weights=np.arange(10, 0, -1))
4.0

>>> data = np.arange(6).reshape((3, 2))
>>> data
array([[0, 1],

[2, 3],

(continues on next page)

1.4. Routines and objects by topic 1829

NumPy Reference, Release 2.2.0

(continued from previous page)
[4, 5]])

>>> np.average(data, axis=1, weights=[1./4, 3./4])
array([0.75, 2.75, 4.75])
>>> np.average(data, weights=[1./4, 3./4])
Traceback (most recent call last):

...
TypeError: Axis must be specified when shapes of a and weights differ.

With keepdims=True, the following result has shape (3, 1).

>>> np.average(data, axis=1, keepdims=True)
array([[0.5],

[2.5],
[4.5]])

>>> data = np.arange(8).reshape((2, 2, 2))
>>> data
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> np.average(data, axis=(0, 1), weights=[[1./4, 3./4], [1., 1./2]])
array([3.4, 4.4])
>>> np.average(data, axis=0, weights=[[1./4, 3./4], [1., 1./2]])
Traceback (most recent call last):

...
ValueError: Shape of weights must be consistent
with shape of a along specified axis.

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>, *, where=<no value>)
Compute the arithmetic mean along the specified axis.
Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over
the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
a

[array_like] Array containing numbers whose mean is desired. If a is not an array, a conversion
is attempted.

axis
[None or int or tuple of ints, optional] Axis or axes along which the means are computed. The
default is to compute the mean of the flattened array.
If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all
the axes as before.

dtype
[data-type, optional] Type to use in computing the mean. For integer inputs, the default is
float64; for floating point inputs, it is the same as the input dtype.

out
[ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See ufuncs-output-type for more details. See ufuncs-output-type for more details.

keepdims

1830 1. Python API

NumPy Reference, Release 2.2.0

[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the mean method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

where
[array_like of bool, optional] Elements to include in the mean. See reduce for details.
New in version 1.20.0.

Returns
m

[ndarray, see dtype parameter above] If out=None, returns a new array containing the mean
values, otherwise a reference to the output array is returned.

See also:

average
Weighted average

std, var, nanmean, nanstd, nanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.
Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-precision accumulator using the dtype keyword can alleviate this issue.
By default, float16 results are computed using float32 intermediates for extra precision.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([2., 3.])
>>> np.mean(a, axis=1)
array([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
np.float32(0.54999924)

Computing the mean in float64 is more accurate:

1.4. Routines and objects by topic 1831

NumPy Reference, Release 2.2.0

>>> np.mean(a, dtype=np.float64)
0.55000000074505806 # may vary

Computing the mean in timedelta64 is available:

>>> b = np.array([1, 3], dtype="timedelta64[D]")
>>> np.mean(b)
np.timedelta64(2,'D')

Specifying a where argument:

>>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])
>>> np.mean(a)
12.0
>>> np.mean(a, where=[[True], [False], [False]])
9.0

numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>,
mean=<no value>, correction=<no value>)

Compute the standard deviation along the specified axis.
Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters
a

[array_like] Calculate the standard deviation of these values.
axis

[None or int or tuple of ints, optional] Axis or axes along which the standard deviation is
computed. The default is to compute the standard deviation of the flattened array. If this is a
tuple of ints, a standard deviation is performed over multiple axes, instead of a single axis or
all the axes as before.

dtype
[dtype, optional] Type to use in computing the standard deviation. For arrays of integer type
the default is float64, for arrays of float types it is the same as the array type.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape as the expected output but the type (of the calculated values) will be cast if necessary.
See ufuncs-output-type for more details.

ddof
[{int, float}, optional] Means Delta Degrees of Freedom. The divisor used in calculations is N
- ddof, where N represents the number of elements. By default ddof is zero. See Notes for
details about use of ddof.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the std method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

1832 1. Python API

NumPy Reference, Release 2.2.0

where
[array_like of bool, optional] Elements to include in the standard deviation. See reduce for
details.
New in version 1.20.0.

mean
[array_like, optional] Provide the mean to prevent its recalculation. The mean should have a
shape as if it was calculated with keepdims=True. The axis for the calculation of the mean
should be the same as used in the call to this std function.
New in version 2.0.0.

correction
[{int, float}, optional] Array API compatible name for the ddof parameter. Only one of them
can be provided at the same time.
New in version 2.0.0.

Returns
standard_deviation

[ndarray, see dtype parameter above.] If out is None, return a new array containing the stan-
dard deviation, otherwise return a reference to the output array.

See also:

var, mean, nanmean, nanstd, nanvar
ufuncs-output-type

Notes

There are several common variants of the array standard deviation calculation. Assuming the input a is a one-
dimensional NumPy array and mean is either provided as an argument or computed as a.mean(), NumPy
computes the standard deviation of an array as:

N = len(a)
d2 = abs(a - mean)**2 # abs is for complex `a`
var = d2.sum() / (N - ddof) # note use of `ddof`
std = var**0.5

Different values of the argument ddof are useful in different contexts. NumPy’s default ddof=0 corresponds with
the expression: √∑

i |ai − ā|2
N

which is sometimes called the “population standard deviation” in the field of statistics because it applies the definition
of standard deviation to a as if a were a complete population of possible observations.
Many other libraries define the standard deviation of an array differently, e.g.:√∑

i |ai − ā|2
N − 1

In statistics, the resulting quantity is sometimes called the “sample standard deviation” because if a is a random
sample from a larger population, this calculation provides the square root of an unbiased estimate of the variance
of the population. The use ofN − 1 in the denominator is often called “Bessel’s correction” because it corrects for
bias (toward lower values) in the variance estimate introduced when the sample mean of a is used in place of the

1.4. Routines and objects by topic 1833

NumPy Reference, Release 2.2.0

true mean of the population. The resulting estimate of the standard deviation is still biased, but less than it would
have been without the correction. For this quantity, use ddof=1.
Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real and
nonnegative.
For floating-point input, the standard deviation is computed using the same precision the input has. Depending on
the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949 # may vary
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.std(a)
np.float32(0.45000005)

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925494177 # may vary

Specifying a where argument:

>>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
>>> np.std(a)
2.614064523559687 # may vary
>>> np.std(a, where=[[True], [True], [False]])
2.0

Using the mean keyword to save computation time:

>>> import numpy as np
>>> from timeit import timeit
>>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
>>> mean = np.mean(a, axis=1, keepdims=True)
>>>
>>> g = globals()
>>> n = 10000
>>> t1 = timeit("std = np.std(a, axis=1, mean=mean)", globals=g, number=n)
>>> t2 = timeit("std = np.std(a, axis=1)", globals=g, number=n)
>>> print(f'Percentage execution time saved {100*(t2-t1)/t2:.0f}%')

Percentage execution time saved 30%

1834 1. Python API

NumPy Reference, Release 2.2.0

numpy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>,
mean=<no value>, correction=<no value>)

Compute the variance along the specified axis.
Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for
the flattened array by default, otherwise over the specified axis.

Parameters
a

[array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis
[None or int or tuple of ints, optional] Axis or axes along which the variance is computed. The
default is to compute the variance of the flattened array. If this is a tuple of ints, a variance is
performed over multiple axes, instead of a single axis or all the axes as before.

dtype
[data-type, optional] Type to use in computing the variance. For arrays of integer type the
default is float64; for arrays of float types it is the same as the array type.

out
[ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof
[{int, float}, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N
- ddof, where N represents the number of elements. By default ddof is zero. See notes for
details about use of ddof.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as di-
mensions with size one. With this option, the result will broadcast correctly against the input
array.
If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

where
[array_like of bool, optional] Elements to include in the variance. See reduce for details.
New in version 1.20.0.

mean
[array like, optional] Provide the mean to prevent its recalculation. The mean should have a
shape as if it was calculated with keepdims=True. The axis for the calculation of the mean
should be the same as used in the call to this var function.
New in version 2.0.0.

correction
[{int, float}, optional] Array API compatible name for the ddof parameter. Only one of them
can be provided at the same time.
New in version 2.0.0.

Returns

1.4. Routines and objects by topic 1835

NumPy Reference, Release 2.2.0

variance
[ndarray, see dtype parameter above] If out=None, returns a new array containing the vari-
ance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar
ufuncs-output-type

Notes

There are several common variants of the array variance calculation. Assuming the input a is a one-dimensional
NumPy array and mean is either provided as an argument or computed as a.mean(), NumPy computes the
variance of an array as:

N = len(a)
d2 = abs(a - mean)**2 # abs is for complex `a`
var = d2.sum() / (N - ddof) # note use of `ddof`

Different values of the argument ddof are useful in different contexts. NumPy’s default ddof=0 corresponds with
the expression: ∑

i |ai − ā|2

N

which is sometimes called the “population variance” in the field of statistics because it applies the definition of
variance to a as if a were a complete population of possible observations.
Many other libraries define the variance of an array differently, e.g.:∑

i |ai − ā|2

N − 1

In statistics, the resulting quantity is sometimes called the “sample variance” because if a is a random sample from
a larger population, this calculation provides an unbiased estimate of the variance of the population. The use of
N − 1 in the denominator is often called “Bessel’s correction” because it corrects for bias (toward lower values) in
the variance estimate introduced when the sample mean of a is used in place of the true mean of the population.
For this quantity, use ddof=1.
Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.
For floating-point input, the variance is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

1836 1. Python API

NumPy Reference, Release 2.2.0

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
np.float32(0.20250003)

Computing the variance in float64 is more accurate:

>>> np.var(a, dtype=np.float64)
0.20249999932944759 # may vary
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

Specifying a where argument:

>>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
>>> np.var(a)
6.833333333333333 # may vary
>>> np.var(a, where=[[True], [True], [False]])
4.0

Using the mean keyword to save computation time:

>>> import numpy as np
>>> from timeit import timeit
>>>
>>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
>>> mean = np.mean(a, axis=1, keepdims=True)
>>>
>>> g = globals()
>>> n = 10000
>>> t1 = timeit("var = np.var(a, axis=1, mean=mean)", globals=g, number=n)
>>> t2 = timeit("var = np.var(a, axis=1)", globals=g, number=n)
>>> print(f'Percentage execution time saved {100*(t2-t1)/t2:.0f}%')

Percentage execution time saved 32%

numpy.nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=<no value>)
Compute the median along the specified axis, while ignoring NaNs.
Returns the median of the array elements.

Parameters
a

[array_like] Input array or object that can be converted to an array.
axis

[{int, sequence of int, None}, optional] Axis or axes along which the medians are computed.
The default is to compute the median along a flattened version of the array. A sequence of
axes is supported since version 1.9.0.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape and buffer length as the expected output, but the type (of the output) will be cast if
necessary.

1.4. Routines and objects by topic 1837

NumPy Reference, Release 2.2.0

overwrite_input
[bool, optional] If True, then allow use of memory of input array a for calculations. The input
array will be modified by the call to median. This will save memory when you do not need
to preserve the contents of the input array. Treat the input as undefined, but it will probably
be fully or partially sorted. Default is False. If overwrite_input is True and a is not already
an ndarray, an error will be raised.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a.
If this is anything but the default value it will be passed through (in the special case of an empty
array) to the mean function of the underlying array. If the array is a sub-class and mean does
not have the kwarg keepdims this will raise a RuntimeError.

Returns
median

[ndarray] A new array holding the result. If the input contains integers or floats smaller than
float64, then the output data-type isnp.float64. Otherwise, the data-type of the output
is the same as that of the input. If out is specified, that array is returned instead.

See also:

mean, median, percentile

Notes

Given a vector V of length N, the median of V is the middle value of a sorted copy of V, V_sorted - i.e.,
V_sorted[(N-1)/2], when N is odd and the average of the two middle values of V_sorted when N is even.

Examples

>>> import numpy as np
>>> a = np.array([[10.0, 7, 4], [3, 2, 1]])
>>> a[0, 1] = np.nan
>>> a
array([[10., nan, 4.],

[3., 2., 1.]])
>>> np.median(a)
np.float64(nan)
>>> np.nanmedian(a)
3.0
>>> np.nanmedian(a, axis=0)
array([6.5, 2. , 2.5])
>>> np.median(a, axis=1)
array([nan, 2.])
>>> b = a.copy()
>>> np.nanmedian(b, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.nanmedian(b, axis=None, overwrite_input=True)
3.0
>>> assert not np.all(a==b)

1838 1. Python API

NumPy Reference, Release 2.2.0

numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=<no value>, *, where=<no value>)
Compute the arithmetic mean along the specified axis, ignoring NaNs.
Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over
the specified axis. float64 intermediate and return values are used for integer inputs.
For all-NaN slices, NaN is returned and a RuntimeWarning is raised.

Parameters
a

[array_like] Array containing numbers whose mean is desired. If a is not an array, a conversion
is attempted.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the means are computed. The
default is to compute the mean of the flattened array.

dtype
[data-type, optional] Type to use in computing the mean. For integer inputs, the default is
float64; for inexact inputs, it is the same as the input dtype.

out
[ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See ufuncs-output-type for more details.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a.
If the value is anything but the default, then keepdims will be passed through to the mean or
sum methods of sub-classes of ndarray. If the sub-classes methods does not implement
keepdims any exceptions will be raised.

where
[array_like of bool, optional] Elements to include in the mean. See reduce for details.
New in version 1.22.0.

Returns
m

[ndarray, see dtype parameter above] If out=None, returns a new array containing the mean
values, otherwise a reference to the output array is returned. Nan is returned for slices that
contain only NaNs.

See also:

average
Weighted average

mean
Arithmetic mean taken while not ignoring NaNs

var, nanvar

1.4. Routines and objects by topic 1839

NumPy Reference, Release 2.2.0

Notes

The arithmetic mean is the sum of the non-NaN elements along the axis divided by the number of non-NaN
elements.
Note that for floating-point input, the mean is computed using the same precision the input has. Depending on
the input data, this can cause the results to be inaccurate, especially for float32. Specifying a higher-precision
accumulator using the dtype keyword can alleviate this issue.

Examples

>>> import numpy as np
>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanmean(a)
2.6666666666666665
>>> np.nanmean(a, axis=0)
array([2., 4.])
>>> np.nanmean(a, axis=1)
array([1., 3.5]) # may vary

numpy.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>,
mean=<no value>, correction=<no value>)

Compute the standard deviation along the specified axis, while ignoring NaNs.
Returns the standard deviation, a measure of the spread of a distribution, of the non-NaN array elements. The
standard deviation is computed for the flattened array by default, otherwise over the specified axis.
For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised.

Parameters
a

[array_like] Calculate the standard deviation of the non-NaN values.
axis

[{int, tuple of int, None}, optional] Axis or axes along which the standard deviation is com-
puted. The default is to compute the standard deviation of the flattened array.

dtype
[dtype, optional] Type to use in computing the standard deviation. For arrays of integer type
the default is float64, for arrays of float types it is the same as the array type.

out
[ndarray, optional] Alternative output array in which to place the result. It must have the same
shape as the expected output but the type (of the calculated values) will be cast if necessary.

ddof
[{int, float}, optional] Means Delta Degrees of Freedom. The divisor used in calculations is N
- ddof, where N represents the number of non-NaN elements. By default ddof is zero.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a.
If this value is anything but the default it is passed through as-is to the relevant functions of the
sub-classes. If these functions do not have a keepdims kwarg, a RuntimeError will be raised.

1840 1. Python API

NumPy Reference, Release 2.2.0

where
[array_like of bool, optional] Elements to include in the standard deviation. See reduce for
details.
New in version 1.22.0.

mean
[array_like, optional] Provide the mean to prevent its recalculation. The mean should have a
shape as if it was calculated with keepdims=True. The axis for the calculation of the mean
should be the same as used in the call to this std function.
New in version 2.0.0.

correction
[{int, float}, optional] Array API compatible name for the ddof parameter. Only one of them
can be provided at the same time.
New in version 2.0.0.

Returns
standard_deviation

[ndarray, see dtype parameter above.] If out is None, return a new array containing the stan-
dard deviation, otherwise return a reference to the output array. If ddof is >= the number of
non-NaN elements in a slice or the slice contains only NaNs, then the result for that slice is
NaN.

See also:

var, mean, std
nanvar, nanmean
ufuncs-output-type

Notes

The standard deviation is the square root of the average of the squared deviations from the mean: std =
sqrt(mean(abs(x - x.mean())**2)).
The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the square
root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard deviation
per se.
Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real and
nonnegative.
For floating-point input, the std is computed using the same precision the input has. Depending on the input data,
this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-accuracy
accumulator using the dtype keyword can alleviate this issue.

1.4. Routines and objects by topic 1841

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanstd(a)
1.247219128924647
>>> np.nanstd(a, axis=0)
array([1., 0.])
>>> np.nanstd(a, axis=1)
array([0., 0.5]) # may vary

numpy.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>,
mean=<no value>, correction=<no value>)

Compute the variance along the specified axis, while ignoring NaNs.
Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for
the flattened array by default, otherwise over the specified axis.
For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised.

Parameters
a

[array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis
[{int, tuple of int, None}, optional] Axis or axes along which the variance is computed. The
default is to compute the variance of the flattened array.

dtype
[data-type, optional] Type to use in computing the variance. For arrays of integer type the
default is float64; for arrays of float types it is the same as the array type.

out
[ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof
[{int, float}, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of non-NaN elements. By default ddof is zero.

keepdims
[bool, optional] If this is set to True, the axes which are reduced are left in the result as dimen-
sions with size one. With this option, the result will broadcast correctly against the original
a.

where
[array_like of bool, optional] Elements to include in the variance. See reduce for details.
New in version 1.22.0.

mean
[array_like, optional] Provide the mean to prevent its recalculation. The mean should have a
shape as if it was calculated with keepdims=True. The axis for the calculation of the mean
should be the same as used in the call to this var function.
New in version 2.0.0.

1842 1. Python API

NumPy Reference, Release 2.2.0

correction
[{int, float}, optional] Array API compatible name for the ddof parameter. Only one of them
can be provided at the same time.
New in version 2.0.0.

Returns
variance

[ndarray, see dtype parameter above] If out is None, return a new array containing the variance,
otherwise return a reference to the output array. If ddof is >= the number of non-NaN elements
in a slice or the slice contains only NaNs, then the result for that slice is NaN.

See also:

std
Standard deviation

mean
Average

var
Variance while not ignoring NaNs

nanstd, nanmean
ufuncs-output-type

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x - x.
mean())**2).
The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator of the
variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the variance
for normally distributed variables.
Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.
For floating-point input, the variance is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.
For this function to work on sub-classes of ndarray, they must define sum with the kwarg keepdims

Examples

>>> import numpy as np
>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanvar(a)
1.5555555555555554
>>> np.nanvar(a, axis=0)
array([1., 0.])
>>> np.nanvar(a, axis=1)
array([0., 0.25]) # may vary

1.4. Routines and objects by topic 1843

NumPy Reference, Release 2.2.0

Correlating

corrcoef(x[, y, rowvar, bias, ddof, dtype]) Return Pearson product-moment correlation coefficients.
correlate(a, v[, mode]) Cross-correlation of two 1-dimensional sequences.
cov(m[, y, rowvar, bias, ddof, fweights, ...]) Estimate a covariance matrix, given data and weights.

numpy.corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>, *, dtype=None)
Return Pearson product-moment correlation coefficients.
Please refer to the documentation for cov for more detail. The relationship between the correlation coefficient
matrix, R, and the covariance matrix, C, is

Rij =
Cij√
CiiCjj

The values of R are between -1 and 1, inclusive.
Parameters

x
[array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
x represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y
[array_like, optional] An additional set of variables and observations. y has the same shape as
x.

rowvar
[bool, optional] If rowvar is True (default), then each row represents a variable, with obser-
vations in the columns. Otherwise, the relationship is transposed: each column represents a
variable, while the rows contain observations.

bias
[_NoValue, optional] Has no effect, do not use.
Deprecated since version 1.10.0.

ddof
[_NoValue, optional] Has no effect, do not use.
Deprecated since version 1.10.0.

dtype
[data-type, optional] Data-type of the result. By default, the return data-type will have at least
numpy.float64 precision.
New in version 1.20.

Returns
R

[ndarray] The correlation coefficient matrix of the variables.
See also:

cov
Covariance matrix

1844 1. Python API

NumPy Reference, Release 2.2.0

Notes

Due to floating point rounding the resulting array may not be Hermitian, the diagonal elements may not be 1, and
the elements may not satisfy the inequality abs(a) <= 1. The real and imaginary parts are clipped to the interval
[-1, 1] in an attempt to improve on that situation but is not much help in the complex case.
This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous
versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

Examples

>>> import numpy as np

In this example we generate two random arrays, xarr and yarr, and compute the row-wise and column-wise
Pearson correlation coefficients, R. Since rowvar is true by default, we first find the row-wise Pearson correlation
coefficients between the variables of xarr.

>>> import numpy as np
>>> rng = np.random.default_rng(seed=42)
>>> xarr = rng.random((3, 3))
>>> xarr
array([[0.77395605, 0.43887844, 0.85859792],

[0.69736803, 0.09417735, 0.97562235],
[0.7611397 , 0.78606431, 0.12811363]])

>>> R1 = np.corrcoef(xarr)
>>> R1
array([[1. , 0.99256089, -0.68080986],

[0.99256089, 1. , -0.76492172],
[-0.68080986, -0.76492172, 1.]])

If we add another set of variables and observations yarr, we can compute the row-wise Pearson correlation
coefficients between the variables in xarr and yarr.

>>> yarr = rng.random((3, 3))
>>> yarr
array([[0.45038594, 0.37079802, 0.92676499],

[0.64386512, 0.82276161, 0.4434142],
[0.22723872, 0.55458479, 0.06381726]])

>>> R2 = np.corrcoef(xarr, yarr)
>>> R2
array([[1. , 0.99256089, -0.68080986, 0.75008178, -0.934284 ,

-0.99004057],
[0.99256089, 1. , -0.76492172, 0.82502011, -0.97074098,
-0.99981569],
[-0.68080986, -0.76492172, 1. , -0.99507202, 0.89721355,
0.77714685],

[0.75008178, 0.82502011, -0.99507202, 1. , -0.93657855,
-0.83571711],
[-0.934284 , -0.97074098, 0.89721355, -0.93657855, 1. ,
0.97517215],

[-0.99004057, -0.99981569, 0.77714685, -0.83571711, 0.97517215,
1.]])

Finally if we use the option rowvar=False, the columns are now being treated as the variables and we will find
the column-wise Pearson correlation coefficients between variables in xarr and yarr.

1.4. Routines and objects by topic 1845

NumPy Reference, Release 2.2.0

>>> R3 = np.corrcoef(xarr, yarr, rowvar=False)
>>> R3
array([[1. , 0.77598074, -0.47458546, -0.75078643, -0.9665554 ,

0.22423734],
[0.77598074, 1. , -0.92346708, -0.99923895, -0.58826587,
-0.44069024],
[-0.47458546, -0.92346708, 1. , 0.93773029, 0.23297648,
0.75137473],

[-0.75078643, -0.99923895, 0.93773029, 1. , 0.55627469,
0.47536961],

[-0.9665554 , -0.58826587, 0.23297648, 0.55627469, 1. ,
-0.46666491],
[0.22423734, -0.44069024, 0.75137473, 0.47536961, -0.46666491,
1.]])

numpy.correlate(a, v, mode='valid')
Cross-correlation of two 1-dimensional sequences.
This function computes the correlation as generally defined in signal processing texts [1]:

ck =
∑
n

an+k · vn

with a and v sequences being zero-padded where necessary and v denoting complex conjugation.
Parameters

a, v
[array_like] Input sequences.

mode
[{‘valid’, ‘same’, ‘full’}, optional] Refer to the convolve docstring. Note that the default is
‘valid’, unlike convolve, which uses ‘full’.

Returns
out

[ndarray] Discrete cross-correlation of a and v.
See also:

convolve
Discrete, linear convolution of two one-dimensional sequences.

scipy.signal.correlate
uses FFT which has superior performance on large arrays.

Notes

The definition of correlation above is not unique and sometimes correlation may be defined differently. Another
common definition is [1]:

c′k =
∑
n

an · vn+k

which is related to ck by c′k = c−k.
numpy.correlatemay perform slowly in large arrays (i.e. n = 1e5) because it does not use the FFT to compute
the convolution; in that case, scipy.signal.correlate might be preferable.

1846 1. Python API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html#scipy.signal.correlate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html#scipy.signal.correlate

NumPy Reference, Release 2.2.0

References

[1]

Examples

>>> import numpy as np
>>> np.correlate([1, 2, 3], [0, 1, 0.5])
array([3.5])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
array([2. , 3.5, 3.])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
array([0.5, 2. , 3.5, 3. , 0.])

Using complex sequences:

>>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full')
array([0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j])

Note that you get the time reversed, complex conjugated result (c−k) when the two input sequences a and v change
places:

>>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full')
array([0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j])

numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None, *, dtype=None)
Estimate a covariance matrix, given data and weights.
Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, X =
[x1, x2, ...xN]T , then the covariance matrix element Cij is the covariance of xi and xj . The element Cii is the
variance of xi.
See the notes for an outline of the algorithm.

Parameters
m

[array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
m represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y
[array_like, optional] An additional set of variables and observations. y has the same form as
that of m.

rowvar
[bool, optional] If rowvar is True (default), then each row represents a variable, with obser-
vations in the columns. Otherwise, the relationship is transposed: each column represents a
variable, while the rows contain observations.

bias
[bool, optional] Default normalization (False) is by (N - 1), where N is the number of
observations given (unbiased estimate). If bias is True, then normalization is by N. These
values can be overridden by using the keyword ddof in numpy versions >= 1.5.

ddof
[int, optional] If not None the default value implied by bias is overridden. Note that ddof=1

1.4. Routines and objects by topic 1847

NumPy Reference, Release 2.2.0

will return the unbiased estimate, even if both fweights and aweights are specified, andddof=0
will return the simple average. See the notes for the details. The default value is None.

fweights
[array_like, int, optional] 1-D array of integer frequency weights; the number of times each
observation vector should be repeated.

aweights
[array_like, optional] 1-D array of observation vector weights. These relative weights are typi-
cally large for observations considered “important” and smaller for observations considered less
“important”. If ddof=0 the array of weights can be used to assign probabilities to observation
vectors.

dtype
[data-type, optional] Data-type of the result. By default, the return data-type will have at least
numpy.float64 precision.
New in version 1.20.

Returns
out

[ndarray] The covariance matrix of the variables.
See also:

corrcoef
Normalized covariance matrix

Notes

Assume that the observations are in the columns of the observation array m and let f = fweights and a =
aweights for brevity. The steps to compute the weighted covariance are as follows:

>>> m = np.arange(10, dtype=np.float64)
>>> f = np.arange(10) * 2
>>> a = np.arange(10) ** 2.
>>> ddof = 1
>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
>>> m -= np.sum(m * w, axis=None, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

Note that when a == 1, the normalization factor v1 / (v1**2 - ddof * v2) goes over to 1 /
(np.sum(f) - ddof) as it should.

Examples

>>> import numpy as np

Consider two variables, x0 and x1, which correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],

[2, 1, 0]])

1848 1. Python API

NumPy Reference, Release 2.2.0

Note how x0 increases while x1 decreases. The covariance matrix shows this clearly:

>>> np.cov(x)
array([[1., -1.],

[-1., 1.]])

Note that element C0,1, which shows the correlation between x0 and x1, is negative.
Further, note how x and y are combined:

>>> x = [-2.1, -1, 4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.stack((x, y), axis=0)
>>> np.cov(X)
array([[11.71 , -4.286], # may vary

[-4.286 , 2.144133]])
>>> np.cov(x, y)
array([[11.71 , -4.286], # may vary

[-4.286 , 2.144133]])
>>> np.cov(x)
array(11.71)

Histograms

histogram(a[, bins, range, density, weights]) Compute the histogram of a dataset.
histogram2d(x, y[, bins, range, density, ...]) Compute the bi-dimensional histogram of two data sam-

ples.
histogramdd(sample[, bins, range, density, ...]) Compute the multidimensional histogram of some data.
bincount(x, /[, weights, minlength]) Count number of occurrences of each value in array of

non-negative ints.
histogram_bin_edges(a[, bins, range, weights]) Function to calculate only the edges of the bins used by

the histogram function.
digitize(x, bins[, right]) Return the indices of the bins to which each value in input

array belongs.

numpy.histogram(a, bins=10, range=None, density=None, weights=None)
Compute the histogram of a dataset.

Parameters
a

[array_like] Input data. The histogram is computed over the flattened array.
bins

[int or sequence of scalars or str, optional] If bins is an int, it defines the number of equal-width
bins in the given range (10, by default). If bins is a sequence, it defines a monotonically in-
creasing array of bin edges, including the rightmost edge, allowing for non-uniform bin widths.
If bins is a string, it defines the method used to calculate the optimal bin width, as defined by
histogram_bin_edges.

range
[(float, float), optional] The lower and upper range of the bins. If not provided, range is simply
(a.min(), a.max()). Values outside the range are ignored. The first element of the
range must be less than or equal to the second. range affects the automatic bin computation

1.4. Routines and objects by topic 1849

NumPy Reference, Release 2.2.0

as well. While bin width is computed to be optimal based on the actual data within range, the
bin count will fill the entire range including portions containing no data.

weights
[array_like, optional] An array of weights, of the same shape as a. Each value in a only con-
tributes its associated weight towards the bin count (instead of 1). If density is True, the weights
are normalized, so that the integral of the density over the range remains 1. Please note that
the dtype of weights will also become the dtype of the returned accumulator (hist), so it
must be large enough to hold accumulated values as well.

density
[bool, optional] If False, the result will contain the number of samples in each bin. If True,
the result is the value of the probability density function at the bin, normalized such that the
integral over the range is 1. Note that the sum of the histogram values will not be equal to 1
unless bins of unity width are chosen; it is not a probability mass function.

Returns
hist

[array] The values of the histogram. See density and weights for a description of the possible
semantics. If weights are given, hist.dtype will be taken from weights.

bin_edges
[array of dtype float] Return the bin edges (length(hist)+1).

See also:

histogramdd, bincount, searchsorted, digitize, histogram_bin_edges

Notes

All but the last (righthand-most) bin is half-open. In other words, if bins is:

[1, 2, 3, 4]

then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3,
4], which includes 4.

Examples

>>> import numpy as np
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))

>>> a = np.arange(5)
>>> hist, bin_edges = np.histogram(a, density=True)
>>> hist
array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
>>> hist.sum()
2.4999999999999996
>>> np.sum(hist * np.diff(bin_edges))
1.0

1850 1. Python API

NumPy Reference, Release 2.2.0

Automated Bin Selection Methods example, using 2 peak random data with 2000 points.

import matplotlib.pyplot as plt
import numpy as np

rng = np.random.RandomState(10) # deterministic random data
a = np.hstack((rng.normal(size=1000),

rng.normal(loc=5, scale=2, size=1000)))
plt.hist(a, bins='auto') # arguments are passed to np.histogram
plt.title("Histogram with 'auto' bins")
plt.show()

2 0 2 4 6 8 10
0

50

100

150

200

250

300

Histogram with 'auto' bins

numpy.histogram2d(x, y, bins=10, range=None, density=None, weights=None)
Compute the bi-dimensional histogram of two data samples.

Parameters
x

[array_like, shape (N,)] An array containing the x coordinates of the points to be his-
togrammed.

y
[array_like, shape (N,)] An array containing the y coordinates of the points to be his-
togrammed.

bins
[int or array_like or [int, int] or [array, array], optional] The bin specification:
• If int, the number of bins for the two dimensions (nx=ny=bins).
• If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).
• If [int, int], the number of bins in each dimension (nx, ny = bins).
• If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).
• A combination [int, array] or [array, int], where int is the number of bins and array is the
bin edges.

1.4. Routines and objects by topic 1851

NumPy Reference, Release 2.2.0

range
[array_like, shape(2,2), optional] The leftmost and rightmost edges of the bins along each
dimension (if not specified explicitly in the bins parameters): [[xmin, xmax], [ymin,
ymax]]. All values outside of this range will be considered outliers and not tallied in the
histogram.

density
[bool, optional] If False, the default, returns the number of samples in each bin. If True,
returns the probability density function at the bin, bin_count / sample_count /
bin_area.

weights
[array_like, shape(N,), optional] An array of valuesw_iweighing each sample(x_i, y_i).
Weights are normalized to 1 if density is True. If density is False, the values of the returned
histogram are equal to the sum of the weights belonging to the samples falling into each bin.

Returns
H

[ndarray, shape(nx, ny)] The bi-dimensional histogram of samples x and y. Values in x are
histogrammed along the first dimension and values in y are histogrammed along the second
dimension.

xedges
[ndarray, shape(nx+1,)] The bin edges along the first dimension.

yedges
[ndarray, shape(ny+1,)] The bin edges along the second dimension.

See also:

histogram
1D histogram

histogramdd
Multidimensional histogram

Notes

When density is True, then the returned histogram is the sample density, defined such that the sum over bins of the
product bin_value * bin_area is 1.
Please note that the histogram does not follow the Cartesian convention where x values are on the abscissa and y
values on the ordinate axis. Rather, x is histogrammed along the first dimension of the array (vertical), and y along
the second dimension of the array (horizontal). This ensures compatibility with histogramdd.

Examples

>>> import numpy as np
>>> from matplotlib.image import NonUniformImage
>>> import matplotlib.pyplot as plt

Construct a 2-D histogram with variable bin width. First define the bin edges:

>>> xedges = [0, 1, 3, 5]
>>> yedges = [0, 2, 3, 4, 6]

1852 1. Python API

NumPy Reference, Release 2.2.0

Next we create a histogram H with random bin content:

>>> x = np.random.normal(2, 1, 100)
>>> y = np.random.normal(1, 1, 100)
>>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges))
>>> # Histogram does not follow Cartesian convention (see Notes),
>>> # therefore transpose H for visualization purposes.
>>> H = H.T

imshow can only display square bins:

>>> fig = plt.figure(figsize=(7, 3))
>>> ax = fig.add_subplot(131, title='imshow: square bins')
>>> plt.imshow(H, interpolation='nearest', origin='lower',
... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
<matplotlib.image.AxesImage object at 0x...>

pcolormesh can display actual edges:

>>> ax = fig.add_subplot(132, title='pcolormesh: actual edges',
... aspect='equal')
>>> X, Y = np.meshgrid(xedges, yedges)
>>> ax.pcolormesh(X, Y, H)
<matplotlib.collections.QuadMesh object at 0x...>

NonUniformImage can be used to display actual bin edges with interpolation:

>>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated',
... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]])
>>> im = NonUniformImage(ax, interpolation='bilinear')
>>> xcenters = (xedges[:-1] + xedges[1:]) / 2
>>> ycenters = (yedges[:-1] + yedges[1:]) / 2
>>> im.set_data(xcenters, ycenters, H)
>>> ax.add_image(im)
>>> plt.show()

0 2 4
0

1

2

3

4

5

6
imshow: square bins

0 2 4
0

1

2

3

4

5

6
pcolormesh: actual edges

0 2 4
0

1

2

3

4

5

6
NonUniformImage: interpolated

It is also possible to construct a 2-D histogram without specifying bin edges:

1.4. Routines and objects by topic 1853

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html#matplotlib.pyplot.imshow
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pcolormesh.html#matplotlib.pyplot.pcolormesh
https://matplotlib.org/stable/api/image_api.html#matplotlib.image.NonUniformImage

NumPy Reference, Release 2.2.0

>>> # Generate non-symmetric test data
>>> n = 10000
>>> x = np.linspace(1, 100, n)
>>> y = 2*np.log(x) + np.random.rand(n) - 0.5
>>> # Compute 2d histogram. Note the order of x/y and xedges/yedges
>>> H, yedges, xedges = np.histogram2d(y, x, bins=20)

Now we can plot the histogram using pcolormesh, and a hexbin for comparison.

>>> # Plot histogram using pcolormesh
>>> fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True)
>>> ax1.pcolormesh(xedges, yedges, H, cmap='rainbow')
>>> ax1.plot(x, 2*np.log(x), 'k-')
>>> ax1.set_xlim(x.min(), x.max())
>>> ax1.set_ylim(y.min(), y.max())
>>> ax1.set_xlabel('x')
>>> ax1.set_ylabel('y')
>>> ax1.set_title('histogram2d')
>>> ax1.grid()

>>> # Create hexbin plot for comparison
>>> ax2.hexbin(x, y, gridsize=20, cmap='rainbow')
>>> ax2.plot(x, 2*np.log(x), 'k-')
>>> ax2.set_title('hexbin')
>>> ax2.set_xlim(x.min(), x.max())
>>> ax2.set_xlabel('x')
>>> ax2.grid()

>>> plt.show()

25 50 75 100
x

0

2

4

6

8

y

histogram2d

25 50 75 100
x

hexbin

numpy.histogramdd(sample, bins=10, range=None, density=None, weights=None)
Compute the multidimensional histogram of some data.

Parameters
sample

[(N, D) array, or (N, D) array_like] The data to be histogrammed.

1854 1. Python API

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pcolormesh.html#matplotlib.pyplot.pcolormesh
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hexbin.html#matplotlib.pyplot.hexbin

NumPy Reference, Release 2.2.0

Note the unusual interpretation of sample when an array_like:
• When an array, each row is a coordinate in a D-dimensional space - such as
histogramdd(np.array([p1, p2, p3])).

• When an array_like, each element is the list of values for single coordinate - such as
histogramdd((X, Y, Z)).

The first form should be preferred.
bins

[sequence or int, optional] The bin specification:
• A sequence of arrays describing the monotonically increasing bin edges along each dimen-
sion.

• The number of bins for each dimension (nx, ny, … =bins)
• The number of bins for all dimensions (nx=ny=…=bins).

range
[sequence, optional] A sequence of length D, each an optional (lower, upper) tuple giving the
outer bin edges to be used if the edges are not given explicitly in bins. An entry of None in
the sequence results in the minimum and maximum values being used for the corresponding
dimension. The default, None, is equivalent to passing a tuple of D None values.

density
[bool, optional] If False, the default, returns the number of samples in each bin. If True,
returns the probability density function at the bin, bin_count / sample_count /
bin_volume.

weights
[(N,) array_like, optional] An array of values w_i weighing each sample (x_i, y_i, z_i, …).
Weights are normalized to 1 if density is True. If density is False, the values of the returned
histogram are equal to the sum of the weights belonging to the samples falling into each bin.

Returns
H

[ndarray] The multidimensional histogram of sample x. See density and weights for the dif-
ferent possible semantics.

edges
[tuple of ndarrays] A tuple of D arrays describing the bin edges for each dimension.

See also:

histogram
1-D histogram

histogram2d
2-D histogram

1.4. Routines and objects by topic 1855

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> rng = np.random.default_rng()
>>> r = rng.normal(size=(100,3))
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
((5, 8, 4), 6, 9, 5)

numpy.bincount(x, / , weights=None, minlength=0)
Count number of occurrences of each value in array of non-negative ints.
The number of bins (of size 1) is one larger than the largest value in x. If minlength is specified, there will be at
least this number of bins in the output array (though it will be longer if necessary, depending on the contents of x).
Each bin gives the number of occurrences of its index value in x. If weights is specified the input array is weighted
by it, i.e. if a value n is found at position i, out[n] += weight[i] instead of out[n] += 1.

Parameters
x

[array_like, 1 dimension, nonnegative ints] Input array.
weights

[array_like, optional] Weights, array of the same shape as x.
minlength

[int, optional] A minimum number of bins for the output array.
Returns

out
[ndarray of ints] The result of binning the input array. The length of out is equal to np.
amax(x)+1.

Raises
ValueError

If the input is not 1-dimensional, or contains elements with negative values, or if minlength is
negative.

TypeError
If the type of the input is float or complex.

See also:

histogram, digitize, unique

Examples

>>> import numpy as np
>>> np.bincount(np.arange(5))
array([1, 1, 1, 1, 1])
>>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
array([1, 3, 1, 1, 0, 0, 0, 1])

>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
>>> np.bincount(x).size == np.amax(x)+1
True

1856 1. Python API

NumPy Reference, Release 2.2.0

The input array needs to be of integer dtype, otherwise a TypeError is raised:

>>> np.bincount(np.arange(5, dtype=float))
Traceback (most recent call last):
...

TypeError: Cannot cast array data from dtype('float64') to dtype('int64')
according to the rule 'safe'

A possible use of bincount is to perform sums over variable-size chunks of an array, using the weights
keyword.

>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
>>> x = np.array([0, 1, 1, 2, 2, 2])
>>> np.bincount(x, weights=w)
array([0.3, 0.7, 1.1])

numpy.histogram_bin_edges(a, bins=10, range=None, weights=None)
Function to calculate only the edges of the bins used by the histogram function.

Parameters
a

[array_like] Input data. The histogram is computed over the flattened array.
bins

[int or sequence of scalars or str, optional] If bins is an int, it defines the number of equal-width
bins in the given range (10, by default). If bins is a sequence, it defines the bin edges, including
the rightmost edge, allowing for non-uniform bin widths.
If bins is a string from the list below, histogram_bin_edges will use the method chosen
to calculate the optimal bin width and consequently the number of bins (see the Notes section
for more detail on the estimators) from the data that falls within the requested range. While the
bin width will be optimal for the actual data in the range, the number of bins will be computed
to fill the entire range, including the empty portions. For visualisation, using the ‘auto’ option
is suggested. Weighted data is not supported for automated bin size selection.
‘auto’
Minimum bin width between the ‘sturges’ and ‘fd’ estimators. Provides good all-around
performance.

‘fd’ (Freedman Diaconis Estimator)
Robust (resilient to outliers) estimator that takes into account data variability and data size.

‘doane’
An improved version of Sturges’ estimator that works better with non-normal datasets.

‘scott’
Less robust estimator that takes into account data variability and data size.

‘stone’
Estimator based on leave-one-out cross-validation estimate of the integrated squared error.
Can be regarded as a generalization of Scott’s rule.

‘rice’
Estimator does not take variability into account, only data size. Commonly overestimates
number of bins required.

‘sturges’
R’s default method, only accounts for data size. Only optimal for gaussian data and under-
estimates number of bins for large non-gaussian datasets.

1.4. Routines and objects by topic 1857

NumPy Reference, Release 2.2.0

‘sqrt’
Square root (of data size) estimator, used by Excel and other programs for its speed and
simplicity.

range
[(float, float), optional] The lower and upper range of the bins. If not provided, range is simply
(a.min(), a.max()). Values outside the range are ignored. The first element of the
range must be less than or equal to the second. range affects the automatic bin computation
as well. While bin width is computed to be optimal based on the actual data within range, the
bin count will fill the entire range including portions containing no data.

weights
[array_like, optional] An array of weights, of the same shape as a. Each value in a only con-
tributes its associated weight towards the bin count (instead of 1). This is currently not used
by any of the bin estimators, but may be in the future.

Returns
bin_edges

[array of dtype float] The edges to pass into histogram
See also:

histogram

Notes

The methods to estimate the optimal number of bins are well founded in literature, and are inspired by the choices
R provides for histogram visualisation. Note that having the number of bins proportional to n1/3 is asymptotically
optimal, which is why it appears in most estimators. These are simply plug-in methods that give good starting
points for number of bins. In the equations below, h is the binwidth and nh is the number of bins. All estimators
that compute bin counts are recast to bin width using the ptp of the data. The final bin count is obtained from
np.round(np.ceil(range / h)). The final bin width is often less than what is returned by the estimators
below.
‘auto’ (minimum bin width of the ‘sturges’ and ‘fd’ estimators)

A compromise to get a good value. For small datasets the Sturges value will usually be chosen, while larger
datasets will usually default to FD. Avoids the overly conservative behaviour of FD and Sturges for small and
large datasets respectively. Switchover point is usually a.size ≈ 1000.

‘fd’ (Freedman Diaconis Estimator)

h = 2
IQR

n1/3

The binwidth is proportional to the interquartile range (IQR) and inversely proportional to cube root of a.size.
Can be too conservative for small datasets, but is quite good for large datasets. The IQR is very robust to
outliers.

‘scott’

h = σ
3

√
24
√
π

n

The binwidth is proportional to the standard deviation of the data and inversely proportional to cube root
of x.size. Can be too conservative for small datasets, but is quite good for large datasets. The standard
deviation is not very robust to outliers. Values are very similar to the Freedman-Diaconis estimator in the
absence of outliers.

1858 1. Python API

NumPy Reference, Release 2.2.0

‘rice’

nh = 2n1/3

The number of bins is only proportional to cube root of a.size. It tends to overestimate the number of bins
and it does not take into account data variability.

‘sturges’

nh = log2(n) + 1

The number of bins is the base 2 log of a.size. This estimator assumes normality of data and is too
conservative for larger, non-normal datasets. This is the default method in R’s hist method.

‘doane’

nh = 1 + log2(n) + log2
(
1 +

|g1|
σg1

)
g1 = mean

[(
x− µ

σ

)3
]

σg1 =

√
6(n− 2)

(n+ 1)(n+ 3)

An improved version of Sturges’ formula that produces better estimates for non-normal datasets. This esti-
mator attempts to account for the skew of the data.

‘sqrt’

nh =
√
n

The simplest and fastest estimator. Only takes into account the data size.
Additionally, if the data is of integer dtype, then the binwidth will never be less than 1.

Examples

>>> import numpy as np
>>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5])
>>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1))
array([0. , 0.25, 0.5 , 0.75, 1.])
>>> np.histogram_bin_edges(arr, bins=2)
array([0. , 2.5, 5.])

For consistency with histogram, an array of pre-computed bins is passed through unmodified:

>>> np.histogram_bin_edges(arr, [1, 2])
array([1, 2])

This function allows one set of bins to be computed, and reused across multiple histograms:

>>> shared_bins = np.histogram_bin_edges(arr, bins='auto')
>>> shared_bins
array([0., 1., 2., 3., 4., 5.])

1.4. Routines and objects by topic 1859

NumPy Reference, Release 2.2.0

>>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1])
>>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins)
>>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins)

>>> hist_0; hist_1
array([1, 1, 0, 1, 0])
array([2, 0, 1, 1, 2])

Which gives more easily comparable results than using separate bins for each histogram:

>>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto')
>>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto')
>>> hist_0; hist_1
array([1, 1, 1])
array([2, 1, 1, 2])
>>> bins_0; bins_1
array([0., 1., 2., 3.])
array([0. , 1.25, 2.5 , 3.75, 5.])

numpy.digitize(x, bins, right=False)
Return the indices of the bins to which each value in input array belongs.

right order of bins returned index i satisfies
False increasing bins[i-1] <= x < bins[i]
True increasing bins[i-1] < x <= bins[i]
False decreasing bins[i-1] > x >= bins[i]
True decreasing bins[i-1] >= x > bins[i]

If values in x are beyond the bounds of bins, 0 or len(bins) is returned as appropriate.
Parameters

x
[array_like] Input array to be binned. Prior to NumPy 1.10.0, this array had to be 1-
dimensional, but can now have any shape.

bins
[array_like] Array of bins. It has to be 1-dimensional and monotonic.

right
[bool, optional] Indicating whether the intervals include the right or the left bin edge. Default
behavior is (right==False) indicating that the interval does not include the right edge. The left
bin end is open in this case, i.e., bins[i-1] <= x < bins[i] is the default behavior formonotonically
increasing bins.

Returns
indices

[ndarray of ints] Output array of indices, of same shape as x.
Raises

ValueError
If bins is not monotonic.

TypeError
If the type of the input is complex.

1860 1. Python API

NumPy Reference, Release 2.2.0

See also:

bincount, histogram, unique, searchsorted

Notes

If values in x are such that they fall outside the bin range, attempting to index bins with the indices that digitize
returns will result in an IndexError.
New in version 1.10.0.
numpy.digitize is implemented in terms of numpy.searchsorted. This means that a binary search is
used to bin the values, which scales much better for larger number of bins than the previous linear search. It also
removes the requirement for the input array to be 1-dimensional.
For monotonically increasing bins, the following are equivalent:

np.digitize(x, bins, right=True)
np.searchsorted(bins, x, side='left')

Note that as the order of the arguments are reversed, the side must be too. The searchsorted call is marginally
faster, as it does not do any monotonicity checks. Perhaps more importantly, it supports all dtypes.

Examples

>>> import numpy as np
>>> x = np.array([0.2, 6.4, 3.0, 1.6])
>>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
>>> inds = np.digitize(x, bins)
>>> inds
array([1, 4, 3, 2])
>>> for n in range(x.size):
... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]])
...
0.0 <= 0.2 < 1.0
4.0 <= 6.4 < 10.0
2.5 <= 3.0 < 4.0
1.0 <= 1.6 < 2.5

>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
>>> bins = np.array([0, 5, 10, 15, 20])
>>> np.digitize(x,bins,right=True)
array([1, 2, 3, 4, 4])
>>> np.digitize(x,bins,right=False)
array([1, 3, 3, 4, 5])

1.4. Routines and objects by topic 1861

NumPy Reference, Release 2.2.0

1.4.18 Window functions

Various windows

bartlett(M) Return the Bartlett window.
blackman(M) Return the Blackman window.
hamming(M) Return the Hamming window.
hanning(M) Return the Hanning window.
kaiser(M, beta) Return the Kaiser window.

numpy.bartlett(M)

Return the Bartlett window.
The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used
in signal processing for tapering a signal, without generating too much ripple in the frequency domain.

Parameters
M

[int] Number of points in the output window. If zero or less, an empty array is returned.
Returns

out
[array] The triangular window, with the maximum value normalized to one (the value one
appears only if the number of samples is odd), with the first and last samples equal to zero.

See also:

blackman, hamming, hanning, kaiser

Notes

The Bartlett window is defined as

w(n) =
2

M − 1

(
M − 1

2
−
∣∣∣∣n− M − 1

2

∣∣∣∣)
Most references to the Bartlett window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It
is also known as an apodization (which means “removing the foot”, i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function. The Fourier transform of the Bartlett window is the product
of two sinc functions. Note the excellent discussion in Kanasewich [2].

References

[1], [2], [3], [4], [5]

1862 1. Python API

NumPy Reference, Release 2.2.0

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> np.bartlett(12)
array([0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, # may vary

0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636,
0.18181818, 0.])

Plot the window and its frequency response (requires SciPy and matplotlib).

import matplotlib.pyplot as plt
from numpy.fft import fft, fftshift
window = np.bartlett(51)
plt.plot(window)
plt.title("Bartlett window")
plt.ylabel("Amplitude")
plt.xlabel("Sample")
plt.show()

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Bartlett window

plt.figure()
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
with np.errstate(divide='ignore', invalid='ignore'):

response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
plt.title("Frequency response of Bartlett window")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
plt.axis('tight')
plt.show()

numpy.blackman(M)

Return the Blackman window.

1.4. Routines and objects by topic 1863

NumPy Reference, Release 2.2.0

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

100

80

60

40

20

0

M
ag

ni
tu

de
 [d

B]

Frequency response of Bartlett window

The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed
to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window.

Parameters
M

[int] Number of points in the output window. If zero or less, an empty array is returned.
Returns

out
[ndarray] The window, with the maximum value normalized to one (the value one appears only
if the number of samples is odd).

See also:

bartlett, hamming, hanning, kaiser

Notes

The Blackman window is defined as

w(n) = 0.42− 0.5 cos(2πn/M) + 0.08 cos(4πn/M)

Most references to the Blackman window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing the
foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is
known as a “near optimal” tapering function, almost as good (by some measures) as the kaiser window.

1864 1. Python API

NumPy Reference, Release 2.2.0

References

Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.
Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall,
1999, pp. 468-471.

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> np.blackman(12)
array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01, # may vary

4.14397981e-01, 7.36045180e-01, 9.67046769e-01,
9.67046769e-01, 7.36045180e-01, 4.14397981e-01,
1.59903635e-01, 3.26064346e-02, -1.38777878e-17])

Plot the window and the frequency response.

import matplotlib.pyplot as plt
from numpy.fft import fft, fftshift
window = np.blackman(51)
plt.plot(window)
plt.title("Blackman window")
plt.ylabel("Amplitude")
plt.xlabel("Sample")
plt.show() # doctest: +SKIP

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Blackman window

plt.figure()
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
with np.errstate(divide='ignore', invalid='ignore'):

response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)

(continues on next page)

1.4. Routines and objects by topic 1865

NumPy Reference, Release 2.2.0

(continued from previous page)
plt.plot(freq, response)
plt.title("Frequency response of Blackman window")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
plt.axis('tight')
plt.show()

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

100

80

60

40

20

0

M
ag

ni
tu

de
 [d

B]

Frequency response of Blackman window

numpy.hamming(M)

Return the Hamming window.
The Hamming window is a taper formed by using a weighted cosine.

Parameters
M

[int] Number of points in the output window. If zero or less, an empty array is returned.
Returns

out
[ndarray] The window, with the maximum value normalized to one (the value one appears only
if the number of samples is odd).

See also:

bartlett, blackman, hanning, kaiser

1866 1. Python API

NumPy Reference, Release 2.2.0

Notes

The Hamming window is defined as

w(n) = 0.54− 0.46 cos
(

2πn

M − 1

)
0 ≤ n ≤ M − 1

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and
Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most ref-
erences to the Hamming window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the foot”,
i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[1], [2], [3], [4]

Examples

>>> import numpy as np
>>> np.hamming(12)
array([0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, # may vary

0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909,
0.15302337, 0.08])

Plot the window and the frequency response.

import matplotlib.pyplot as plt
from numpy.fft import fft, fftshift
window = np.hamming(51)
plt.plot(window)
plt.title("Hamming window")
plt.ylabel("Amplitude")
plt.xlabel("Sample")
plt.show()

plt.figure()
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
plt.title("Frequency response of Hamming window")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
plt.axis('tight')
plt.show()

numpy.hanning(M)

Return the Hanning window.
The Hanning window is a taper formed by using a weighted cosine.

Parameters

1.4. Routines and objects by topic 1867

NumPy Reference, Release 2.2.0

0 10 20 30 40 50
Sample

0.2

0.4

0.6

0.8

1.0
Am

pl
itu

de

Hamming window

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

100

80

60

40

20

0

M
ag

ni
tu

de
 [d

B]

Frequency response of Hamming window

1868 1. Python API

NumPy Reference, Release 2.2.0

M
[int] Number of points in the output window. If zero or less, an empty array is returned.

Returns
out

[ndarray, shape(M,)] The window, with the maximum value normalized to one (the value one
appears only if M is odd).

See also:

bartlett, blackman, hamming, kaiser

Notes

The Hanning window is defined as

w(n) = 0.5− 0.5 cos
(

2πn

M − 1

)
0 ≤ n ≤ M − 1

The Hanning was named for Julius von Hann, an Austrian meteorologist. It is also known as the Cosine Bell. Some
authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window.
Most references to the Hanning window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the foot”,
i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

References

[1], [2], [3], [4]

Examples

>>> import numpy as np
>>> np.hanning(12)
array([0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037,

0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249,
0.07937323, 0.])

Plot the window and its frequency response.

import matplotlib.pyplot as plt
from numpy.fft import fft, fftshift
window = np.hanning(51)
plt.plot(window)
plt.title("Hann window")
plt.ylabel("Amplitude")
plt.xlabel("Sample")
plt.show()

plt.figure()
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))

(continues on next page)

1.4. Routines and objects by topic 1869

NumPy Reference, Release 2.2.0

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Hann window

(continued from previous page)
with np.errstate(divide='ignore', invalid='ignore'):

response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
plt.title("Frequency response of the Hann window")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")
plt.axis('tight')
plt.show()

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

100

80

60

40

20

0

M
ag

ni
tu

de
 [d

B]

Frequency response of the Hann window

numpy.kaiser(M, beta)
Return the Kaiser window.
The Kaiser window is a taper formed by using a Bessel function.

1870 1. Python API

NumPy Reference, Release 2.2.0

Parameters
M

[int] Number of points in the output window. If zero or less, an empty array is returned.
beta

[float] Shape parameter for window.
Returns

out
[array] The window, with the maximum value normalized to one (the value one appears only
if the number of samples is odd).

See also:

bartlett, blackman, hamming, hanning

Notes

The Kaiser window is defined as

w(n) = I0

(
β

√
1− 4n2

(M − 1)2

)
/I0(β)

with

−M − 1

2
≤ n ≤ M − 1

2
,

where I0 is the modified zeroth-order Bessel function.
The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on
Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or
Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to
total energy.
The Kaiser can approximate many other windows by varying the beta parameter.

beta Window shape
0 Rectangular
5 Similar to a Hamming
6 Similar to a Hanning
8.6 Similar to a Blackman

A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so
the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get
returned.
Most references to the Kaiser window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the foot”,
i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

1.4. Routines and objects by topic 1871

NumPy Reference, Release 2.2.0

References

[1], [2], [3]

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> np.kaiser(12, 14)
array([7.72686684e-06, 3.46009194e-03, 4.65200189e-02, # may vary

2.29737120e-01, 5.99885316e-01, 9.45674898e-01,
9.45674898e-01, 5.99885316e-01, 2.29737120e-01,
4.65200189e-02, 3.46009194e-03, 7.72686684e-06])

Plot the window and the frequency response.

import matplotlib.pyplot as plt
from numpy.fft import fft, fftshift
window = np.kaiser(51, 14)
plt.plot(window)
plt.title("Kaiser window")
plt.ylabel("Amplitude")
plt.xlabel("Sample")
plt.show()

0 10 20 30 40 50
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Kaiser window

plt.figure()
A = fft(window, 2048) / 25.5
mag = np.abs(fftshift(A))
freq = np.linspace(-0.5, 0.5, len(A))
response = 20 * np.log10(mag)
response = np.clip(response, -100, 100)
plt.plot(freq, response)
plt.title("Frequency response of Kaiser window")
plt.ylabel("Magnitude [dB]")
plt.xlabel("Normalized frequency [cycles per sample]")

(continues on next page)

1872 1. Python API

NumPy Reference, Release 2.2.0

(continued from previous page)
plt.axis('tight')
plt.show()

0.4 0.2 0.0 0.2 0.4
Normalized frequency [cycles per sample]

100

80

60

40

20

0
M

ag
ni

tu
de

 [d
B]

Frequency response of Kaiser window

1.4. Routines and objects by topic 1873

NumPy Reference, Release 2.2.0

1874 1. Python API

CHAPTER

TWO

C API

2.1 NumPy C-API

Beware of the man who won’t be bothered with details.
—William Feather, Sr.

The truth is out there.
— Chris Carter, The X Files

NumPy provides a C-API to enable users to extend the system and get access to the array object for use in other routines.
The best way to truly understand the C-API is to read the source code. If you are unfamiliar with (C) source code,
however, this can be a daunting experience at first. Be assured that the task becomes easier with practice, and you may
be surprised at how simple the C-code can be to understand. Even if you don’t think you can write C-code from scratch,
it is much easier to understand and modify already-written source code than create it de novo.
Python extensions are especially straightforward to understand because they all have a very similar structure. Admittedly,
NumPy is not a trivial extension to Python, and may take a little more snooping to grasp. This is especially true because
of the code-generation techniques, which simplify maintenance of very similar code, but can make the code a little less
readable to beginners. Still, with a little persistence, the code can be opened to your understanding. It is my hope, that
this guide to the C-API can assist in the process of becoming familiar with the compiled-level work that can be done with
NumPy in order to squeeze that last bit of necessary speed out of your code.

2.1.1 Python types and C-structures

Several new types are defined in the C-code. Most of these are accessible from Python, but a few are not exposed due
to their limited use. Every new Python type has an associated PyObject* with an internal structure that includes a
pointer to a “method table” that defines how the new object behaves in Python. When you receive a Python object into
C code, you always get a pointer to a PyObject structure. Because a PyObject structure is very generic and defines
only PyObject_HEAD, by itself it is not very interesting. However, different objects contain more details after the
PyObject_HEAD (but you have to cast to the correct type to access them — or use accessor functions or macros).

1875

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject_HEAD
https://docs.python.org/3/c-api/structures.html#c.PyObject_HEAD

NumPy Reference, Release 2.2.0

New Python types defined

Python types are the functional equivalent in C of classes in Python. By constructing a new Python type youmake available
a new object for Python. The ndarray object is an example of a new type defined in C. New types are defined in C by two
basic steps:

1. creating a C-structure (usually named Py{Name}Object) that is binary- compatible with the PyObject struc-
ture itself but holds the additional information needed for that particular object;

2. populating the PyTypeObject table (pointed to by the ob_type member of the PyObject structure) with
pointers to functions that implement the desired behavior for the type.

Instead of special method names which define behavior for Python classes, there are “function tables” which point to
functions that implement the desired results. Since Python 2.2, the PyTypeObject itself has become dynamic which
allows C types that can be “sub-typed “from other C-types in C, and sub-classed in Python. The children types inherit
the attributes and methods from their parent(s).
There are two major new types: the ndarray (PyArray_Type) and the ufunc (PyUFunc_Type). Additional
types play a supportive role: the PyArrayIter_Type, the PyArrayMultiIter_Type, and the PyArrayDe-
scr_Type . The PyArrayIter_Type is the type for a flat iterator for an ndarray (the object that is returned when
getting the flat attribute). The PyArrayMultiIter_Type is the type of the object returned when calling broad-
cast. It handles iteration and broadcasting over a collection of nested sequences. Also, the PyArrayDescr_Type
is the data-type-descriptor type whose instances describe the data and PyArray_DTypeMeta is the metaclass for
data-type descriptors. There are also new scalar-array types which are new Python scalars corresponding to each of the
fundamental data types available for arrays. Additional types are placeholders that allow the array scalars to fit into a
hierarchy of actual Python types. Finally, the PyArray_DTypeMeta instances corresponding to the NumPy built-in
data types are also publicly visible.

PyArray_Type and PyArrayObject
PyTypeObject PyArray_Type

The Python type of the ndarray is PyArray_Type. In C, every ndarray is a pointer to a PyArrayObject
structure. The ob_type member of this structure contains a pointer to the PyArray_Type typeobject.

type PyArrayObject
type NPY_AO

The PyArrayObject C-structure contains all of the required information for an array. All instances of an ndar-
ray (and its subclasses) will have this structure. For future compatibility, these structure members should normally
be accessed using the provided macros. If you need a shorter name, then you can make use of NPY_AO (depre-
cated) which is defined to be equivalent to PyArrayObject. Direct access to the struct fields are deprecated.
Use the PyArray_*(arr) form instead. As of NumPy 1.20, the size of this struct is not considered part of the
NumPy ABI (see note at the end of the member list).

typedef struct PyArrayObject {
PyObject_HEAD
char *data;
int nd;
npy_intp *dimensions;
npy_intp *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;
PyObject *weakreflist;
/* version dependent private members */

} PyArrayObject;

PyObject_HEAD

1876 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/structures.html#c.PyObject_HEAD

NumPy Reference, Release 2.2.0

This is needed by all Python objects. It consists of (at least) a reference count member (ob_refcnt) and
a pointer to the typeobject (ob_type). (Other elements may also be present if Python was compiled with
special options see Include/object.h in the Python source tree for more information). The ob_type member
points to a Python type object.

char *data
Accessible via PyArray_DATA, this data member is a pointer to the first element of the array. This pointer
can (and normally should) be recast to the data type of the array.

int nd
An integer providing the number of dimensions for this array. When nd is 0, the array is sometimes
called a rank-0 array. Such arrays have undefined dimensions and strides and cannot be accessed. Macro
PyArray_NDIM defined in ndarraytypes.h points to this data member. NPY_MAXDIMS is defined
as a compile time constant limiting the number of dimensions. This number is 64 since NumPy 2 and was
32 before. However, we may wish to remove this limitations in the future so that it is best to explicitly check
dimensionality for code that relies on such an upper bound.

npy_intp *dimensions
An array of integers providing the shape in each dimension as long as nd ≥ 1. The integer is always large
enough to hold a pointer on the platform, so the dimension size is only limited by memory. PyArray_DIMS
is the macro associated with this data member.

npy_intp *strides
An array of integers providing for each dimension the number of bytes that must be skipped to get to the next
element in that dimension. Associated with macro PyArray_STRIDES.

PyObject *base
Pointed to by PyArray_BASE, this member is used to hold a pointer to another Python object that is related
to this array. There are two use cases:
• If this array does not own its own memory, then base points to the Python object that owns it (perhaps
another array object)

• If this array has the NPY_ARRAY_WRITEBACKIFCOPY flag set, then this array is a working copy of
a “misbehaved” array.

When PyArray_ResolveWritebackIfCopy is called, the array pointed to by base will be updated
with the contents of this array.

PyArray_Descr *descr
A pointer to a data-type descriptor object (see below). The data-type descriptor object is an instance of a
new built-in type which allows a generic description of memory. There is a descriptor structure for each data
type supported. This descriptor structure contains useful information about the type as well as a pointer to a
table of function pointers to implement specific functionality. As the name suggests, it is associated with the
macro PyArray_DESCR.

int flags
Pointed to by the macro PyArray_FLAGS, this data member represents the flags in-
dicating how the memory pointed to by data is to be interpreted. Possible flags are
NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_OWNDATA,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, NPY_ARRAY_WRITEBACKIFCOPY.

PyObject *weakreflist
This member allows array objects to have weak references (using the weakref module).

2.1. NumPy C-API 1877

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Note: Further members are considered private and version dependent. If the size of the struct is important for
your code, special care must be taken. A possible use-case when this is relevant is subclassing in C. If your code
relies on sizeof(PyArrayObject) to be constant, you must add the following check at import time:

if (sizeof(PyArrayObject) < PyArray_Type.tp_basicsize) {
PyErr_SetString(PyExc_ImportError,

"Binary incompatibility with NumPy, must recompile/update X.");
return NULL;

}

To ensure that your code does not have to be compiled for a specific NumPy version, you may add a constant,
leaving room for changes in NumPy. A solution guaranteed to be compatible with any future NumPy version
requires the use of a runtime calculate offset and allocation size.

The PyArray_Type typeobject implements many of the features of Python objects including the
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer interfaces. The rich compar-
ison) is also used along with new-style attribute lookup for member (tp_members) and properties (tp_getset).
The PyArray_Type can also be sub-typed.

Tip: The tp_as_number methods use a generic approach to call whatever function has been registered for handling
the operation. When the _multiarray_umath module is imported, it sets the numeric operations for all arrays to
the corresponding ufuncs. This choice can be changed with PyUFunc_ReplaceLoopBySignature.

PyGenericArrType_Type
PyTypeObject PyGenericArrType_Type

The PyGenericArrType_Type is the PyTypeObject definition which create the numpy.generic python
type.

PyArrayDescr_Type and PyArray_Descr
PyTypeObject PyArrayDescr_Type

The PyArrayDescr_Type is the built-in type of the data-type-descriptor objects used to describe how the
bytes comprising the array are to be interpreted. There are 21 statically-defined PyArray_Descr objects for the
built-in data-types. While these participate in reference counting, their reference count should never reach zero.
There is also a dynamic table of user-defined PyArray_Descr objects that is also maintained. Once a data-type-
descriptor object is “registered” it should never be deallocated either. The function PyArray_DescrFromType
(…) can be used to retrieve a PyArray_Descr object from an enumerated type-number (either built-in or user-
defined).

type PyArray_DescrProto
Identical structure to PyArray_Descr. This struct is used for static definition of a prototype for registering a
new legacy DType by PyArray_RegisterDataType.
See the note in PyArray_RegisterDataType for details.

type PyArray_Descr
The PyArray_Descr structure lies at the heart of the PyArrayDescr_Type. While it is described here
for completeness, it should be considered internal to NumPy and manipulated via PyArrayDescr_* or Py-
DataType* functions and macros. The size of this structure is subject to change across versions of NumPy. To
ensure compatibility:

• Never declare a non-pointer instance of the struct

1878 2. C API

https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_as_number
https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_as_sequence
https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_as_mapping
https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_as_buffer
https://docs.python.org/3/c-api/typeobj.html#c.richcmpfunc
https://docs.python.org/3/c-api/typeobj.html#c.richcmpfunc
https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_members
https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_getset
https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_as_number
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 2.2.0

• Never perform pointer arithmetic
• Never use sizeof(PyArray_Descr)

It has the following structure:

typedef struct {
PyObject_HEAD
PyTypeObject *typeobj;
char kind;
char type;
char byteorder;
char _former_flags; // unused field
int type_num;
/*
* Definitions after this one must be accessed through accessor
* functions (see below) when compiling with NumPy 1.x support.
*/
npy_uint64 flags;
npy_intp elsize;
npy_intp alignment;
NpyAuxData *c_metadata;
npy_hash_t hash;
void *reserved_null[2]; // unused field, must be NULLed.

} PyArray_Descr;

Some dtypes have additional members which are accessible through PyDataType_NAMES, PyDataType_FIELDS,
PyDataType_SUBARRAY, and in some cases (times) PyDataType_C_METADATA.
PyTypeObject *typeobj

Pointer to a typeobject that is the corresponding Python type for the elements of this array. For the builtin
types, this points to the corresponding array scalar. For user-defined types, this should point to a user-defined
typeobject. This typeobject can either inherit from array scalars or not. If it does not inherit from array scalars,
then the NPY_USE_GETITEM and NPY_USE_SETITEM flags should be set in the flags member.

char kind
A character code indicating the kind of array (using the array interface typestring notation). A ‘b’ repre-
sents Boolean, a ‘i’ represents signed integer, a ‘u’ represents unsigned integer, ‘f’ represents floating point, ‘c’
represents complex floating point, ‘S’ represents 8-bit zero-terminated bytes, ‘U’ represents 32-bit/character
unicode string, and ‘V’ represents arbitrary.

char type
A traditional character code indicating the data type.

char byteorder
A character indicating the byte-order: ‘>’ (big-endian), ‘<’ (little- endian), ‘=’ (native), ‘|’ (irrelevant, ignore).
All builtin data- types have byteorder ‘=’.

npy_uint64 flags
A data-type bit-flag that determines if the data-type exhibits object- array like behavior. Each bit in this
member is a flag which are named as:
• NPY_ITEM_REFCOUNT

• NPY_ITEM_HASOBJECT

• NPY_LIST_PICKLE

• NPY_ITEM_IS_POINTER

• NPY_NEEDS_INIT

2.1. NumPy C-API 1879

https://docs.python.org/3/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 2.2.0

• NPY_NEEDS_PYAPI

• NPY_USE_GETITEM

• NPY_USE_SETITEM

• NPY_FROM_FIELDS

• NPY_OBJECT_DTYPE_FLAGS

int type_num
A number that uniquely identifies the data type. For new data-types, this number is assigned when the data-
type is registered.

npy_intp elsize
For data types that are always the same size (such as long), this holds the size of the data type. For flexible
data types where different arrays can have a different elementsize, this should be 0.
See PyDataType_ELSIZE and PyDataType_SET_ELSIZE for a way to access this field in a NumPy 1.x com-
patible way.

npy_intp alignment
A number providing alignment information for this data type. Specifically, it shows how far from the start
of a 2-element structure (whose first element is a char), the compiler places an item of this type: off-
setof(struct {char c; type v;}, v)

See PyDataType_ALIGNMENT for a way to access this field in a NumPy 1.x compatible way.
PyObject *metadata

Metadata about this dtype.
NpyAuxData *c_metadata

Metadata specific to the C implementation of the particular dtype. Added for NumPy 1.7.0.
type npy_hash_t

npy_hash_t *hash
Used for caching hash values.

NPY_ITEM_REFCOUNT

Indicates that items of this data-type must be reference counted (using Py_INCREF and Py_DECREF).
NPY_ITEM_HASOBJECT

Same as NPY_ITEM_REFCOUNT.
NPY_LIST_PICKLE

Indicates arrays of this data-type must be converted to a list before pickling.
NPY_ITEM_IS_POINTER

Indicates the item is a pointer to some other data-type
NPY_NEEDS_INIT

Indicates memory for this data-type must be initialized (set to 0) on creation.
NPY_NEEDS_PYAPI

Indicates this data-type requires the Python C-API during access (so don’t give up the GIL if array access is going
to be needed).

1880 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/refcounting.html#c.Py_INCREF
https://docs.python.org/3/c-api/refcounting.html#c.Py_DECREF

NumPy Reference, Release 2.2.0

NPY_USE_GETITEM

On array access use the f->getitem function pointer instead of the standard conversion to an array scalar. Must
use if you don’t define an array scalar to go along with the data-type.

NPY_USE_SETITEM

When creating a 0-d array from an array scalar use f->setitem instead of the standard copy from an array
scalar. Must use if you don’t define an array scalar to go along with the data-type.

NPY_FROM_FIELDS

The bits that are inherited for the parent data-type if these bits are set in any field of the data-type. Currently (
NPY_NEEDS_INIT | NPY_LIST_PICKLE | NPY_ITEM_REFCOUNT | NPY_NEEDS_PYAPI).

NPY_OBJECT_DTYPE_FLAGS

Bits set for the object data-type: (NPY_LIST_PICKLE | NPY_USE_GETITEM | NPY_ITEM_IS_POINTER
| NPY_ITEM_REFCOUNT | NPY_NEEDS_INIT | NPY_NEEDS_PYAPI).

int PyDataType_FLAGCHK(PyArray_Descr *dtype, int flags)
Return true if all the given flags are set for the data-type object.

int PyDataType_REFCHK(PyArray_Descr *dtype)
Equivalent to PyDataType_FLAGCHK (dtype, NPY_ITEM_REFCOUNT).

PyArray_ArrFuncs
PyArray_ArrFuncs *PyDataType_GetArrFuncs(PyArray_Descr *dtype)

Fetch the legacy PyArray_ArrFuncs of the datatype (cannot fail).
New in version NumPy: 2.0 This function was added in a backwards compatible and backportable way in NumPy
2.0 (see npy_2_compat.h). Any code that previously accessed the ->f slot of the PyArray_Descr, must
now use this function and backport it to compile with 1.x. (The npy_2_compat.h header can be vendored for
this purpose.)

type PyArray_ArrFuncs
Functions implementing internal features. Not all of these function pointers must be defined for a given type.
The required members are nonzero, copyswap, copyswapn, setitem, getitem, and cast. These are
assumed to be non- NULL and NULL entries will cause a program crash. The other functions may be NULL which
will just mean reduced functionality for that data-type. (Also, the nonzero function will be filled in with a default
function if it is NULL when you register a user-defined data-type).

typedef struct {
PyArray_VectorUnaryFunc *cast[NPY_NTYPES_LEGACY];
PyArray_GetItemFunc *getitem;
PyArray_SetItemFunc *setitem;
PyArray_CopySwapNFunc *copyswapn;
PyArray_CopySwapFunc *copyswap;
PyArray_CompareFunc *compare;
PyArray_ArgFunc *argmax;
PyArray_DotFunc *dotfunc;
PyArray_ScanFunc *scanfunc;
PyArray_FromStrFunc *fromstr;
PyArray_NonzeroFunc *nonzero;
PyArray_FillFunc *fill;
PyArray_FillWithScalarFunc *fillwithscalar;
PyArray_SortFunc *sort[NPY_NSORTS];
PyArray_ArgSortFunc *argsort[NPY_NSORTS];
PyObject *castdict;
PyArray_ScalarKindFunc *scalarkind;

(continues on next page)

2.1. NumPy C-API 1881

NumPy Reference, Release 2.2.0

(continued from previous page)
int **cancastscalarkindto;
int *cancastto;
void *_unused1;
void *_unused2;
void *_unused3;
PyArray_ArgFunc *argmin;

} PyArray_ArrFuncs;

The concept of a behaved segment is used in the description of the function pointers. A behaved segment is one
that is aligned and in native machine byte-order for the data-type. The nonzero, copyswap, copyswapn,
getitem, and setitem functions can (and must) deal with mis-behaved arrays. The other functions require
behaved memory segments.

Note: The functions are largely legacy API, however, some are still used. As of NumPy 2.x they are only
available via PyDataType_GetArrFuncs (see the function for more details). Before using any function defined in
the struct you should check whether it is NULL. In general, the functions getitem, setitem, copyswap, and
copyswapn can be expected to be defined, but all functions are expected to be replaced with newer API. For
example, PyArray_Pack is a more powerful version of setitem that for example correctly deals with casts.

void cast(void *from, void *to, npy_intp n, void *fromarr, void *toarr)
An array of function pointers to cast from the current type to all of the other builtin types. Each function casts
a contiguous, aligned, and notswapped buffer pointed at by from to a contiguous, aligned, and notswapped
buffer pointed at by to The number of items to cast is given by n, and the arguments fromarr and toarr are
interpreted as PyArrayObjects for flexible arrays to get itemsize information.

PyObject *getitem(void *data, void *arr)
A pointer to a function that returns a standard Python object from a single element of the array object arr
pointed to by data. This function must be able to deal with “misbehaved “(misaligned and/or swapped) arrays
correctly.

int setitem(PyObject *item, void *data, void *arr)
A pointer to a function that sets the Python object item into the array, arr, at the position pointed to by data
. This function deals with “misbehaved” arrays. If successful, a zero is returned, otherwise, a negative one is
returned (and a Python error set).

void copyswapn(void *dest, npy_intp dstride, void *src, npy_intp sstride, npy_intp n, int swap, void *arr)

void copyswap(void *dest, void *src, int swap, void *arr)
These members are both pointers to functions to copy data from src to dest and swap if indicated. The value
of arr is only used for flexible (NPY_STRING, NPY_UNICODE, and NPY_VOID) arrays (and is obtained
from arr->descr->elsize). The second function copies a single value, while the first loops over n
values with the provided strides. These functions can deal with misbehaved src data. If src is NULL then no
copy is performed. If swap is 0, then no byteswapping occurs. It is assumed that dest and src do not overlap.
If they overlap, then use memmove (…) first followed by copyswap(n) with NULL valued src.

int compare(const void *d1, const void *d2, void *arr)
A pointer to a function that compares two elements of the array, arr, pointed to by d1 and d2. This function
requires behaved (aligned and not swapped) arrays. The return value is 1 if * d1 > * d2, 0 if * d1 == * d2,
and -1 if * d1 < * d2. The array object arr is used to retrieve itemsize and field information for flexible
arrays.

int argmax(void *data, npy_intp n, npy_intp *max_ind, void *arr)
A pointer to a function that retrieves the index of the largest of n elements in arr beginning at the element

1882 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

pointed to by data. This function requires that the memory segment be contiguous and behaved. The return
value is always 0. The index of the largest element is returned in max_ind.

void dotfunc(void *ip1, npy_intp is1, void *ip2, npy_intp is2, void *op, npy_intp n, void *arr)
A pointer to a function that multiplies two n -length sequences together, adds them, and places the result in
element pointed to by op of arr. The start of the two sequences are pointed to by ip1 and ip2. To get to
the next element in each sequence requires a jump of is1 and is2 bytes, respectively. This function requires
behaved (though not necessarily contiguous) memory.

int scanfunc(FILE *fd, void *ip, void *arr)
A pointer to a function that scans (scanf style) one element of the corresponding type from the file descriptor
fd into the array memory pointed to by ip. The array is assumed to be behaved. The last argument arr
is the array to be scanned into. Returns number of receiving arguments successfully assigned (which may be
zero in case a matching failure occurred before the first receiving argument was assigned), or EOF if input
failure occurs before the first receiving argument was assigned. This function should be called without holding
the Python GIL, and has to grab it for error reporting.

int fromstr(char *str, void *ip, char **endptr, void *arr)
A pointer to a function that converts the string pointed to by str to one element of the corresponding type
and places it in the memory location pointed to by ip. After the conversion is completed, *endptr points
to the rest of the string. The last argument arr is the array into which ip points (needed for variable-size
data- types). Returns 0 on success or -1 on failure. Requires a behaved array. This function should be called
without holding the Python GIL, and has to grab it for error reporting.

npy_bool nonzero(void *data, void *arr)
A pointer to a function that returns TRUE if the item of arr pointed to by data is nonzero. This function
can deal with misbehaved arrays.

void fill(void *data, npy_intp length, void *arr)
A pointer to a function that fills a contiguous array of given length with data. The first two elements of the
array must already be filled- in. From these two values, a delta will be computed and the values from item 3
to the end will be computed by repeatedly adding this computed delta. The data buffer must be well-behaved.

void fillwithscalar(void *buffer, npy_intp length, void *value, void *arr)
A pointer to a function that fills a contiguous buffer of the given length with a single scalar value
whose address is given. The final argument is the array which is needed to get the itemsize for variable-length
arrays.

int sort(void *start, npy_intp length, void *arr)
An array of function pointers to a particular sorting algorithms. A particular sorting algorithm is obtained
using a key (so far NPY_QUICKSORT, NPY_HEAPSORT, and NPY_MERGESORT are defined). These sorts
are done in-place assuming contiguous and aligned data.

int argsort(void *start, npy_intp *result, npy_intp length, void *arr)
An array of function pointers to sorting algorithms for this data type. The same sorting algorithms as for sort
are available. The indices producing the sort are returned in result (which must be initialized with indices
0 to length-1 inclusive).

PyObject *castdict
Either NULL or a dictionary containing low-level casting functions for user- defined data-types. Each function
is wrapped in a PyCapsule* and keyed by the data-type number.

NPY_SCALARKIND scalarkind(PyArrayObject *arr)
A function to determine how scalars of this type should be interpreted. The argument is NULL or a 0-
dimensional array containing the data (if that is needed to determine the kind of scalar). The return value
must be of type NPY_SCALARKIND.

2.1. NumPy C-API 1883

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule

NumPy Reference, Release 2.2.0

int **cancastscalarkindto
Either NULL or an array of NPY_NSCALARKINDS pointers. These pointers should each be either NULL
or a pointer to an array of integers (terminated by NPY_NOTYPE) indicating data-types that a scalar of this
data-type of the specified kind can be cast to safely (this usually means without losing precision).

int *cancastto
Either NULL or an array of integers (terminated by NPY_NOTYPE) indicated data-types that this data-type
can be cast to safely (this usually means without losing precision).

int argmin(void *data, npy_intp n, npy_intp *min_ind, void *arr)
A pointer to a function that retrieves the index of the smallest of n elements in arr beginning at the element
pointed to by data. This function requires that the memory segment be contiguous and behaved. The return
value is always 0. The index of the smallest element is returned in min_ind.

PyArrayMethod_Context and PyArrayMethod_Spec
type PyArrayMethodObject_tag

An opaque struct used to represent the method “self” in ArrayMethod loops.
type PyArrayMethod_Context

A struct that is passed in to ArrayMethod loops to provide context for the runtime usage of the loop.

typedef struct {
PyObject *caller;
struct PyArrayMethodObject_tag *method;
PyArray_Descr *const *descriptors;

} PyArrayMethod_Context

PyObject *caller
The caller, which is typically the ufunc that called the loop. May be NULL when a call is not from a ufunc
(e.g. casts).

struct PyArrayMethodObject_tag *method
The method “self”. Currently this object is an opaque pointer.

PyArray_Descr **descriptors
An array of descriptors for the ufunc loop, filled in by resolve_descriptors. The length of the array
is nin + nout.

type PyArrayMethod_Spec
A struct used to register an ArrayMethod with NumPy. We use the slots mechanism used by the Python limited
API. See below for the slot definitions.

typedef struct {
const char *name;
int nin, nout;
NPY_CASTING casting;
NPY_ARRAYMETHOD_FLAGS flags;
PyArray_DTypeMeta **dtypes;
PyType_Slot *slots;

} PyArrayMethod_Spec;

const char *name
The name of the loop.

int nin
The number of input operands

1884 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int nout
The number of output operands.

NPY_CASTING casting

Used to indicate how minimally permissive a casting operation should be. For example, if a cast operation
might in some circumstances be safe, but in others unsafe, then NPY_UNSAFE_CASTING should be set.
Not used for ufunc loops but must still be set.

NPY_ARRAYMETHOD_FLAGS flags
The flags set for the method.

PyArray_DTypeMeta **dtypes
The DTypes for the loop. Must be nin + nout in length.

PyType_Slot *slots
An array of slots for the method. Slot IDs must be one of the values below.

PyArray_DTypeMeta and PyArrayDTypeMeta_Spec
PyTypeObject PyArrayDTypeMeta_Type

The python type object corresponding to PyArray_DTypeMeta.
type PyArray_DTypeMeta

A largely opaque struct representing DType classes. Each instance defines a metaclass for a single NumPy data
type. Data types can either be non-parametric or parametric. For non-parametric types, the DType class has
a one-to-one correspondence with the descriptor instance created from the DType class. Parametric types can
correspond to many different dtype instances depending on the chosen parameters. This type is available in the
public numpy/dtype_api.h header. Currently use of this struct is not supported in the limited CPython API,
so if Py_LIMITED_API is set, this type is a typedef for PyTypeObject.

typedef struct {
PyHeapTypeObject super;
PyArray_Descr *singleton;
int type_num;
PyTypeObject *scalar_type;
npy_uint64 flags;
void *dt_slots;
void *reserved[3];

} PyArray_DTypeMeta

PyHeapTypeObject super
The superclass, providing hooks into the python object API. Set members of this struct to fill in the functions
implementing the PyTypeObject API (e.g. tp_new).

PyArray_Descr *singleton
A descriptor instance suitable for use as a singleton descriptor for the data type. This is useful for non-
parametric types representing simple plain old data type where there is only one logical descriptor instance
for all data of the type. Can be NULL if a singleton instance is not appropriate.

int type_num
Corresponds to the type number for legacy data types. Data types defined outside of NumPy and possibly
future data types shipped with NumPy will have type_num set to -1, so this should not be relied on to
discriminate between data types.

PyTypeObject *scalar_type
The type of scalar instances for this data type.

2.1. NumPy C-API 1885

https://docs.python.org/3/c-api/type.html#c.PyType_Slot
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 2.2.0

npy_uint64 flags
Flags can be set to indicate to NumPy that this data type has optional behavior. See Flags for a listing of
allowed flag values.

void *dt_slots
An opaque pointer to a private struct containing implementations of functions in the DType API. This is filled
in from the slots member of the PyArrayDTypeMeta_Spec instance used to initialize the DType.

type PyArrayDTypeMeta_Spec
A struct used to initialize a new DType with the PyArrayInitDTypeMeta_FromSpec function.

typedef struct {
PyTypeObject *typeobj;
int flags;
PyArrayMethod_Spec **casts;
PyType_Slot *slots;
PyTypeObject *baseclass;

}

PyTypeObject *typeobj
Either NULL or the type of the python scalar associated with the DType. Scalar indexing into an array returns
an item with this type.

int flags
Static flags for the DType class, indicating whether the DType is parametric, abstract, or represents numeric
data. The latter is optional but is useful to set to indicate to downstream code if the DType represents data
that are numbers (ints, floats, or other numeric data type) or something else (e.g. a string, unit, or date).

PyArrayMethod_Spec **casts;
A NULL-terminated array of ArrayMethod specifications for casts defined by the DType.

PyType_Slot *slots;
A NULL-terminated array of slot specifications for implementations of functions in the DType API. Slot IDs
must be one of the DType slot IDs enumerated in Slot IDs and API Function Typedefs.

Exposed DTypes classes (PyArray_DTypeMeta objects)
For use with promoters, NumPy exposes a number of Dtypes following the pattern PyArray_<Name>DType corre-
sponding to those found in np.dtypes.
Additionally, the three DTypes, PyArray_PyLongDType, PyArray_PyFloatDType,
PyArray_PyComplexDType correspond to the Python scalar values. These cannot be used in all places, but
do allow for example the common dtype operation and implementing promotion with them may be necessary.
Further, the following abstract DTypes are defined which cover both the builtin NumPy ones and the
python ones, and users can in principle subclass from them (this does not inherit any DType spe-
cific functionality): * PyArray_IntAbstractDType * PyArray_FloatAbstractDType *
PyArray_ComplexAbstractDType

Warning: As of NumPy 2.0, the only valid use for these DTypes is registering a promoter conveniently to e.g. match
“any integers” (and subclass checks). Because of this, they are not exposed to Python.

1886 2. C API

https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/type.html#c.PyType_Slot

NumPy Reference, Release 2.2.0

PyUFunc_Type and PyUFuncObject
PyTypeObject PyUFunc_Type

The ufunc object is implemented by creation of the PyUFunc_Type. It is a very simple type that implements only
basic getattribute behavior, printing behavior, and has call behavior which allows these objects to act like functions.
The basic idea behind the ufunc is to hold a reference to fast 1-dimensional (vector) loops for each data type that
supports the operation. These one-dimensional loops all have the same signature and are the key to creating a new
ufunc. They are called by the generic looping code as appropriate to implement the N-dimensional function. There
are also some generic 1-d loops defined for floating and complexfloating arrays that allow you to define a ufunc
using a single scalar function (e.g. atanh).

type PyUFuncObject
The core of the ufunc is the PyUFuncObject which contains all the information needed to call the underlying
C-code loops that perform the actual work. While it is described here for completeness, it should be considered
internal to NumPy and manipulated via PyUFunc_* functions. The size of this structure is subject to change
across versions of NumPy. To ensure compatibility:

• Never declare a non-pointer instance of the struct
• Never perform pointer arithmetic
• Never use sizeof(PyUFuncObject)

It has the following structure:

typedef struct {
PyObject_HEAD
int nin;
int nout;
int nargs;
int identity;
PyUFuncGenericFunction *functions;
void **data;
int ntypes;
int reserved1;
const char *name;
char *types;
const char *doc;
void *ptr;
PyObject *obj;
PyObject *userloops;
int core_enabled;
int core_num_dim_ix;
int *core_num_dims;
int *core_dim_ixs;
int *core_offsets;
char *core_signature;
PyUFunc_TypeResolutionFunc *type_resolver;
void *reserved2;
void *reserved3;
npy_uint32 *op_flags;
npy_uint32 *iter_flags;
/* new in API version 0x0000000D */
npy_intp *core_dim_sizes;
npy_uint32 *core_dim_flags;
PyObject *identity_value;
/* Further private slots (size depends on the NumPy version) */

} PyUFuncObject;

2.1. NumPy C-API 1887

https://docs.python.org/3/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 2.2.0

int nin
The number of input arguments.

int nout
The number of output arguments.

int nargs
The total number of arguments (nin + nout). This must be less than NPY_MAXARGS.

int identity
Either PyUFunc_One, PyUFunc_Zero, PyUFunc_MinusOne, PyUFunc_None, PyU-
Func_ReorderableNone, or PyUFunc_IdentityValue to indicate the identity for this operation.
It is only used for a reduce-like call on an empty array.

void functions(char **args, npy_intp *dims, npy_intp *steps, void *extradata)
An array of function pointers — one for each data type supported by the ufunc. This is the vector loop that
is called to implement the underlying function dims [0] times. The first argument, args, is an array of nargs
pointers to behaved memory. Pointers to the data for the input arguments are first, followed by the pointers to
the data for the output arguments. Howmany bytes must be skipped to get to the next element in the sequence
is specified by the corresponding entry in the steps array. The last argument allows the loop to receive extra
information. This is commonly used so that a single, generic vector loop can be used for multiple functions.
In this case, the actual scalar function to call is passed in as extradata. The size of this function pointer array
is ntypes.

void **data
Extra data to be passed to the 1-d vector loops or NULL if no extra-data is needed. This C-array must be the
same size (i.e. ntypes) as the functions array. NULL is used if extra_data is not needed. Several C-API calls
for UFuncs are just 1-d vector loops that make use of this extra data to receive a pointer to the actual function
to call.

int ntypes
The number of supported data types for the ufunc. This number specifies how many different 1-d loops (of
the builtin data types) are available.

char *name
A string name for the ufunc. This is used dynamically to build the __doc__ attribute of ufuncs.

char *types
An array of nargs× ntypes 8-bit type_numbers which contains the type signature for the function for each
of the supported (builtin) data types. For each of the ntypes functions, the corresponding set of type numbers
in this array shows how the args argument should be interpreted in the 1-d vector loop. These type numbers
do not have to be the same type and mixed-type ufuncs are supported.

char *doc
Documentation for the ufunc. Should not contain the function signature as this is generated dynamically when
__doc__ is retrieved.

void *ptr
Any dynamically allocatedmemory. Currently, this is used for dynamic ufuncs created from a python function
to store room for the types, data, and name members.

PyObject *obj
For ufuncs dynamically created from python functions, this member holds a reference to the underlying Python
function.

1888 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyObject *userloops
A dictionary of user-defined 1-d vector loops (stored as CObject ptrs) for user-defined types. A loop may be
registered by the user for any user-defined type. It is retrieved by type number. User defined type numbers
are always larger than NPY_USERDEF.

int core_enabled
0 for scalar ufuncs; 1 for generalized ufuncs

int core_num_dim_ix
Number of distinct core dimension names in the signature

int *core_num_dims
Number of core dimensions of each argument

int *core_dim_ixs
Dimension indices in a flattened form; indices of argument k are stored in
core_dim_ixs[core_offsets[k] : core_offsets[k] + core_numdims[k]]

int *core_offsets
Position of 1st core dimension of each argument in core_dim_ixs, equivalent to cum-
sum(core_num_dims)

char *core_signature
Core signature string

PyUFunc_TypeResolutionFunc *type_resolver
A function which resolves the types and fills an array with the dtypes for the inputs and outputs
type PyUFunc_TypeResolutionFunc

The function pointer type for type_resolver
npy_uint32 op_flags

Override the default operand flags for each ufunc operand.
npy_uint32 iter_flags

Override the default nditer flags for the ufunc.
Added in API version 0x0000000D
npy_intp *core_dim_sizes

For each distinct core dimension, the possible frozen size if UFUNC_CORE_DIM_SIZE_INFERRED is 0
npy_uint32 *core_dim_flags

For each distinct core dimension, a set of flags (UFUNC_CORE_DIM_CAN_IGNORE and
UFUNC_CORE_DIM_SIZE_INFERRED)

PyObject *identity_value
Identity for reduction, when PyUFuncObject.identity is equal to PyUFunc_IdentityValue.

UFUNC_CORE_DIM_CAN_IGNORE

if the dim name ends in ?
UFUNC_CORE_DIM_SIZE_INFERRED

if the dim size will be determined from the operands and not from a frozen signature

2.1. NumPy C-API 1889

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyArrayIter_Type and PyArrayIterObject
PyTypeObject PyArrayIter_Type

This is an iterator object that makes it easy to loop over an N-dimensional array. It is the object returned from
the flat attribute of an ndarray. It is also used extensively throughout the implementation internals to loop over an
N-dimensional array. The tp_as_mapping interface is implemented so that the iterator object can be indexed (using
1-d indexing), and a few methods are implemented through the tp_methods table. This object implements the next
method and can be used anywhere an iterator can be used in Python.

type PyArrayIterObject
The C-structure corresponding to an object of PyArrayIter_Type is the PyArrayIterObject. The
PyArrayIterObject is used to keep track of a pointer into an N-dimensional array. It contains associated
information used to quickly march through the array. The pointer can be adjusted in three basic ways: 1) advance
to the “next” position in the array in a C-style contiguous fashion, 2) advance to an arbitrary N-dimensional co-
ordinate in the array, and 3) advance to an arbitrary one-dimensional index into the array. The members of the
PyArrayIterObject structure are used in these calculations. Iterator objects keep their own dimension and
strides information about an array. This can be adjusted as needed for “broadcasting,” or to loop over only specific
dimensions.

typedef struct {
PyObject_HEAD
int nd_m1;
npy_intp index;
npy_intp size;
npy_intp coordinates[NPY_MAXDIMS_LEGACY_ITERS];
npy_intp dims_m1[NPY_MAXDIMS_LEGACY_ITERS];
npy_intp strides[NPY_MAXDIMS_LEGACY_ITERS];
npy_intp backstrides[NPY_MAXDIMS_LEGACY_ITERS];
npy_intp factors[NPY_MAXDIMS_LEGACY_ITERS];
PyArrayObject *ao;
char *dataptr;
npy_bool contiguous;

} PyArrayIterObject;

int nd_m1
N − 1 where N is the number of dimensions in the underlying array.

npy_intp index
The current 1-d index into the array.

npy_intp size
The total size of the underlying array.

npy_intp *coordinates
An N -dimensional index into the array.

npy_intp *dims_m1
The size of the array minus 1 in each dimension.

npy_intp *strides
The strides of the array. How many bytes needed to jump to the next element in each dimension.

npy_intp *backstrides
How many bytes needed to jump from the end of a dimension back to its beginning. Note that back-
strides[k] == strides[k] * dims_m1[k], but it is stored here as an optimization.

1890 2. C API

https://docs.python.org/3/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 2.2.0

npy_intp *factors
This array is used in computing an N-d index from a 1-d index. It contains needed products of the dimensions.

PyArrayObject *ao
A pointer to the underlying ndarray this iterator was created to represent.

char *dataptr
This member points to an element in the ndarray indicated by the index.

npy_bool contiguous
This flag is true if the underlying array is NPY_ARRAY_C_CONTIGUOUS. It is used to simplify calculations
when possible.

How to use an array iterator on a C-level is explained more fully in later sections. Typically, you do not need to concern
yourself with the internal structure of the iterator object, and merely interact with it through the use of the macros
PyArray_ITER_NEXT (it), PyArray_ITER_GOTO (it, dest), or PyArray_ITER_GOTO1D (it, index). All of
these macros require the argument it to be a PyArrayIterObject*.

PyArrayMultiIter_Type and PyArrayMultiIterObject
PyTypeObject PyArrayMultiIter_Type

This type provides an iterator that encapsulates the concept of broadcasting. It allows N arrays to be broadcast
together so that the loop progresses in C-style contiguous fashion over the broadcasted array. The corresponding
C-structure is the PyArrayMultiIterObject whose memory layout must begin any object, obj, passed in to
the PyArray_Broadcast (obj) function. Broadcasting is performed by adjusting array iterators so that each
iterator represents the broadcasted shape and size, but has its strides adjusted so that the correct element from the
array is used at each iteration.

type PyArrayMultiIterObject

typedef struct {
PyObject_HEAD
int numiter;
npy_intp size;
npy_intp index;
int nd;
npy_intp dimensions[NPY_MAXDIMS_LEGACY_ITERS];
PyArrayIterObject *iters[];

} PyArrayMultiIterObject;

int numiter
The number of arrays that need to be broadcast to the same shape.

npy_intp size
The total broadcasted size.

npy_intp index
The current (1-d) index into the broadcasted result.

int nd
The number of dimensions in the broadcasted result.

npy_intp *dimensions
The shape of the broadcasted result (only nd slots are used).

PyArrayIterObject **iters
An array of iterator objects that holds the iterators for the arrays to be broadcast together. On return, the
iterators are adjusted for broadcasting.

2.1. NumPy C-API 1891

https://docs.python.org/3/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 2.2.0

PyArrayNeighborhoodIter_Type and PyArrayNeighborhoodIterObject
PyTypeObject PyArrayNeighborhoodIter_Type

This is an iterator object that makes it easy to loop over an N-dimensional neighborhood.
type PyArrayNeighborhoodIterObject

The C-structure corresponding to an object of PyArrayNeighborhoodIter_Type is the
PyArrayNeighborhoodIterObject.

typedef struct {
PyObject_HEAD
int nd_m1;
npy_intp index, size;
npy_intp coordinates[NPY_MAXDIMS_LEGACY_ITERS]
npy_intp dims_m1[NPY_MAXDIMS_LEGACY_ITERS];
npy_intp strides[NPY_MAXDIMS_LEGACY_ITERS];
npy_intp backstrides[NPY_MAXDIMS_LEGACY_ITERS];
npy_intp factors[NPY_MAXDIMS_LEGACY_ITERS];
PyArrayObject *ao;
char *dataptr;
npy_bool contiguous;
npy_intp bounds[NPY_MAXDIMS_LEGACY_ITERS][2];
npy_intp limits[NPY_MAXDIMS_LEGACY_ITERS][2];
npy_intp limits_sizes[NPY_MAXDIMS_LEGACY_ITERS];
npy_iter_get_dataptr_t translate;
npy_intp nd;
npy_intp dimensions[NPY_MAXDIMS_LEGACY_ITERS];
PyArrayIterObject* _internal_iter;
char* constant;
int mode;

} PyArrayNeighborhoodIterObject;

ScalarArrayTypes
There is a Python type for each of the different built-in data types that can be present in the array. Most of these are simple
wrappers around the corresponding data type in C. The C-names for these types are Py{TYPE}ArrType_Typewhere
{TYPE} can be

Bool, Byte, Short, Int, Long, LongLong, UByte, UShort, UInt, ULong, ULongLong, Half, Float,
Double, LongDouble, CFloat, CDouble, CLongDouble, String, Unicode, Void, Datetime, Timedelta,
and Object.

These type names are part of the C-API and can therefore be created in extension C-code. There is also a PyInt-
pArrType_Type and a PyUIntpArrType_Type that are simple substitutes for one of the integer types that
can hold a pointer on the platform. The structure of these scalar objects is not exposed to C-code. The function
PyArray_ScalarAsCtype (..) can be used to extract the C-type value from the array scalar and the function
PyArray_Scalar (…) can be used to construct an array scalar from a C-value.

1892 2. C API

https://docs.python.org/3/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 2.2.0

Other C-structures

A few new C-structures were found to be useful in the development of NumPy. These C-structures are used in at least
one C-API call and are therefore documented here. The main reason these structures were defined is to make it easy to
use the Python ParseTuple C-API to convert from Python objects to a useful C-Object.

PyArray_Dims
type PyArray_Dims

This structure is very useful when shape and/or strides information is supposed to be interpreted. The structure is:

typedef struct {
npy_intp *ptr;
int len;

} PyArray_Dims;

The members of this structure are
npy_intp *ptr

A pointer to a list of (npy_intp) integers which usually represent array shape or array strides.
int len

The length of the list of integers. It is assumed safe to access ptr [0] to ptr [len-1].

PyArray_Chunk
type PyArray_Chunk

This is equivalent to the buffer object structure in Python up to the ptr member. On 32-bit platforms (i.e. if
NPY_SIZEOF_INT == NPY_SIZEOF_INTP), the len member also matches an equivalent member of the buffer
object. It is useful to represent a generic single-segment chunk of memory.

typedef struct {
PyObject_HEAD
PyObject *base;
void *ptr;
npy_intp len;
int flags;

} PyArray_Chunk;

The members are
PyObject *base

The Python object this chunk of memory comes from. Needed so that memory can be accounted for properly.
void *ptr

A pointer to the start of the single-segment chunk of memory.
npy_intp len

The length of the segment in bytes.
int flags

Any data flags (e.g. NPY_ARRAY_WRITEABLE) that should be used to interpret the memory.

2.1. NumPy C-API 1893

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyArrayInterface
See also:
The array interface protocol

type PyArrayInterface
The PyArrayInterface structure is defined so that NumPy and other extension modules can use the rapid
array interface protocol. The __array_struct__ method of an object that supports the rapid array interface
protocol should return a PyCapsule that contains a pointer to a PyArrayInterface structure with the rel-
evant details of the array. After the new array is created, the attribute should be DECREF’d which will free the
PyArrayInterface structure. Remember to INCREF the object (whose __array_struct__ attribute
was retrieved) and point the base member of the new PyArrayObject to this same object. In this way the
memory for the array will be managed correctly.

typedef struct {
int two;
int nd;
char typekind;
int itemsize;
int flags;
npy_intp *shape;
npy_intp *strides;
void *data;
PyObject *descr;

} PyArrayInterface;

int two
the integer 2 as a sanity check.

int nd
the number of dimensions in the array.

char typekind
A character indicating what kind of array is present according to the typestring convention with ‘t’ -> bitfield,
‘b’ -> Boolean, ‘i’ -> signed integer, ‘u’ -> unsigned integer, ‘f’ -> floating point, ‘c’ -> complex floating point,
‘O’ -> object, ‘S’ -> (byte-)string, ‘U’ -> unicode, ‘V’ -> void.

int itemsize
The number of bytes each item in the array requires.

int flags
Any of the bits NPY_ARRAY_C_CONTIGUOUS (1), NPY_ARRAY_F_CONTIGUOUS
(2), NPY_ARRAY_ALIGNED (0x100), NPY_ARRAY_NOTSWAPPED (0x200), or
NPY_ARRAY_WRITEABLE (0x400) to indicate something about the data. The NPY_ARRAY_ALIGNED,
NPY_ARRAY_C_CONTIGUOUS, and NPY_ARRAY_F_CONTIGUOUS flags can actually be determined
from the other parameters. The flag NPY_ARR_HAS_DESCR (0x800) can also be set to indicate to objects
consuming the version 3 array interface that the descr member of the structure is present (it will be ignored
by objects consuming version 2 of the array interface).

npy_intp *shape
An array containing the size of the array in each dimension.

npy_intp *strides
An array containing the number of bytes to jump to get to the next element in each dimension.

void *data
A pointer to the first element of the array.

1894 2. C API

https://docs.python.org/3/c-api/capsule.html#c.PyCapsule

NumPy Reference, Release 2.2.0

PyObject *descr
A Python object describing the data-type in more detail (same as the descr key in __ar-
ray_interface__). This can be NULL if typekind and itemsize provide enough information. This field
is also ignored unless NPY_ARR_HAS_DESCR flag is on in flags.

Internally used structures
Internally, the code uses some additional Python objects primarily for memory management. These types are not accessi-
ble directly from Python, and are not exposed to the C-API. They are included here only for completeness and assistance
in understanding the code.
type PyUFunc_Loop1d

A simple linked-list of C-structures containing the information needed to define a 1-d loop for a ufunc for every
defined signature of a user-defined data-type.

PyTypeObject PyArrayMapIter_Type
Advanced indexing is handled with this Python type. It is simply a loose wrapper around the C-structure containing
the variables needed for advanced array indexing.

type PyArrayMapIterObject
The C-structure associated with PyArrayMapIter_Type. This structure is useful if you are trying to under-
stand the advanced-index mapping code. It is defined in the arrayobject.h header. This type is not exposed
to Python and could be replaced with a C-structure. As a Python type it takes advantage of reference- counted
memory management.

NumPy C-API and C complex

When you use the NumPy C-API, you will have access to complex real declarations npy_cdouble and npy_cfloat,
which are declared in terms of the C standard types from complex.h. Unfortunately, complex.h contains #define I
…` (where the actual definition depends on the compiler), which means that any downstream user that does #include
<numpy/arrayobject.h> could get I defined, and using something like declaring double I; in their code will
result in an obscure compiler error like
This error can be avoided by adding:

#undef I

to your code.
Changed in version 2.0: The inclusion of complex.h was new in NumPy 2, so that code defining a different Imay not
have required the #undef I on older versions. NumPy 2.0.1 briefly included the #under I

2.1.2 System configuration

When NumPy is built, information about system configuration is recorded, and is made available for extension modules
using NumPy’s C API. These are mostly defined in numpyconfig.h (included in ndarrayobject.h). The public
symbols are prefixed by NPY_*. NumPy also offers some functions for querying information about the platform in use.
For private use, NumPy also constructs a config.h in the NumPy include directory, which is not exported by NumPy
(that is a python extension which use the numpy C API will not see those symbols), to avoid namespace pollution.

2.1. NumPy C-API 1895

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/type.html#c.PyTypeObject

NumPy Reference, Release 2.2.0

Data type sizes

The NPY_SIZEOF_{CTYPE} constants are defined so that sizeof information is available to the pre-processor.
NPY_SIZEOF_SHORT

sizeof(short)
NPY_SIZEOF_INT

sizeof(int)
NPY_SIZEOF_LONG

sizeof(long)
NPY_SIZEOF_LONGLONG

sizeof(longlong) where longlong is defined appropriately on the platform.
NPY_SIZEOF_PY_LONG_LONG

NPY_SIZEOF_FLOAT

sizeof(float)
NPY_SIZEOF_DOUBLE

sizeof(double)
NPY_SIZEOF_LONG_DOUBLE

NPY_SIZEOF_LONGDOUBLE

sizeof(longdouble)
NPY_SIZEOF_PY_INTPTR_T

Size of a pointer void * and intptr_t/Py_intptr_t.
NPY_SIZEOF_INTP

Size of a size_t on this platform (sizeof(size_t))

Platform information

NPY_CPU_X86

NPY_CPU_AMD64

NPY_CPU_IA64

NPY_CPU_PPC

NPY_CPU_PPC64

NPY_CPU_SPARC

NPY_CPU_SPARC64

NPY_CPU_S390

NPY_CPU_PARISC

CPU architecture of the platform; only one of the above is defined.
Defined in numpy/npy_cpu.h

1896 2. C API

NumPy Reference, Release 2.2.0

NPY_LITTLE_ENDIAN

NPY_BIG_ENDIAN

NPY_BYTE_ORDER

Portable alternatives to the endian.h macros of GNU Libc. If big endian, NPY_BYTE_ORDER ==
NPY_BIG_ENDIAN , and similarly for little endian architectures.
Defined in numpy/npy_endian.h.

int PyArray_GetEndianness()
Returns the endianness of the current platform. One of NPY_CPU_BIG, NPY_CPU_LITTLE, or
NPY_CPU_UNKNOWN_ENDIAN .
NPY_CPU_BIG

NPY_CPU_LITTLE

NPY_CPU_UNKNOWN_ENDIAN

Compiler directives

NPY_LIKELY

NPY_UNLIKELY

NPY_UNUSED

2.1.3 Data type API

The standard array can have 25 different data types (and has some support for adding your own types). These data types
all have an enumerated type, an enumerated type-character, and a corresponding array scalar Python type object (placed
in a hierarchy). There are also standard C typedefs to make it easier to manipulate elements of the given data type. For
the numeric types, there are also bit-width equivalent C typedefs and named typenumbers that make it easier to select the
precision desired.

Warning: The names for the types in c code follows c naming conventions more closely. The Python names for
these types follow Python conventions. Thus, NPY_FLOAT picks up a 32-bit float in C, but numpy.float64 in
Python corresponds to a 64-bit double. The bit-width names can be used in both Python and C for clarity.

Enumerated types

enum NPY_TYPES

There is a list of enumerated types defined providing the basic 25 data types plus some useful generic names.
Whenever the code requires a type number, one of these enumerated types is requested. The types are all called
NPY_{NAME}:
enumerator NPY_BOOL

The enumeration value for the boolean type, stored as one byte. It may only be set to the values 0 and 1.
enumerator NPY_BYTE

2.1. NumPy C-API 1897

NumPy Reference, Release 2.2.0

enumerator NPY_INT8
The enumeration value for an 8-bit/1-byte signed integer.

enumerator NPY_SHORT

enumerator NPY_INT16
The enumeration value for a 16-bit/2-byte signed integer.

enumerator NPY_INT

enumerator NPY_INT32
The enumeration value for a 32-bit/4-byte signed integer.

enumerator NPY_LONG
Equivalent to either NPY_INT or NPY_LONGLONG, depending on the platform.

enumerator NPY_LONGLONG

enumerator NPY_INT64
The enumeration value for a 64-bit/8-byte signed integer.

enumerator NPY_UBYTE

enumerator NPY_UINT8
The enumeration value for an 8-bit/1-byte unsigned integer.

enumerator NPY_USHORT

enumerator NPY_UINT16
The enumeration value for a 16-bit/2-byte unsigned integer.

enumerator NPY_UINT

enumerator NPY_UINT32
The enumeration value for a 32-bit/4-byte unsigned integer.

enumerator NPY_ULONG
Equivalent to either NPY_UINT or NPY_ULONGLONG, depending on the platform.

enumerator NPY_ULONGLONG

enumerator NPY_UINT64
The enumeration value for a 64-bit/8-byte unsigned integer.

enumerator NPY_HALF

enumerator NPY_FLOAT16
The enumeration value for a 16-bit/2-byte IEEE 754-2008 compatible floating point type.

enumerator NPY_FLOAT

enumerator NPY_FLOAT32
The enumeration value for a 32-bit/4-byte IEEE 754 compatible floating point type.

enumerator NPY_DOUBLE

enumerator NPY_FLOAT64
The enumeration value for a 64-bit/8-byte IEEE 754 compatible floating point type.

1898 2. C API

NumPy Reference, Release 2.2.0

enumerator NPY_LONGDOUBLE
The enumeration value for a platform-specific floating point type which is at least as large as NPY_DOUBLE,
but larger on many platforms.

enumerator NPY_CFLOAT

enumerator NPY_COMPLEX64
The enumeration value for a 64-bit/8-byte complex type made up of two NPY_FLOAT values.

enumerator NPY_CDOUBLE

enumerator NPY_COMPLEX128
The enumeration value for a 128-bit/16-byte complex type made up of two NPY_DOUBLE values.

enumerator NPY_CLONGDOUBLE
The enumeration value for a platform-specific complex floating point type which is made up of two
NPY_LONGDOUBLE values.

enumerator NPY_DATETIME
The enumeration value for a data type which holds dates or datetimes with a precision based on selectable
date or time units.

enumerator NPY_TIMEDELTA
The enumeration value for a data type which holds lengths of times in integers of selectable date or time units.

enumerator NPY_STRING
The enumeration value for null-padded byte strings of a selectable size. The strings have a fixed maximum
size within a given array.

enumerator NPY_UNICODE
The enumeration value for UCS4 strings of a selectable size. The strings have a fixed maximum size within
a given array.

enumerator NPY_VSTRING
The enumeration value for UTF-8 variable-width strings. Note that this dtype holds an array of references,
with string data stored outside of the array buffer. Use the C API for working with numpy variable-width
static strings to access the string data in each array entry.

Note: This DType is new-style and is not included in NPY_NTYPES_LEGACY.

enumerator NPY_OBJECT
The enumeration value for references to arbitrary Python objects.

enumerator NPY_VOID
Primarily used to hold struct dtypes, but can contain arbitrary binary data.

Some useful aliases of the above types are
enumerator NPY_INTP

The enumeration value for a signed integer of type Py_ssize_t (same as ssize_t if defined). This is
the type used by all arrays of indices.
Changed in version 2.0: Previously, this was the same as intptr_t (same size as a pointer). In practice,
this is identical except on very niche platforms. You can use the 'p' character code for the pointer meaning.

2.1. NumPy C-API 1899

NumPy Reference, Release 2.2.0

enumerator NPY_UINTP
The enumeration value for an unsigned integer type that is identical to a size_t.
Changed in version 2.0: Previously, this was the same as uintptr_t (same size as a pointer). In practice,
this is identical except on very niche platforms. You can use the 'P' character code for the pointer meaning.

enumerator NPY_MASK
The enumeration value of the type used for masks, such as with the NPY_ITER_ARRAYMASK iterator flag.
This is equivalent to NPY_UINT8.

enumerator NPY_DEFAULT_TYPE
The default type to use when no dtype is explicitly specified, for example when calling np.zero(shape). This
is equivalent to NPY_DOUBLE.

Other useful related constants are
NPY_NTYPES_LEGACY

The number of built-in NumPy types written using the legacy DType system. New NumPy dtypes will be writ-
ten using the new DType API and may not function in the same manner as legacy DTypes. Use this macro if
you want to handle legacy DTypes using different code paths or if you do not want to update code that uses
NPY_NTYPES_LEGACY and does not work correctly with new DTypes.

Note: Newly added DTypes such as NPY_VSTRING will not be counted in NPY_NTYPES_LEGACY.

NPY_NOTYPE

A signal value guaranteed not to be a valid type enumeration number.
NPY_USERDEF

The start of type numbers used for legacy Custom Data types. New-style user DTypes currently are currently not
assigned a type-number.

Note: The total number of user dtypes is limited to below NPY_VSTRING. Higher numbers are reserved to future
new-style DType use.

The various character codes indicating certain types are also part of an enumerated list. References to type characters
(should they be needed at all) should always use these enumerations. The form of them is NPY_{NAME}LTR where
{NAME} can be

BOOL, BYTE, UBYTE, SHORT, USHORT, INT, UINT, LONG, ULONG, LONGLONG, ULON-
GLONG, HALF, FLOAT, DOUBLE, LONGDOUBLE, CFLOAT, CDOUBLE, CLONGDOUBLE,
DATETIME, TIMEDELTA, OBJECT, STRING, UNICODE, VSTRING, VOID
INTP, UINTP
GENBOOL, SIGNED, UNSIGNED, FLOATING, COMPLEX

The latter group of {NAME}s corresponds to letters used in the array interface typestring specification.

1900 2. C API

NumPy Reference, Release 2.2.0

Defines

Max and min values for integers
NPY_MAX_INT{bits}, NPY_MAX_UINT{bits}, NPY_MIN_INT{bits}

These are defined for {bits} = 8, 16, 32, 64, 128, and 256 and provide the maximum (minimum) value of the
corresponding (unsigned) integer type. Note: the actual integer type may not be available on all platforms (i.e.
128-bit and 256-bit integers are rare).

NPY_MIN_{type}
This is defined for {type} = BYTE, SHORT, INT, LONG, LONGLONG, INTP

NPY_MAX_{type}
This is defined for all defined for {type} = BYTE, UBYTE, SHORT, USHORT, INT, UINT, LONG,
ULONG, LONGLONG, ULONGLONG, INTP, UINTP

Number of bits in data types
All NPY_SIZEOF_{CTYPE} constants have corresponding NPY_BITSOF_{CTYPE} constants defined. The
NPY_BITSOF_{CTYPE} constants provide the number of bits in the data type. Specifically, the available {CTYPE}s
are

BOOL, CHAR, SHORT, INT, LONG, LONGLONG, FLOAT, DOUBLE, LONGDOUBLE

Bit-width references to enumerated typenums
All of the numeric data types (integer, floating point, and complex) have constants that are defined to be a specific
enumerated type number. Exactly which enumerated type a bit-width type refers to is platform dependent. In particular,
the constants available are PyArray_{NAME}{BITS} where {NAME} is INT, UINT, FLOAT, COMPLEX and
{BITS} can be 8, 16, 32, 64, 80, 96, 128, 160, 192, 256, and 512. Obviously not all bit-widths are available on all
platforms for all the kinds of numeric types. Commonly 8-, 16-, 32-, 64-bit integers; 32-, 64-bit floats; and 64-, 128-bit
complex types are available.

Further integer aliases
The constants NPY_INTP and NPY_UINTP refer to an Py_ssize_t and size_t. Although in practice normally
true, these types are strictly speaking not pointer sized and the character codes 'p' and 'P' can be used for pointer sized
integers. (Before NumPy 2, intp was pointer size, but this almost never matched the actual use, which is the reason for
the name.)
Since NumPy 2, NPY_DEFAULT_INT is additionally defined. The value of the macro is runtime dependent: Since
NumPy 2, it maps to NPY_INTP while on earlier versions it maps to NPY_LONG.

C-type names

There are standard variable types for each of the numeric data types and the bool data type. Some of these are already
available in the C-specification. You can create variables in extension code with these types.

2.1. NumPy C-API 1901

NumPy Reference, Release 2.2.0

Boolean
type npy_bool

unsigned char; The constants NPY_FALSE and NPY_TRUE are also defined.

(Un)Signed Integer
Unsigned versions of the integers can be defined by prepending a ‘u’ to the front of the integer name.
type npy_byte

char
type npy_ubyte

unsigned char
type npy_short

short
type npy_ushort

unsigned short
type npy_int

int
type npy_uint

unsigned int
type npy_int16

16-bit integer
type npy_uint16

16-bit unsigned integer
type npy_int32

32-bit integer
type npy_uint32

32-bit unsigned integer
type npy_int64

64-bit integer
type npy_uint64

64-bit unsigned integer
type npy_long

long int
type npy_ulong

unsigned long int
type npy_longlong

long long int
type npy_ulonglong

unsigned long long int

1902 2. C API

NumPy Reference, Release 2.2.0

type npy_intp
Py_ssize_t (a signed integer with the same size as the C size_t). This is the correct integer for lengths or
indexing. In practice this is normally the size of a pointer, but this is not guaranteed.

Note: Before NumPy 2.0, this was the same as Py_intptr_t. While a better match, this did not match actual
usage in practice. On the Python side, we still support np.dtype('p') to fetch a dtype compatible with storing
pointers, while n is the correct character for the ssize_t.

type npy_uintp
The C size_t/Py_size_t.

(Complex) Floating point
type npy_half

16-bit float
type npy_float

32-bit float
type npy_cfloat

32-bit complex float
type npy_double

64-bit double
type npy_cdouble

64-bit complex double
type npy_longdouble

long double
type npy_clongdouble

long complex double
complex types are structures with .real and .imag members (in that order).

Bit-width names
There are also typedefs for signed integers, unsigned integers, floating point, and complex floating point types of specific
bit- widths. The available type names are

npy_int{bits}, npy_uint{bits}, npy_float{bits}, and npy_complex{bits}
where {bits} is the number of bits in the type and can be 8, 16, 32, 64, 128, and 256 for integer types; 16, 32 , 64, 80,
96, 128, and 256 for floating-point types; and 32, 64, 128, 160, 192, and 512 for complex-valued types. Which bit-widths
are available is platform dependent. The bolded bit-widths are usually available on all platforms.

Time and timedelta
type npy_datetime

date or datetime (alias of npy_int64)
type npy_timedelta

length of time (alias of npy_int64)

2.1. NumPy C-API 1903

NumPy Reference, Release 2.2.0

Printf formatting

For help in printing, the following strings are defined as the correct format specifier in printf and related commands.
NPY_LONGLONG_FMT

NPY_ULONGLONG_FMT

NPY_INTP_FMT

NPY_UINTP_FMT

NPY_LONGDOUBLE_FMT

2.1.4 Array API

The test of a first-rate intelligence is the ability to hold two
opposed ideas in the mind at the same time, and still retain the
ability to function.
— F. Scott Fitzgerald

For a successful technology, reality must take precedence over public
relations, for Nature cannot be fooled.
— Richard P. Feynman

Array structure and data access

These macros access the PyArrayObject structure members and are defined in ndarraytypes.h. The input
argument, arr, can be any PyObject* that is directly interpretable as a PyArrayObject* (any instance of the
PyArray_Type and its sub-types).
int PyArray_NDIM(PyArrayObject *arr)

The number of dimensions in the array.
int PyArray_FLAGS(PyArrayObject *arr)

Returns an integer representing the array-flags.
int PyArray_TYPE(PyArrayObject *arr)

Return the (builtin) typenumber for the elements of this array.
int PyArray_Pack(const PyArray_Descr *descr, void *item, const PyObject *value)

New in version 2.0.
Sets the memory location item of dtype descr to value.
The function is equivalent to setting a single array element with a Python assignment. Returns 0 on success and -1
with an error set on failure.

Note: If the descr has the NPY_NEEDS_INIT flag set, the data must be valid or the memory zeroed.

1904 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int PyArray_SETITEM(PyArrayObject *arr, void *itemptr, PyObject *obj)
Convert obj and place it in the ndarray, arr, at the place pointed to by itemptr. Return -1 if an error occurs or 0 on
success.

Note: In general, prefer the use of PyArray_Pack when handling arbitrary Python objects. Setitem is for
example not able to handle arbitrary casts between different dtypes.

void PyArray_ENABLEFLAGS(PyArrayObject *arr, int flags)
Enables the specified array flags. This function does no validation, and assumes that you know what you’re doing.

void PyArray_CLEARFLAGS(PyArrayObject *arr, int flags)
Clears the specified array flags. This function does no validation, and assumes that you know what you’re doing.

void *PyArray_DATA(PyArrayObject *arr)

char *PyArray_BYTES(PyArrayObject *arr)
These two macros are similar and obtain the pointer to the data-buffer for the array. The first macro can (and
should be) assigned to a particular pointer where the second is for generic processing. If you have not guaranteed
a contiguous and/or aligned array then be sure you understand how to access the data in the array to avoid memory
and/or alignment problems.

npy_intp *PyArray_DIMS(PyArrayObject *arr)
Returns a pointer to the dimensions/shape of the array. The number of elements matches the number of dimensions
of the array. Can return NULL for 0-dimensional arrays.

npy_intp *PyArray_SHAPE(PyArrayObject *arr)
A synonym for PyArray_DIMS, named to be consistent with the shape usage within Python.

npy_intp *PyArray_STRIDES(PyArrayObject *arr)
Returns a pointer to the strides of the array. The number of elements matches the number of dimensions of the
array.

npy_intp PyArray_DIM(PyArrayObject *arr, int n)
Return the shape in the n th dimension.

npy_intp PyArray_STRIDE(PyArrayObject *arr, int n)
Return the stride in the n th dimension.

npy_intp PyArray_ITEMSIZE(PyArrayObject *arr)
Return the itemsize for the elements of this array.
Note that, in the old API that was deprecated in version 1.7, this function had the return type int.

npy_intp PyArray_SIZE(PyArrayObject *arr)
Returns the total size (in number of elements) of the array.

npy_intp PyArray_Size(PyArrayObject *obj)
Returns 0 if obj is not a sub-class of ndarray. Otherwise, returns the total number of elements in the array. Safer
version of PyArray_SIZE (obj).

npy_intp PyArray_NBYTES(PyArrayObject *arr)
Returns the total number of bytes consumed by the array.

2.1. NumPy C-API 1905

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyObject *PyArray_BASE(PyArrayObject *arr)
This returns the base object of the array. In most cases, this means the object which owns the memory the array is
pointing at.
If you are constructing an array using the C API, and specifying your own memory, you should use the function
PyArray_SetBaseObject to set the base to an object which owns the memory.
If the NPY_ARRAY_WRITEBACKIFCOPY flag is set, it has a different meaning, namely base is the array into
which the current array will be copied upon copy resolution. This overloading of the base property for two functions
is likely to change in a future version of NumPy.

PyArray_Descr *PyArray_DESCR(PyArrayObject *arr)
Returns a borrowed reference to the dtype property of the array.

PyArray_Descr *PyArray_DTYPE(PyArrayObject *arr)
A synonym for PyArray_DESCR, named to be consistent with the ‘dtype’ usage within Python.

PyObject *PyArray_GETITEM(PyArrayObject *arr, void *itemptr)
Get a Python object of a builtin type from the ndarray, arr, at the location pointed to by itemptr. Return NULL on
failure.
numpy.ndarray.item is identical to PyArray_GETITEM.

int PyArray_FinalizeFunc(PyArrayObject *arr, PyObject *obj)
The function pointed to by the PyCapsule __array_finalize__. The first argument is the newly created
sub-type. The second argument (if not NULL) is the “parent” array (if the array was created using slicing or some
other operation where a clearly-distinguishable parent is present). This routine can do anything it wants to. It should
return a -1 on error and 0 otherwise.

Data access
These functions and macros provide easy access to elements of the ndarray from C. These work for all arrays. You may
need to take care when accessing the data in the array, however, if it is not in machine byte-order, misaligned, or not
writeable. In other words, be sure to respect the state of the flags unless you know what you are doing, or have previously
guaranteed an array that is writeable, aligned, and in machine byte-order using PyArray_FromAny. If you wish to
handle all types of arrays, the copyswap function for each type is useful for handling misbehaved arrays. Some platforms
(e.g. Solaris) do not like misaligned data and will crash if you de-reference a misaligned pointer. Other platforms (e.g.
x86 Linux) will just work more slowly with misaligned data.
void *PyArray_GetPtr(PyArrayObject *aobj, npy_intp *ind)

Return a pointer to the data of the ndarray, aobj, at the N-dimensional index given by the c-array, ind, (which must
be at least aobj ->nd in size). You may want to typecast the returned pointer to the data type of the ndarray.

void *PyArray_GETPTR1(PyArrayObject *obj, npy_intp i)

void *PyArray_GETPTR2(PyArrayObject *obj, npy_intp i, npy_intp j)

void *PyArray_GETPTR3(PyArrayObject *obj, npy_intp i, npy_intp j, npy_intp k)

void *PyArray_GETPTR4(PyArrayObject *obj, npy_intp i, npy_intp j, npy_intp k, npy_intp l)
Quick, inline access to the element at the given coordinates in the ndarray, obj, which must have respectively 1, 2,
3, or 4 dimensions (this is not checked). The corresponding i, j, k, and l coordinates can be any integer but will be
interpreted as npy_intp. You may want to typecast the returned pointer to the data type of the ndarray.

1906 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule

NumPy Reference, Release 2.2.0

Creating arrays

From scratch
PyObject *PyArray_NewFromDescr(PyTypeObject *subtype, PyArray_Descr *descr, int nd, npy_intp const

*dims, npy_intp const *strides, void *data, int flags, PyObject *obj)
This function steals a reference to descr. The easiest way to get one is using PyArray_DescrFromType.
This is the main array creation function. Most new arrays are created with this flexible function.
The returned object is an object of Python-type subtype, which must be a subtype of PyArray_Type. The array
has nd dimensions, described by dims. The data-type descriptor of the new array is descr.
If subtype is of an array subclass instead of the base &PyArray_Type, then obj is the object to pass to the
__array_finalize__ method of the subclass.
If data is NULL, then new unitinialized memory will be allocated and flags can be non-zero to indicate a Fortran-
style contiguous array. Use PyArray_FILLWBYTE to initialize the memory.
If data is not NULL, then it is assumed to point to the memory to be used for the array and the flags argument is used
as the new flags for the array (except the state of NPY_ARRAY_OWNDATA, NPY_ARRAY_WRITEBACKIFCOPY
flag of the new array will be reset).
In addition, if data is non-NULL, then strides can also be provided. If strides is NULL, then the array strides are
computed as C-style contiguous (default) or Fortran-style contiguous (flags is nonzero for data = NULL or flags
& NPY_ARRAY_F_CONTIGUOUS is nonzero non-NULL data). Any provided dims and strides are copied into
newly allocated dimension and strides arrays for the new array object.
PyArray_CheckStrides can help verify non- NULL stride information.
If data is provided, it must stay alive for the life of the array. One way to manage this is through
PyArray_SetBaseObject

PyObject *PyArray_NewLikeArray(PyArrayObject *prototype, NPY_ORDER order, PyArray_Descr *descr, int
subok)

This function steals a reference to descr if it is not NULL. This array creation routine allows for the convenient
creation of a new array matching an existing array’s shapes and memory layout, possibly changing the layout and/or
data type.
When order is NPY_ANYORDER, the result order is NPY_FORTRANORDER if prototype is a fortran array,
NPY_CORDER otherwise. When order is NPY_KEEPORDER, the result order matches that of prototype, even
when the axes of prototype aren’t in C or Fortran order.
If descr is NULL, the data type of prototype is used.
If subok is 1, the newly created array will use the sub-type of prototype to create the new array, otherwise it will
create a base-class array.

PyObject *PyArray_New(PyTypeObject *subtype, int nd, npy_intp const *dims, int type_num, npy_intp const
*strides, void *data, int itemsize, int flags, PyObject *obj)

This is similar to PyArray_NewFromDescr (…) except you specify the data-type descriptor with type_num
and itemsize, where type_num corresponds to a builtin (or user-defined) type. If the type always has the same
number of bytes, then itemsize is ignored. Otherwise, itemsize specifies the particular size of this array.

Warning: If data is passed to PyArray_NewFromDescr or PyArray_New, this memory must not be deal-
located until the new array is deleted. If this data came from another Python object, this can be accomplished using
Py_INCREF on that object and setting the base member of the new array to point to that object. If strides are passed
in they must be consistent with the dimensions, the itemsize, and the data of the array.

2.1. NumPy C-API 1907

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/refcounting.html#c.Py_INCREF

NumPy Reference, Release 2.2.0

PyObject *PyArray_SimpleNew(int nd, npy_intp const *dims, int typenum)
Create a new uninitialized array of type, typenum, whose size in each of nd dimensions is given by the in-
teger array, dims.The memory for the array is uninitialized (unless typenum is NPY_OBJECT in which case
each element in the array is set to NULL). The typenum argument allows specification of any of the builtin
data-types such as NPY_FLOAT or NPY_LONG. The memory for the array can be set to zero if desired using
PyArray_FILLWBYTE (return_object, 0).This function cannot be used to create a flexible-type array (no item-
size given).

PyObject *PyArray_SimpleNewFromData(int nd, npy_intp const *dims, int typenum, void *data)
Create an array wrapper around data pointed to by the given pointer. The array flags will have a default that the
data area is well-behaved and C-style contiguous. The shape of the array is given by the dims c-array of length nd.
The data-type of the array is indicated by typenum. If data comes from another reference-counted Python object,
the reference count on this object should be increased after the pointer is passed in, and the base member of the
returned ndarray should point to the Python object that owns the data. This will ensure that the provided memory
is not freed while the returned array is in existence.

PyObject *PyArray_SimpleNewFromDescr(int nd, npy_int const *dims, PyArray_Descr *descr)
This function steals a reference to descr.
Create a new array with the provided data-type descriptor, descr, of the shape determined by nd and dims.

void PyArray_FILLWBYTE(PyObject *obj, int val)
Fill the array pointed to by obj —which must be a (subclass of) ndarray—with the contents of val (evaluated as a
byte). This macro calls memset, so obj must be contiguous.

PyObject *PyArray_Zeros(int nd, npy_intp const *dims, PyArray_Descr *dtype, int fortran)
Construct a new nd -dimensional array with shape given by dims and data type given by dtype. If fortran is non-zero,
then a Fortran-order array is created, otherwise a C-order array is created. Fill the memory with zeros (or the 0
object if dtype corresponds to NPY_OBJECT).

PyObject *PyArray_ZEROS(int nd, npy_intp const *dims, int type_num, int fortran)
Macro form of PyArray_Zeros which takes a type-number instead of a data-type object.

PyObject *PyArray_Empty(int nd, npy_intp const *dims, PyArray_Descr *dtype, int fortran)
Construct a new nd -dimensional array with shape given by dims and data type given by dtype. If fortran is non-
zero, then a Fortran-order array is created, otherwise a C-order array is created. The array is uninitialized unless
the data type corresponds to NPY_OBJECT in which case the array is filled with Py_None.

PyObject *PyArray_EMPTY(int nd, npy_intp const *dims, int typenum, int fortran)
Macro form of PyArray_Empty which takes a type-number, typenum, instead of a data-type object.

PyObject *PyArray_Arange(double start, double stop, double step, int typenum)
Construct a new 1-dimensional array of data-type, typenum, that ranges from start to stop (exclusive) in increments
of step . Equivalent to arange (start, stop, step, dtype).

PyObject *PyArray_ArangeObj(PyObject *start, PyObject *stop, PyObject *step, PyArray_Descr *descr)
Construct a new 1-dimensional array of data-type determined by descr, that ranges from start to stop (ex-
clusive) in increments of step. Equivalent to arange(start, stop, step, typenum).

int PyArray_SetBaseObject(PyArrayObject *arr, PyObject *obj)
This function steals a reference to obj and sets it as the base property of arr.
If you construct an array by passing in your own memory buffer as a parameter, you need to set the array’s base
property to ensure the lifetime of the memory buffer is appropriate.
The return value is 0 on success, -1 on failure.
If the object provided is an array, this function traverses the chain of base pointers so that each array points to the
owner of the memory directly. Once the base is set, it may not be changed to another value.

1908 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/none.html#c.Py_None
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

From other objects
PyObject *PyArray_FromAny(PyObject *op, PyArray_Descr *dtype, int min_depth, int max_depth, int

requirements, PyObject *context)
This is themain function used to obtain an array from any nested sequence, or object that exposes the array interface,
op. The parameters allow specification of the required dtype, theminimum (min_depth) andmaximum (max_depth)
number of dimensions acceptable, and other requirements for the array. This function steals a reference to the dtype
argument, which needs to be a PyArray_Descr structure indicating the desired data-type (including required
byteorder). The dtype argument may be NULL, indicating that any data-type (and byteorder) is acceptable. Unless
NPY_ARRAY_FORCECAST is present in flags, this call will generate an error if the data type cannot be safely
obtained from the object. If you want to use NULL for the dtype and ensure the array is not swapped then use
PyArray_CheckFromAny. A value of 0 for either of the depth parameters causes the parameter to be ignored.
Any of the following array flags can be added (e.g. using |) to get the requirements argument. If your code can handle
general (e.g. strided, byte-swapped, or unaligned arrays) then requirements may be 0. Also, if op is not already
an array (or does not expose the array interface), then a new array will be created (and filled from op using the
sequence protocol). The new array will have NPY_ARRAY_DEFAULT as its flags member. The context argument
is unused.
NPY_ARRAY_C_CONTIGUOUS

Make sure the returned array is C-style contiguous
NPY_ARRAY_F_CONTIGUOUS

Make sure the returned array is Fortran-style contiguous.
NPY_ARRAY_ALIGNED

Make sure the returned array is aligned on proper boundaries for its data type. An aligned array has the data
pointer and every strides factor as a multiple of the alignment factor for the data-type- descriptor.

NPY_ARRAY_WRITEABLE
Make sure the returned array can be written to.

NPY_ARRAY_ENSURECOPY
Make sure a copy is made of op. If this flag is not present, data is not copied if it can be avoided.

NPY_ARRAY_ENSUREARRAY
Make sure the result is a base-class ndarray. By default, if op is an instance of a subclass of ndarray, an
instance of that same subclass is returned. If this flag is set, an ndarray object will be returned instead.

NPY_ARRAY_FORCECAST
Force a cast to the output type even if it cannot be done safely. Without this flag, a data cast will occur only
if it can be done safely, otherwise an error is raised.

NPY_ARRAY_WRITEBACKIFCOPY
If op is already an array, but does not satisfy the requirements, then a copy is made (which will satisfy the
requirements). If this flag is present and a copy (of an object that is already an array) must be made, then
the corresponding NPY_ARRAY_WRITEBACKIFCOPY flag is set in the returned copy and op is made to be
read-only. You must be sure to call PyArray_ResolveWritebackIfCopy to copy the contents back
into op and the op array will be made writeable again. If op is not writeable to begin with, or if it is not already
an array, then an error is raised.

Combinations of array flags can also be added.
PyObject *PyArray_CheckFromAny(PyObject *op, PyArray_Descr *dtype, int min_depth, int max_depth, int

requirements, PyObject *context)
Nearly identical to PyArray_FromAny (…) except requirements can contain NPY_ARRAY_NOTSWAPPED
(over-riding the specification in dtype) and NPY_ARRAY_ELEMENTSTRIDES which indicates that the array
should be aligned in the sense that the strides are multiples of the element size.

2.1. NumPy C-API 1909

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyObject *PyArray_FromArray(PyArrayObject *op, PyArray_Descr *newtype, int requirements)
Special case of PyArray_FromAny for when op is already an array but it needs to be of a specific newtype
(including byte-order) or has certain requirements.

PyObject *PyArray_FromStructInterface(PyObject *op)
Returns an ndarray object from a Python object that exposes the __array_struct__ attribute and fol-
lows the array interface protocol. If the object does not contain this attribute then a borrowed reference to
Py_NotImplemented is returned.

PyObject *PyArray_FromInterface(PyObject *op)
Returns an ndarray object from a Python object that exposes the __array_interface__ attribute follow-
ing the array interface protocol. If the object does not contain this attribute then a borrowed reference to
Py_NotImplemented is returned.

PyObject *PyArray_FromArrayAttr(PyObject *op, PyArray_Descr *dtype, PyObject *context)
Return an ndarray object from a Python object that exposes the __array__method. The third-party implemen-
tations of __array__ must take dtype and copy keyword arguments. context is unused.

PyObject *PyArray_ContiguousFromAny(PyObject *op, int typenum, int min_depth, int max_depth)
This function returns a (C-style) contiguous and behaved function array from any nested sequence or array inter-
face exporting object, op, of (non-flexible) type given by the enumerated typenum, of minimum depth min_depth,
and of maximum depth max_depth. Equivalent to a call to PyArray_FromAny with requirements set to
NPY_ARRAY_DEFAULT and the type_num member of the type argument set to typenum.

PyObject *PyArray_ContiguousFromObject(PyObject *op, int typenum, int min_depth, int max_depth)
This function returns a well-behaved C-style contiguous array from any nested sequence or array-interface exporting
object. The minimum number of dimensions the array can have is given by min_depth while the maximum is
max_depth. This is equivalent to call PyArray_FromAny with requirements NPY_ARRAY_DEFAULT and
NPY_ARRAY_ENSUREARRAY.

PyObject *PyArray_FromObject(PyObject *op, int typenum, int min_depth, int max_depth)
Return an aligned and in native-byteorder array from any nested sequence or array-interface exporting object,
op, of a type given by the enumerated typenum. The minimum number of dimensions the array can have is
given by min_depth while the maximum is max_depth. This is equivalent to a call to PyArray_FromAny with
requirements set to BEHAVED.

PyObject *PyArray_EnsureArray(PyObject *op)
This function steals a reference to op and makes sure that op is a base-class ndarray. It special cases array scalars,
but otherwise calls PyArray_FromAny (op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL).

PyObject *PyArray_FromString(char *string, npy_intp slen, PyArray_Descr *dtype, npy_intp num, char *sep)
Construct a one-dimensional ndarray of a single type from a binary or (ASCII) text string of length slen. The
data-type of the array to-be-created is given by dtype. If num is -1, then copy the entire string and return an
appropriately sized array, otherwise, num is the number of items to copy from the string. If sep is NULL (or
“”), then interpret the string as bytes of binary data, otherwise convert the sub-strings separated by sep to items
of data-type dtype. Some data-types may not be readable in text mode and an error will be raised if that occurs.
All errors return NULL.

PyObject *PyArray_FromFile(FILE *fp, PyArray_Descr *dtype, npy_intp num, char *sep)
Construct a one-dimensional ndarray of a single type from a binary or text file. The open file pointer is fp, the
data-type of the array to be created is given by dtype. This must match the data in the file. If num is -1, then read
until the end of the file and return an appropriately sized array, otherwise, num is the number of items to read. If
sep is NULL (or “”), then read from the file in binary mode, otherwise read from the file in text mode with sep
providing the item separator. Some array types cannot be read in text mode in which case an error is raised.

1910 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/object.html#c.Py_NotImplemented
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/object.html#c.Py_NotImplemented
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyObject *PyArray_FromBuffer(PyObject *buf, PyArray_Descr *dtype, npy_intp count, npy_intp offset)
Construct a one-dimensional ndarray of a single type from an object, buf, that exports the (single-segment) buffer
protocol (or has an attribute __buffer__ that returns an object that exports the buffer protocol). A writeable buffer
will be tried first followed by a read- only buffer. The NPY_ARRAY_WRITEABLE flag of the returned array will
reflect which one was successful. The data is assumed to start at offset bytes from the start of the memory
location for the object. The type of the data in the buffer will be interpreted depending on the data- type descriptor,
dtype. If count is negative then it will be determined from the size of the buffer and the requested itemsize,
otherwise, count represents how many elements should be converted from the buffer.

int PyArray_CopyInto(PyArrayObject *dest, PyArrayObject *src)
Copy from the source array, src, into the destination array, dest, performing a data-type conversion if necessary.
If an error occurs return -1 (otherwise 0). The shape of srcmust be broadcastable to the shape of dest. NumPy
checks for overlapping memory when copying two arrays.

int PyArray_CopyObject(PyArrayObject *dest, PyObject *src)
Assign an object src to a NumPy array dest according to array-coercion rules. This is basically identical to
PyArray_FromAny, but assigns directly to the output array. Returns 0 on success and -1 on failures.

PyArrayObject *PyArray_GETCONTIGUOUS(PyObject *op)
If op is already (C-style) contiguous and well-behaved then just return a reference, otherwise return a (contiguous
and well-behaved) copy of the array. The parameter op must be a (sub-class of an) ndarray and no checking for
that is done.

PyObject *PyArray_FROM_O(PyObject *obj)
Convert obj to an ndarray. The argument can be any nested sequence or object that exports the array interface.
This is a macro form of PyArray_FromAny using NULL, 0, 0, 0 for the other arguments. Your code must be
able to handle any data-type descriptor and any combination of data-flags to use this macro.

PyObject *PyArray_FROM_OF(PyObject *obj, int requirements)
Similar to PyArray_FROM_O except it can take an argument of requirements indicating properties the re-
sulting array must have. Available requirements that can be enforced are NPY_ARRAY_C_CONTIGUOUS,
NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE,
NPY_ARRAY_NOTSWAPPED, NPY_ARRAY_ENSURECOPY, NPY_ARRAY_WRITEBACKIFCOPY,
NPY_ARRAY_FORCECAST, and NPY_ARRAY_ENSUREARRAY. Standard combinations of flags can also
be used:

PyObject *PyArray_FROM_OT(PyObject *obj, int typenum)
Similar to PyArray_FROM_O except it can take an argument of typenum specifying the type-number the returned
array.

PyObject *PyArray_FROM_OTF(PyObject *obj, int typenum, int requirements)
Combination of PyArray_FROM_OF and PyArray_FROM_OT allowing both a typenum and a flags argument
to be provided.

PyObject *PyArray_FROMANY(PyObject *obj, int typenum, int min, int max, int requirements)
Similar to PyArray_FromAny except the data-type is specified using a typenumber.
PyArray_DescrFromType (typenum) is passed directly to PyArray_FromAny. This macro also
adds NPY_ARRAY_DEFAULT to requirements if NPY_ARRAY_ENSURECOPY is passed in as requirements.

PyObject *PyArray_CheckAxis(PyObject *obj, int *axis, int requirements)
Encapsulate the functionality of functions and methods that take the axis= keyword and work properly with
None as the axis argument. The input array is obj, while *axis is a converted integer (so that *axis ==
NPY_RAVEL_AXIS is the None value), and requirements gives the needed properties of obj. The output
is a converted version of the input so that requirements are met and if needed a flattening has occurred. On output
negative values of *axis are converted and the new value is checked to ensure consistency with the shape of obj.

2.1. NumPy C-API 1911

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Dealing with types

General check of Python Type
int PyArray_Check(PyObject *op)

Evaluates true if op is a Python object whose type is a sub-type of PyArray_Type.
int PyArray_CheckExact(PyObject *op)

Evaluates true if op is a Python object with type PyArray_Type.
int PyArray_HasArrayInterface(PyObject *op, PyObject *out)

If op implements any part of the array interface, then outwill contain a new reference to the newly created ndarray
using the interface or out will contain NULL if an error during conversion occurs. Otherwise, out will contain a
borrowed reference to Py_NotImplemented and no error condition is set.

int PyArray_HasArrayInterfaceType(PyObject *op, PyArray_Descr *dtype, PyObject *context, PyObject
*out)

If op implements any part of the array interface, then outwill contain a new reference to the newly created ndarray
using the interface or out will contain NULL if an error during conversion occurs. Otherwise, out will contain a
borrowed reference to Py_NotImplemented and no error condition is set. This version allows setting of the dtype
in the part of the array interface that looks for the __array__ attribute. context is unused.

int PyArray_IsZeroDim(PyObject *op)
Evaluates true if op is an instance of (a subclass of) PyArray_Type and has 0 dimensions.

PyArray_IsScalar(op, cls)
Evaluates true if op is an instance of Py{cls}ArrType_Type.

int PyArray_CheckScalar(PyObject *op)
Evaluates true if op is either an array scalar (an instance of a sub-type of PyGenericArrType_Type), or an
instance of (a sub-class of) PyArray_Type whose dimensionality is 0.

int PyArray_IsPythonNumber(PyObject *op)
Evaluates true if op is an instance of a builtin numeric type (int, float, complex, long, bool)

int PyArray_IsPythonScalar(PyObject *op)
Evaluates true if op is a builtin Python scalar object (int, float, complex, bytes, str, long, bool).

int PyArray_IsAnyScalar(PyObject *op)
Evaluates true if op is either a Python scalar object (see PyArray_IsPythonScalar) or an array scalar (an
instance of a sub- type of PyGenericArrType_Type).

int PyArray_CheckAnyScalar(PyObject *op)
Evaluates true if op is a Python scalar object (see PyArray_IsPythonScalar), an array scalar (an instance
of a sub-type of PyGenericArrType_Type) or an instance of a sub-type of PyArray_Type whose dimen-
sionality is 0.

Data-type accessors
Some of the descriptor attributes may not always be defined and should or cannot not be accessed directly.
Changed in version 2.0: Prior to NumPy 2.0 the ABI was different but unnecessary large for user DTypes. These accessors
were all added in 2.0 and can be backported (see migration_c_descr).
npy_intp PyDataType_ELSIZE(PyArray_Descr *descr)

The element size of the datatype (itemsize in Python).

1912 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/object.html#c.Py_NotImplemented
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Note: If the descr is attached to an array PyArray_ITEMSIZE(arr) can be used and is available on all
NumPy versions.

void PyDataType_SET_ELSIZE(PyArray_Descr *descr, npy_intp size)
Allows setting of the itemsize, this is only relevant for string/bytes datatypes as it is the current pattern to define
one with a new size.

npy_intp PyDataType_ALIGNENT(PyArray_Descr *descr)
The alignment of the datatype.

PyObject *PyDataType_METADATA(PyArray_Descr *descr)
The Metadata attached to a dtype, either NULL or a dictionary.

PyObject *PyDataType_NAMES(PyArray_Descr *descr)
NULL or a tuple of structured field names attached to a dtype.

PyObject *PyDataType_FIELDS(PyArray_Descr *descr)
NULL, None, or a dict of structured dtype fields, this dict must not be mutated, NumPy may change the way fields
are stored in the future.
This is the same dict as returned by np.dtype.fields.

NpyAuxData *PyDataType_C_METADATA(PyArray_Descr *descr)
C-metadata object attached to a descriptor. This accessor should not be needed usually. The C-Metadata field does
provide access to the datetime/timedelta time unit information.

PyArray_ArrayDescr *PyDataType_SUBARRAY(PyArray_Descr *descr)
Information about a subarray dtype equivalent to the Python np.dtype.base and np.dtype.shape.
If this is non- NULL, then this data-type descriptor is a C-style contiguous array of another data-type descriptor.
In other-words, each element that this descriptor describes is actually an array of some other base descriptor. This
is most useful as the data-type descriptor for a field in another data-type descriptor. The fields member should be
NULL if this is non- NULL (the fields member of the base descriptor can be non- NULL however).
type PyArray_ArrayDescr

typedef struct {
PyArray_Descr *base;
PyObject *shape;

} PyArray_ArrayDescr;

PyArray_Descr *base
The data-type-descriptor object of the base-type.

PyObject *shape
The shape (always C-style contiguous) of the sub-array as a Python tuple.

2.1. NumPy C-API 1913

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Data-type checking
For the typenum macros, the argument is an integer representing an enumerated array data type. For the array type
checking macros the argument must be a PyObject* that can be directly interpreted as a PyArrayObject*.
int PyTypeNum_ISUNSIGNED(int num)

int PyDataType_ISUNSIGNED(PyArray_Descr *descr)

int PyArray_ISUNSIGNED(PyArrayObject *obj)
Type represents an unsigned integer.

int PyTypeNum_ISSIGNED(int num)

int PyDataType_ISSIGNED(PyArray_Descr *descr)

int PyArray_ISSIGNED(PyArrayObject *obj)
Type represents a signed integer.

int PyTypeNum_ISINTEGER(int num)

int PyDataType_ISINTEGER(PyArray_Descr *descr)

int PyArray_ISINTEGER(PyArrayObject *obj)
Type represents any integer.

int PyTypeNum_ISFLOAT(int num)

int PyDataType_ISFLOAT(PyArray_Descr *descr)

int PyArray_ISFLOAT(PyArrayObject *obj)
Type represents any floating point number.

int PyTypeNum_ISCOMPLEX(int num)

int PyDataType_ISCOMPLEX(PyArray_Descr *descr)

int PyArray_ISCOMPLEX(PyArrayObject *obj)
Type represents any complex floating point number.

int PyTypeNum_ISNUMBER(int num)

int PyDataType_ISNUMBER(PyArray_Descr *descr)

int PyArray_ISNUMBER(PyArrayObject *obj)
Type represents any integer, floating point, or complex floating point number.

int PyTypeNum_ISSTRING(int num)

int PyDataType_ISSTRING(PyArray_Descr *descr)

int PyArray_ISSTRING(PyArrayObject *obj)
Type represents a string data type.

int PyTypeNum_ISFLEXIBLE(int num)

int PyDataType_ISFLEXIBLE(PyArray_Descr *descr)

int PyArray_ISFLEXIBLE(PyArrayObject *obj)
Type represents one of the flexible array types (NPY_STRING, NPY_UNICODE, or NPY_VOID).

1914 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int PyDataType_ISUNSIZED(PyArray_Descr *descr)
Type has no size information attached, and can be resized. Should only be called on flexible dtypes. Types that are
attached to an array will always be sized, hence the array form of this macro not existing.
For structured datatypes with no fields this function now returns False.

int PyTypeNum_ISUSERDEF(int num)

int PyDataType_ISUSERDEF(PyArray_Descr *descr)

int PyArray_ISUSERDEF(PyArrayObject *obj)
Type represents a user-defined type.

int PyTypeNum_ISEXTENDED(int num)

int PyDataType_ISEXTENDED(PyArray_Descr *descr)

int PyArray_ISEXTENDED(PyArrayObject *obj)
Type is either flexible or user-defined.

int PyTypeNum_ISOBJECT(int num)

int PyDataType_ISOBJECT(PyArray_Descr *descr)

int PyArray_ISOBJECT(PyArrayObject *obj)
Type represents object data type.

int PyTypeNum_ISBOOL(int num)

int PyDataType_ISBOOL(PyArray_Descr *descr)

int PyArray_ISBOOL(PyArrayObject *obj)
Type represents Boolean data type.

int PyDataType_HASFIELDS(PyArray_Descr *descr)

int PyArray_HASFIELDS(PyArrayObject *obj)
Type has fields associated with it.

int PyArray_ISNOTSWAPPED(PyArrayObject *m)
Evaluates true if the data area of the ndarraym is inmachine byte-order according to the array’s data-type descriptor.

int PyArray_ISBYTESWAPPED(PyArrayObject *m)
Evaluates true if the data area of the ndarray m is not in machine byte-order according to the array’s data-type
descriptor.

npy_bool PyArray_EquivTypes(PyArray_Descr *type1, PyArray_Descr *type2)
Return NPY_TRUE if type1 and type2 actually represent equivalent types for this platform (the fortran member of
each type is ignored). For example, on 32-bit platforms, NPY_LONG and NPY_INT are equivalent. Otherwise
return NPY_FALSE.

npy_bool PyArray_EquivArrTypes(PyArrayObject *a1, PyArrayObject *a2)
Return NPY_TRUE if a1 and a2 are arrays with equivalent types for this platform.

npy_bool PyArray_EquivTypenums(int typenum1, int typenum2)
Special case of PyArray_EquivTypes (…) that does not accept flexible data types but may be easier to call.

int PyArray_EquivByteorders(int b1, int b2)
True if byteorder characters b1 and b2 (NPY_LITTLE, NPY_BIG, NPY_NATIVE, NPY_IGNORE) are either
equal or equivalent as to their specification of a native byte order. Thus, on a little-endian machine NPY_LITTLE
and NPY_NATIVE are equivalent where they are not equivalent on a big-endian machine.

2.1. NumPy C-API 1915

NumPy Reference, Release 2.2.0

Converting data types
PyObject *PyArray_Cast(PyArrayObject *arr, int typenum)

Mainly for backwards compatibility to the Numeric C-API and for simple casts to non-flexible types. Return a new
array object with the elements of arr cast to the data-type typenum which must be one of the enumerated types and
not a flexible type.

PyObject *PyArray_CastToType(PyArrayObject *arr, PyArray_Descr *type, int fortran)
Return a new array of the type specified, casting the elements of arr as appropriate. The fortran argument specifies
the ordering of the output array.

int PyArray_CastTo(PyArrayObject *out, PyArrayObject *in)
As of 1.6, this function simply calls PyArray_CopyInto, which handles the casting.
Cast the elements of the array in into the array out. The output array should be writeable, have an integer-multiple
of the number of elements in the input array (more than one copy can be placed in out), and have a data type that
is one of the builtin types. Returns 0 on success and -1 if an error occurs.

int PyArray_CanCastSafely(int fromtype, int totype)
Returns non-zero if an array of data type fromtype can be cast to an array of data type totype without losing
information. An exception is that 64-bit integers are allowed to be cast to 64-bit floating point values even though
this can lose precision on large integers so as not to proliferate the use of long doubles without explicit requests.
Flexible array types are not checked according to their lengths with this function.

int PyArray_CanCastTo(PyArray_Descr *fromtype, PyArray_Descr *totype)
PyArray_CanCastTypeTo supersedes this function in NumPy 1.6 and later.
Equivalent to PyArray_CanCastTypeTo(fromtype, totype, NPY_SAFE_CASTING).

int PyArray_CanCastTypeTo(PyArray_Descr *fromtype, PyArray_Descr *totype, NPY_CASTING casting)
Returns non-zero if an array of data type fromtype (which can include flexible types) can be cast safely to an array
of data type totype (which can include flexible types) according to the casting rule casting. For simple types with
NPY_SAFE_CASTING, this is basically a wrapper around PyArray_CanCastSafely, but for flexible types
such as strings or unicode, it produces results taking into account their sizes. Integer and float types can only be
cast to a string or unicode type using NPY_SAFE_CASTING if the string or unicode type is big enough to hold
the max value of the integer/float type being cast from.

int PyArray_CanCastArrayTo(PyArrayObject *arr, PyArray_Descr *totype, NPY_CASTING casting)
Returns non-zero if arr can be cast to totype according to the casting rule given in casting. If arr is an array scalar,
its value is taken into account, and non-zero is also returned when the value will not overflow or be truncated to an
integer when converting to a smaller type.

PyArray_Descr *PyArray_MinScalarType(PyArrayObject *arr)

Note: With the adoption of NEP 50 in NumPy 2, this function is not used internally. It is currently provided for
backwards compatibility, but expected to be eventually deprecated.

If arr is an array, returns its data type descriptor, but if arr is an array scalar (has 0 dimensions), it finds the data
type of smallest size to which the value may be converted without overflow or truncation to an integer.
This function will not demote complex to float or anything to boolean, but will demote a signed integer to an
unsigned integer when the scalar value is positive.

PyArray_Descr *PyArray_PromoteTypes(PyArray_Descr *type1, PyArray_Descr *type2)
Finds the data type of smallest size and kind to which type1 and type2 may be safely converted. This function is
symmetric and associative. A string or unicode result will be the proper size for storing the max value of the input
types converted to a string or unicode.

1916 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyArray_Descr *PyArray_ResultType(npy_intp narrs, PyArrayObject **arrs, npy_intp ndtypes, PyArray_Descr
**dtypes)

This applies type promotion to all the input arrays and dtype objects, using the NumPy rules for combining scalars
and arrays, to determine the output type for an operation with the given set of operands. This is the same result
type that ufuncs produce.
See the documentation of numpy.result_type for more detail about the type promotion algorithm.

int PyArray_ObjectType(PyObject *op, int mintype)
This function is superseded by PyArray_ResultType.
This function is useful for determining a common type that two or more arrays can be converted to. It only works
for non-flexible array types as no itemsize information is passed. The mintype argument represents the minimum
type acceptable, and op represents the object that will be converted to an array. The return value is the enumerated
typenumber that represents the data-type that op should have.

PyArrayObject **PyArray_ConvertToCommonType(PyObject *op, int *n)
The functionality this provides is largely superseded by iterator NpyIter introduced in 1.6, with flag
NPY_ITER_COMMON_DTYPE or with the same dtype parameter for all operands.
Convert a sequence of Python objects contained in op to an array of ndarrays each having the same data type. The
type is selected in the same way as PyArray_ResultType. The length of the sequence is returned in n, and an
n -length array of PyArrayObject pointers is the return value (or NULL if an error occurs). The returned array
must be freed by the caller of this routine (using PyDataMem_FREE) and all the array objects in it DECREF ‘d
or a memory-leak will occur. The example template-code below shows a typical usage:

mps = PyArray_ConvertToCommonType(obj, &n);
if (mps==NULL) return NULL;
{code}
<before return>
for (i=0; i<n; i++) Py_DECREF(mps[i]);
PyDataMem_FREE(mps);
{return}

char *PyArray_Zero(PyArrayObject *arr)
A pointer to newly created memory of size arr ->itemsize that holds the representation of 0 for that type. The
returned pointer, ret, must be freed using PyDataMem_FREE (ret) when it is not needed anymore.

char *PyArray_One(PyArrayObject *arr)
A pointer to newly created memory of size arr ->itemsize that holds the representation of 1 for that type. The
returned pointer, ret, must be freed using PyDataMem_FREE (ret) when it is not needed anymore.

int PyArray_ValidType(int typenum)
Returns NPY_TRUE if typenum represents a valid type-number (builtin or user-defined or character code). Oth-
erwise, this function returns NPY_FALSE.

User-defined data types
void PyArray_InitArrFuncs(PyArray_ArrFuncs *f)

Initialize all function pointers and members to NULL.
int PyArray_RegisterDataType(PyArray_DescrProto *dtype)

Note: As of NumPy 2.0 this API is considered legacy, the new DType API is more powerful and provides
additional flexibility. The API may eventually be deprecated but support is continued for the time being.
Compiling for NumPy 1.x and 2.x

2.1. NumPy C-API 1917

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

NumPy 2.x requires passing in a PyArray_DescrProto typed struct rather than a PyArray_Descr. This
is necessary to allow changes. To allow code to run and compile on both 1.x and 2.x you need to change the type
of your struct to PyArray_DescrProto and add:

/* Allow compiling on NumPy 1.x */
#if NPY_ABI_VERSION < 0x02000000
#define PyArray_DescrProto PyArray_Descr
#endif

for 1.x compatibility. Further, the struct will not be the actual descriptor anymore, only it’s type number will be
updated. After successful registration, you must thus fetch the actual dtype with:

int type_num = PyArray_RegisterDataType(&my_descr_proto);
if (type_num < 0) {

/* error */
}
PyArray_Descr *my_descr = PyArray_DescrFromType(type_num);

With these two changes, the code should compile and work on both 1.x and 2.x or later.
In the unlikely case that you are heap allocating the dtype struct you should free it again on NumPy 2, since a copy
is made. The struct is not a valid Python object, so do not use Py_DECREF on it.

Register a data-type as a new user-defined data type for arrays. The type must have most of its entries filled in. This
is not always checked and errors can produce segfaults. In particular, the typeobj member of the dtype structure
must be filled with a Python type that has a fixed-size element-size that corresponds to the elsize member of dtype.
Also the f member must have the required functions: nonzero, copyswap, copyswapn, getitem, setitem, and cast
(some of the cast functions may be NULL if no support is desired). To avoid confusion, you should choose a unique
character typecode but this is not enforced and not relied on internally.
A user-defined type number is returned that uniquely identifies the type. A pointer to the new structure can then
be obtained from PyArray_DescrFromType using the returned type number. A -1 is returned if an error
occurs. If this dtype has already been registered (checked only by the address of the pointer), then return the
previously-assigned type-number.
The number of user DTypes known to numpy is stored in NPY_NUMUSERTYPES, a static global variable that is
public in the C API. Accessing this symbol is inherently not thread-safe. If for some reason you need to use this
API in a multithreaded context, you will need to add your own locking, NumPy does not ensure new data types can
be added in a thread-safe manner.

int PyArray_RegisterCastFunc(PyArray_Descr *descr, int totype, PyArray_VectorUnaryFunc *castfunc)
Register a low-level casting function, castfunc, to convert from the data-type, descr, to the given data-type number,
totype. Any old casting function is over-written. A 0 is returned on success or a -1 on failure.
type PyArray_VectorUnaryFunc

The function pointer type for low-level casting functions.
int PyArray_RegisterCanCast(PyArray_Descr *descr, int totype, NPY_SCALARKIND scalar)

Register the data-type number, totype, as castable from data-type object, descr, of the given scalar kind. Use scalar
= NPY_NOSCALAR to register that an array of data-type descr can be cast safely to a data-type whose type_number
is totype. The return value is 0 on success or -1 on failure.

1918 2. C API

NumPy Reference, Release 2.2.0

Special functions for NPY_OBJECT

Warning: When working with arrays or buffers filled with objects NumPy tries to ensure such buffers are filled with
None before any data may be read. However, code paths may existed where an array is only initialized to NULL.
NumPy itself accepts NULL as an alias for None, but may assert non-NULL when compiled in debug mode.
Because NumPy is not yet consistent about initialization with None, usersmust expect a value of NULLwhen working
with buffers created by NumPy. Users should also ensure to pass fully initialized buffers to NumPy, since NumPy
may make this a strong requirement in the future.
There is currently an intention to ensure that NumPy always initializes object arrays before they may be read. Any
failure to do so will be regarded as a bug. In the future, users may be able to rely on non-NULL values when reading
from any array, although exceptions for writing to freshly created arrays may remain (e.g. for output arrays in ufunc
code). As of NumPy 1.23 known code paths exists where proper filling is not done.

int PyArray_INCREF(PyArrayObject *op)
Used for an array, op, that contains any Python objects. It increments the reference count of every object in the
array according to the data-type of op. A -1 is returned if an error occurs, otherwise 0 is returned.

void PyArray_Item_INCREF(char *ptr, PyArray_Descr *dtype)
A function to INCREF all the objects at the location ptr according to the data-type dtype. If ptr is the start of a
structured type with an object at any offset, then this will (recursively) increment the reference count of all object-
like items in the structured type.

int PyArray_XDECREF(PyArrayObject *op)
Used for an array, op, that contains any Python objects. It decrements the reference count of every object in the
array according to the data-type of op. Normal return value is 0. A -1 is returned if an error occurs.

void PyArray_Item_XDECREF(char *ptr, PyArray_Descr *dtype)
A function to XDECREF all the object-like items at the location ptr as recorded in the data-type, dtype. This works
recursively so that if dtype itself has fields with data-types that contain object-like items, all the object-like fields
will be XDECREF 'd.

int PyArray_SetWritebackIfCopyBase(PyArrayObject *arr, PyArrayObject *base)
Precondition: arr is a copy of base (though possibly with different strides, ordering, etc.) Sets
the NPY_ARRAY_WRITEBACKIFCOPY flag and arr->base, and set base to READONLY. Call
PyArray_ResolveWritebackIfCopy before calling Py_DECREF in order to copy any changes back to
base and reset the READONLY flag.
Returns 0 for success, -1 for failure.

Array flags

The flags attribute of the PyArrayObject structure contains important information about the memory used by the
array (pointed to by the data member) This flag information must be kept accurate or strange results and even segfaults
may result.
There are 6 (binary) flags that describe the memory area used by the data buffer. These constants are defined in
arrayobject.h and determine the bit-position of the flag. Python exposes a nice attribute- based interface as well as
a dictionary-like interface for getting (and, if appropriate, setting) these flags.
Memory areas of all kinds can be pointed to by an ndarray, necessitating these flags. If you get an arbitrary PyArray-
Object in C-code, you need to be aware of the flags that are set. If you need to guarantee a certain kind of
array (like NPY_ARRAY_C_CONTIGUOUS and NPY_ARRAY_BEHAVED), then pass these requirements into the
PyArray_FromAny function.

2.1. NumPy C-API 1919

https://docs.python.org/3/c-api/refcounting.html#c.Py_DECREF

NumPy Reference, Release 2.2.0

In versions 1.6 and earlier of NumPy, the following flags did not have the _ARRAY_ macro namespace in them. That
form of the constant names is deprecated in 1.7.

Basic Array Flags
An ndarray can have a data segment that is not a simple contiguous chunk of well-behaved memory you can manipulate.
It may not be aligned with word boundaries (very important on some platforms). It might have its data in a different
byte-order than the machine recognizes. It might not be writeable. It might be in Fortran-contiguous order. The array
flags are used to indicate what can be said about data associated with an array.
NPY_ARRAY_C_CONTIGUOUS

The data area is in C-style contiguous order (last index varies the fastest).
NPY_ARRAY_F_CONTIGUOUS

The data area is in Fortran-style contiguous order (first index varies the fastest).

Note: Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.
Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1] == self.
itemsize for C-style contiguous arrays orself.strides[0] == self.itemsize for Fortran-style contiguous
arrays is true. The correct way to access the itemsize of an array from the C API is PyArray_ITEMSIZE(arr).
See also:
Internal memory layout of an ndarray

NPY_ARRAY_OWNDATA

The data area is owned by this array. Should never be set manually, instead create a PyObject wrapping the data
and set the array’s base to that object. For an example, see the test in test_mem_policy.

NPY_ARRAY_ALIGNED

The data area and all array elements are aligned appropriately.
NPY_ARRAY_WRITEABLE

The data area can be written to.
Notice that the above 3 flags are defined so that a new, well- behaved array has these flags defined as true.

NPY_ARRAY_WRITEBACKIFCOPY

The data area represents a (well-behaved) copy whose information should be transferred back to the original when
PyArray_ResolveWritebackIfCopy is called.
This is a special flag that is set if this array represents a copy made because a user required certain flags in
PyArray_FromAny and a copy had to be made of some other array (and the user asked for this flag to
be set in such a situation). The base attribute then points to the “misbehaved” array (which is set read_only).
PyArray_ResolveWritebackIfCopy will copy its contents back to the “misbehaved” array (casting if
necessary) and will reset the “misbehaved” array to NPY_ARRAY_WRITEABLE. If the “misbehaved” array was
not NPY_ARRAY_WRITEABLE to begin with then PyArray_FromAny would have returned an error because
NPY_ARRAY_WRITEBACKIFCOPY would not have been possible.

PyArray_UpdateFlags (obj, flags) will update the obj->flags for flags which can be
any of NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_ALIGNED, or
NPY_ARRAY_WRITEABLE.

1920 2. C API

NumPy Reference, Release 2.2.0

Combinations of array flags
NPY_ARRAY_BEHAVED

NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE
NPY_ARRAY_CARRAY

NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_BEHAVED
NPY_ARRAY_CARRAY_RO

NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED
NPY_ARRAY_FARRAY

NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_BEHAVED
NPY_ARRAY_FARRAY_RO

NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED
NPY_ARRAY_DEFAULT

NPY_ARRAY_CARRAY

NPY_ARRAY_IN_ARRAY

NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_ALIGNED
NPY_ARRAY_IN_FARRAY

NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED
NPY_ARRAY_OUT_ARRAY

NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED
NPY_ARRAY_OUT_FARRAY

NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED
NPY_ARRAY_INOUT_ARRAY

NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED |
NPY_ARRAY_WRITEBACKIFCOPY

NPY_ARRAY_INOUT_FARRAY

NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_WRITEABLE | NPY_ARRAY_ALIGNED |
NPY_ARRAY_WRITEBACKIFCOPY

NPY_ARRAY_UPDATE_ALL

NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_ALIGNED

Flag-like constants
These constants are used in PyArray_FromAny (and its macro forms) to specify desired properties of the new array.
NPY_ARRAY_FORCECAST

Cast to the desired type, even if it can’t be done without losing information.
NPY_ARRAY_ENSURECOPY

Make sure the resulting array is a copy of the original.
NPY_ARRAY_ENSUREARRAY

Make sure the resulting object is an actual ndarray, and not a sub-class.
These constants are used in PyArray_CheckFromAny (and its macro forms) to specify desired properties of the new
array.

2.1. NumPy C-API 1921

NumPy Reference, Release 2.2.0

NPY_ARRAY_NOTSWAPPED

Make sure the returned array has a data-type descriptor that is in machine byte-order, over-riding any specification
in the dtype argument. Normally, the byte-order requirement is determined by the dtype argument. If this flag is
set and the dtype argument does not indicate a machine byte-order descriptor (or is NULL and the object is already
an array with a data-type descriptor that is not in machine byte- order), then a new data-type descriptor is created
and used with its byte-order field set to native.

NPY_ARRAY_BEHAVED_NS

NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED
NPY_ARRAY_ELEMENTSTRIDES

Make sure the returned array has strides that are multiples of the element size.

Flag checking
For all of these macros arr must be an instance of a (subclass of) PyArray_Type.
int PyArray_CHKFLAGS(PyObject *arr, int flags)

The first parameter, arr, must be an ndarray or subclass. The parameter, flags, should
be an integer consisting of bitwise combinations of the possible flags an array can have:
NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_F_CONTIGUOUS, NPY_ARRAY_OWNDATA,
NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, NPY_ARRAY_WRITEBACKIFCOPY.

int PyArray_IS_C_CONTIGUOUS(PyObject *arr)
Evaluates true if arr is C-style contiguous.

int PyArray_IS_F_CONTIGUOUS(PyObject *arr)
Evaluates true if arr is Fortran-style contiguous.

int PyArray_ISFORTRAN(PyObject *arr)
Evaluates true if arr is Fortran-style contiguous and not C-style contiguous. PyArray_IS_F_CONTIGUOUS is
the correct way to test for Fortran-style contiguity.

int PyArray_ISWRITEABLE(PyObject *arr)
Evaluates true if the data area of arr can be written to

int PyArray_ISALIGNED(PyObject *arr)
Evaluates true if the data area of arr is properly aligned on the machine.

int PyArray_ISBEHAVED(PyObject *arr)
Evaluates true if the data area of arr is aligned and writeable and in machine byte-order according to its descriptor.

int PyArray_ISBEHAVED_RO(PyObject *arr)
Evaluates true if the data area of arr is aligned and in machine byte-order.

int PyArray_ISCARRAY(PyObject *arr)
Evaluates true if the data area of arr is C-style contiguous, and PyArray_ISBEHAVED (arr) is true.

int PyArray_ISFARRAY(PyObject *arr)
Evaluates true if the data area of arr is Fortran-style contiguous and PyArray_ISBEHAVED (arr) is true.

int PyArray_ISCARRAY_RO(PyObject *arr)
Evaluates true if the data area of arr is C-style contiguous, aligned, and in machine byte-order.

int PyArray_ISFARRAY_RO(PyObject *arr)
Evaluates true if the data area of arr is Fortran-style contiguous, aligned, and in machine byte-order .

1922 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int PyArray_ISONESEGMENT(PyObject *arr)
Evaluates true if the data area of arr consists of a single (C-style or Fortran-style) contiguous segment.

void PyArray_UpdateFlags(PyArrayObject *arr, int flagmask)
The NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_ALIGNED, and NPY_ARRAY_F_CONTIGUOUS array
flags can be “calculated” from the array object itself. This routine updates one or more of these flags of arr as
specified in flagmask by performing the required calculation.

Warning: It is important to keep the flags updated (using PyArray_UpdateFlags can help) whenever a ma-
nipulation with an array is performed that might cause them to change. Later calculations in NumPy that rely on the
state of these flags do not repeat the calculation to update them.

int PyArray_FailUnlessWriteable(PyArrayObject *obj, const char *name)
This function does nothing and returns 0 if obj is writeable. It raises an exception and returns -1 if obj is not
writeable. It may also do other house-keeping, such as issuing warnings on arrays which are transitioning to become
views. Always call this function at some point before writing to an array.
name is a name for the array, used to give better error messages. It can be something like “assignment destination”,
“output array”, or even just “array”.

ArrayMethod API

ArrayMethod loops are intended as a generic mechanism for writing loops over arrays, including ufunc loops
and casts. The public API is defined in the numpy/dtype_api.h header. See PyArrayMethod_Context and
PyArrayMethod_Spec for documentation on the C structs exposed in the ArrayMethod API.

Slots and Typedefs
These are used to identify which kind of function an ArrayMethod slot implements. See Slots and Typedefs below for
documentation on the functions that must be implemented for each slot.
NPY_METH_resolve_descriptors

typedef NPY_CASTING (PyArrayMethod_ResolveDescriptors)(struct PyArrayMethodObject_tag *method,
PyArray_DTypeMeta *const *dtypes, PyArray_Descr *const *given_descrs, PyArray_Descr **loop_descrs, npy_intp
*view_offset)

The function used to set the descriptors for an operation based on the descriptors of the operands. For example, a
ufunc operation with two input operands and one output operand that is called without out being set in the python
API, resolve_descriptors will be passed the descriptors for the two operands and determine the correct
descriptor to use for the output based on the output DType set for the ArrayMethod. If out is set, then the output
descriptor would be passed in as well and should not be overridden.
The method is a pointer to the underlying cast or ufunc loop. In the future we may expose this struct publicly but
for now this is an opaque pointer and the method cannot be inspected. The dtypes is an nargs length array of
PyArray_DTypeMeta pointers, given_descrs is an nargs length array of input descriptor instances (output
descriptors may be NULL if no output was provided by the user), and loop_descrs is an nargs length array of
descriptors that must be filled in by the resolve descriptors implementation. view_offset is currently only interesting
for casts and can normally be ignored. When a cast does not require any operation, this can be signalled by setting
view_offset to 0. On error, you must return (NPY_CASTING)-1 with an error set.

NPY_METH_strided_loop

NPY_METH_contiguous_loop

2.1. NumPy C-API 1923

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

NPY_METH_unaligned_strided_loop

NPY_METH_unaligned_contiguous_loop

One dimensional strided loops implementing the behavior (either a ufunc or cast). In most cases,
NPY_METH_strided_loop is the generic and only version that needs to be implemented.
NPY_METH_contiguous_loop can be implemented additionally as a more light-weight/faster version
and it is used when all inputs and outputs are contiguous.
To deal with possibly unaligned data, NumPy needs to be able to copy unaligned to aligned data. When imple-
menting a newDType, the “cast” or copy for it needs to implementNPY_METH_unaligned_strided_loop.
Unlike the normal versions, this loop must not assume that the data can be accessed in an aligned fashion. These
loops must copy each value before accessing or storing:

type_in in_value;
type_out out_value
memcpy(&value, in_data, sizeof(type_in));
out_value = in_value;
memcpy(out_data, &out_value, sizeof(type_out)

while a normal loop can just use:

*(type_out *)out_data = *(type_in)in_data;

The unaligned loops are currently only used in casts and will never be picked in ufuncs (ufuncs create a temporary
copy to ensure aligned inputs). These slot IDs are ignored when NPY_METH_get_loop is defined, where instead
whichever loop returned by the get_loop function is used.

NPY_METH_contiguous_indexed_loop

A specialized inner-loop option to speed up common ufunc.at computations.
typedef int (PyArrayMethod_StridedLoop)(PyArrayMethod_Context *context, char *const *data, const
npy_intp *dimensions, const npy_intp *strides, NpyAuxData *auxdata)

An implementation of an ArrayMethod loop. All of the loop slot IDs listed above must provide a
PyArrayMethod_StridedLoop implementation. The context is a struct containing context for the loop oper-
ation - in particular the input descriptors. The data are an array of pointers to the beginning of the input and output
array buffers. The dimensions are the loop dimensions for the operation. The strides are an nargs length array of
strides for each input. The auxdata is an optional set of auxiliary data that can be passed in to the loop - helpful to
turn on and off optional behavior or reduce boilerplate by allowing similar ufuncs to share loop implementations
or to allocate space that is persistent over multiple strided loop calls.

NPY_METH_get_loop

Allows more fine-grained control over loop selection. Accepts an implementation of PyArrayMethod_GetLoop,
which in turn returns a strided loop implementation. If NPY_METH_get_loop is defined, the other loop slot
IDs are ignored, if specified.

typedef int (PyArrayMethod_GetLoop)(PyArrayMethod_Context *context, int aligned, int move_references, const
npy_intp *strides, PyArrayMethod_StridedLoop **out_loop, NpyAuxData **out_transferdata,
NPY_ARRAYMETHOD_FLAGS *flags);

Sets the loop to use for an operation at runtime. The context is the runtime context for the operation. aligned
indicates whether the data access for the loop is aligned (1) or unaligned (0). move_references indicates whether
embedded references in the data should be copied. strides are the strides for the input array, out_loop is a pointer
that must be filled in with a pointer to the loop implementation. out_transferdata can be optionally filled in to allow
passing in extra user-defined context to an operation. flags must be filled in with ArrayMethod flags relevant for
the operation. This is for example necessary to indicate if the inner loop requires the Python GIL to be held.

NPY_METH_get_reduction_initial

1924 2. C API

NumPy Reference, Release 2.2.0

typedef int (PyArrayMethod_GetReductionInitial)(PyArrayMethod_Context *context, npy_bool
reduction_is_empty, char *initial)

Query an ArrayMethod for the initial value for use in reduction. The context is the ArrayMethod context, mainly
to access the input descriptors. reduction_is_empty indicates whether the reduction is empty. When it is, the value
returned may differ. In this case it is a “default” value that may differ from the “identity” value normally used. For
example:

• 0.0 is the default for sum([]). But -0.0 is the correct identity otherwise as it preserves the sign for
sum([-0.0]).

• We use no identity for object, but return the default of 0 and 1 for the empty sum([],
dtype=object) and prod([], dtype=object). This allows np.sum(np.array(["a",
"b"], dtype=object)) to work.

• -inf or INT_MIN for max is an identity, but at least INT_MIN not a good default when there are no items.
initial is a pointer to the data for the initial value, which should be filled in. Returns -1, 0, or 1 indicating error, no
initial value, and the initial value being successfully filled. Errors must not be given when no initial value is correct,
since NumPy may call this even when it is not strictly necessary to do so.

Flags
enum NPY_ARRAYMETHOD_FLAGS

These flags allow switching on and off custom runtime behavior for ArrayMethod loops. For example, if a ufunc
cannot possibly trigger floating point errors, then the NPY_METH_NO_FLOATINGPOINT_ERRORS flag should
be set on the ufunc when it is registered.
enumerator NPY_METH_REQUIRES_PYAPI

Indicates the method must hold the GIL. If this flag is not set, the GIL is released before the loop is called.
enumerator NPY_METH_NO_FLOATINGPOINT_ERRORS

Indicates the method cannot generate floating errors, so checking for floating errors after the loop completes
can be skipped.

enumerator NPY_METH_SUPPORTS_UNALIGNED
Indicates the method supports unaligned access.

enumerator NPY_METH_IS_REORDERABLE
Indicates that the result of applying the loop repeatedly (for example, in a reduction operation) does not
depend on the order of application.

enumerator NPY_METH_RUNTIME_FLAGS
The flags that can be changed at runtime.

Typedefs
Typedefs for functions that users of the ArrayMethod API can implement are described below.
typedef int (PyArrayMethod_TraverseLoop)(void *traverse_context, const PyArray_Descr *descr, char *data,
npy_intp size, npy_intp stride, NpyAuxData *auxdata)

A traverse loop working on a single array. This is similar to the general strided-loop function. This is designed for
loops that need to visit every element of a single array.
Currently this is used for array clearing, via the NPY_DT_get_clear_loopDType API hook, and zero-filling,
via the NPY_DT_get_fill_zero_loop DType API hook. These are most useful for handling arrays storing
embedded references to python objects or heap-allocated data.
The descr is the descriptor for the array, data is a pointer to the array buffer, size is the 1D size of the array buffer,
stride is the stride, and auxdata is optional extra data for the loop.

2.1. NumPy C-API 1925

NumPy Reference, Release 2.2.0

The traverse_context is passed in because we may need to pass in Interpreter state or similar in the future, but we
don’t want to pass in a full context (with pointers to dtypes, method, caller which all make no sense for a traverse
function). We assume for now that this context can be just passed through in the future (for structured dtypes).

typedef int (PyArrayMethod_GetTraverseLoop)(void *traverse_context, const PyArray_Descr *descr, int
aligned, npy_intp fixed_stride, PyArrayMethod_TraverseLoop **out_loop, NpyAuxData **out_auxdata,
NPY_ARRAYMETHOD_FLAGS *flags)

Simplified get_loop function specific to dtype traversal
It should set the flags needed for the traversal loop and set out_loop to the loop function, which must be a valid
PyArrayMethod_TraverseLoop pointer. Currently this is used for zero-filling and clearing arrays storing
embedded references.

API Functions and Typedefs
These functions are part of the main numpy array API and were added along with the rest of the ArrayMethod API.
int PyUFunc_AddLoopFromSpec(PyObject *ufunc, PyArrayMethod_Spec *spec)

Add loop directly to a ufunc from a given ArrayMethod spec. the main ufunc registration function. This adds a
new implementation/loop to a ufunc. It replaces PyUFunc_RegisterLoopForType.

int PyUFunc_AddPromoter(PyObject *ufunc, PyObject *DType_tuple, PyObject *promoter)
Note that currently the output dtypes are always NULL unless they are also part of the signature. This is an imple-
mentation detail and could change in the future. However, in general promoters should not have a need for output
dtypes. Register a new promoter for a ufunc. The first argument is the ufunc to register the promoter with. The
second argument is a Python tuple containing DTypes or None matching the number of inputs and outputs for
the ufuncs. The last argument is a promoter is a function stored in a PyCapsule. It is passed the operation and
requested DType signatures and can mutate it to attempt a new search for a matching loop/promoter.

typedef int (PyArrayMethod_PromoterFunction)(PyObject *ufunc, PyArray_DTypeMeta *const op_dtypes[],
PyArray_DTypeMeta *const signature[], PyArray_DTypeMeta *new_op_dtypes[])

Type of the promoter function, which must be wrapped into a PyCapsule with name "numpy.
_ufunc_promoter". It is passed the operation and requested DType signatures and can mutate the signatures
to attempt a search for a new loop or promoter that can accomplish the operation by casting the inputs to the
“promoted” DTypes.

int PyUFunc_GiveFloatingpointErrors(const char *name, int fpe_errors)
Checks for a floating point error after performing a floating point operation in a manner that takes into account the
error signaling configured vianumpy.errstate. Takes the name of the operation to use in the errormessage and
an integer flag that is one of NPY_FPE_DIVIDEBYZERO, NPY_FPE_OVERFLOW, NPY_FPE_UNDERFLOW,
NPY_FPE_INVALID to indicate which error to check for.
Returns -1 on failure (an error was raised) and 0 on success.

int PyUFunc_AddWrappingLoop(PyObject *ufunc_obj, PyArray_DTypeMeta *new_dtypes[],
PyArray_DTypeMeta *wrapped_dtypes[],
PyArrayMethod_TranslateGivenDescriptors *translate_given_descrs,
PyArrayMethod_TranslateLoopDescriptors *translate_loop_descrs)

Allows creating of a fairly lightweight wrapper around an existing ufunc loop. The idea is mainly for units, as this
is currently slightly limited in that it enforces that you cannot use a loop from another ufunc.

typedef int (PyArrayMethod_TranslateGivenDescriptors)(int nin, int nout, PyArray_DTypeMeta
*wrapped_dtypes[], PyArray_Descr *given_descrs[], PyArray_Descr *new_descrs[]);

The function to convert the given descriptors (passed in to resolve_descriptors) and translates them for
the wrapped loop. The new descriptors MUST be viewable with the old ones, NULLmust be supported (for output
arguments) and should normally be forwarded.

1926 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

The output of of this function will be used to construct views of the arguments as if they were the translated
dtypes and does not use a cast. This means this mechanism is mostly useful for DTypes that “wrap” another DType
implementation. For example, a unit DType could use this to wrap an existing floating point DType without needing
to re-implement low-level ufunc logic. In the unit example, resolve_descriptors would handle computing
the output unit from the input unit.

typedef int (PyArrayMethod_TranslateLoopDescriptors)(int nin, int nout, PyArray_DTypeMeta
*new_dtypes[], PyArray_Descr *given_descrs[], PyArray_Descr *original_descrs[], PyArray_Descr *loop_descrs[]);

The function to convert the actual loop descriptors (as returned by the original resolve_descriptors function) to the
ones the output array should use. This function must return “viewable” types, it must not mutate them in any form
that would break the inner-loop logic. Does not need to support NULL.

Wrapping Loop Example

Suppose you want to wrap the float64 multiply implementation for a WrappedDoubleDType. You would add a
wrapping loop like so:

PyArray_DTypeMeta *orig_dtypes[3] = {
&WrappedDoubleDType, &WrappedDoubleDType, &WrappedDoubleDType};

PyArray_DTypeMeta *wrapped_dtypes[3] = {
&PyArray_Float64DType, &PyArray_Float64DType, &PyArray_Float64DType}

PyObject *mod = PyImport_ImportModule("numpy");
if (mod == NULL) {

return -1;
}
PyObject *multiply = PyObject_GetAttrString(mod, "multiply");
Py_DECREF(mod);

if (multiply == NULL) {
return -1;

}

int res = PyUFunc_AddWrappingLoop(
multiply, orig_dtypes, wrapped_dtypes, &translate_given_descrs
&translate_loop_descrs);

Py_DECREF(multiply);

Note that this also requires two functions to be defined above this code:

static int
translate_given_descrs(int nin, int nout,

PyArray_DTypeMeta *NPY_UNUSED(wrapped_dtypes[]),
PyArray_Descr *given_descrs[],
PyArray_Descr *new_descrs[])

{
for (int i = 0; i < nin + nout; i++) {

if (given_descrs[i] == NULL) {
new_descrs[i] = NULL;

}
else {

new_descrs[i] = PyArray_DescrFromType(NPY_DOUBLE);
}

}
return 0;

(continues on next page)

2.1. NumPy C-API 1927

NumPy Reference, Release 2.2.0

(continued from previous page)
}

static int
translate_loop_descrs(int nin, int NPY_UNUSED(nout),

PyArray_DTypeMeta *NPY_UNUSED(new_dtypes[]),
PyArray_Descr *given_descrs[],
PyArray_Descr *original_descrs[],
PyArray_Descr *loop_descrs[])

{
// more complicated parametric DTypes may need to
// to do additional checking, but we know the wrapped
// DTypes *have* to be float64 for this example.
loop_descrs[0] = PyArray_DescrFromType(NPY_FLOAT64);
Py_INCREF(loop_descrs[0]);
loop_descrs[1] = PyArray_DescrFromType(NPY_FLOAT64);
Py_INCREF(loop_descrs[1]);
loop_descrs[2] = PyArray_DescrFromType(NPY_FLOAT64);
Py_INCREF(loop_descrs[2]);

}

API for calling array methods

Conversion
PyObject *PyArray_GetField(PyArrayObject *self, PyArray_Descr *dtype, int offset)

Equivalent to ndarray.getfield (self, dtype, offset). This function steals a reference to PyArray_Descr
and returns a new array of the given dtype using the data in the current array at a specified offset in bytes. The offset
plus the itemsize of the new array type must be less than self->descr->elsize or an error is raised. The
same shape and strides as the original array are used. Therefore, this function has the effect of returning a field
from a structured array. But, it can also be used to select specific bytes or groups of bytes from any array type.

int PyArray_SetField(PyArrayObject *self, PyArray_Descr *dtype, int offset, PyObject *val)
Equivalent to ndarray.setfield (self, val, dtype, offset). Set the field starting at offset in bytes and of
the given dtype to val. The offset plus dtype ->elsize must be less than self ->descr->elsize or an error is raised.
Otherwise, the val argument is converted to an array and copied into the field pointed to. If necessary, the elements
of val are repeated to fill the destination array, But, the number of elements in the destination must be an integer
multiple of the number of elements in val.

PyObject *PyArray_Byteswap(PyArrayObject *self, npy_bool inplace)
Equivalent to ndarray.byteswap (self, inplace). Return an array whose data area is byteswapped. If inplace
is non-zero, then do the byteswap inplace and return a reference to self. Otherwise, create a byteswapped copy and
leave self unchanged.

PyObject *PyArray_NewCopy(PyArrayObject *old, NPY_ORDER order)
Equivalent to ndarray.copy (self, fortran). Make a copy of the old array. The returned array is always aligned
and writeable with data interpreted the same as the old array. If order is NPY_CORDER, then a C-style contiguous
array is returned. If order is NPY_FORTRANORDER, then a Fortran-style contiguous array is returned. If order is
NPY_ANYORDER, then the array returned is Fortran-style contiguous only if the old one is; otherwise, it is C-style
contiguous.

PyObject *PyArray_ToList(PyArrayObject *self)
Equivalent to ndarray.tolist (self). Return a nested Python list from self.

PyObject *PyArray_ToString(PyArrayObject *self, NPY_ORDER order)
Equivalent to ndarray.tobytes (self, order). Return the bytes of this array in a Python string.

1928 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/intro.html?reference-count-details
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyObject *PyArray_ToFile(PyArrayObject *self, FILE *fp, char *sep, char *format)
Write the contents of self to the file pointer fp in C-style contiguous fashion. Write the data as binary bytes if sep is
the string “”or NULL. Otherwise, write the contents of self as text using the sep string as the item separator. Each
item will be printed to the file. If the format string is not NULL or “”, then it is a Python print statement format
string showing how the items are to be written.

int PyArray_Dump(PyObject *self, PyObject *file, int protocol)
Pickle the object in self to the given file (either a string or a Python file object). If file is a Python string it is
considered to be the name of a file which is then opened in binary mode. The given protocol is used (if protocol is
negative, or the highest available is used). This is a simple wrapper around cPickle.dump(self, file, protocol).

PyObject *PyArray_Dumps(PyObject *self, int protocol)
Pickle the object in self to a Python string and return it. Use the Pickle protocol provided (or the highest available
if protocol is negative).

int PyArray_FillWithScalar(PyArrayObject *arr, PyObject *obj)
Fill the array, arr, with the given scalar object, obj. The object is first converted to the data type of arr, and then
copied into every location. A -1 is returned if an error occurs, otherwise 0 is returned.

PyObject *PyArray_View(PyArrayObject *self, PyArray_Descr *dtype, PyTypeObject *ptype)
Equivalent to ndarray.view (self, dtype). Return a new view of the array self as possibly a different data-type,
dtype, and different array subclass ptype.
If dtype is NULL, then the returned array will have the same data type as self. The new data-type must be consistent
with the size of self. Either the itemsizes must be identical, or self must be single-segment and the total number of
bytes must be the same. In the latter case the dimensions of the returned array will be altered in the last (or first
for Fortran-style contiguous arrays) dimension. The data area of the returned array and self is exactly the same.

Shape Manipulation
PyObject *PyArray_Newshape(PyArrayObject *self, PyArray_Dims *newshape, NPY_ORDER order)

Result will be a new array (pointing to the same memory location as self if possible), but having a shape given by
newshape. If the new shape is not compatible with the strides of self, then a copy of the array with the new specified
shape will be returned.

PyObject *PyArray_Reshape(PyArrayObject *self, PyObject *shape)
Equivalent to ndarray.reshape (self, shape) where shape is a sequence. Converts shape to a
PyArray_Dims structure and calls PyArray_Newshape internally. For back-ward compatibility – Not rec-
ommended

PyObject *PyArray_Squeeze(PyArrayObject *self)
Equivalent to ndarray.squeeze (self). Return a new view of self with all of the dimensions of length 1
removed from the shape.

Warning: matrix objects are always 2-dimensional. Therefore, PyArray_Squeeze has no effect on arrays of
matrix sub-class.

PyObject *PyArray_SwapAxes(PyArrayObject *self, int a1, int a2)
Equivalent to ndarray.swapaxes (self, a1, a2). The returned array is a new view of the data in self with the
given axes, a1 and a2, swapped.

PyObject *PyArray_Resize(PyArrayObject *self, PyArray_Dims *newshape, int refcheck, NPY_ORDER fortran)
Equivalent to ndarray.resize (self, newshape, refcheck = refcheck, order= fortran). This function only works
on single-segment arrays. It changes the shape of self inplace and will reallocate the memory for self if newshape
has a different total number of elements then the old shape. If reallocation is necessary, then self must own its

2.1. NumPy C-API 1929

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

data, have self - >base==NULL, have self - >weakrefs==NULL, and (unless refcheck is 0) not be referenced
by any other array. The fortran argument can be NPY_ANYORDER, NPY_CORDER, or NPY_FORTRANORDER.
It currently has no effect. Eventually it could be used to determine how the resize operation should view the data
when constructing a differently-dimensioned array. Returns None on success and NULL on error.

PyObject *PyArray_Transpose(PyArrayObject *self, PyArray_Dims *permute)
Equivalent to ndarray.transpose (self, permute). Permute the axes of the ndarray object self according to
the data structure permute and return the result. If permute is NULL, then the resulting array has its axes reversed.
For example if self has shape 10× 20× 30, and permute .ptr is (0,2,1) the shape of the result is 10× 30× 20.
If permute is NULL, the shape of the result is 30× 20× 10.

PyObject *PyArray_Flatten(PyArrayObject *self, NPY_ORDER order)
Equivalent to ndarray.flatten (self, order). Return a 1-d copy of the array. If order is
NPY_FORTRANORDER the elements are scanned out in Fortran order (first-dimension varies the fastest). If or-
der is NPY_CORDER, the elements of self are scanned in C-order (last dimension varies the fastest). If order
NPY_ANYORDER, then the result of PyArray_ISFORTRAN (self) is used to determine which order to flatten.

PyObject *PyArray_Ravel(PyArrayObject *self, NPY_ORDER order)
Equivalent to self.ravel(order). Same basic functionality as PyArray_Flatten (self, order) except if order is 0
and self is C-style contiguous, the shape is altered but no copy is performed.

Item selection and manipulation
PyObject *PyArray_TakeFrom(PyArrayObject *self, PyObject *indices, int axis, PyArrayObject *ret,

NPY_CLIPMODE clipmode)
Equivalent to ndarray.take (self, indices, axis, ret, clipmode) except axis =None in Python is obtained by
setting axis = NPY_MAXDIMS in C. Extract the items from self indicated by the integer-valued indices along the
given axis. The clipmode argument can be NPY_RAISE, NPY_WRAP, or NPY_CLIP to indicate what to do with
out-of-bound indices. The ret argument can specify an output array rather than having one created internally.

PyObject *PyArray_PutTo(PyArrayObject *self, PyObject *values, PyObject *indices, NPY_CLIPMODE
clipmode)

Equivalent to self.put(values, indices, clipmode). Put values into self at the corresponding (flattened) indices. If
values is too small it will be repeated as necessary.

PyObject *PyArray_PutMask(PyArrayObject *self, PyObject *values, PyObject *mask)
Place the values in self wherever corresponding positions (using a flattened context) in mask are true. The mask
and self arrays must have the same total number of elements. If values is too small, it will be repeated as necessary.

PyObject *PyArray_Repeat(PyArrayObject *self, PyObject *op, int axis)
Equivalent to ndarray.repeat (self, op, axis). Copy the elements of self, op times along the given axis. Either
op is a scalar integer or a sequence of length self ->dimensions[axis] indicating how many times to repeat each
item along the axis.

PyObject *PyArray_Choose(PyArrayObject *self, PyObject *op, PyArrayObject *ret, NPY_CLIPMODE
clipmode)

Equivalent to ndarray.choose (self, op, ret, clipmode). Create a new array by selecting elements from the
sequence of arrays in op based on the integer values in self. The arrays must all be broadcastable to the same shape
and the entries in self should be between 0 and len(op). The output is placed in ret unless it is NULL in which case
a new output is created. The clipmode argument determines behavior for when entries in self are not between 0
and len(op).
NPY_RAISE

raise a ValueError;

1930 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

NPY_WRAP

wrap values < 0 by adding len(op) and values >=len(op) by subtracting len(op) until they are in range;
NPY_CLIP

all values are clipped to the region [0, len(op)).
PyObject *PyArray_Sort(PyArrayObject *self, int axis, NPY_SORTKIND kind)

Equivalent tondarray.sort (self, axis, kind). Return an array with the items of self sorted along axis. The array
is sorted using the algorithm denoted by kind, which is an integer/enum pointing to the type of sorting algorithms
used.

PyObject *PyArray_ArgSort(PyArrayObject *self, int axis)
Equivalent to ndarray.argsort (self, axis). Return an array of indices such that selection of these indices
along the given axis would return a sorted version of self. If self ->descr is a data-type with fields defined, then
self->descr->names is used to determine the sort order. A comparison where the first field is equal will use the
second field and so on. To alter the sort order of a structured array, create a new data-type with a different order
of names and construct a view of the array with that new data-type.

PyObject *PyArray_LexSort(PyObject *sort_keys, int axis)
Given a sequence of arrays (sort_keys) of the same shape, return an array of indices (similar to
PyArray_ArgSort (…)) that would sort the arrays lexicographically. A lexicographic sort specifies that when
two keys are found to be equal, the order is based on comparison of subsequent keys. A merge sort (which leaves
equal entries unmoved) is required to be defined for the types. The sort is accomplished by sorting the indices first
using the first sort_key and then using the second sort_key and so forth. This is equivalent to the lexsort(sort_keys,
axis) Python command. Because of the way the merge-sort works, be sure to understand the order the sort_keys
must be in (reversed from the order you would use when comparing two elements).
If these arrays are all collected in a structured array, then PyArray_Sort (…) can also be used to sort the array
directly.

PyObject *PyArray_SearchSorted(PyArrayObject *self, PyObject *values, NPY_SEARCHSIDE side, PyObject
*perm)

Equivalent to ndarray.searchsorted (self, values, side, perm). Assuming self is a 1-d array in ascending
order, then the output is an array of indices the same shape as values such that, if the elements in values were
inserted before the indices, the order of self would be preserved. No checking is done on whether or not self is in
ascending order.
The side argument indicates whether the index returned should be that of the first suitable location (if
NPY_SEARCHLEFT) or of the last (if NPY_SEARCHRIGHT).
The sorter argument, if not NULL, must be a 1D array of integer indices the same length as self, that sorts it into
ascending order. This is typically the result of a call to PyArray_ArgSort (…) Binary search is used to find
the required insertion points.

int PyArray_Partition(PyArrayObject *self, PyArrayObject *ktharray, int axis, NPY_SELECTKIND which)
Equivalent to ndarray.partition (self, ktharray, axis, kind). Partitions the array so that the values of the
element indexed by ktharray are in the positions they would be if the array is fully sorted and places all elements
smaller than the kth before and all elements equal or greater after the kth element. The ordering of all elements
within the partitions is undefined. If self->descr is a data-type with fields defined, then self->descr->names is used
to determine the sort order. A comparison where the first field is equal will use the second field and so on. To alter
the sort order of a structured array, create a new data-type with a different order of names and construct a view of
the array with that new data-type. Returns zero on success and -1 on failure.

PyObject *PyArray_ArgPartition(PyArrayObject *op, PyArrayObject *ktharray, int axis, NPY_SELECTKIND
which)

Equivalent to ndarray.argpartition (self, ktharray, axis, kind). Return an array of indices such that se-
lection of these indices along the given axis would return a partitioned version of self.

2.1. NumPy C-API 1931

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

PyObject *PyArray_Diagonal(PyArrayObject *self, int offset, int axis1, int axis2)
Equivalent to ndarray.diagonal (self, offset, axis1, axis2). Return the offset diagonals of the 2-d arrays
defined by axis1 and axis2.

npy_intp PyArray_CountNonzero(PyArrayObject *self)
Counts the number of non-zero elements in the array object self.

PyObject *PyArray_Nonzero(PyArrayObject *self)
Equivalent to ndarray.nonzero (self). Returns a tuple of index arrays that select elements of self that are
nonzero. If (nd= PyArray_NDIM (self))==1, then a single index array is returned. The index arrays have
data type NPY_INTP. If a tuple is returned (nd ̸= 1), then its length is nd.

PyObject *PyArray_Compress(PyArrayObject *self, PyObject *condition, int axis, PyArrayObject *out)
Equivalent to ndarray.compress (self, condition, axis). Return the elements along axis corresponding to
elements of condition that are true.

Calculation

Tip: Pass in NPY_RAVEL_AXIS for axis in order to achieve the same effect that is obtained by passing in axis=None
in Python (treating the array as a 1-d array).

Note: The out argument specifies where to place the result. If out is NULL, then the output array is created, otherwise
the output is placed in out which must be the correct size and type. A new reference to the output array is always returned
even when out is not NULL. The caller of the routine has the responsibility to Py_DECREF out if not NULL or a
memory-leak will occur.

PyObject *PyArray_ArgMax(PyArrayObject *self, int axis, PyArrayObject *out)
Equivalent to ndarray.argmax (self, axis). Return the index of the largest element of self along axis.

PyObject *PyArray_ArgMin(PyArrayObject *self, int axis, PyArrayObject *out)
Equivalent to ndarray.argmin (self, axis). Return the index of the smallest element of self along axis.

PyObject *PyArray_Max(PyArrayObject *self, int axis, PyArrayObject *out)
Equivalent to ndarray.max (self, axis). Returns the largest element of self along the given axis. When the result
is a single element, returns a numpy scalar instead of an ndarray.

PyObject *PyArray_Min(PyArrayObject *self, int axis, PyArrayObject *out)
Equivalent to ndarray.min (self, axis). Return the smallest element of self along the given axis. When the
result is a single element, returns a numpy scalar instead of an ndarray.

PyObject *PyArray_Ptp(PyArrayObject *self, int axis, PyArrayObject *out)
Return the difference between the largest element of self along axis and the smallest element of self along axis.
When the result is a single element, returns a numpy scalar instead of an ndarray.

Note: The rtype argument specifies the data-type the reduction should take place over. This is important if the data-
type of the array is not “large” enough to handle the output. By default, all integer data-types are made at least as large
as NPY_LONG for the “add” and “multiply” ufuncs (which form the basis for mean, sum, cumsum, prod, and cumprod
functions).

PyObject *PyArray_Mean(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
Equivalent to ndarray.mean (self, axis, rtype). Returns the mean of the elements along the given axis, using

1932 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

the enumerated type rtype as the data type to sum in. Default sum behavior is obtained using NPY_NOTYPE for
rtype.

PyObject *PyArray_Trace(PyArrayObject *self, int offset, int axis1, int axis2, int rtype, PyArrayObject *out)
Equivalent to ndarray.trace (self, offset, axis1, axis2, rtype). Return the sum (using rtype as the data type
of summation) over the offset diagonal elements of the 2-d arrays defined by axis1 and axis2 variables. A positive
offset chooses diagonals above the main diagonal. A negative offset selects diagonals below the main diagonal.

PyObject *PyArray_Clip(PyArrayObject *self, PyObject *min, PyObject *max)
Equivalent to ndarray.clip (self, min, max). Clip an array, self, so that values larger than max are fixed to
max and values less than min are fixed to min.

PyObject *PyArray_Conjugate(PyArrayObject *self, PyArrayObject *out)
Equivalent to ndarray.conjugate (self). Return the complex conjugate of self. If self is not of complex data
type, then return self with a reference.

Parameters
• self – Input array.
• out – Output array. If provided, the result is placed into this array.

Returns
The complex conjugate of self.

PyObject *PyArray_Round(PyArrayObject *self, int decimals, PyArrayObject *out)
Equivalent to ndarray.round (self, decimals, out). Returns the array with elements rounded to the nearest
decimal place. The decimal place is defined as the 10−decimals digit so that negative decimals cause rounding to the
nearest 10’s, 100’s, etc. If out is NULL, then the output array is created, otherwise the output is placed in out which
must be the correct size and type.

PyObject *PyArray_Std(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
Equivalent to ndarray.std (self, axis, rtype). Return the standard deviation using data along axis converted to
data type rtype.

PyObject *PyArray_Sum(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
Equivalent to ndarray.sum (self, axis, rtype). Return 1-d vector sums of elements in self along axis. Perform
the sum after converting data to data type rtype.

PyObject *PyArray_CumSum(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
Equivalent to ndarray.cumsum (self, axis, rtype). Return cumulative 1-d sums of elements in self along axis.
Perform the sum after converting data to data type rtype.

PyObject *PyArray_Prod(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
Equivalent to ndarray.prod (self, axis, rtype). Return 1-d products of elements in self along axis. Perform the
product after converting data to data type rtype.

PyObject *PyArray_CumProd(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
Equivalent to ndarray.cumprod (self, axis, rtype). Return 1-d cumulative products of elements in self along
axis. Perform the product after converting data to data type rtype.

PyObject *PyArray_All(PyArrayObject *self, int axis, PyArrayObject *out)
Equivalent to ndarray.all (self, axis). Return an array with True elements for every 1-d sub-array of self
defined by axis in which all the elements are True.

PyObject *PyArray_Any(PyArrayObject *self, int axis, PyArrayObject *out)
Equivalent to ndarray.any (self, axis). Return an array with True elements for every 1-d sub-array of self
defined by axis in which any of the elements are True.

2.1. NumPy C-API 1933

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Functions

Array Functions
int PyArray_AsCArray(PyObject **op, void *ptr, npy_intp *dims, int nd, PyArray_Descr *typedescr)

Sometimes it is useful to access a multidimensional array as a C-style multi-dimensional array so that algorithms can
be implemented using C’s a[i][j][k] syntax. This routine returns a pointer, ptr, that simulates this kind of C-style
array, for 1-, 2-, and 3-d ndarrays.

Parameters
• op – The address to any Python object. This Python object will be replaced with an equiva-
lent well-behaved, C-style contiguous, ndarray of the given data type specified by the last two
arguments. Be sure that stealing a reference in this way to the input object is justified.

• ptr – The address to a (ctype* for 1-d, ctype** for 2-d or ctype*** for 3-d) variable where
ctype is the equivalent C-type for the data type. On return, ptr will be addressable as a 1-d,
2-d, or 3-d array.

• dims –An output array that contains the shape of the array object. This array gives boundaries
on any looping that will take place.

• nd – The dimensionality of the array (1, 2, or 3).
• typedescr – A PyArray_Descr structure indicating the desired data-type (including
required byteorder). The call will steal a reference to the parameter.

Note: The simulation of a C-style array is not complete for 2-d and 3-d arrays. For example, the simulated arrays of
pointers cannot be passed to subroutines expecting specific, statically-defined 2-d and 3-d arrays. To pass to functions
requiring those kind of inputs, you must statically define the required array and copy data.

int PyArray_Free(PyObject *op, void *ptr)
Must be called with the same objects and memory locations returned from PyArray_AsCArray (…). This
function cleans up memory that otherwise would get leaked.

PyObject *PyArray_Concatenate(PyObject *obj, int axis)
Join the sequence of objects in obj together along axis into a single array. If the dimensions or types are not
compatible an error is raised.

PyObject *PyArray_InnerProduct(PyObject *obj1, PyObject *obj2)
Compute a product-sum over the last dimensions of obj1 and obj2. Neither array is conjugated.

PyObject *PyArray_MatrixProduct(PyObject *obj1, PyObject *obj)
Compute a product-sum over the last dimension of obj1 and the second-to-last dimension of obj2. For 2-d arrays
this is a matrix-product. Neither array is conjugated.

PyObject *PyArray_MatrixProduct2(PyObject *obj1, PyObject *obj, PyArrayObject *out)
Same as PyArray_MatrixProduct, but store the result in out. The output array must have the correct shape, type,
and be C-contiguous, or an exception is raised.

PyArrayObject *PyArray_EinsteinSum(char *subscripts, npy_intp nop, PyArrayObject **op_in, PyArray_Descr
*dtype, NPY_ORDER order, NPY_CASTING casting, PyArrayObject
*out)

Applies the Einstein summation convention to the array operands provided, returning a new array or placing the
result in out. The string in subscripts is a comma separated list of index letters. The number of operands is in
nop, and op_in is an array containing those operands. The data type of the output can be forced with dtype, the

1934 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

output order can be forced with order (NPY_KEEPORDER is recommended), and when dtype is specified, casting
indicates how permissive the data conversion should be.
See the einsum function for more details.

PyObject *PyArray_Correlate(PyObject *op1, PyObject *op2, int mode)
Compute the 1-d correlation of the 1-d arrays op1 and op2 . The correlation is computed at each output point by
multiplying op1 by a shifted version of op2 and summing the result. As a result of the shift, needed values outside
of the defined range of op1 and op2 are interpreted as zero. The mode determines how many shifts to return: 0
- return only shifts that did not need to assume zero- values; 1 - return an object that is the same size as op1, 2 -
return all possible shifts (any overlap at all is accepted).

Notes

This does not compute the usual correlation: if op2 is larger than op1, the arguments are swapped, and the conjugate
is never taken for complex arrays. See PyArray_Correlate2 for the usual signal processing correlation.

PyObject *PyArray_Correlate2(PyObject *op1, PyObject *op2, int mode)
Updated version of PyArray_Correlate, which uses the usual definition of correlation for 1d arrays. The correlation
is computed at each output point by multiplying op1 by a shifted version of op2 and summing the result. As a result
of the shift, needed values outside of the defined range of op1 and op2 are interpreted as zero. The mode determines
how many shifts to return: 0 - return only shifts that did not need to assume zero- values; 1 - return an object that
is the same size as op1, 2 - return all possible shifts (any overlap at all is accepted).

Notes

Compute z as follows:

z[k] = sum_n op1[n] * conj(op2[n+k])

PyObject *PyArray_Where(PyObject *condition, PyObject *x, PyObject *y)
If both x and y are NULL, then return PyArray_Nonzero (condition). Otherwise, both x and y must be given
and the object returned is shaped like condition and has elements of x and y where condition is respectively True or
False.

Other functions
npy_bool PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp const *dims, npy_intp const

*newstrides)
Determine if newstrides is a strides array consistent with the memory of an nd -dimensional array with shape dims
and element-size, elsize. The newstrides array is checked to see if jumping by the provided number of bytes in each
direction will ever mean jumping more than numbytes which is the assumed size of the available memory segment.
If numbytes is 0, then an equivalent numbytes is computed assuming nd, dims, and elsize refer to a single-segment
array. Return NPY_TRUE if newstrides is acceptable, otherwise return NPY_FALSE.

npy_intp PyArray_MultiplyList(npy_intp const *seq, int n)

int PyArray_MultiplyIntList(int const *seq, int n)
Both of these routines multiply an n -length array, seq, of integers and return the result. No overflow checking is
performed.

int PyArray_CompareLists(npy_intp const *l1, npy_intp const *l2, int n)
Given two n -length arrays of integers, l1, and l2, return 1 if the lists are identical; otherwise, return 0.

2.1. NumPy C-API 1935

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Auxiliary data with object semantics

type NpyAuxData

When working with more complex dtypes which are composed of other dtypes, such as the struct dtype, creating inner
loops that manipulate the dtypes requires carrying along additional data. NumPy supports this idea through a struct
NpyAuxData, mandating a few conventions so that it is possible to do this.
Defining an NpyAuxData is similar to defining a class in C++, but the object semantics have to be tracked manually
since the API is in C. Here’s an example for a function which doubles up an element using an element copier function as
a primitive.

typedef struct {
NpyAuxData base;
ElementCopier_Func *func;
NpyAuxData *funcdata;

} eldoubler_aux_data;

void free_element_doubler_aux_data(NpyAuxData *data)
{

eldoubler_aux_data *d = (eldoubler_aux_data *)data;
/* Free the memory owned by this auxdata */
NPY_AUXDATA_FREE(d->funcdata);
PyArray_free(d);

}

NpyAuxData *clone_element_doubler_aux_data(NpyAuxData *data)
{

eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
if (ret == NULL) {

return NULL;
}

/* Raw copy of all data */
memcpy(ret, data, sizeof(eldoubler_aux_data));

/* Fix up the owned auxdata so we have our own copy */
ret->funcdata = NPY_AUXDATA_CLONE(ret->funcdata);
if (ret->funcdata == NULL) {

PyArray_free(ret);
return NULL;

}

return (NpyAuxData *)ret;
}

NpyAuxData *create_element_doubler_aux_data(
ElementCopier_Func *func,
NpyAuxData *funcdata)

{
eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
if (ret == NULL) {

PyErr_NoMemory();
return NULL;

}
memset(&ret, 0, sizeof(eldoubler_aux_data));
ret->base->free = &free_element_doubler_aux_data;
ret->base->clone = &clone_element_doubler_aux_data;

(continues on next page)

1936 2. C API

NumPy Reference, Release 2.2.0

(continued from previous page)
ret->func = func;
ret->funcdata = funcdata;

return (NpyAuxData *)ret;
}

type NpyAuxData_FreeFunc
The function pointer type for NpyAuxData free functions.

type NpyAuxData_CloneFunc
The function pointer type for NpyAuxData clone functions. These functions should never set the Python exception
on error, because they may be called from a multi-threaded context.

void NPY_AUXDATA_FREE(NpyAuxData *auxdata)
A macro which calls the auxdata’s free function appropriately, does nothing if auxdata is NULL.

NpyAuxData *NPY_AUXDATA_CLONE(NpyAuxData *auxdata)
A macro which calls the auxdata’s clone function appropriately, returning a deep copy of the auxiliary data.

Array iterators

As of NumPy 1.6.0, these array iterators are superseded by the new array iterator, NpyIter.
An array iterator is a simple way to access the elements of an N-dimensional array quickly and efficiently, as seen in the
example which provides more description of this useful approach to looping over an array from C.
PyObject *PyArray_IterNew(PyObject *arr)

Return an array iterator object from the array, arr. This is equivalent to arr. flat. The array iterator object makes
it easy to loop over an N-dimensional non-contiguous array in C-style contiguous fashion.

PyObject *PyArray_IterAllButAxis(PyObject *arr, int *axis)
Return an array iterator that will iterate over all axes but the one provided in *axis. The returned iterator cannot be
used with PyArray_ITER_GOTO1D. This iterator could be used to write something similar to what ufuncs do
wherein the loop over the largest axis is done by a separate sub-routine. If *axis is negative then *axis will be set
to the axis having the smallest stride and that axis will be used.

PyObject *PyArray_BroadcastToShape(PyObject *arr, npy_intp const *dimensions, int nd)
Return an array iterator that is broadcast to iterate as an array of the shape provided by dimensions and nd.

int PyArrayIter_Check(PyObject *op)
Evaluates true if op is an array iterator (or instance of a subclass of the array iterator type).

void PyArray_ITER_RESET(PyObject *iterator)
Reset an iterator to the beginning of the array.

void PyArray_ITER_NEXT(PyObject *iterator)
Increment the index and the dataptr members of the iterator to point to the next element of the array. If the array
is not (C-style) contiguous, also increment the N-dimensional coordinates array.

void *PyArray_ITER_DATA(PyObject *iterator)
A pointer to the current element of the array.

void PyArray_ITER_GOTO(PyObject *iterator, npy_intp *destination)
Set the iterator index, dataptr, and coordinates members to the location in the array indicated by the N-dimensional
c-array, destination, which must have size at least iterator ->nd_m1+1.

2.1. NumPy C-API 1937

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

void PyArray_ITER_GOTO1D(PyObject *iterator, npy_intp index)
Set the iterator index and dataptr to the location in the array indicated by the integer index which points to an
element in the C-styled flattened array.

int PyArray_ITER_NOTDONE(PyObject *iterator)
Evaluates TRUE as long as the iterator has not looped through all of the elements, otherwise it evaluates FALSE.

Broadcasting (multi-iterators)

PyObject *PyArray_MultiIterNew(int num, ...)
A simplified interface to broadcasting. This function takes the number of arrays to broadcast and then num
extra (PyObject *) arguments. These arguments are converted to arrays and iterators are created.
PyArray_Broadcast is then called on the resulting multi-iterator object. The resulting, broadcasted mult-
iterator object is then returned. A broadcasted operation can then be performed using a single loop and using
PyArray_MultiIter_NEXT (..)

void PyArray_MultiIter_RESET(PyObject *multi)
Reset all the iterators to the beginning in a multi-iterator object, multi.

void PyArray_MultiIter_NEXT(PyObject *multi)
Advance each iterator in a multi-iterator object, multi, to its next (broadcasted) element.

void *PyArray_MultiIter_DATA(PyObject *multi, int i)
Return the data-pointer of the i th iterator in a multi-iterator object.

void PyArray_MultiIter_NEXTi(PyObject *multi, int i)
Advance the pointer of only the i th iterator.

void PyArray_MultiIter_GOTO(PyObject *multi, npy_intp *destination)
Advance each iterator in a multi-iterator object, multi, to the given N -dimensional destination where N is the
number of dimensions in the broadcasted array.

void PyArray_MultiIter_GOTO1D(PyObject *multi, npy_intp index)
Advance each iterator in a multi-iterator object, multi, to the corresponding location of the index into the flattened
broadcasted array.

int PyArray_MultiIter_NOTDONE(PyObject *multi)
Evaluates TRUE as long as the multi-iterator has not looped through all of the elements (of the broadcasted result),
otherwise it evaluates FALSE.

npy_intp PyArray_MultiIter_SIZE(PyArrayMultiIterObject *multi)
New in version 1.26.0.
Returns the total broadcasted size of a multi-iterator object.

int PyArray_MultiIter_NDIM(PyArrayMultiIterObject *multi)
New in version 1.26.0.
Returns the number of dimensions in the broadcasted result of a multi-iterator object.

npy_intp PyArray_MultiIter_INDEX(PyArrayMultiIterObject *multi)
New in version 1.26.0.
Returns the current (1-d) index into the broadcasted result of a multi-iterator object.

1938 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int PyArray_MultiIter_NUMITER(PyArrayMultiIterObject *multi)
New in version 1.26.0.
Returns the number of iterators that are represented by a multi-iterator object.

void **PyArray_MultiIter_ITERS(PyArrayMultiIterObject *multi)
New in version 1.26.0.
Returns an array of iterator objects that holds the iterators for the arrays to be broadcast together. On return, the
iterators are adjusted for broadcasting.

npy_intp *PyArray_MultiIter_DIMS(PyArrayMultiIterObject *multi)
New in version 1.26.0.
Returns a pointer to the dimensions/shape of the broadcasted result of a multi-iterator object.

int PyArray_Broadcast(PyArrayMultiIterObject *mit)
This function encapsulates the broadcasting rules. The mit container should already contain iterators for all the
arrays that need to be broadcast. On return, these iterators will be adjusted so that iteration over each simultaneously
will accomplish the broadcasting. A negative number is returned if an error occurs.

int PyArray_RemoveSmallest(PyArrayMultiIterObject *mit)
This function takes a multi-iterator object that has been previously “broadcasted,” finds the dimension with the
smallest “sum of strides” in the broadcasted result and adapts all the iterators so as not to iterate over that dimension
(by effectively making them of length-1 in that dimension). The corresponding dimension is returned unless mit
->nd is 0, then -1 is returned. This function is useful for constructing ufunc-like routines that broadcast their inputs
correctly and then call a strided 1-d version of the routine as the inner-loop. This 1-d version is usually optimized
for speed and for this reason the loop should be performed over the axis that won’t require large stride jumps.

Neighborhood iterator

Neighborhood iterators are subclasses of the iterator object, and can be used to iter over a neighborhood of a point. For
example, you may want to iterate over every voxel of a 3d image, and for every such voxel, iterate over an hypercube.
Neighborhood iterator automatically handle boundaries, thus making this kind of code much easier to write than manual
boundaries handling, at the cost of a slight overhead.
PyObject *PyArray_NeighborhoodIterNew(PyArrayIterObject *iter, npy_intp bounds, int mode,

PyArrayObject *fill_value)
This function creates a new neighborhood iterator from an existing iterator. The neighborhood will be computed
relatively to the position currently pointed by iter, the bounds define the shape of the neighborhood iterator, and the
mode argument the boundaries handling mode.
The bounds argument is expected to be a (2 * iter->ao->nd) arrays, such as the range bound[2*i]->bounds[2*i+1]
defines the range where to walk for dimension i (both bounds are included in the walked coordinates). The bounds
should be ordered for each dimension (bounds[2*i] <= bounds[2*i+1]).
The mode should be one of:
NPY_NEIGHBORHOOD_ITER_ZERO_PADDING

Zero padding. Outside bounds values will be 0.
NPY_NEIGHBORHOOD_ITER_ONE_PADDING

One padding, Outside bounds values will be 1.
NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING

Constant padding. Outside bounds values will be the same as the first item in fill_value.

2.1. NumPy C-API 1939

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING

Mirror padding. Outside bounds values will be as if the array items were mirrored. For example, for the array
[1, 2, 3, 4], x[-2] will be 2, x[-2] will be 1, x[4] will be 4, x[5] will be 1, etc…

NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING

Circular padding. Outside bounds values will be as if the array was repeated. For example, for the array [1,
2, 3, 4], x[-2] will be 3, x[-2] will be 4, x[4] will be 1, x[5] will be 2, etc…

If the mode is constant filling (NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING), fill_value should point
to an array object which holds the filling value (the first item will be the filling value if the array contains more than
one item). For other cases, fill_value may be NULL.

• The iterator holds a reference to iter
• Return NULL on failure (in which case the reference count of iter is not changed)
• iter itself can be a Neighborhood iterator: this can be useful for .e.g automatic boundaries handling
• the object returned by this function should be safe to use as a normal iterator
• If the position of iter is changed, any subsequent call to PyArrayNeighborhoodIter_Next is undefined behav-
ior, and PyArrayNeighborhoodIter_Reset must be called.

• If the position of iter is not the beginning of the data and the underlying data for iter is contiguous, the iterator
will point to the start of the data instead of position pointed by iter. To avoid this situation, iter should be
moved to the required position only after the creation of iterator, and PyArrayNeighborhoodIter_Reset must
be called.

PyArrayIterObject *iter;
PyArrayNeighborhoodIterObject *neigh_iter;
iter = PyArray_IterNew(x);

/*For a 3x3 kernel */
bounds = {-1, 1, -1, 1};
neigh_iter = (PyArrayNeighborhoodIterObject*)PyArray_NeighborhoodIterNew(

iter, bounds, NPY_NEIGHBORHOOD_ITER_ZERO_PADDING, NULL);

for(i = 0; i < iter->size; ++i) {
for (j = 0; j < neigh_iter->size; ++j) {

/* Walk around the item currently pointed by iter->dataptr */
PyArrayNeighborhoodIter_Next(neigh_iter);

}

/* Move to the next point of iter */
PyArrayIter_Next(iter);
PyArrayNeighborhoodIter_Reset(neigh_iter);

}

int PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject *iter)
Reset the iterator position to the first point of the neighborhood. This should be called whenever the iter argument
given at PyArray_NeighborhoodIterObject is changed (see example)

int PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject *iter)
After this call, iter->dataptr points to the next point of the neighborhood. Calling this function after every point of
the neighborhood has been visited is undefined.

1940 2. C API

NumPy Reference, Release 2.2.0

Array scalars

PyObject *PyArray_Return(PyArrayObject *arr)
This function steals a reference to arr.
This function checks to see if arr is a 0-dimensional array and, if so, returns the appropriate array scalar. It should
be used whenever 0-dimensional arrays could be returned to Python.

PyObject *PyArray_Scalar(void *data, PyArray_Descr *dtype, PyObject *base)
Return an array scalar object of the given dtype by copying from memory pointed to by data. base is ex-
pected to be the array object that is the owner of the data. base is required if dtype is a void scalar, or if the
NPY_USE_GETITEM flag is set and it is known that the getitem method uses the arr argument without
checking if it is NULL. Otherwise base may be NULL.
If the data is not in native byte order (as indicated by dtype->byteorder) then this function will byteswap the
data, because array scalars are always in correct machine-byte order.

PyObject *PyArray_ToScalar(void *data, PyArrayObject *arr)
Return an array scalar object of the type and itemsize indicated by the array object arr copied from the memory
pointed to by data and swapping if the data in arr is not in machine byte-order.

PyObject *PyArray_FromScalar(PyObject *scalar, PyArray_Descr *outcode)
Return a 0-dimensional array of type determined by outcode from scalar which should be an array-scalar object.
If outcode is NULL, then the type is determined from scalar.

void PyArray_ScalarAsCtype(PyObject *scalar, void *ctypeptr)
Return in ctypeptr a pointer to the actual value in an array scalar. There is no error checking so scalar must be
an array-scalar object, and ctypeptr must have enough space to hold the correct type. For flexible-sized types, a
pointer to the data is copied into the memory of ctypeptr, for all other types, the actual data is copied into the
address pointed to by ctypeptr.

int PyArray_CastScalarToCtype(PyObject *scalar, void *ctypeptr, PyArray_Descr *outcode)
Return the data (cast to the data type indicated by outcode) from the array-scalar, scalar, into the memory pointed
to by ctypeptr (which must be large enough to handle the incoming memory).
Returns -1 on failure, and 0 on success.

PyObject *PyArray_TypeObjectFromType(int type)
Returns a scalar type-object from a type-number, type . Equivalent to PyArray_DescrFromType (type)-
>typeobj except for reference counting and error-checking. Returns a new reference to the typeobject on success
or NULL on failure.

NPY_SCALARKIND PyArray_ScalarKind(int typenum, PyArrayObject **arr)
Legacy way to query special promotion for scalar values. This is not used in NumPy itself anymore and is expected
to be deprecated eventually.
New DTypes can define promotion rules specific to Python scalars.

int PyArray_CanCoerceScalar(char thistype, char neededtype, NPY_SCALARKIND scalar)
Legacy way to query special promotion for scalar values. This is not used in NumPy itself anymore and is expected
to be deprecated eventually.
Use PyArray_ResultType for similar purposes.

2.1. NumPy C-API 1941

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Data-type descriptors

Warning: Data-type objects must be reference counted so be aware of the action on the data-type reference of
different C-API calls. The standard rule is that when a data-type object is returned it is a new reference. Functions
that take PyArray_Descr* objects and return arrays steal references to the data-type their inputs unless otherwise
noted. Therefore, you must own a reference to any data-type object used as input to such a function.

int PyArray_DescrCheck(PyObject *obj)
Evaluates as true if obj is a data-type object (PyArray_Descr*).

PyArray_Descr *PyArray_DescrNew(PyArray_Descr *obj)
Return a new data-type object copied from obj (the fields reference is just updated so that the new object points to
the same fields dictionary if any).

PyArray_Descr *PyArray_DescrNewFromType(int typenum)
Create a new data-type object from the built-in (or user-registered) data-type indicated by typenum. All builtin
types should not have any of their fields changed. This creates a new copy of the PyArray_Descr structure so
that you can fill it in as appropriate. This function is especially needed for flexible data-types which need to have a
new elsize member in order to be meaningful in array construction.

PyArray_Descr *PyArray_DescrNewByteorder(PyArray_Descr *obj, char newendian)
Create a new data-type object with the byteorder set according to newendian. All referenced data-type objects (in
subdescr and fields members of the data-type object) are also changed (recursively).
The value of newendian is one of these macros:

NPY_IGNORE

NPY_SWAP

NPY_NATIVE

NPY_LITTLE

NPY_BIG

If a byteorder of NPY_IGNORE is encountered it is left alone. If newendian is NPY_SWAP, then all byte-orders
are swapped. Other valid newendian values are NPY_NATIVE, NPY_LITTLE, and NPY_BIG which all cause
the returned data-typed descriptor (and all it’s referenced data-type descriptors) to have the corresponding byte-
order.

PyArray_Descr *PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
Determine an appropriate data-type object from the object op (which should be a “nested” sequence object) and
the minimum data-type descriptor mintype (which can be NULL). Similar in behavior to array(op).dtype. Don’t
confuse this function with PyArray_DescrConverter. This function essentially looks at all the objects in
the (nested) sequence and determines the data-type from the elements it finds.

PyArray_Descr *PyArray_DescrFromScalar(PyObject *scalar)
Return a data-type object from an array-scalar object. No checking is done to be sure that scalar is an array scalar.
If no suitable data-type can be determined, then a data-type of NPY_OBJECT is returned by default.

PyArray_Descr *PyArray_DescrFromType(int typenum)
Returns a data-type object corresponding to typenum. The typenum can be one of the enumerated types, a character
code for one of the enumerated types, or a user-defined type. If you want to use a flexible size array, then you need
to flexible typenum and set the results elsize parameter to the desired size. The typenum is one of the
NPY_TYPES.

1942 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int PyArray_DescrConverter(PyObject *obj, PyArray_Descr **dtype)
Convert any compatible Python object, obj, to a data-type object in dtype. A large number of Python objects can
be converted to data-type objects. See Data type objects (dtype) for a complete description. This version of the
converter converts None objects to a NPY_DEFAULT_TYPE data-type object. This function can be used with the
“O&” character code in PyArg_ParseTuple processing.

int PyArray_DescrConverter2(PyObject *obj, PyArray_Descr **dtype)
Convert any compatible Python object, obj, to a data-type object in dtype. This version of the converter converts
None objects so that the returned data-type is NULL. This function can also be used with the “O&” character in
PyArg_ParseTuple processing.

int PyArray_DescrAlignConverter(PyObject *obj, PyArray_Descr **dtype)
Like PyArray_DescrConverter except it aligns C-struct-like objects on word-boundaries as the compiler
would.

int PyArray_DescrAlignConverter2(PyObject *obj, PyArray_Descr **dtype)
Like PyArray_DescrConverter2 except it aligns C-struct-like objects on word-boundaries as the compiler
would.

Data Type Promotion and Inspection

PyArray_DTypeMeta *PyArray_CommonDType(const PyArray_DTypeMeta *dtype1, const PyArray_DTypeMeta
*dtype2)

This function defines the common DType operator. Note that the common DType will not be object (unless
one of the DTypes is object). Similar to numpy.result_type, but works on the classes and not instances.

PyArray_DTypeMeta *PyArray_PromoteDTypeSequence(npy_intp length, PyArray_DTypeMeta **dtypes_in)
Promotes a list of DTypes with each other in a way that should guarantee stable results even when chang-
ing the order. This function is smarter and can often return successful and unambiguous results when
common_dtype(common_dtype(dt1, dt2), dt3) would depend on the operation order or fail. Nev-
ertheless, DTypes should aim to ensure that their common-dtype implementation is associative and commutative!
(Mainly, unsigned and signed integers are not.)
For guaranteed consistent results DTypes must implement common-Dtype “transitively”. If A promotes B and B
promotes C, than A must generally also promote C; where “promotes” means implements the promotion. (There
are some exceptions for abstract DTypes)
In general this approach always works as long as the most generic dtype is either strictly larger, or compatible with
all other dtypes. For example promoting float16 with any other float, integer, or unsigned integer again gives a
floating point number.

PyArray_Descr *PyArray_GetDefaultDescr(const PyArray_DTypeMeta *DType)
Given a DType class, returns the default instance (descriptor). This checks for a singleton first and only calls
the default_descr function if necessary.

2.1. NumPy C-API 1943

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Custom Data Types

New in version 2.0.
These functions allow defining custom flexible data types outside of NumPy. See NEP 42 for more details about
the rationale and design of the new DType system. See the numpy-user-dtypes repository for a number of example
DTypes. Also see PyArray_DTypeMeta and PyArrayDTypeMeta_Spec for documentation on PyArray_DTypeMeta
and PyArrayDTypeMeta_Spec.
int PyArrayInitDTypeMeta_FromSpec(PyArray_DTypeMeta *Dtype, PyArrayDTypeMeta_Spec *spec)

Initialize a new DType. It must currently be a static Python C type that is declared as PyArray_DTypeMeta
and not PyTypeObject. Further, it must subclass np.dtype and set its type to PyArrayDTypeMeta_Type
(before calling PyType_Ready), which has additional fields compared to a normal PyTypeObject. See the
examples in thenumpy-user-dtypes repository for usage with both parametric and non-parametric data types.

Flags
Flags that can be set on the PyArrayDTypeMeta_Spec to initialize the DType.
NPY_DT_ABSTRACT

Indicates the DType is an abstract “base” DType in a DType hierarchy and should not be directly instantiated.
NPY_DT_PARAMETRIC

Indicates the DType is parametric and does not have a unique singleton instance.
NPY_DT_NUMERIC

Indicates the DType represents a numerical value.

Slot IDs and API Function Typedefs
These IDs correspond to slots in the DType API and are used to identify implementations of each slot from the items of
the slots array member of PyArrayDTypeMeta_Spec struct.
NPY_DT_discover_descr_from_pyobject

typedef PyArray_Descr *(PyArrayDTypeMeta_DiscoverDescrFromPyobject)(PyArray_DTypeMeta *cls,
PyObject *obj)

Used during DType inference to find the correct DType for a given PyObject. Must return a descriptor instance
appropriate to store the data in the python object that is passed in. obj is the python object to inspect and cls is the
DType class to create a descriptor for.

NPY_DT_default_descr

typedef PyArray_Descr *(PyArrayDTypeMeta_DefaultDescriptor)(PyArray_DTypeMeta *cls)
Returns the default descriptor instance for the DType. Must be defined for parametric data types. Non-parametric
data types return the singleton by default.

NPY_DT_common_dtype

typedef PyArray_DTypeMeta *(PyArrayDTypeMeta_CommonDType)(PyArray_DTypeMeta *dtype1,
PyArray_DTypeMeta *dtype2)

Given two input DTypes, determines the appropriate “common”DType that can store values for both types. Returns
Py_NotImplemented if no such type exists.

NPY_DT_common_instance

1944 2. C API

https://numpy.org/neps/nep-0042-new-dtypes.html#nep42
https://github.com/numpy/numpy-user-dtypes
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/type.html#c.PyType_Ready
https://docs.python.org/3/c-api/type.html#c.PyTypeObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

typedef PyArray_Descr *(PyArrayDTypeMeta_CommonInstance)(PyArray_Descr *dtype1, PyArray_Descr
*dtype2)

Given two input descriptors, determines the appropriate “common” descriptor that can store values for both in-
stances. Returns NULL on error.

NPY_DT_ensure_canonical

typedef PyArray_Descr *(PyArrayDTypeMeta_EnsureCanonical)(PyArray_Descr *dtype)
Returns the “canonical” representation for a descriptor instance. The notion of a canonical descriptor generalizes
the concept of byte order, in that a canonical descriptor always has native byte order. If the descriptor is already
canonical, this function returns a new reference to the input descriptor.

NPY_DT_setitem

typedef int (PyArrayDTypeMeta_SetItem)(PyArray_Descr*, PyObject*, char*)
Implements scalar setitem for an array element given a PyObject.

NPY_DT_getitem

typedef PyObject *(PyArrayDTypeMeta_GetItem)(PyArray_Descr*, char*)
Implements scalar getitem for an array element. Must return a python scalar.

NPY_DT_get_clear_loop

If defined, sets a traversal loop that clears data in the array. This is most useful for arrays
of references that must clean up array entries before the array is garbage collected. Implements
PyArrayMethod_GetTraverseLoop.

NPY_DT_get_fill_zero_loop

If defined, sets a traversal loop that fills an array with “zero” values, which may have a DType-specific meaning.
This is called inside numpy.zeros for arrays that need to write a custom sentinel value that represents zero if
for some reason a zero-filled array is not sufficient. Implements PyArrayMethod_GetTraverseLoop.

NPY_DT_finalize_descr

typedef PyArray_Descr *(PyArrayDTypeMeta_FinalizeDescriptor)(PyArray_Descr *dtype)
If defined, a function that is called to “finalize” a descriptor instance after an array is created. One use of this
function is to force newly created arrays to have a newly created descriptor instance, no matter what input descriptor
is provided by a user.

PyArray_ArrFuncs slots

In addition the above slots, the following slots are exposed to allow filling the PyArray_ArrFuncs struct attached to de-
scriptor instances. Note that in the future these will be replaced by proper DType API slots but for now we have exposed
the legacy PyArray_ArrFuncs slots.
NPY_DT_PyArray_ArrFuncs_getitem

Allows setting a per-dtype getitem. Note that this is not necessary to define unless the default version calling the
function defined with the NPY_DT_getitem ID is unsuitable. This version will be slightly faster than using
NPY_DT_getitem at the cost of sometimes needing to deal with a NULL input array.

NPY_DT_PyArray_ArrFuncs_setitem

Allows setting a per-dtype setitem. Note that this is not necessary to define unless the default version calling the
function defined with the NPY_DT_setitem ID is unsuitable for some reason.

NPY_DT_PyArray_ArrFuncs_compare

Computes a comparison for numpy.sort, implements PyArray_CompareFunc.

2.1. NumPy C-API 1945

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

NPY_DT_PyArray_ArrFuncs_argmax

Computes the argmax for numpy.argmax, implements PyArray_ArgFunc.
NPY_DT_PyArray_ArrFuncs_argmin

Computes the argmin for numpy.argmin, implements PyArray_ArgFunc.
NPY_DT_PyArray_ArrFuncs_dotfunc

Computes the dot product for numpy.dot, implements PyArray_DotFunc.
NPY_DT_PyArray_ArrFuncs_scanfunc

A formatted input function for numpy.fromfile, implements PyArray_ScanFunc.
NPY_DT_PyArray_ArrFuncs_fromstr

A string parsing function for numpy.fromstring, implements PyArray_FromStrFunc.
NPY_DT_PyArray_ArrFuncs_nonzero

Computes the nonzero function for numpy.nonzero, implements PyArray_NonzeroFunc.
NPY_DT_PyArray_ArrFuncs_fill

An array filling function for numpy.ndarray.fill, implements PyArray_FillFunc.
NPY_DT_PyArray_ArrFuncs_fillwithscalar

A function to fill an array with a scalar value for numpy.ndarray.fill, implements
PyArray_FillWithScalarFunc.

NPY_DT_PyArray_ArrFuncs_sort

An array of PyArray_SortFunc of length NPY_NSORTS. If set, allows defining custom sorting implementations
for each of the sorting algorithms numpy implements.

NPY_DT_PyArray_ArrFuncs_argsort

An array of PyArray_ArgSortFunc of length NPY_NSORTS. If set, allows defining custom argsorting implemen-
tations for each of the sorting algorithms numpy implements.

Macros and Static Inline Functions
These macros and static inline functions are provided to allow more understandable and idiomatic code when working
with PyArray_DTypeMeta instances.
NPY_DTYPE(descr)

Returns a PyArray_DTypeMeta * pointer to the DType of a given descriptor instance.
static inline PyArray_DTypeMeta *NPY_DT_NewRef(PyArray_DTypeMeta *o)

Returns a PyArray_DTypeMeta * pointer to a new reference to a DType.

Conversion utilities

For use with PyArg_ParseTuple
All of these functions can be used in PyArg_ParseTuple (…) with the “O&” format specifier to automatically convert
any Python object to the required C-object. All of these functions return NPY_SUCCEED if successful and NPY_FAIL
if not. The first argument to all of these function is a Python object. The second argument is the address of the C-type
to convert the Python object to.

Warning: Be sure to understand what steps you should take to manage the memory when using these conversion
functions. These functions can require freeing memory, and/or altering the reference counts of specific objects based
on your use.

1946 2. C API

https://docs.python.org/3/c-api/arg.html#c.PyArg_ParseTuple

NumPy Reference, Release 2.2.0

int PyArray_Converter(PyObject *obj, PyObject **address)
Convert any Python object to a PyArrayObject. If PyArray_Check (obj) is TRUE then its reference
count is incremented and a reference placed in address. If obj is not an array, then convert it to an array using
PyArray_FromAny . No matter what is returned, you must DECREF the object returned by this routine in
address when you are done with it.

int PyArray_OutputConverter(PyObject *obj, PyArrayObject **address)
This is a default converter for output arrays given to functions. If obj is Py_None or NULL, then *address will
be NULL but the call will succeed. If PyArray_Check (obj) is TRUE then it is returned in *address without
incrementing its reference count.

int PyArray_IntpConverter(PyObject *obj, PyArray_Dims *seq)
Convert any Python sequence, obj, smaller than NPY_MAXDIMS to a C-array of npy_intp. The Python object
could also be a single number. The seq variable is a pointer to a structure with members ptr and len. On successful
return, seq ->ptr contains a pointer to memory that must be freed, by calling PyDimMem_FREE, to avoid amemory
leak. The restriction on memory size allows this converter to be conveniently used for sequences intended to be
interpreted as array shapes.

int PyArray_BufferConverter(PyObject *obj, PyArray_Chunk *buf)
Convert any Python object, obj, with a (single-segment) buffer interface to a variable with members that detail
the object’s use of its chunk of memory. The buf variable is a pointer to a structure with base, ptr, len, and flags
members. The PyArray_Chunk structure is binary compatible with the Python’s buffer object (through its len
member on 32-bit platforms and its ptr member on 64-bit platforms). On return, the base member is set to obj (or
its base if obj is already a buffer object pointing to another object). If you need to hold on to the memory be sure
to INCREF the base member. The chunk of memory is pointed to by buf ->ptr member and has length buf ->len.
The flags member of buf is NPY_ARRAY_ALIGNED with the NPY_ARRAY_WRITEABLE flag set if obj has a
writeable buffer interface.

int PyArray_AxisConverter(PyObject *obj, int *axis)
Convert a Python object, obj, representing an axis argument to the proper value for passing to the functions that
take an integer axis. Specifically, if obj is None, axis is set to NPY_RAVEL_AXIS which is interpreted correctly
by the C-API functions that take axis arguments.

int PyArray_BoolConverter(PyObject *obj, npy_bool *value)
Convert any Python object, obj, to NPY_TRUE or NPY_FALSE, and place the result in value.

int PyArray_ByteorderConverter(PyObject *obj, char *endian)
Convert Python strings into the corresponding byte-order character: ‘>’, ‘<’, ‘s’, ‘=’, or ‘|’.

int PyArray_SortkindConverter(PyObject *obj, NPY_SORTKIND *sort)
Convert Python strings into one of NPY_QUICKSORT (starts with ‘q’ or ‘Q’), NPY_HEAPSORT (starts with ‘h’ or
‘H’), NPY_MERGESORT (starts with ‘m’ or ‘M’) or NPY_STABLESORT (starts with ‘t’ or ‘T’). NPY_MERGESORT
and NPY_STABLESORT are aliased to each other for backwards compatibility and may refer to one of several
stable sorting algorithms depending on the data type.

int PyArray_SearchsideConverter(PyObject *obj, NPY_SEARCHSIDE *side)
Convert Python strings into one of NPY_SEARCHLEFT (starts with ‘l’ or ‘L’), or NPY_SEARCHRIGHT (starts
with ‘r’ or ‘R’).

int PyArray_OrderConverter(PyObject *obj, NPY_ORDER *order)
Convert the Python strings ‘C’, ‘F’, ‘A’, and ‘K’ into the NPY_ORDER enumeration NPY_CORDER,
NPY_FORTRANORDER, NPY_ANYORDER, and NPY_KEEPORDER.

int PyArray_CastingConverter(PyObject *obj, NPY_CASTING *casting)
Convert the Python strings ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, and ‘unsafe’ into the NPY_CASTING enumeration
NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING, and
NPY_UNSAFE_CASTING.

2.1. NumPy C-API 1947

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/none.html#c.Py_None
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int PyArray_ClipmodeConverter(PyObject *object, NPY_CLIPMODE *val)
Convert the Python strings ‘clip’, ‘wrap’, and ‘raise’ into the NPY_CLIPMODE enumeration NPY_CLIP,
NPY_WRAP, and NPY_RAISE.

int PyArray_ConvertClipmodeSequence(PyObject *object, NPY_CLIPMODE *modes, int n)
Converts either a sequence of clipmodes or a single clipmode into a C array of NPY_CLIPMODE values. The
number of clipmodes n must be known before calling this function. This function is provided to help functions
allow a different clipmode for each dimension.

Other conversions
int PyArray_PyIntAsInt(PyObject *op)

Convert all kinds of Python objects (including arrays and array scalars) to a standard integer. On error, -1 is returned
and an exception set. You may find useful the macro:

#define error_converting(x) (((x) == -1) && PyErr_Occurred())

npy_intp PyArray_PyIntAsIntp(PyObject *op)
Convert all kinds of Python objects (including arrays and array scalars) to a (platform-pointer-sized) integer. On
error, -1 is returned and an exception set.

int PyArray_IntpFromSequence(PyObject *seq, npy_intp *vals, int maxvals)
Convert any Python sequence (or single Python number) passed in as seq to (up to) maxvals pointer-sized integers
and place them in the vals array. The sequence can be smaller then maxvals as the number of converted objects is
returned.

Including and importing the C API

To use the NumPy C-API you typically need to include the numpy/ndarrayobject.h header and numpy/
ufuncobject.h for some ufunc related functionality (arrayobject.h is an alias for ndarrayobject.h).
These two headers export most relevant functionality. In general any project which uses the NumPy API must import
NumPy using one of the functions PyArray_ImportNumPyAPI() or import_array(). In some places, func-
tionality which requires import_array() is not needed, because you only need type definitions. In this case, it is
sufficient to include numpy/ndarratypes.h.
For the typical Python project, multiple C or C++ files will be compiled into a single shared object (the Python C-module)
and PyArray_ImportNumPyAPI() should be called inside it’s module initialization.
When you have a single C-file, this will consist of:

#include "numpy/ndarrayobject.h"

PyMODINIT_FUNC PyInit_my_module(void)
{

if (PyArray_ImportNumPyAPI() < 0) {
return NULL;

}
/* Other initialization code. */

}

However, most projects will have additional C files which are all linked together into a single Python module. In this
case, the helper C files typically do not have a canonical place where PyArray_ImportNumPyAPI should be called
(although it is OK and fast to call it often).
To solve this, NumPy provides the following pattern that the the main file is modified to define
PY_ARRAY_UNIQUE_SYMBOL before the include:

1948 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

/* Main module file */
#define PY_ARRAY_UNIQUE_SYMBOL MyModule
#include "numpy/ndarrayobject.h"

PyMODINIT_FUNC PyInit_my_module(void)
{

if (PyArray_ImportNumPyAPI() < 0) {
return NULL;

}
/* Other initialization code. */

}

while the other files use:

/* Second file without any import */
#define NO_IMPORT_ARRAY
#define PY_ARRAY_UNIQUE_SYMBOL MyModule
#include "numpy/ndarrayobject.h"

You can of course add the defines to a local header used throughout. You just have to make sure that the main file does
not define NO_IMPORT_ARRAY.
For numpy/ufuncobject.h the same logic applies, but the unique symbol mechanism is #define
PY_UFUNC_UNIQUE_SYMBOL (both can match).
Additionally, you will probably wish to add a #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
to avoid warnings about possible use of old API.

Note: If you are experiencing access violations make sure that the NumPy API was properly imported
and the symbol PyArray_API is not NULL. When in a debugger, this symbols actual name will be
PY_ARRAY_UNIQUE_SYMBOL``+``PyArray_API, so for example MyModulePyArray_API in the above.
(E.g. even a printf("%p\n", PyArray_API); just before the crash.)

Mechanism details and dynamic linking
The main part of the mechanism is that without NumPy needs to define a void **PyArray_API table for you to look
up all functions. Depending on your macro setup, this takes different routes depending on whether NO_IMPORT_ARRAY
and PY_ARRAY_UNIQUE_SYMBOL are defined:

• If neither is defined, the C-API is declared to static void **PyArray_API, so it is only visible within the
compilation unit/file using #include <numpy/arrayobject.h>.

• If only PY_ARRAY_UNIQUE_SYMBOL is defined (it could be empty) then the it is declared to a non-static void
** allowing it to be used by other files which are linked.

• If NO_IMPORT_ARRAY is defined, the table is declared as extern void **, meaning that it must be linked
to a file which does not use NO_IMPORT_ARRAY.

The PY_ARRAY_UNIQUE_SYMBOL mechanism additionally mangles the names to avoid conflicts.
Changed in version NumPy: 2.1 changed the headers to avoid sharing the table outside of a single shared object/dll (this
was always the case on Windows). Please see NPY_API_SYMBOL_ATTRIBUTE for details.
In order to make use of the C-API from another extension module, the import_array function must be called. If
the extension module is self-contained in a single .c file, then that is all that needs to be done. If, however, the extension
module involves multiple files where the C-API is needed then some additional steps must be taken.

2.1. NumPy C-API 1949

NumPy Reference, Release 2.2.0

int PyArray_ImportNumPyAPI(void)
Ensures that the NumPy C-API is imported and usable. It returns 0 on success and -1 with an error set if NumPy
couldn’t be imported. While preferable to call it once at module initialization, this function is very light-weight if
called multiple times.
New in version 2.0: This function is backported in the npy_2_compat.h header.

import_array(void)
This function must be called in the initialization section of a module that will make use of the C-API. It imports
the module where the function-pointer table is stored and points the correct variable to it. This macro includes a
return NULL; on error, so that PyArray_ImportNumPyAPI() is preferable for custom error checking.
You may also see use of _import_array() (a function, not a macro, but you may want to raise a better error
if it fails) and the variations import_array1(ret) which customizes the return value.

PY_ARRAY_UNIQUE_SYMBOL

NPY_API_SYMBOL_ATTRIBUTE

New in version 2.1.
An additional symbol which can be used to share e.g. visibility beyond shared object boundaries. By default, NumPy
adds the C visibility hidden attribute (if available): void __attribute__((visibility("hidden")))
**PyArray_API;. You can change this by defining NPY_API_SYMBOL_ATTRIBUTE, which will make this:
void NPY_API_SYMBOL_ATTRIBUTE **PyArray_API; (with additional name mangling via the unique
symbol).
Adding an empty #define NPY_API_SYMBOL_ATTRIBUTE will have the same behavior as NumPy 1.x.

Note: Windows never had shared visibility although you can use this macro to achieve it. We generally discourage
sharing beyond shared boundary lines since importing the array API includes NumPy version checks.

NO_IMPORT_ARRAY

Defining NO_IMPORT_ARRAY before the ndarrayobject.h include indicates that the NumPy C API import
is handled in a different file and the include mechanism will not be added here. You must have one file without
NO_IMPORT_ARRAY defined.

#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
#include <numpy/arrayobject.h>

On the other hand, coolhelper.c would contain at the top:

#define NO_IMPORT_ARRAY
#define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
#include <numpy/arrayobject.h>

You can also put the common two last lines into an extension-local header file as long as you make sure that
NO_IMPORT_ARRAY is #defined before #including that file.
Internally, these #defines work as follows:

• If neither is defined, the C-API is declared to bestatic void**, so it is only visible within the compilation
unit that #includes numpy/arrayobject.h.

• If PY_ARRAY_UNIQUE_SYMBOL is #defined, but NO_IMPORT_ARRAY is not, the C-API is declared to
be void**, so that it will also be visible to other compilation units.

• If NO_IMPORT_ARRAY is #defined, regardless of whether PY_ARRAY_UNIQUE_SYMBOL is, the C-API
is declared to be extern void**, so it is expected to be defined in another compilation unit.

1950 2. C API

NumPy Reference, Release 2.2.0

• Whenever PY_ARRAY_UNIQUE_SYMBOL is #defined, it also changes the name of the variable holding the
C-API, which defaults to PyArray_API, to whatever the macro is #defined to.

Checking the API Version
Because python extensions are not used in the same way as usual libraries on most platforms, some errors cannot be
automatically detected at build time or even runtime. For example, if you build an extension using a function available
only for numpy >= 1.3.0, and you import the extension later with numpy 1.2, you will not get an import error (but
almost certainly a segmentation fault when calling the function). That’s why several functions are provided to check
for numpy versions. The macros NPY_VERSION and NPY_FEATURE_VERSION corresponds to the numpy version
used to build the extension, whereas the versions returned by the functions PyArray_GetNDArrayCVersion and
PyArray_GetNDArrayCFeatureVersion corresponds to the runtime numpy’s version.
The rules for ABI and API compatibilities can be summarized as follows:

• Whenever NPY_VERSION != PyArray_GetNDArrayCVersion(), the extension has to be recompiled
(ABI incompatibility).

• NPY_VERSION == PyArray_GetNDArrayCVersion() and NPY_FEATURE_VERSION <=
PyArray_GetNDArrayCFeatureVersion() means backward compatible changes.

ABI incompatibility is automatically detected in every numpy’s version. API incompatibility detection was added in
numpy 1.4.0. If you want to supported many different numpy versions with one extension binary, you have to build your
extension with the lowest NPY_FEATURE_VERSION as possible.
NPY_VERSION

The current version of the ndarray object (check to see if this variable is defined to guarantee the numpy/
arrayobject.h header is being used).

NPY_FEATURE_VERSION

The current version of the C-API.
unsigned int PyArray_GetNDArrayCVersion(void)

This just returns the value NPY_VERSION . NPY_VERSION changes whenever a backward incompatible change
at the ABI level. Because it is in the C-API, however, comparing the output of this function from the value defined
in the current header gives a way to test if the C-API has changed thus requiring a re-compilation of extension
modules that use the C-API. This is automatically checked in the function import_array.

unsigned int PyArray_GetNDArrayCFeatureVersion(void)
This just returns the value NPY_FEATURE_VERSION . NPY_FEATURE_VERSION changes whenever the API
changes (e.g. a function is added). A changed value does not always require a recompile.

Memory management
char *PyDataMem_NEW(size_t nbytes)

void PyDataMem_FREE(char *ptr)

char *PyDataMem_RENEW(void *ptr, size_t newbytes)
Functions to allocate, free, and reallocate memory. These are used internally to manage array data memory unless
overridden.

npy_intp *PyDimMem_NEW(int nd)

void PyDimMem_FREE(char *ptr)

npy_intp *PyDimMem_RENEW(void *ptr, size_t newnd)
Macros to allocate, free, and reallocate dimension and strides memory.

2.1. NumPy C-API 1951

NumPy Reference, Release 2.2.0

void *PyArray_malloc(size_t nbytes)

void PyArray_free(void *ptr)

void *PyArray_realloc(npy_intp *ptr, size_t nbytes)
These macros use different memory allocators, depending on the constant NPY_USE_PYMEM . The system malloc
is used when NPY_USE_PYMEM is 0, if NPY_USE_PYMEM is 1, then the Python memory allocator is used.
NPY_USE_PYMEM

int PyArray_ResolveWritebackIfCopy(PyArrayObject *obj)
If obj->flags has NPY_ARRAY_WRITEBACKIFCOPY, this function clears the flags, DECREF s obj->base
and makes it writeable, and sets obj->base to NULL. It then copies obj->data to obj->base->data, and
returns the error state of the copy operation. This is the opposite of PyArray_SetWritebackIfCopyBase.
Usually this is called once you are finished with obj, just before Py_DECREF(obj). It may be called multiple
times, or with NULL input. See also PyArray_DiscardWritebackIfCopy.
Returns 0 if nothing was done, -1 on error, and 1 if action was taken.

Threading support
These macros are only meaningful if NPY_ALLOW_THREADS evaluates True during compilation of the extension mod-
ule. Otherwise, these macros are equivalent to whitespace. Python uses a single Global Interpreter Lock (GIL) for each
Python process so that only a single thread may execute at a time (even on multi-cpu machines). When calling out to a
compiled function that may take time to compute (and does not have side-effects for other threads like updated global
variables), the GIL should be released so that other Python threads can run while the time-consuming calculations are
performed. This can be accomplished using two groups of macros. Typically, if one macro in a group is used in a code
block, all of them must be used in the same code block. NPY_ALLOW_THREADS is true (defined as 1) unless the build
option -Ddisable-threading is set to true - in which case NPY_ALLOW_THREADS is false (0).
NPY_ALLOW_THREADS

Group 1

This group is used to call code that may take some time but does not use any Python C-API calls. Thus, the GIL should
be released during its calculation.
NPY_BEGIN_ALLOW_THREADS

Equivalent to Py_BEGIN_ALLOW_THREADS except it uses NPY_ALLOW_THREADS to determine if the macro
if replaced with white-space or not.

NPY_END_ALLOW_THREADS

Equivalent to Py_END_ALLOW_THREADS except it uses NPY_ALLOW_THREADS to determine if the macro if
replaced with white-space or not.

NPY_BEGIN_THREADS_DEF

Place in the variable declaration area. This macro sets up the variable needed for storing the Python state.
NPY_BEGIN_THREADS

Place right before code that does not need the Python interpreter (no Python C-API calls). This macro saves the
Python state and releases the GIL.

NPY_END_THREADS

Place right after code that does not need the Python interpreter. This macro acquires the GIL and restores the
Python state from the saved variable.

1952 2. C API

https://docs.python.org/3/c-api/init.html#c.Py_BEGIN_ALLOW_THREADS
https://docs.python.org/3/c-api/init.html#c.Py_END_ALLOW_THREADS

NumPy Reference, Release 2.2.0

void NPY_BEGIN_THREADS_DESCR(PyArray_Descr *dtype)
Useful to release the GIL only if dtype does not contain arbitrary Python objects which may need the Python
interpreter during execution of the loop.

void NPY_END_THREADS_DESCR(PyArray_Descr *dtype)
Useful to regain the GIL in situations where it was released using the BEGIN form of this macro.

void NPY_BEGIN_THREADS_THRESHOLDED(int loop_size)
Useful to release the GIL only if loop_size exceeds a minimum threshold, currently set to 500. Should be matched
with a NPY_END_THREADS to regain the GIL.

Group 2

This group is used to re-acquire the Python GIL after it has been released. For example, suppose the GIL has been
released (using the previous calls), and then some path in the code (perhaps in a different subroutine) requires use of the
Python C-API, then these macros are useful to acquire the GIL. These macros accomplish essentially a reverse of the
previous three (acquire the LOCK saving what state it had) and then re-release it with the saved state.
NPY_ALLOW_C_API_DEF

Place in the variable declaration area to set up the necessary variable.
NPY_ALLOW_C_API

Place before code that needs to call the Python C-API (when it is known that the GIL has already been released).
NPY_DISABLE_C_API

Place after code that needs to call the Python C-API (to re-release the GIL).

Tip: Never use semicolons after the threading support macros.

Priority
NPY_PRIORITY

Default priority for arrays.
NPY_SUBTYPE_PRIORITY

Default subtype priority.
NPY_SCALAR_PRIORITY

Default scalar priority (very small)
double PyArray_GetPriority(PyObject *obj, double def)

Return the __array_priority__ attribute (converted to a double) of obj or def if no attribute of that name
exists. Fast returns that avoid the attribute lookup are provided for objects of type PyArray_Type.

Default buffers
NPY_BUFSIZE

Default size of the user-settable internal buffers.
NPY_MIN_BUFSIZE

Smallest size of user-settable internal buffers.
NPY_MAX_BUFSIZE

Largest size allowed for the user-settable buffers.

2.1. NumPy C-API 1953

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

Other constants
NPY_NUM_FLOATTYPE

The number of floating-point types
NPY_MAXDIMS

The maximum number of dimensions that may be used by NumPy. This is set to 64 and was 32 before NumPy 2.

Note: We encourage you to avoidNPY_MAXDIMS. A future version of NumPymaywish to remove any dimension
limitation (and thus the constant). The limitation was created so that NumPy can use stack allocations internally
for scratch space.
If your algorithm has a reasonable maximum number of dimension you could check and use that locally.

NPY_MAXARGS

The maximum number of array arguments that can be used in some functions. This used to be 32 before NumPy
2 and is now 64. To continue to allow using it as a check whether a number of arguments is compatible ufuncs,
this macro is now runtime dependent.

Note: We discourage any use of NPY_MAXARGS that isn’t explicitly tied to checking for known NumPy limita-
tions.

NPY_FALSE

Defined as 0 for use with Bool.
NPY_TRUE

Defined as 1 for use with Bool.
NPY_FAIL

The return value of failed converter functions which are called using the “O&” syntax in PyArg_ParseTuple-
like functions.

NPY_SUCCEED

The return value of successful converter functions which are called using the “O&” syntax in
PyArg_ParseTuple-like functions.

NPY_RAVEL_AXIS

Some NumPy functions (mainly the C-entrypoints for Python functions) have an axis argument. This macro may
be passed for axis=None.

Note: This macro is NumPy version dependent at runtime. The value is now the minimum integer. However, on
NumPy 1.x NPY_MAXDIMS was used (at the time set to 32).

1954 2. C API

https://docs.python.org/3/c-api/arg.html#c.PyArg_ParseTuple
https://docs.python.org/3/c-api/arg.html#c.PyArg_ParseTuple

NumPy Reference, Release 2.2.0

Miscellaneous Macros
int PyArray_SAMESHAPE(PyArrayObject *a1, PyArrayObject *a2)

Evaluates as True if arrays a1 and a2 have the same shape.
PyArray_MAX(a, b)

Returns the maximum of a and b. If (a) or (b) are expressions they are evaluated twice.
PyArray_MIN(a, b)

Returns the minimum of a and b. If (a) or (b) are expressions they are evaluated twice.
void PyArray_DiscardWritebackIfCopy(PyArrayObject *obj)

If obj->flags has NPY_ARRAY_WRITEBACKIFCOPY, this function clears the flags, DE-
CREF s obj->base and makes it writeable, and sets obj->base to NULL. In contrast to
PyArray_ResolveWritebackIfCopy it makes no attempt to copy the data from obj->base. This
undoes PyArray_SetWritebackIfCopyBase. Usually this is called after an error when you are finished
with obj, just before Py_DECREF(obj). It may be called multiple times, or with NULL input.

Enumerated Types
enum NPY_SORTKIND

A special variable-type which can take on different values to indicate the sorting algorithm being used.
enumerator NPY_QUICKSORT

enumerator NPY_HEAPSORT

enumerator NPY_MERGESORT

enumerator NPY_STABLESORT
Used as an alias of NPY_MERGESORT and vice versa.

enumerator NPY_NSORTS
Defined to be the number of sorts. It is fixed at three by the need for backwards compatibility, and con-
sequently NPY_MERGESORT and NPY_STABLESORT are aliased to each other and may refer to one of
several stable sorting algorithms depending on the data type.

enum NPY_SCALARKIND

A special variable type indicating the number of “kinds” of scalars distinguished in determining scalar-coercion
rules. This variable can take on the values:
enumerator NPY_NOSCALAR

enumerator NPY_BOOL_SCALAR

enumerator NPY_INTPOS_SCALAR

enumerator NPY_INTNEG_SCALAR

enumerator NPY_FLOAT_SCALAR

enumerator NPY_COMPLEX_SCALAR

enumerator NPY_OBJECT_SCALAR

enumerator NPY_NSCALARKINDS
Defined to be the number of scalar kinds (not including NPY_NOSCALAR).

2.1. NumPy C-API 1955

NumPy Reference, Release 2.2.0

enum NPY_ORDER

An enumeration type indicating the element order that an array should be interpreted in. When a brand new array
is created, generally only NPY_CORDER and NPY_FORTRANORDER are used, whereas when one or more
inputs are provided, the order can be based on them.
enumerator NPY_ANYORDER

Fortran order if all the inputs are Fortran, C otherwise.
enumerator NPY_CORDER

C order.
enumerator NPY_FORTRANORDER

Fortran order.
enumerator NPY_KEEPORDER

An order as close to the order of the inputs as possible, even if the input is in neither C nor Fortran order.
enum NPY_CLIPMODE

A variable type indicating the kind of clipping that should be applied in certain functions.
enumerator NPY_RAISE

The default for most operations, raises an exception if an index is out of bounds.
enumerator NPY_CLIP

Clips an index to the valid range if it is out of bounds.
enumerator NPY_WRAP

Wraps an index to the valid range if it is out of bounds.
enum NPY_SEARCHSIDE

A variable type indicating whether the index returned should be that of the first suitable location (if
NPY_SEARCHLEFT) or of the last (if NPY_SEARCHRIGHT).
enumerator NPY_SEARCHLEFT

enumerator NPY_SEARCHRIGHT

enum NPY_SELECTKIND

A variable type indicating the selection algorithm being used.
enumerator NPY_INTROSELECT

enum NPY_CASTING

An enumeration type indicating how permissive data conversions should be. This is used by the iterator added in
NumPy 1.6, and is intended to be used more broadly in a future version.
enumerator NPY_NO_CASTING

Only allow identical types.
enumerator NPY_EQUIV_CASTING

Allow identical and casts involving byte swapping.
enumerator NPY_SAFE_CASTING

Only allow casts which will not cause values to be rounded, truncated, or otherwise changed.
enumerator NPY_SAME_KIND_CASTING

Allow any safe casts, and casts between types of the same kind. For example, float64 -> float32 is permitted
with this rule.

1956 2. C API

NumPy Reference, Release 2.2.0

enumerator NPY_UNSAFE_CASTING
Allow any cast, no matter what kind of data loss may occur.

2.1.5 Array iterator API

Array iterator

The array iterator encapsulates many of the key features in ufuncs, allowing user code to support features like output
parameters, preservation of memory layouts, and buffering of data with the wrong alignment or type, without requiring
difficult coding.
This page documents the API for the iterator. The iterator is named NpyIter and functions are named NpyIter_*.
There is an introductory guide to array iteration which may be of interest for those using this C API. In many instances,
testing out ideas by creating the iterator in Python is a good idea before writing the C iteration code.

Iteration example

The best way to become familiar with the iterator is to look at its usage within the NumPy codebase itself. For example,
here is a slightly tweaked version of the code for PyArray_CountNonzero, which counts the number of non-zero
elements in an array.

npy_intp PyArray_CountNonzero(PyArrayObject* self)
{

/* Nonzero boolean function */
PyArray_NonzeroFunc* nonzero = PyArray_DESCR(self)->f->nonzero;

NpyIter* iter;
NpyIter_IterNextFunc *iternext;
char** dataptr;
npy_intp nonzero_count;
npy_intp* strideptr,* innersizeptr;

/* Handle zero-sized arrays specially */
if (PyArray_SIZE(self) == 0) {

return 0;
}

/*
* Create and use an iterator to count the nonzeros.
* flag NPY_ITER_READONLY
* - The array is never written to.
* flag NPY_ITER_EXTERNAL_LOOP
* - Inner loop is done outside the iterator for efficiency.
* flag NPY_ITER_NPY_ITER_REFS_OK
* - Reference types are acceptable.
* order NPY_KEEPORDER
* - Visit elements in memory order, regardless of strides.
* This is good for performance when the specific order
* elements are visited is unimportant.
* casting NPY_NO_CASTING
* - No casting is required for this operation.
*/
iter = NpyIter_New(self, NPY_ITER_READONLY|

NPY_ITER_EXTERNAL_LOOP|

(continues on next page)

2.1. NumPy C-API 1957

NumPy Reference, Release 2.2.0

(continued from previous page)
NPY_ITER_REFS_OK,

NPY_KEEPORDER, NPY_NO_CASTING,
NULL);

if (iter == NULL) {
return -1;

}

/*
* The iternext function gets stored in a local variable
* so it can be called repeatedly in an efficient manner.
*/
iternext = NpyIter_GetIterNext(iter, NULL);
if (iternext == NULL) {

NpyIter_Deallocate(iter);
return -1;

}
/* The location of the data pointer which the iterator may update */
dataptr = NpyIter_GetDataPtrArray(iter);
/* The location of the stride which the iterator may update */
strideptr = NpyIter_GetInnerStrideArray(iter);
/* The location of the inner loop size which the iterator may update */
innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);

nonzero_count = 0;
do {

/* Get the inner loop data/stride/count values */
char* data = *dataptr;
npy_intp stride = *strideptr;
npy_intp count = *innersizeptr;

/* This is a typical inner loop for NPY_ITER_EXTERNAL_LOOP */
while (count--) {

if (nonzero(data, self)) {
++nonzero_count;

}
data += stride;

}

/* Increment the iterator to the next inner loop */
} while(iternext(iter));

NpyIter_Deallocate(iter);

return nonzero_count;
}

1958 2. C API

NumPy Reference, Release 2.2.0

Multi-iteration example

Here is a copy function using the iterator. The order parameter is used to control the memory layout of the allocated
result, typically NPY_KEEPORDER is desired.

PyObject *CopyArray(PyObject *arr, NPY_ORDER order)
{

NpyIter *iter;
NpyIter_IterNextFunc *iternext;
PyObject *op[2], *ret;
npy_uint32 flags;
npy_uint32 op_flags[2];
npy_intp itemsize, *innersizeptr, innerstride;
char **dataptrarray;

/*
* No inner iteration - inner loop is handled by CopyArray code
*/
flags = NPY_ITER_EXTERNAL_LOOP;
/*
* Tell the constructor to automatically allocate the output.
* The data type of the output will match that of the input.
*/
op[0] = arr;
op[1] = NULL;
op_flags[0] = NPY_ITER_READONLY;
op_flags[1] = NPY_ITER_WRITEONLY | NPY_ITER_ALLOCATE;

/* Construct the iterator */
iter = NpyIter_MultiNew(2, op, flags, order, NPY_NO_CASTING,

op_flags, NULL);
if (iter == NULL) {

return NULL;
}

/*
* Make a copy of the iternext function pointer and
* a few other variables the inner loop needs.
*/
iternext = NpyIter_GetIterNext(iter, NULL);
innerstride = NpyIter_GetInnerStrideArray(iter)[0];
itemsize = NpyIter_GetDescrArray(iter)[0]->elsize;
/*
* The inner loop size and data pointers may change during the
* loop, so just cache the addresses.
*/
innersizeptr = NpyIter_GetInnerLoopSizePtr(iter);
dataptrarray = NpyIter_GetDataPtrArray(iter);

/*
* Note that because the iterator allocated the output,
* it matches the iteration order and is packed tightly,
* so we don't need to check it like the input.
*/
if (innerstride == itemsize) {

do {
memcpy(dataptrarray[1], dataptrarray[0],

itemsize * (*innersizeptr));
(continues on next page)

2.1. NumPy C-API 1959

NumPy Reference, Release 2.2.0

(continued from previous page)
} while (iternext(iter));

} else {
/* For efficiency, should specialize this based on item size... */
npy_intp i;
do {

npy_intp size = *innersizeptr;
char *src = dataptrarray[0], *dst = dataptrarray[1];
for(i = 0; i < size; i++, src += innerstride, dst += itemsize) {

memcpy(dst, src, itemsize);
}

} while (iternext(iter));
}

/* Get the result from the iterator object array */
ret = NpyIter_GetOperandArray(iter)[1];
Py_INCREF(ret);

if (NpyIter_Deallocate(iter) != NPY_SUCCEED) {
Py_DECREF(ret);
return NULL;

}

return ret;
}

Multi index tracking example

This example shows you how to work with the NPY_ITER_MULTI_INDEX flag. For simplicity, we assume the argu-
ment is a two-dimensional array.

int PrintMultiIndex(PyArrayObject *arr) {
NpyIter *iter;
NpyIter_IterNextFunc *iternext;
npy_intp multi_index[2];

iter = NpyIter_New(
arr, NPY_ITER_READONLY | NPY_ITER_MULTI_INDEX | NPY_ITER_REFS_OK,
NPY_KEEPORDER, NPY_NO_CASTING, NULL);

if (iter == NULL) {
return -1;

}
if (NpyIter_GetNDim(iter) != 2) {

NpyIter_Deallocate(iter);
PyErr_SetString(PyExc_ValueError, "Array must be 2-D");
return -1;

}
if (NpyIter_GetIterSize(iter) != 0) {

iternext = NpyIter_GetIterNext(iter, NULL);
if (iternext == NULL) {

NpyIter_Deallocate(iter);
return -1;

}
NpyIter_GetMultiIndexFunc *get_multi_index =

NpyIter_GetGetMultiIndex(iter, NULL);
if (get_multi_index == NULL) {

(continues on next page)

1960 2. C API

NumPy Reference, Release 2.2.0

(continued from previous page)
NpyIter_Deallocate(iter);
return -1;

}

do {
get_multi_index(iter, multi_index);
printf("multi_index is [%" NPY_INTP_FMT ", %" NPY_INTP_FMT "]\n",

multi_index[0], multi_index[1]);
} while (iternext(iter));

}
if (!NpyIter_Deallocate(iter)) {

return -1;
}
return 0;

}

When called with a 2x3 array, the above example prints:

multi_index is [0, 0]
multi_index is [0, 1]
multi_index is [0, 2]
multi_index is [1, 0]
multi_index is [1, 1]
multi_index is [1, 2]

Iterator data types

The iterator layout is an internal detail, and user code only sees an incomplete struct.
type NpyIter

This is an opaque pointer type for the iterator. Access to its contents can only be done through the iterator API.
type NpyIter_Type

This is the type which exposes the iterator to Python. Currently, no API is exposed which provides access to the
values of a Python-created iterator. If an iterator is created in Python, it must be used in Python and vice versa.
Such an API will likely be created in a future version.

type NpyIter_IterNextFunc
This is a function pointer for the iteration loop, returned by NpyIter_GetIterNext.

type NpyIter_GetMultiIndexFunc
This is a function pointer for getting the current iterator multi-index, returned by
NpyIter_GetGetMultiIndex.

Construction and destruction

NpyIter *NpyIter_New(PyArrayObject *op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting,
PyArray_Descr *dtype)

Creates an iterator for the given numpy array object op.
Flags that may be passed in flags are any combination of the global and per-operand flags documented in
NpyIter_MultiNew, except for NPY_ITER_ALLOCATE.
Any of the NPY_ORDER enum values may be passed to order. For efficient iteration, NPY_KEEPORDER is the
best option, and the other orders enforce the particular iteration pattern.

2.1. NumPy C-API 1961

NumPy Reference, Release 2.2.0

Any of the NPY_CASTING enum values may be passed to casting. The values include
NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING,
and NPY_UNSAFE_CASTING. To allow the casts to occur, copying or buffering must also be enabled.
If dtype isn’t NULL, then it requires that data type. If copying is allowed, it will make a temporary copy if the
data is castable. If NPY_ITER_UPDATEIFCOPY is enabled, it will also copy the data back with another cast
upon iterator destruction.
Returns NULL if there is an error, otherwise returns the allocated iterator.
To make an iterator similar to the old iterator, this should work.

iter = NpyIter_New(op, NPY_ITER_READWRITE,
NPY_CORDER, NPY_NO_CASTING, NULL);

If you want to edit an array with aligned double code, but the order doesn’t matter, you would use this.

dtype = PyArray_DescrFromType(NPY_DOUBLE);
iter = NpyIter_New(op, NPY_ITER_READWRITE|

NPY_ITER_BUFFERED|
NPY_ITER_NBO|
NPY_ITER_ALIGNED,
NPY_KEEPORDER,
NPY_SAME_KIND_CASTING,
dtype);

Py_DECREF(dtype);

NpyIter *NpyIter_MultiNew(npy_intp nop, PyArrayObject **op, npy_uint32 flags, NPY_ORDER order,
NPY_CASTING casting, npy_uint32 *op_flags, PyArray_Descr **op_dtypes)

Creates an iterator for broadcasting the nop array objects provided in op, using regular NumPy broadcasting rules.
Any of the NPY_ORDER enum values may be passed to order. For efficient iteration, NPY_KEEPORDER is
the best option, and the other orders enforce the particular iteration pattern. When using NPY_KEEPORDER,
if you also want to ensure that the iteration is not reversed along an axis, you should pass the flag
NPY_ITER_DONT_NEGATE_STRIDES.
Any of the NPY_CASTING enum values may be passed to casting. The values include
NPY_NO_CASTING, NPY_EQUIV_CASTING, NPY_SAFE_CASTING, NPY_SAME_KIND_CASTING,
and NPY_UNSAFE_CASTING. To allow the casts to occur, copying or buffering must also be enabled.
If op_dtypes isn’t NULL, it specifies a data type or NULL for each op[i].
Returns NULL if there is an error, otherwise returns the allocated iterator.
Flags that may be passed in flags, applying to the whole iterator, are:

NPY_ITER_C_INDEX

Causes the iterator to track a raveled flat index matching C order. This option cannot be used with
NPY_ITER_F_INDEX.

NPY_ITER_F_INDEX

Causes the iterator to track a raveled flat index matching Fortran order. This option cannot be used with
NPY_ITER_C_INDEX.

NPY_ITER_MULTI_INDEX

Causes the iterator to track a multi-index. This prevents the iterator from coalescing axes to produce bigger inner
loops. If the loop is also not buffered and no index is being tracked (NpyIter_RemoveAxis can be called), then
the iterator size can be -1 to indicate that the iterator is too large. This can happen due to complex broadcasting
and will result in errors being created when the setting the iterator range, removing the multi index, or getting the

1962 2. C API

NumPy Reference, Release 2.2.0

next function. However, it is possible to remove axes again and use the iterator normally if the size is small enough
after removal.

NPY_ITER_EXTERNAL_LOOP

Causes the iterator to skip iteration of the innermost loop, requiring the user of the iterator to handle it.
This flag is incompatible with NPY_ITER_C_INDEX, NPY_ITER_F_INDEX, and
NPY_ITER_MULTI_INDEX.

NPY_ITER_DONT_NEGATE_STRIDES

This only affects the iterator when NPY_KEEPORDER is specified for the order parameter. By default with
NPY_KEEPORDER, the iterator reverses axes which have negative strides, so that memory is traversed in a forward
direction. This disables this step. Use this flag if you want to use the underlying memory-ordering of the axes, but
don’t want an axis reversed. This is the behavior of numpy.ravel(a, order='K'), for instance.

NPY_ITER_COMMON_DTYPE

Causes the iterator to convert all the operands to a common data type, calculated based on the ufunc type promotion
rules. Copying or buffering must be enabled.
If the common data type is known ahead of time, don’t use this flag. Instead, set the requested dtype for all the
operands.

NPY_ITER_REFS_OK

Indicates that arrays with reference types (object arrays or structured arrays containing an object type) may
be accepted and used in the iterator. If this flag is enabled, the caller must be sure to check whether
NpyIter_IterationNeedsAPI(iter) is true, in which case it may not release the GIL during iteration.

NPY_ITER_ZEROSIZE_OK

Indicates that arrays with a size of zero should be permitted. Since the typical iteration loop does not naturally
work with zero-sized arrays, you must check that the IterSize is larger than zero before entering the iteration loop.
Currently only the operands are checked, not a forced shape.

NPY_ITER_REDUCE_OK

Permits writeable operands with a dimension with zero stride and size greater than one. Note that such operands
must be read/write.
When buffering is enabled, this also switches to a special buffering mode which reduces the loop length as necessary
to not trample on values being reduced.
Note that if you want to do a reduction on an automatically allocated output, you must use
NpyIter_GetOperandArray to get its reference, then set every value to the reduction unit before
doing the iteration loop. In the case of a buffered reduction, this means you must also specify the flag
NPY_ITER_DELAY_BUFALLOC, then reset the iterator after initializing the allocated operand to prepare the
buffers.

NPY_ITER_RANGED

Enables support for iteration of sub-ranges of the fulliterindex range[0, NpyIter_IterSize(iter)).
Use the function NpyIter_ResetToIterIndexRange to specify a range for iteration.
This flag can only be used with NPY_ITER_EXTERNAL_LOOP when NPY_ITER_BUFFERED is enabled. This
is because without buffering, the inner loop is always the size of the innermost iteration dimension, and allowing it
to get cut up would require special handling, effectively making it more like the buffered version.

NPY_ITER_BUFFERED

Causes the iterator to store buffering data, and use buffering to satisfy data type, alignment, and byte-order require-
ments. To buffer an operand, do not specify the NPY_ITER_COPY or NPY_ITER_UPDATEIFCOPY flags,
because they will override buffering. Buffering is especially useful for Python code using the iterator, allowing for
larger chunks of data at once to amortize the Python interpreter overhead.

2.1. NumPy C-API 1963

NumPy Reference, Release 2.2.0

If used with NPY_ITER_EXTERNAL_LOOP, the inner loop for the caller may get larger chunks than would be
possible without buffering, because of how the strides are laid out.
Note that if an operand is given the flag NPY_ITER_COPY or NPY_ITER_UPDATEIFCOPY, a copy will be
made in preference to buffering. Buffering will still occur when the array was broadcast so elements need to be
duplicated to get a constant stride.
In normal buffering, the size of each inner loop is equal to the buffer size, or possibly larger if
NPY_ITER_GROWINNER is specified. If NPY_ITER_REDUCE_OK is enabled and a reduction occurs, the inner
loops may become smaller depending on the structure of the reduction.

NPY_ITER_GROWINNER

When buffering is enabled, this allows the size of the inner loop to grow when buffering isn’t necessary. This option
is best used if you’re doing a straight pass through all the data, rather than anything with small cache-friendly arrays
of temporary values for each inner loop.

NPY_ITER_DELAY_BUFALLOC

When buffering is enabled, this delays allocation of the buffers until NpyIter_Reset or another reset function is
called. This flag exists to avoid wasteful copying of buffer data when making multiple copies of a buffered iterator
for multi-threaded iteration.
Another use of this flag is for setting up reduction operations. After the iterator is created, and a reduction output
is allocated automatically by the iterator (be sure to use READWRITE access), its value may be initialized to the
reduction unit. Use NpyIter_GetOperandArray to get the object. Then, call NpyIter_Reset to allocate
and fill the buffers with their initial values.

NPY_ITER_COPY_IF_OVERLAP

If any write operand has overlap with any read operand, eliminate all overlap by making temporary copies (enabling
UPDATEIFCOPY for write operands, if necessary). A pair of operands has overlap if there is a memory address
that contains data common to both arrays.
Because exact overlap detection has exponential runtime in the number of dimensions, the decision is made based
on heuristics, which has false positives (needless copies in unusual cases) but has no false negatives.
If any read/write overlap exists, this flag ensures the result of the operation is the same as if all operands were
copied. In cases where copies would need to be made, the result of the computation may be undefined without
this flag!
Flags that may be passed in op_flags[i], where 0 <= i < nop:

NPY_ITER_READWRITE

NPY_ITER_READONLY

NPY_ITER_WRITEONLY

Indicate how the user of the iterator will read or write to op[i]. Exactly one of these flags must be
specified per operand. Using NPY_ITER_READWRITE or NPY_ITER_WRITEONLY for a user-provided
operand may trigger WRITEBACKIFCOPY semantics. The data will be written back to the original array when
NpyIter_Deallocate is called.

NPY_ITER_COPY

Allow a copy of op[i] to be made if it does not meet the data type or alignment requirements as specified by the
constructor flags and parameters.

NPY_ITER_UPDATEIFCOPY

Triggers NPY_ITER_COPY, and when an array operand is flagged for writing and is copied, causes the data in a
copy to be copied back to op[i] when NpyIter_Deallocate is called.
If the operand is flagged as write-only and a copy is needed, an uninitialized temporary array will be created and then
copied to back to op[i] on calling NpyIter_Deallocate, instead of doing the unnecessary copy operation.

1964 2. C API

NumPy Reference, Release 2.2.0

NPY_ITER_NBO

NPY_ITER_ALIGNED

NPY_ITER_CONTIG

Causes the iterator to provide data for op[i] that is in native byte order, aligned according to the dtype require-
ments, contiguous, or any combination.
By default, the iterator produces pointers into the arrays provided, which may be aligned or unaligned, and with
any byte order. If copying or buffering is not enabled and the operand data doesn’t satisfy the constraints, an error
will be raised.
The contiguous constraint applies only to the inner loop, successive inner loops may have arbitrary pointer changes.
If the requested data type is in non-native byte order, the NBO flag overrides it and the requested data type is
converted to be in native byte order.

NPY_ITER_ALLOCATE

This is for output arrays, and requires that the flag NPY_ITER_WRITEONLY or NPY_ITER_READWRITE be
set. If op[i] is NULL, creates a new array with the final broadcast dimensions, and a layout matching the iteration
order of the iterator.
When op[i] is NULL, the requested data type op_dtypes[i] may be NULL as well, in which case it is
automatically generated from the dtypes of the arrays which are flagged as readable. The rules for generating the
dtype are the same is for UFuncs. Of special note is handling of byte order in the selected dtype. If there is exactly
one input, the input’s dtype is used as is. Otherwise, if more than one input dtypes are combined together, the
output will be in native byte order.
After being allocated with this flag, the caller may retrieve the new array by calling
NpyIter_GetOperandArray and getting the i-th object in the returned C array. The caller must call
Py_INCREF on it to claim a reference to the array.

NPY_ITER_NO_SUBTYPE

For use with NPY_ITER_ALLOCATE, this flag disables allocating an array subtype for the output, forcing it to be
a straight ndarray.
TODO: Maybe it would be better to introduce a function NpyIter_GetWrappedOutput and remove this
flag?

NPY_ITER_NO_BROADCAST

Ensures that the input or output matches the iteration dimensions exactly.
NPY_ITER_ARRAYMASK

Indicates that this operand is the mask to use for selecting elements when writing to operands which have the
NPY_ITER_WRITEMASKED flag applied to them. Only one operand may have NPY_ITER_ARRAYMASK flag
applied to it.
The data type of an operand with this flag should be either NPY_BOOL, NPY_MASK, or a struct dtype whose fields
are all valid mask dtypes. In the latter case, it must match up with a struct operand being WRITEMASKED, as it
is specifying a mask for each field of that array.
This flag only affects writing from the buffer back to the array. This means that if the operand is also
NPY_ITER_READWRITE or NPY_ITER_WRITEONLY, code doing iteration can write to this operand to con-
trol which elements will be untouched and which ones will be modified. This is useful when the mask should be a
combination of input masks.

NPY_ITER_WRITEMASKED

This array is the mask for all writemasked operands. Code uses the writemasked flag which indicates that
only elements where the chosen ARRAYMASK operand is True will be written to. In general, the iterator does
not enforce this, it is up to the code doing the iteration to follow that promise.

2.1. NumPy C-API 1965

NumPy Reference, Release 2.2.0

Whenwritemasked flag is used, and this operand is buffered, this changes how data is copied from the buffer into
the array. Amasked copying routine is used, which only copies the elements in the buffer for whichwritemasked
returns true from the corresponding element in the ARRAYMASK operand.

NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE

In memory overlap checks, assume that operands with NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE en-
abled are accessed only in the iterator order.
This enables the iterator to reason about data dependency, possibly avoiding unnecessary copies.
This flag has effect only if NPY_ITER_COPY_IF_OVERLAP is enabled on the iterator.

NpyIter *NpyIter_AdvancedNew(npy_intp nop, PyArrayObject **op, npy_uint32 flags, NPY_ORDER order,
NPY_CASTING casting, npy_uint32 *op_flags, PyArray_Descr **op_dtypes, int
oa_ndim, int **op_axes, npy_intp const *itershape, npy_intp buffersize)

Extends NpyIter_MultiNew with several advanced options providing more control over broadcasting and
buffering.
If -1/NULL values are passed to oa_ndim, op_axes, itershape, and buffersize, it is equivalent to
NpyIter_MultiNew.
The parameter oa_ndim, when not zero or -1, specifies the number of dimensions that will be iterated with cus-
tomized broadcasting. If it is provided, op_axes must and itershape can also be provided. The op_axes
parameter let you control in detail how the axes of the operand arrays get matched together and iterated. In
op_axes, you must provide an array of nop pointers to oa_ndim-sized arrays of type npy_intp. If an
entry in op_axes is NULL, normal broadcasting rules will apply. In op_axes[j][i] is stored either a valid
axis of op[j], or -1 which means newaxis. Within each op_axes[j] array, axes may not be repeated. The
following example is how normal broadcasting applies to a 3-D array, a 2-D array, a 1-D array and a scalar.
Note: Before NumPy 1.8 oa_ndim == 0 was used for signalling that op_axes and itershape are un-
used. This is deprecated and should be replaced with -1. Better backward compatibility may be achieved by using
NpyIter_MultiNew for this case.

int oa_ndim = 3; /* # iteration axes */
int op0_axes[] = {0, 1, 2}; /* 3-D operand */
int op1_axes[] = {-1, 0, 1}; /* 2-D operand */
int op2_axes[] = {-1, -1, 0}; /* 1-D operand */
int op3_axes[] = {-1, -1, -1} /* 0-D (scalar) operand */
int* op_axes[] = {op0_axes, op1_axes, op2_axes, op3_axes};

The itershape parameter allows you to force the iterator to have a specific iteration shape. It is an array of
length oa_ndim. When an entry is negative, its value is determined from the operands. This parameter allows
automatically allocated outputs to get additional dimensions which don’t match up with any dimension of an input.
If buffersize is zero, a default buffer size is used, otherwise it specifies how big of a buffer to use. Buffers
which are powers of 2 such as 4096 or 8192 are recommended.
Returns NULL if there is an error, otherwise returns the allocated iterator.

NpyIter *NpyIter_Copy(NpyIter *iter)
Makes a copy of the given iterator. This function is provided primarily to enable multi-threaded iteration of the
data.
TODO: Move this to a section about multithreaded iteration.
The recommended approach to multithreaded iteration is to first create an iterator with
the flags NPY_ITER_EXTERNAL_LOOP, NPY_ITER_RANGED, NPY_ITER_BUFFERED,
NPY_ITER_DELAY_BUFALLOC, and possibly NPY_ITER_GROWINNER. Create a copy of this it-
erator for each thread (minus one for the first iterator). Then, take the iteration index range [0,

1966 2. C API

NumPy Reference, Release 2.2.0

NpyIter_GetIterSize(iter)) and split it up into tasks, for example using a TBB paral-
lel_for loop. When a thread gets a task to execute, it then uses its copy of the iterator by calling
NpyIter_ResetToIterIndexRange and iterating over the full range.
When using the iterator in multi-threaded code or in code not holding the Python GIL, care must be taken to only
call functions which are safe in that context. NpyIter_Copy cannot be safely called without the Python GIL,
because it increments Python references. The Reset* and some other functions may be safely called by passing
in the errmsg parameter as non-NULL, so that the functions will pass back errors through it instead of setting a
Python exception.
NpyIter_Deallocate must be called for each copy.

int NpyIter_RemoveAxis(NpyIter *iter, int axis)
Removes an axis from iteration. This requires that NPY_ITER_MULTI_INDEX was set for iterator creation, and
does not work if buffering is enabled or an index is being tracked. This function also resets the iterator to its initial
state.
This is useful for setting up an accumulation loop, for example. The iterator can first be created with all the
dimensions, including the accumulation axis, so that the output gets created correctly. Then, the accumulation axis
can be removed, and the calculation done in a nested fashion.
WARNING: This functionmay change the internal memory layout of the iterator. Any cached functions or pointers
from the iterator must be retrieved again! The iterator range will be reset as well.
Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_RemoveMultiIndex(NpyIter *iter)
If the iterator is tracking a multi-index, this strips support for them, and does further iterator optimizations that are
possible if multi-indices are not needed. This function also resets the iterator to its initial state.
WARNING: This functionmay change the internal memory layout of the iterator. Any cached functions or pointers
from the iterator must be retrieved again!
After calling this function, NpyIter_HasMultiIndex(iter) will return false.
Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_EnableExternalLoop(NpyIter *iter)
If NpyIter_RemoveMultiIndex was called, you may want to enable the flag
NPY_ITER_EXTERNAL_LOOP. This flag is not permitted together with NPY_ITER_MULTI_INDEX,
so this function is provided to enable the feature after NpyIter_RemoveMultiIndex is called. This function
also resets the iterator to its initial state.
WARNING: This function changes the internal logic of the iterator. Any cached functions or pointers from the
iterator must be retrieved again!
Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_Deallocate(NpyIter *iter)
Deallocates the iterator object and resolves any needed writebacks.
Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_Reset(NpyIter *iter, char **errmsg)
Resets the iterator back to its initial state, at the beginning of the iteration range.
Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

2.1. NumPy C-API 1967

NumPy Reference, Release 2.2.0

int NpyIter_ResetToIterIndexRange(NpyIter *iter, npy_intp istart, npy_intp iend, char **errmsg)
Resets the iterator and restricts it to the iterindex range [istart, iend). See NpyIter_Copy for an
explanation of how to use this for multi-threaded iteration. This requires that the flag NPY_ITER_RANGED was
passed to the iterator constructor.
If you want to reset both the iterindex range and the base pointers at the same time, you can do the following
to avoid extra buffer copying (be sure to add the return code error checks when you copy this code).

/* Set to a trivial empty range */
NpyIter_ResetToIterIndexRange(iter, 0, 0);
/* Set the base pointers */
NpyIter_ResetBasePointers(iter, baseptrs);
/* Set to the desired range */
NpyIter_ResetToIterIndexRange(iter, istart, iend);

Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

int NpyIter_ResetBasePointers(NpyIter *iter, char **baseptrs, char **errmsg)
Resets the iterator back to its initial state, but using the values in baseptrs for the data instead of the pointers
from the arrays being iterated. This functions is intended to be used, together with the op_axes parameter, by
nested iteration code with two or more iterators.
Returns NPY_SUCCEED or NPY_FAIL. If errmsg is non-NULL, no Python exception is set when NPY_FAIL
is returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.
TODO: Move the following into a special section on nested iterators.
Creating iterators for nested iteration requires some care. All the iterator operands must match exactly, or the calls
to NpyIter_ResetBasePointers will be invalid. This means that automatic copies and output allocation
should not be used haphazardly. It is possible to still use the automatic data conversion and casting features of
the iterator by creating one of the iterators with all the conversion parameters enabled, then grabbing the allocated
operands with the NpyIter_GetOperandArray function and passing them into the constructors for the rest
of the iterators.
WARNING: When creating iterators for nested iteration, the code must not use a dimension more than once in
the different iterators. If this is done, nested iteration will produce out-of-bounds pointers during iteration.
WARNING: When creating iterators for nested iteration, buffering can only be applied to the innermost iterator.
If a buffered iterator is used as the source for baseptrs, it will point into a small buffer instead of the array and
the inner iteration will be invalid.
The pattern for using nested iterators is as follows.

NpyIter *iter1, *iter1;
NpyIter_IterNextFunc *iternext1, *iternext2;
char **dataptrs1;

/*
* With the exact same operands, no copies allowed, and
* no axis in op_axes used both in iter1 and iter2.
* Buffering may be enabled for iter2, but not for iter1.
*/
iter1 = ...; iter2 = ...;

iternext1 = NpyIter_GetIterNext(iter1);
iternext2 = NpyIter_GetIterNext(iter2);

(continues on next page)

1968 2. C API

NumPy Reference, Release 2.2.0

(continued from previous page)
dataptrs1 = NpyIter_GetDataPtrArray(iter1);

do {
NpyIter_ResetBasePointers(iter2, dataptrs1);
do {

/* Use the iter2 values */
} while (iternext2(iter2));

} while (iternext1(iter1));

int NpyIter_GotoMultiIndex(NpyIter *iter, npy_intp const *multi_index)
Adjusts the iterator to point to the ndim indices pointed to by multi_index. Returns an error if a multi-index
is not being tracked, the indices are out of bounds, or inner loop iteration is disabled.
Returns NPY_SUCCEED or NPY_FAIL.

int NpyIter_GotoIndex(NpyIter *iter, npy_intp index)
Adjusts the iterator to point to the index specified. If the iterator was constructed with the flag
NPY_ITER_C_INDEX, index is the C-order index, and if the iterator was constructed with the flag
NPY_ITER_F_INDEX, index is the Fortran-order index. Returns an error if there is no index being tracked,
the index is out of bounds, or inner loop iteration is disabled.
Returns NPY_SUCCEED or NPY_FAIL.

npy_intp NpyIter_GetIterSize(NpyIter *iter)
Returns the number of elements being iterated. This is the product of all the dimensions in the shape. When a multi
index is being tracked (and NpyIter_RemoveAxis may be called) the size may be -1 to indicate an iterator
is too large. Such an iterator is invalid, but may become valid after NpyIter_RemoveAxis is called. It is not
necessary to check for this case.

npy_intp NpyIter_GetIterIndex(NpyIter *iter)
Gets the iterindex of the iterator, which is an index matching the iteration order of the iterator.

void NpyIter_GetIterIndexRange(NpyIter *iter, npy_intp *istart, npy_intp *iend)
Gets the iterindex sub-range that is being iterated. If NPY_ITER_RANGED was not specified, this always
returns the range [0, NpyIter_IterSize(iter)).

int NpyIter_GotoIterIndex(NpyIter *iter, npy_intp iterindex)
Adjusts the iterator to point to the iterindex specified. The IterIndex is an index matching the iteration order
of the iterator. Returns an error if the iterindex is out of bounds, buffering is enabled, or inner loop iteration
is disabled.
Returns NPY_SUCCEED or NPY_FAIL.

npy_bool NpyIter_HasDelayedBufAlloc(NpyIter *iter)
Returns 1 if the flag NPY_ITER_DELAY_BUFALLOC was passed to the iterator constructor, and no call to one
of the Reset functions has been done yet, 0 otherwise.

npy_bool NpyIter_HasExternalLoop(NpyIter *iter)
Returns 1 if the caller needs to handle the inner-most 1-dimensional loop, or 0 if the iterator
handles all looping. This is controlled by the constructor flag NPY_ITER_EXTERNAL_LOOP or
NpyIter_EnableExternalLoop.

npy_bool NpyIter_HasMultiIndex(NpyIter *iter)
Returns 1 if the iterator was created with the NPY_ITER_MULTI_INDEX flag, 0 otherwise.

npy_bool NpyIter_HasIndex(NpyIter *iter)
Returns 1 if the iterator was created with the NPY_ITER_C_INDEX or NPY_ITER_F_INDEX flag, 0 otherwise.

2.1. NumPy C-API 1969

NumPy Reference, Release 2.2.0

npy_bool NpyIter_RequiresBuffering(NpyIter *iter)
Returns 1 if the iterator requires buffering, which occurs when an operand needs conversion or alignment and so
cannot be used directly.

npy_bool NpyIter_IsBuffered(NpyIter *iter)
Returns 1 if the iterator was created with the NPY_ITER_BUFFERED flag, 0 otherwise.

npy_bool NpyIter_IsGrowInner(NpyIter *iter)
Returns 1 if the iterator was created with the NPY_ITER_GROWINNER flag, 0 otherwise.

npy_intp NpyIter_GetBufferSize(NpyIter *iter)
If the iterator is buffered, returns the size of the buffer being used, otherwise returns 0.

int NpyIter_GetNDim(NpyIter *iter)
Returns the number of dimensions being iterated. If a multi-index was not requested in the iterator constructor,
this value may be smaller than the number of dimensions in the original objects.

int NpyIter_GetNOp(NpyIter *iter)
Returns the number of operands in the iterator.

npy_intp *NpyIter_GetAxisStrideArray(NpyIter *iter, int axis)
Gets the array of strides for the specified axis. Requires that the iterator be tracking amulti-index, and that buffering
not be enabled.
This may be used when you want to match up operand axes in some fashion, then remove them with
NpyIter_RemoveAxis to handle their processing manually. By calling this function before removing the
axes, you can get the strides for the manual processing.
Returns NULL on error.

int NpyIter_GetShape(NpyIter *iter, npy_intp *outshape)
Returns the broadcast shape of the iterator in outshape. This can only be called on an iterator which is tracking
a multi-index.
Returns NPY_SUCCEED or NPY_FAIL.

PyArray_Descr **NpyIter_GetDescrArray(NpyIter *iter)
This gives back a pointer to the nop data type Descrs for the objects being iterated. The result points into iter,
so the caller does not gain any references to the Descrs.
This pointer may be cached before the iteration loop, calling iternext will not change it.

PyObject **NpyIter_GetOperandArray(NpyIter *iter)
This gives back a pointer to the nop operand PyObjects that are being iterated. The result points into iter, so
the caller does not gain any references to the PyObjects.

PyObject *NpyIter_GetIterView(NpyIter *iter, npy_intp i)
This gives back a reference to a new ndarray view, which is a view into the i-th object in the array
NpyIter_GetOperandArray, whose dimensions and strides match the internal optimized iteration pattern.
A C-order iteration of this view is equivalent to the iterator’s iteration order.
For example, if an iterator was created with a single array as its input, and it was possible to rearrange all its axes
and then collapse it into a single strided iteration, this would return a view that is a one-dimensional array.

void NpyIter_GetReadFlags(NpyIter *iter, char *outreadflags)
Fills nop flags. Sets outreadflags[i] to 1 if op[i] can be read from, and to 0 if not.

void NpyIter_GetWriteFlags(NpyIter *iter, char *outwriteflags)
Fills nop flags. Sets outwriteflags[i] to 1 if op[i] can be written to, and to 0 if not.

1970 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int NpyIter_CreateCompatibleStrides(NpyIter *iter, npy_intp itemsize, npy_intp *outstrides)
Builds a set of strides which are the same as the strides of an output array created using the
NPY_ITER_ALLOCATE flag, where NULL was passed for op_axes. This is for data packed contiguously,
but not necessarily in C or Fortran order. This should be used together with NpyIter_GetShape and
NpyIter_GetNDim with the flag NPY_ITER_MULTI_INDEX passed into the constructor.
A use case for this function is to match the shape and layout of the iterator and tack on one or more dimensions.
For example, in order to generate a vector per input value for a numerical gradient, you pass in ndim*itemsize for
itemsize, then add another dimension to the end with size ndim and stride itemsize. To do the Hessian matrix, you
do the same thing but add two dimensions, or take advantage of the symmetry and pack it into 1 dimension with a
particular encoding.
This function may only be called if the iterator is tracking a multi-index and if
NPY_ITER_DONT_NEGATE_STRIDES was used to prevent an axis from being iterated in reverse order.
If an array is created with this method, simply adding ‘itemsize’ for each iteration will traverse the new array
matching the iterator.
Returns NPY_SUCCEED or NPY_FAIL.

npy_bool NpyIter_IsFirstVisit(NpyIter *iter, int iop)
Checks to see whether this is the first time the elements of the specified reduction operand which the iterator points
at are being seen for the first time. The function returns a reasonable answer for reduction operands and when
buffering is disabled. The answer may be incorrect for buffered non-reduction operands.
This function is intended to be used in EXTERNAL_LOOP mode only, and will produce some wrong answers
when that mode is not enabled.
If this function returns true, the caller should also check the inner loop stride of the operand, because if that stride
is 0, then only the first element of the innermost external loop is being visited for the first time.
WARNING: For performance reasons, ‘iop’ is not bounds-checked, it is not confirmed that ‘iop’ is actually a reduction
operand, and it is not confirmed that EXTERNAL_LOOP mode is enabled. These checks are the responsibility of
the caller, and should be done outside of any inner loops.

Functions for iteration

NpyIter_IterNextFunc *NpyIter_GetIterNext(NpyIter *iter, char **errmsg)
Returns a function pointer for iteration. A specialized version of the function pointer may be calculated by this
function instead of being stored in the iterator structure. Thus, to get good performance, it is required that the
function pointer be saved in a variable rather than retrieved for each loop iteration.
Returns NULL if there is an error. If errmsg is non-NULL, no Python exception is set when NPY_FAIL is
returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.
The typical looping construct is as follows.

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char** dataptr = NpyIter_GetDataPtrArray(iter);

do {
/* use the addresses dataptr[0], ... dataptr[nop-1] */

} while(iternext(iter));

When NPY_ITER_EXTERNAL_LOOP is specified, the typical inner loop construct is as follows.

2.1. NumPy C-API 1971

NumPy Reference, Release 2.2.0

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char** dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp* stride = NpyIter_GetInnerStrideArray(iter);
npy_intp* size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp iop, nop = NpyIter_GetNOp(iter);

do {
size = *size_ptr;
while (size--) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
} while (iternext());

Observe that we are using the dataptr array inside the iterator, not copying the values to a local temporary. This
is possible because when iternext() is called, these pointers will be overwritten with fresh values, not incre-
mentally updated.
If a compile-time fixed buffer is being used (both flags NPY_ITER_BUFFERED and
NPY_ITER_EXTERNAL_LOOP), the inner size may be used as a signal as well. The size is guaranteed
to become zero when iternext() returns false, enabling the following loop construct. Note that if you use this
construct, you should not pass NPY_ITER_GROWINNER as a flag, because it will cause larger sizes under some
circumstances.

/* The constructor should have buffersize passed as this value */
#define FIXED_BUFFER_SIZE 1024

NpyIter_IterNextFunc *iternext = NpyIter_GetIterNext(iter, NULL);
char **dataptr = NpyIter_GetDataPtrArray(iter);
npy_intp *stride = NpyIter_GetInnerStrideArray(iter);
npy_intp *size_ptr = NpyIter_GetInnerLoopSizePtr(iter), size;
npy_intp i, iop, nop = NpyIter_GetNOp(iter);

/* One loop with a fixed inner size */
size = *size_ptr;
while (size == FIXED_BUFFER_SIZE) {

/*
* This loop could be manually unrolled by a factor
* which divides into FIXED_BUFFER_SIZE
*/
for (i = 0; i < FIXED_BUFFER_SIZE; ++i) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
iternext();
size = *size_ptr;

}

/* Finish-up loop with variable inner size */
if (size > 0) do {

size = *size_ptr;
while (size--) {

/* use the addresses dataptr[0], ... dataptr[nop-1] */

(continues on next page)

1972 2. C API

NumPy Reference, Release 2.2.0

(continued from previous page)
for (iop = 0; iop < nop; ++iop) {

dataptr[iop] += stride[iop];
}

}
} while (iternext());

NpyIter_GetMultiIndexFunc *NpyIter_GetGetMultiIndex(NpyIter *iter, char **errmsg)
Returns a function pointer for getting the current multi-index of the iterator. Returns NULL if the iterator is not
tracking a multi-index. It is recommended that this function pointer be cached in a local variable before the iteration
loop.
Returns NULL if there is an error. If errmsg is non-NULL, no Python exception is set when NPY_FAIL is
returned. Instead, *errmsg is set to an error message. When errmsg is non-NULL, the function may be safely
called without holding the Python GIL.

char **NpyIter_GetDataPtrArray(NpyIter *iter)
This gives back a pointer to the nop data pointers. If NPY_ITER_EXTERNAL_LOOP was not specified, each
data pointer points to the current data item of the iterator. If no inner iteration was specified, it points to the first
data item of the inner loop.
This pointer may be cached before the iteration loop, calling iternext will not change it. This function may be
safely called without holding the Python GIL.

char **NpyIter_GetInitialDataPtrArray(NpyIter *iter)
Gets the array of data pointers directly into the arrays (never into the buffers), corresponding to iteration index 0.
These pointers are different from the pointers accepted by NpyIter_ResetBasePointers, because the di-
rection along some axes may have been reversed.
This function may be safely called without holding the Python GIL.

npy_intp *NpyIter_GetIndexPtr(NpyIter *iter)
This gives back a pointer to the index being tracked, or NULL if no index is being tracked. It is only usable if one
of the flags NPY_ITER_C_INDEX or NPY_ITER_F_INDEX were specified during construction.

When the flag NPY_ITER_EXTERNAL_LOOP is used, the code needs to know the parameters for doing the inner loop.
These functions provide that information.
npy_intp *NpyIter_GetInnerStrideArray(NpyIter *iter)

Returns a pointer to an array of the nop strides, one for each iterated object, to be used by the inner loop.
This pointer may be cached before the iteration loop, calling iternext will not change it. This function may be
safely called without holding the Python GIL.
WARNING: While the pointer may be cached, its values may change if the iterator is buffered.

npy_intp *NpyIter_GetInnerLoopSizePtr(NpyIter *iter)
Returns a pointer to the number of iterations the inner loop should execute.
This address may be cached before the iteration loop, calling iternext will not change it. The value itself may
change during iteration, in particular if buffering is enabled. This function may be safely called without holding the
Python GIL.

void NpyIter_GetInnerFixedStrideArray(NpyIter *iter, npy_intp *out_strides)
Gets an array of strides which are fixed, or will not change during the entire iteration. For strides that may change,
the value NPY_MAX_INTP is placed in the stride.
Once the iterator is prepared for iteration (after a reset if NPY_ITER_DELAY_BUFALLOC was used), call this to
get the strides which may be used to select a fast inner loop function. For example, if the stride is 0, that means the

2.1. NumPy C-API 1973

NumPy Reference, Release 2.2.0

inner loop can always load its value into a variable once, then use the variable throughout the loop, or if the stride
equals the itemsize, a contiguous version for that operand may be used.
This function may be safely called without holding the Python GIL.

Converting from previous NumPy iterators

The old iterator API includes functions like PyArrayIter_Check, PyArray_Iter* and PyArray_ITER_*. Themulti-iterator
array includes PyArray_MultiIter*, PyArray_Broadcast, and PyArray_RemoveSmallest. The new iterator design replaces
all of this functionality with a single object and associated API. One goal of the new API is that all uses of the existing
iterator should be replaceable with the new iterator without significant effort. In 1.6, the major exception to this is the
neighborhood iterator, which does not have corresponding features in this iterator.
Here is a conversion table for which functions to use with the new iterator:

Iterator Functions
PyArray_IterNew NpyIter_New
PyArray_IterAllButAxis NpyIter_New + axes parameter or Iterator flag

NPY_ITER_EXTERNAL_LOOP
PyArray_BroadcastToShape NOT SUPPORTED (Use the support for multiple operands instead.)
PyArrayIter_Check Will need to add this in Python exposure
PyArray_ITER_RESET NpyIter_Reset
PyArray_ITER_NEXT Function pointer from NpyIter_GetIterNext
PyArray_ITER_DATA NpyIter_GetDataPtrArray
PyArray_ITER_GOTO NpyIter_GotoMultiIndex
PyArray_ITER_GOTO1D NpyIter_GotoIndex or NpyIter_GotoIterIndex
PyArray_ITER_NOTDONE Return value of iternext function pointer
Multi-iterator Functions
PyArray_MultiIterNew NpyIter_MultiNew
PyArray_MultiIter_RESET NpyIter_Reset
PyArray_MultiIter_NEXT Function pointer from NpyIter_GetIterNext
PyArray_MultiIter_DATA NpyIter_GetDataPtrArray
PyArray_MultiIter_NEXTi NOT SUPPORTED (always lock-step iteration)
PyArray_MultiIter_GOTO NpyIter_GotoMultiIndex
PyArray_MultiIter_GOTO1D NpyIter_GotoIndex or NpyIter_GotoIterIndex
PyArray_MultiIter_NOTDONE Return value of iternext function pointer
PyArray_Broadcast Handled by NpyIter_MultiNew
PyArray_RemoveSmallest Iterator flag NPY_ITER_EXTERNAL_LOOP
Other Functions
PyArray_ConvertToCommonTypeIterator flag NPY_ITER_COMMON_DTYPE

2.1.6 ufunc API

Constants

UFUNC_{THING}_{ERR}

UFUNC_FPE_DIVIDEBYZERO

UFUNC_FPE_OVERFLOW

UFUNC_FPE_UNDERFLOW

1974 2. C API

NumPy Reference, Release 2.2.0

UFUNC_FPE_INVALID

PyUFunc_{VALUE}

PyUFunc_One

PyUFunc_Zero

PyUFunc_MinusOne

PyUFunc_ReorderableNone

PyUFunc_None

PyUFunc_IdentityValue

Macros

NPY_LOOP_BEGIN_THREADS

Used in universal function code to only release the Python GIL if loop->obj is not true (i.e. this is not an OBJECT
array loop). Requires use of NPY_BEGIN_THREADS_DEF in variable declaration area.

NPY_LOOP_END_THREADS

Used in universal function code to re-acquire the Python GIL if it was released (because loop->obj was not true).

Types

type PyUFuncGenericFunction
Pointers to functions that actually implement the underlying (element-by-element) function N times with the fol-
lowing signature:
void loopfunc(char **args, npy_intp const *dimensions, npy_intp const *steps, void *data)

Parameters
• args – An array of pointers to the actual data for the input and output arrays. The input
arguments are given first followed by the output arguments.

• dimensions – A pointer to the size of the dimension over which this function is looping.
• steps –A pointer to the number of bytes to jump to get to the next element in this dimension
for each of the input and output arguments.

• data – Arbitrary data (extra arguments, function names, etc.) that can be stored with the
ufunc and will be passed in when it is called. May be NULL.
Changed in version 1.23.0: Accepts NULL data in addition to array of NULL values.

This is an example of a func specialized for addition of doubles returning doubles.

static void
double_add(char **args,

npy_intp const *dimensions,
npy_intp const *steps,
void *extra)

{
npy_intp i;
npy_intp is1 = steps[0], is2 = steps[1];

(continues on next page)

2.1. NumPy C-API 1975

NumPy Reference, Release 2.2.0

(continued from previous page)
npy_intp os = steps[2], n = dimensions[0];
char *i1 = args[0], *i2 = args[1], *op = args[2];
for (i = 0; i < n; i++) {

*((double *)op) = *((double *)i1) +
*((double *)i2);

i1 += is1;
i2 += is2;
op += os;

}
}

Functions

PyObject *PyUFunc_FromFuncAndData(PyUFuncGenericFunction *func, void *const *data, const char *types,
int ntypes, int nin, int nout, int identity, const char *name, const char
*doc, int unused)

Create a new broadcasting universal function from required variables. Each ufunc builds around the notion of an
element-by-element operation. Each ufunc object contains pointers to 1-d loops implementing the basic function-
ality for each supported type.

Note: The func, data, types, name, and doc arguments are not copied by PyUFunc_FromFuncAndData. The
caller must ensure that the memory used by these arrays is not freed as long as the ufunc object is alive.

Parameters
• func – Must point to an array containing ntypes PyUFuncGenericFunction elements.
• data – Should be NULL or a pointer to an array of size ntypes. This array may contain
arbitrary extra-data to be passed to the corresponding loop function in the func array, including
NULL.

• types – Length (nin + nout) * ntypes array of char encoding the numpy.
dtype.num (built-in only) that the corresponding function in the func array accepts. For
instance, for a comparison ufunc with three ntypes, two nin and one nout, where the
first function accepts numpy.int32 and the second numpy.int64, with both return-
ing numpy.bool_, types would be (char[]) {5, 5, 0, 7, 7, 0} since
NPY_INT32 is 5, NPY_INT64 is 7, and NPY_BOOL is 0.
The bit-width names can also be used (e.g. NPY_INT32, NPY_COMPLEX128) if desired.
ufuncs.casting will be used at runtime to find the first func callable by the input/output pro-
vided.

• ntypes – How many different data-type-specific functions the ufunc has implemented.
• nin – The number of inputs to this operation.
• nout – The number of outputs
• identity – Either PyUFunc_One, PyUFunc_Zero, PyUFunc_MinusOne, or PyU-
Func_None. This specifies what should be returned when an empty array is passed to the
reduce method of the ufunc. The special value PyUFunc_IdentityValue may only be
used with the PyUFunc_FromFuncAndDataAndSignatureAndIdentity method,
to allow an arbitrary python object to be used as the identity.

1976 2. C API

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

• name – The name for the ufunc as a NULL terminated string. Specifying a name of ‘add’ or
‘multiply’ enables a special behavior for integer-typed reductions when no dtype is given. If
the input type is an integer (or boolean) data type smaller than the size of the numpy.int_
data type, it will be internally upcast to the numpy.int_ (or numpy.uint) data type.

• doc – Allows passing in a documentation string to be stored with the ufunc. The documenta-
tion string should not contain the name of the function or the calling signature as that will be
dynamically determined from the object and available when accessing the __doc__ attribute
of the ufunc.

• unused – Unused and present for backwards compatibility of the C-API.

PyObject *PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction *func, void *const *data,
const char *types, int ntypes, int nin, int nout, int
identity, const char *name, const char *doc, int
unused, const char *signature)

This function is very similar to PyUFunc_FromFuncAndData above, but has an extra signature argument, to define a
generalized universal functions. Similarly to how ufuncs are built around an element-by-element operation, gufuncs
are around subarray-by-subarray operations, the signature defining the subarrays to operate on.

Parameters
• signature – The signature for the new gufunc. Setting it to NULL is equivalent to calling
PyUFunc_FromFuncAndData. A copy of the string is made, so the passed in buffer can be
freed.

PyObject *PyUFunc_FromFuncAndDataAndSignatureAndIdentity(PyUFuncGenericFunction *func,
void **data, char *types, int ntypes,
int nin, int nout, int identity, char
*name, char *doc, int unused, char
*signature, PyObject
*identity_value)

This function is very similar to PyUFunc_FromFuncAndDataAndSignature above, but has an extra
identity_value argument, to define an arbitrary identity for the ufunc when identity is passed as PyU-
Func_IdentityValue.

Parameters
• identity_value – The identity for the new gufunc. Must be passed as NULL unless the
identity argument is PyUFunc_IdentityValue. Setting it to NULL is equivalent to
calling PyUFunc_FromFuncAndDataAndSignature.

int PyUFunc_RegisterLoopForType(PyUFuncObject *ufunc, int usertype, PyUFuncGenericFunction function,
int *arg_types, void *data)

This function allows the user to register a 1-d loop with an already- created ufunc to be used whenever the ufunc is
called with any of its input arguments as the user-defined data-type. This is needed in order to make ufuncs work
with built-in data-types. The data-type must have been previously registered with the numpy system. The loop is
passed in as function. This loop can take arbitrary data which should be passed in as data. The data-types the loop
requires are passed in as arg_types which must be a pointer to memory at least as large as ufunc->nargs.

int PyUFunc_RegisterLoopForDescr(PyUFuncObject *ufunc, PyArray_Descr *userdtype,
PyUFuncGenericFunction function, PyArray_Descr **arg_dtypes, void
*data)

This function behaves like PyUFunc_RegisterLoopForType above, except that it allows the user to register a 1-d
loop using PyArray_Descr objects instead of dtype type num values. This allows a 1-d loop to be registered for
structured array data-dtypes and custom data-types instead of scalar data-types.

2.1. NumPy C-API 1977

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

int PyUFunc_ReplaceLoopBySignature(PyUFuncObject *ufunc, PyUFuncGenericFunction newfunc, int
*signature, PyUFuncGenericFunction *oldfunc)

Replace a 1-d loopmatching the given signature in the already-created ufuncwith the new 1-d loop newfunc. Return
the old 1-d loop function in oldfunc. Return 0 on success and -1 on failure. This function works only with built-in
types (use PyUFunc_RegisterLoopForType for user-defined types). A signature is an array of data-type
numbers indicating the inputs followed by the outputs assumed by the 1-d loop.

void PyUFunc_clearfperr()
Clear the IEEE error flags.

Generic functions

At the core of every ufunc is a collection of type-specific functions that defines the basic functionality for each of the
supported types. These functions must evaluate the underlying function N ≥ 1 times. Extra-data may be passed in
that may be used during the calculation. This feature allows some general functions to be used as these basic looping
functions. The general function has all the code needed to point variables to the right place and set up a function call.
The general function assumes that the actual function to call is passed in as the extra data and calls it with the correct
values. All of these functions are suitable for placing directly in the array of functions stored in the functions member of
the PyUFuncObject structure.
void PyUFunc_f_f_As_d_d(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_d_d(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_f_f(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_g_g(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_F_F_As_D_D(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_F_F(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_D_D(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_G_G(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_e_e(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_e_e_As_f_f(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_e_e_As_d_d(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
Type specific, core 1-d functions for ufuncs where each calculation is obtained by calling a function taking one
input argument and returning one output. This function is passed in func. The letters correspond to dtypechar’s
of the supported data types (e - half, f - float, d - double, g - long double, F - cfloat, D - cdouble, G - clongdouble).
The argument func must support the same signature. The _As_X_X variants assume ndarray’s of one data type
but cast the values to use an underlying function that takes a different data type. Thus, PyUFunc_f_f_As_d_d
uses ndarrays of data type NPY_FLOAT but calls out to a C-function that takes double and returns double.

void PyUFunc_ff_f_As_dd_d(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_ff_f(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_dd_d(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_gg_g(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_FF_F_As_DD_D(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

1978 2. C API

NumPy Reference, Release 2.2.0

void PyUFunc_DD_D(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_FF_F(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_GG_G(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_ee_e(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_ee_e_As_ff_f(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_ee_e_As_dd_d(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
Type specific, core 1-d functions for ufuncs where each calculation is obtained by calling a function taking two input
arguments and returning one output. The underlying function to call is passed in as func. The letters correspond to
dtypechar’s of the specific data type supported by the general-purpose function. The argument funcmust support
the corresponding signature. The _As_XX_X variants assume ndarrays of one data type but cast the values at each
iteration of the loop to use the underlying function that takes a different data type.

void PyUFunc_O_O(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)

void PyUFunc_OO_O(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
One-input, one-output, and two-input, one-output core 1-d functions for the NPY_OBJECT data type. These func-
tions handle reference count issues and return early on error. The actual function to call is func and it must accept
calls with the signature (PyObject*) (PyObject*) for PyUFunc_O_O or (PyObject*)(PyObject
*, PyObject *) for PyUFunc_OO_O.

void PyUFunc_O_O_method(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
This general purpose 1-d core function assumes that func is a string representing a method of the input object. For
each iteration of the loop, the Python object is extracted from the array and its func method is called returning the
result to the output array.

void PyUFunc_OO_O_method(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
This general purpose 1-d core function assumes that func is a string representing a method of the input object that
takes one argument. The first argument in args is the method whose function is called, the second argument in args
is the argument passed to the function. The output of the function is stored in the third entry of args.

void PyUFunc_On_Om(char **args, npy_intp const *dimensions, npy_intp const *steps, void *func)
This is the 1-d core function used by the dynamic ufuncs created by umath.frompyfunc(function, nin, nout). In this
case func is a pointer to a PyUFunc_PyFuncData structure which has definition
type PyUFunc_PyFuncData

typedef struct {
int nin;
int nout;
PyObject *callable;

} PyUFunc_PyFuncData;

At each iteration of the loop, the nin input objects are extracted from their object arrays and placed into an argument
tuple, the Python callable is called with the input arguments, and the nout outputs are placed into their object arrays.

2.1. NumPy C-API 1979

NumPy Reference, Release 2.2.0

Importing the API

PY_UFUNC_UNIQUE_SYMBOL

NO_IMPORT_UFUNC

int PyUFunc_ImportUFuncAPI(void)
Ensures that the UFunc C-API is imported and usable. It returns 0 on success and -1 with an error set if NumPy
couldn’t be imported. While preferable to call it once at module initialization, this function is very light-weight if
called multiple times.
New in version 2.0: This function mainly checks for PyUFunc_API == NULL so it can be manually backported
if desired.

import_ufunc(void)
These are the constants and functions for accessing the ufunc C-API from extension modules in precisely the
same way as the array C-API can be accessed. The import_ufunc () function must always be called (in the
initialization subroutine of the extension module). If your extension module is in one file then that is all that is
required. The other two constants are useful if your extensionmodulemakes use ofmultiple files. In that case, define
PY_UFUNC_UNIQUE_SYMBOL to something unique to your code and then in source files that do not contain the
module initialization function but still need access to the UFUNC API, define PY_UFUNC_UNIQUE_SYMBOL to
the same name used previously and also define NO_IMPORT_UFUNC.
The C-API is actually an array of function pointers. This array is created (and pointed to by a global variable) by
import_ufunc. The global variable is either statically defined or allowed to be seen by other files depending on the
state of PY_UFUNC_UNIQUE_SYMBOL and NO_IMPORT_UFUNC.

2.1.7 Generalized universal function API

There is a general need for looping over not only functions on scalars but also over functions on vectors (or arrays). This
concept is realized in NumPy by generalizing the universal functions (ufuncs). In regular ufuncs, the elementary function is
limited to element-by-element operations, whereas the generalized version (gufuncs) supports “sub-array” by “sub-array”
operations. The Perl vector library PDL provides a similar functionality and its terms are re-used in the following.
Each generalized ufunc has information associated with it that states what the “core” dimensionality of the inputs is, as
well as the corresponding dimensionality of the outputs (the element-wise ufuncs have zero core dimensions). The list
of the core dimensions for all arguments is called the “signature” of a ufunc. For example, the ufunc numpy.add has
signature (),()->() defining two scalar inputs and one scalar output.
Another example is the function inner1d(a, b) with a signature of (i),(i)->(). This applies the inner product
along the last axis of each input, but keeps the remaining indices intact. For example, where a is of shape (3, 5, N)
and b is of shape (5, N), this will return an output of shape (3,5). The underlying elementary function is called 3
* 5 times. In the signature, we specify one core dimension (i) for each input and zero core dimensions () for the
output, since it takes two 1-d arrays and returns a scalar. By using the same name i, we specify that the two corresponding
dimensions should be of the same size.
The dimensions beyond the core dimensions are called “loop” dimensions. In the above example, this corresponds to (3,
5).
The signature determines how the dimensions of each input/output array are split into core and loop dimensions:

1. Each dimension in the signature is matched to a dimension of the corresponding passed-in array, starting from the
end of the shape tuple. These are the core dimensions, and they must be present in the arrays, or an error will be
raised.

2. Core dimensions assigned to the same label in the signature (e.g. the i in inner1d’s (i),(i)->()) must have
exactly matching sizes, no broadcasting is performed.

1980 2. C API

NumPy Reference, Release 2.2.0

3. The core dimensions are removed from all inputs and the remaining dimensions are broadcast together, defining
the loop dimensions.

4. The shape of each output is determined from the loop dimensions plus the output’s core dimensions
Typically, the size of all core dimensions in an output will be determined by the size of a core dimension with the same
label in an input array. This is not a requirement, and it is possible to define a signature where a label comes up for the
first time in an output, although some precautions must be taken when calling such a function. An example would be
the function euclidean_pdist(a), with signature (n,d)->(p), that given an array of n d-dimensional vectors,
computes all unique pairwise Euclidean distances among them. The output dimension p must therefore be equal to n
* (n - 1) / 2, but by default, it is the caller’s responsibility to pass in an output array of the right size. If
the size of a core dimension of an output cannot be determined from a passed in input or output array, an error will
be raised. This can be changed by defining a PyUFunc_ProcessCoreDimsFunc function and assigning it to the
proces_core_dims_func field of the PyUFuncObject structure. See below for more details.
Note: Prior to NumPy 1.10.0, less strict checks were in place: missing core dimensions were created by prepending 1’s
to the shape as necessary, core dimensions with the same label were broadcast together, and undetermined dimensions
were created with size 1.

Definitions

Elementary Function
Each ufunc consists of an elementary function that performs the most basic operation on the smallest portion of
array arguments (e.g. adding two numbers is the most basic operation in adding two arrays). The ufunc applies the
elementary function multiple times on different parts of the arrays. The input/output of elementary functions can
be vectors; e.g., the elementary function of inner1d takes two vectors as input.

Signature
A signature is a string describing the input/output dimensions of the elementary function of a ufunc. See section
below for more details.

Core Dimension
The dimensionality of each input/output of an elementary function is defined by its core dimensions (zero core
dimensions correspond to a scalar input/output). The core dimensions are mapped to the last dimensions of the
input/output arrays.

Dimension Name
A dimension name represents a core dimension in the signature. Different dimensions may share a name, indicating
that they are of the same size.

Dimension Index
A dimension index is an integer representing a dimension name. It enumerates the dimension names according to
the order of the first occurrence of each name in the signature.

Details of signature

The signature defines “core” dimensionality of input and output variables, and thereby also defines the contraction of the
dimensions. The signature is represented by a string of the following format:

• Core dimensions of each input or output array are represented by a list of dimension names in parentheses, (i_1,
...,i_N); a scalar input/output is denoted by (). Instead of i_1, i_2, etc, one can use any valid Python
variable name.

• Dimension lists for different arguments are separated by ",". Input/output arguments are separated by "->".
• If one uses the same dimension name in multiple locations, this enforces the same size of the corresponding di-
mensions.

2.1. NumPy C-API 1981

NumPy Reference, Release 2.2.0

The formal syntax of signatures is as follows:

<Signature> ::= <Input arguments> "->" <Output arguments>
<Input arguments> ::= <Argument list>
<Output arguments> ::= <Argument list>
<Argument list> ::= nil | <Argument> | <Argument> "," <Argument list>
<Argument> ::= "(" <Core dimension list> ")"
<Core dimension list> ::= nil | <Core dimension> |

<Core dimension> "," <Core dimension list>
<Core dimension> ::= <Dimension name> <Dimension modifier>
<Dimension name> ::= valid Python variable name | valid integer
<Dimension modifier> ::= nil | "?"

Notes:
1. All quotes are for clarity.
2. Unmodified core dimensions that share the same name must have the same size. Each dimension name typically

corresponds to one level of looping in the elementary function’s implementation.
3. White spaces are ignored.
4. An integer as a dimension name freezes that dimension to the value.
5. If the name is suffixed with the “?” modifier, the dimension is a core dimension only if it exists on all inputs and

outputs that share it; otherwise it is ignored (and replaced by a dimension of size 1 for the elementary function).
Here are some examples of signatures:

name signature common usage
add (),()->() binary ufunc
sum1d (i)->() reduction
inner1d (i),(i)->() vector-vector multiplication
matmat (m,n),(n,p)->(m,

p)
matrix multiplication

vecmat (n),(n,p)->(p) vector-matrix multiplication
matvec (m,n),(n)->(m) matrix-vector multiplication
matmul (m?,n),(n,p?

)->(m?,p?)
combination of the four above

outer_inner (i,t),(j,t)->(i,
j)

inner over the last dimension, outer over the second to last, and
loop/broadcast over the rest.

cross1d (3),(3)->(3) cross product where the last dimension is frozen and must be 3

The last is an instance of freezing a core dimension and can be used to improve ufunc performance

C-API for implementing elementary functions

The current interface remains unchanged, and PyUFunc_FromFuncAndData can still be used to implement (spe-
cialized) ufuncs, consisting of scalar elementary functions.
One can use PyUFunc_FromFuncAndDataAndSignature to declare a more general ufunc. The argument list is
the same as PyUFunc_FromFuncAndData, with an additional argument specifying the signature as C string.
Furthermore, the callback function is of the same type as before, void (*foo)(char **args, intp
*dimensions, intp *steps, void *func). When invoked, args is a list of length nargs contain-
ing the data of all input/output arguments. For a scalar elementary function, steps is also of length nargs, denoting

1982 2. C API

NumPy Reference, Release 2.2.0

the strides used for the arguments. dimensions is a pointer to a single integer defining the size of the axis to be looped
over.
For a non-trivial signature, dimensions will also contain the sizes of the core dimensions as well, starting at the second
entry. Only one size is provided for each unique dimension name and the sizes are given according to the first occurrence
of a dimension name in the signature.
The first nargs elements of steps remain the same as for scalar ufuncs. The following elements contain the strides of
all core dimensions for all arguments in order.
For example, consider a ufunc with signature (i,j),(i)->(). In this case, args will contain three pointers to the
data of the input/output arrays a, b, c. Furthermore, dimensions will be [N, I, J] to define the size of N of
the loop and the sizes I and J for the core dimensions i and j. Finally, steps will be [a_N, b_N, c_N, a_i,
a_j, b_i], containing all necessary strides.

Customizing core dimension size processing

The optional function of type PyUFunc_ProcessCoreDimsFunc, stored on the process_core_dims_func
attribute of the ufunc, provides the author of the ufunc a “hook” into the processing of the core dimensions of the arrays
that were passed to the ufunc. The two primary uses of this “hook” are:

• Check that constraints on the core dimensions required by the ufunc are satisfied (and set an exception if they are
not).

• Compute output shapes for any output core dimensions that were not determined by the input arrays.
As an example of the first use, consider the generalized ufunc minmax with signature (n)->(2) that simultaneously
computes the minimum and maximum of a sequence. It should require that n > 0, because the minimum and maximum
of a sequence with length 0 is not meaningful. In this case, the ufunc author might define the function like this:

int minmax_process_core_dims(PyUFuncObject ufunc,
npy_intp *core_dim_sizes)

{
npy_intp n = core_dim_sizes[0];
if (n == 0) {

PyExc_SetString("minmax requires the core dimension "
"to be at least 1.");

return -1;
}
return 0;

}

In this case, the length of the array core_dim_sizes will be 2. The second value in the array will always be 2, so
there is no need for the function to inspect it. The core dimension n is stored in the first element. The function sets an
exception and returns -1 if it finds that n is 0.
The second use for the “hook” is to compute the size of output arrays when the output arrays are not provided by the
caller and one or more core dimension of the output is not also an input core dimension. If the ufunc does not have a
function defined on the process_core_dims_func attribute, an unspecified output core dimension size will result
in an exception being raised. With the “hook” provided by process_core_dims_func, the author of the ufunc can
set the output size to whatever is appropriate for the ufunc.
In the array passed to the “hook” function, core dimensions that were not determined by the input are indicating by having
the value -1 in the core_dim_sizes array. The function can replace the -1 with whatever value is appropriate for the
ufunc, based on the core dimensions that occurred in the input arrays.

2.1. NumPy C-API 1983

NumPy Reference, Release 2.2.0

Warning: The function must never change a value in core_dim_sizes that is not -1 on input. Changing a
value that was not -1 will generally result in incorrect output from the ufunc, and could result in the Python interpreter
crashing.

For example, consider the generalized ufunc conv1d for which the elementary function computes the “full” convolution
of two one-dimensional arrays x and y with lengths m and n, respectively. The output of this convolution has length m +
n - 1. To implement this as a generalized ufunc, the signature is set to (m),(n)->(p), and in the “hook” function,
if the core dimension p is found to be -1, it is replaced with m + n - 1. If p is not -1, it must be verified that the given
value equals m + n - 1. If it does not, the function must set an exception and return -1. For a meaningful result, the
operation also requires that m + n is at least 1, i.e. both inputs can’t have length 0.
Here’s how that might look in code:

int conv1d_process_core_dims(PyUFuncObject *ufunc,
npy_intp *core_dim_sizes)

{
// core_dim_sizes will hold the core dimensions [m, n, p].
// p will be -1 if the caller did not provide the out argument.
npy_intp m = core_dim_sizes[0];
npy_intp n = core_dim_sizes[1];
npy_intp p = core_dim_sizes[2];
npy_intp required_p = m + n - 1;

if (m == 0 && n == 0) {
// Disallow both inputs having length 0.
PyErr_SetString(PyExc_ValueError,

"conv1d: both inputs have core dimension 0; the function "
"requires that at least one input has size greater than 0.");

return -1;
}
if (p == -1) {

// Output array was not given in the call of the ufunc.
// Set the correct output size here.
core_dim_sizes[2] = required_p;
return 0;

}
// An output array *was* given. Validate its core dimension.
if (p != required_p) {

PyErr_Format(PyExc_ValueError,
"conv1d: the core dimension p of the out parameter "
"does not equal m + n - 1, where m and n are the "
"core dimensions of the inputs x and y; got m=%zd "
"and n=%zd so p must be %zd, but got p=%zd.",
m, n, required_p, p);

return -1;
}
return 0;

}

1984 2. C API

NumPy Reference, Release 2.2.0

2.1.8 NpyString API

New in version 2.0.
This API allows access to the UTF-8 string data stored in NumPy StringDType arrays. See NEP-55 for more in-depth
details into the design of StringDType.

Examples

Loading a String
Say we are writing a ufunc implementation for StringDType. If we are given const char *buf pointer to the
beginning of a StringDType array entry, and a PyArray_Descr * pointer to the array descriptor, one can access
the underlying string data like so:

npy_string_allocator *allocator = NpyString_acquire_allocator(
(PyArray_StringDTypeObject *)descr);

npy_static_string sdata = {0, NULL};
npy_packed_static_string *packed_string = (npy_packed_static_string *)buf;
int is_null = 0;

is_null = NpyString_load(allocator, packed_string, &sdata);

if (is_null == -1) {
// failed to load string, set error
return -1;

}
else if (is_null) {

// handle missing string
// sdata->buf is NULL
// sdata->size is 0

}
else {

// sdata->buf is a pointer to the beginning of a string
// sdata->size is the size of the string

}
NpyString_release_allocator(allocator);

Packing a String
This example shows how to pack a new string entry into an array:

char *str = "Hello world";
size_t size = 11;
npy_packed_static_string *packed_string = (npy_packed_static_string *)buf;

npy_string_allocator *allocator = NpyString_acquire_allocator(
(PyArray_StringDTypeObject *)descr);

// copy contents of str into packed_string
if (NpyString_pack(allocator, packed_string, str, size) == -1) {

// string packing failed, set error
return -1;

}

// packed_string contains a copy of "Hello world"

(continues on next page)

2.1. NumPy C-API 1985

https://numpy.org/neps/nep-0055-string_dtype.html#nep55

NumPy Reference, Release 2.2.0

(continued from previous page)

NpyString_release_allocator(allocator);

Types

type npy_packed_static_string
An opaque struct that represents “packed” encoded strings. Individual entries in array buffers are instances of this
struct. Direct access to the data in the struct is undefined and future version of the library may change the packed
representation of strings.

type npy_static_string
An unpacked string allowing access to the UTF-8 string data.

typedef struct npy_unpacked_static_string {
size_t size;
const char *buf;

} npy_static_string;

size_t size
The size of the string, in bytes.

const char *buf
The string buffer. Holds UTF-8-encoded bytes. Does not currently end in a null string but we may decide to
add null termination in the future, so do not rely on the presence or absence of null-termination.
Note that this is a const buffer. If you want to alter an entry in an array, you should create a new string and
pack it into the array entry.

type npy_string_allocator
An opaque pointer to an object that handles string allocation. Before using the allocator, you must acquire the
allocator lock and release the lock after you are done interacting with strings managed by the allocator.

type PyArray_StringDTypeObject
The C struct backing instances of StringDType in Python. Attributes store the settings the object was created with,
an instance of npy_string_allocator that manages string allocations for arrays associated with the DType
instance, and several attributes caching information about the missing string object that is commonly needed in cast
and ufunc loop implementations.

typedef struct {
PyArray_Descr base;
PyObject *na_object;
char coerce;
char has_nan_na;
char has_string_na;
char array_owned;
npy_static_string default_string;
npy_static_string na_name;
npy_string_allocator *allocator;

} PyArray_StringDTypeObject;

PyArray_Descr base
The base object. Use this member to access fields common to all descriptor objects.

1986 2. C API

NumPy Reference, Release 2.2.0

PyObject *na_object
A reference to the object representing the null value. If there is no null value (the default) this will be NULL.

char coerce
1 if string coercion is enabled, 0 otherwise.

char has_nan_na
1 if the missing string object (if any) is NaN-like, 0 otherwise.

char has_string_na
1 if the missing string object (if any) is a string, 0 otherwise.

char array_owned
1 if an array owns the StringDType instance, 0 otherwise.

npy_static_string default_string
The default string to use in operations. If the missing string object is a string, this will contain the string data
for the missing string.

npy_static_string na_name
The name of the missing string object, if any. An empty string otherwise.

npy_string_allocator allocator
The allocator instance associated with the array that owns this descriptor instance. The allocator should only
be directly accessed after acquiring the allocator_lock and the lock should be released immediately after the
allocator is no longer needed

Functions

npy_string_allocator *NpyString_acquire_allocator(const PyArray_StringDTypeObject *descr)
Acquire the mutex locking the allocator attached to descr. NpyString_release_allocator must be
called on the allocator returned by this function exactly once. Note that functions requiring the GIL should not be
called while the allocator mutex is held, as doing so may cause deadlocks.

void NpyString_acquire_allocators(size_t n_descriptors, PyArray_Descr *const descrs[],
npy_string_allocator *allocators[])

Simultaneously acquire the mutexes locking the allocators attached to multiple descriptors. Writes a pointer to the
associated allocator in the allocators array for each StringDType descriptor in the array. If any of the descriptors
are not StringDType instances, write NULL to the allocators array for that entry.
n_descriptors is the number of descriptors in the descrs array that should be examined. Any descriptor after
n_descriptors elements is ignored. A buffer overflow will happen if the descrs array does not contain
n_descriptors elements.
If pointers to the same descriptor are passed multiple times, only acquires the allocator mutex once but sets identical
allocator pointers appropriately. The allocator mutexes must be released after this function returns, see NpyS-
tring_release_allocators.
Note that functions requiring the GIL should not be called while the allocator mutex is held, as doing so may cause
deadlocks.

void NpyString_release_allocator(npy_string_allocator *allocator)
Release the mutex locking an allocator. This must be called exactly once after acquiring the allocator mutex and
all operations requiring the allocator are done.
If you need to release multiple allocators, see NpyString_release_allocators, which can correctly handle releasing
the allocator once when given several references to the same allocator.

2.1. NumPy C-API 1987

https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

void NpyString_release_allocators(size_t length, npy_string_allocator *allocators[])
Release the mutexes locking N allocators. length is the length of the allocators array. NULL entries are ignored.
If pointers to the same allocator are passed multiple times, only releases the allocator mutex once.

int NpyString_load(npy_string_allocator *allocator, const npy_packed_static_string *packed_string,
npy_static_string *unpacked_string)

Extract the packed contents of packed_string into unpacked_string.
The unpacked_string is a read-only view onto the packed_string data and should not be used to modify
the string data. If packed_string is the null string, sets unpacked_string.buf to the NULL pointer.
Returns -1 if unpacking the string fails, returns 1 if packed_string is the null string, and returns 0 otherwise.
A useful pattern is to define a stack-allocated npy_static_string instance initialized to {0, NULL} and pass a
pointer to the stack-allocated unpacked string to this function. This function can be used to simultaneously unpack
a string and determine if it is a null string.

int NpyString_pack_null(npy_string_allocator *allocator, npy_packed_static_string *packed_string)
Pack the null string into packed_string. Returns 0 on success and -1 on failure.

int NpyString_pack(npy_string_allocator *allocator, npy_packed_static_string *packed_string, const char *buf,
size_t size)

Copy and pack the first size entries of the buffer pointed to by buf into the packed_string. Returns 0 on
success and -1 on failure.

2.1.9 NumPy core math library

The numpy core math library (npymath) is a first step in this direction. This library contains most math-related C99
functionality, which can be used on platforms where C99 is not well supported. The core math functions have the same
API as the C99 ones, except for the npy_* prefix.
The available functions are defined in <numpy/npy_math.h> - please refer to this header when in doubt.

Note: An effort is underway to make npymath smaller (since C99 compatibility of compilers has improved over time)
and more easily vendorable or usable as a header-only dependency. That will avoid problems with shipping a static library
built with a compiler which may not match the compiler used by a downstream package or end user. See gh-20880 for
details.

Floating point classification

NPY_NAN

This macro is defined to a NaN (Not a Number), and is guaranteed to have the signbit unset (‘positive’ NaN). The
corresponding single and extension precision macro are available with the suffix F and L.

NPY_INFINITY

This macro is defined to a positive inf. The corresponding single and extension precision macro are available with
the suffix F and L.

NPY_PZERO

This macro is defined to positive zero. The corresponding single and extension precision macro are available with
the suffix F and L.

1988 2. C API

https://github.com/numpy/numpy/issues/20880

NumPy Reference, Release 2.2.0

NPY_NZERO

This macro is defined to negative zero (that is with the sign bit set). The corresponding single and extension precision
macro are available with the suffix F and L.

npy_isnan(x)
This is an alias for C99 isnan: works for single, double and extended precision, and return a non 0 value if x is a
NaN.

npy_isfinite(x)
This is an alias for C99 isfinite: works for single, double and extended precision, and return a non 0 value if x is
neither a NaN nor an infinity.

npy_isinf(x)
This is an alias for C99 isinf: works for single, double and extended precision, and return a non 0 value if x is
infinite (positive and negative).

npy_signbit(x)
This is an alias for C99 signbit: works for single, double and extended precision, and return a non 0 value if x has
the signbit set (that is the number is negative).

npy_copysign(x, y)
This is an alias for C99 copysign: return x with the same sign as y. Works for any value, including inf and nan.
Single and extended precisions are available with suffix f and l.

Useful math constants

The following math constants are available in npy_math.h. Single and extended precision are also available by adding
the f and l suffixes respectively.
NPY_E

Base of natural logarithm (e)
NPY_LOG2E

Logarithm to base 2 of the Euler constant (ln(e)ln(2))

NPY_LOG10E

Logarithm to base 10 of the Euler constant (ln(e)
ln(10))

NPY_LOGE2

Natural logarithm of 2 (ln(2))
NPY_LOGE10

Natural logarithm of 10 (ln(10))
NPY_PI

Pi (π)
NPY_PI_2

Pi divided by 2 (π2)
NPY_PI_4

Pi divided by 4 (π4)
NPY_1_PI

Reciprocal of pi (1π)

2.1. NumPy C-API 1989

NumPy Reference, Release 2.2.0

NPY_2_PI

Two times the reciprocal of pi (2π)
NPY_EULER

The Euler constant
limn→∞(

∑n
k=1

1
k − lnn)

Low-level floating point manipulation

Those can be useful for precise floating point comparison.
double npy_nextafter(double x, double y)

This is an alias to C99 nextafter: return next representable floating point value from x in the direction of y. Single
and extended precisions are available with suffix f and l.

double npy_spacing(double x)
This is a function equivalent to Fortran intrinsic. Return distance between x and next representable floating point
value from x, e.g. spacing(1) == eps. spacing of nan and +/- inf return nan. Single and extended precisions are
available with suffix f and l.

void npy_set_floatstatus_divbyzero()
Set the divide by zero floating point exception

void npy_set_floatstatus_overflow()
Set the overflow floating point exception

void npy_set_floatstatus_underflow()
Set the underflow floating point exception

void npy_set_floatstatus_invalid()
Set the invalid floating point exception

int npy_get_floatstatus()
Get floating point status. Returns a bitmask with following possible flags:

• NPY_FPE_DIVIDEBYZERO
• NPY_FPE_OVERFLOW
• NPY_FPE_UNDERFLOW
• NPY_FPE_INVALID

Note that npy_get_floatstatus_barrier is preferable as it prevents aggressive compiler optimizations
reordering the call relative to the code setting the status, which could lead to incorrect results.

int npy_get_floatstatus_barrier(char*)
Get floating point status. A pointer to a local variable is passed in to prevent aggressive compiler optimizations
from reordering this function call relative to the code setting the status, which could lead to incorrect results.
Returns a bitmask with following possible flags:

• NPY_FPE_DIVIDEBYZERO
• NPY_FPE_OVERFLOW
• NPY_FPE_UNDERFLOW
• NPY_FPE_INVALID

1990 2. C API

NumPy Reference, Release 2.2.0

int npy_clear_floatstatus()
Clears the floating point status. Returns the previous status mask.
Note thatnpy_clear_floatstatus_barrier is preferable as it prevents aggressive compiler optimizations
reordering the call relative to the code setting the status, which could lead to incorrect results.

int npy_clear_floatstatus_barrier(char*)
Clears the floating point status. A pointer to a local variable is passed in to prevent aggressive compiler optimizations
from reordering this function call. Returns the previous status mask.

Support for complex numbers

C99-like complex functions have been added. Those can be used if you wish to implement portable C extensions. Since
NumPy 2.0 we use C99 complex types as the underlying type:

typedef double _Complex npy_cdouble;
typedef float _Complex npy_cfloat;
typedef long double _Complex npy_clongdouble;

MSVC does not support the _Complex type itself, but has added support for the C99 complex.h header by providing
its own implementation. Thus, under MSVC, the equivalent MSVC types will be used:

typedef _Dcomplex npy_cdouble;
typedef _Fcomplex npy_cfloat;
typedef _Lcomplex npy_clongdouble;

BecauseMSVC still does not support C99 syntax for initializing a complex number, you need to restrict to C90-compatible
syntax, e.g.:

/* a = 1 + 2i */
npy_complex a = npy_cpack(1, 2);
npy_complex b;

b = npy_log(a);

A few utilities have also been added in numpy/npy_math.h, in order to retrieve or set the real or the imaginary part
of a complex number:

npy_cdouble c;
npy_csetreal(&c, 1.0);
npy_csetimag(&c, 0.0);
printf("%d + %di\n", npy_creal(c), npy_cimag(c));

Changed in version 2.0.0: The underlying C types for all of numpy’s complex types have been changed to use C99 complex
types. Up until now the following was being used to represent complex types:

typedef struct { double real, imag; } npy_cdouble;
typedef struct { float real, imag; } npy_cfloat;
typedef struct {npy_longdouble real, imag;} npy_clongdouble;

Using the struct representation ensured that complex numbers could be used on all platforms, even the ones without
support for built-in complex types. It also meant that a static library had to be shipped together with NumPy to provide a
C99 compatibility layer for downstream packages to use. In recent years however, support for native complex types has
been improved immensely, with MSVC adding built-in support for the complex.h header in 2019.
To ease cross-version compatibility, macros that use the new set APIs have been added.

2.1. NumPy C-API 1991

NumPy Reference, Release 2.2.0

#define NPY_CSETREAL(z, r) npy_csetreal(z, r)
#define NPY_CSETIMAG(z, i) npy_csetimag(z, i)

A compatibility layer is also provided in numpy/npy_2_complexcompat.h. It checks whether the macros exist,
and falls back to the 1.x syntax in case they don’t.

#include <numpy/npy_math.h>

#ifndef NPY_CSETREALF
#define NPY_CSETREALF(c, r) (c)->real = (r)
#endif
#ifndef NPY_CSETIMAGF
#define NPY_CSETIMAGF(c, i) (c)->imag = (i)
#endif

We suggest all downstream packages that need this functionality to copy-paste the compatibility layer code into their own
sources and use that, so that they can continue to support both NumPy 1.x and 2.x without issues. Note also that the
complex.h header is included in numpy/npy_common.h, which makes complex a reserved keyword.

Linking against the core math library in an extension

To use the core math library that NumPy ships as a static library in your own Python extension, you need to add the
npymath compile and link options to your extension. The exact steps to take will depend on the build system you are
using. The generic steps to take are:

1. Add the numpy include directory (= the value of np.get_include()) to your include directories,
2. The npymath static library resides in the lib directory right next to numpy’s include directory (i.e., pathlib.

Path(np.get_include()) / '..' / 'lib'). Add that to your library search directories,
3. Link with libnpymath and libm.

Note: Keep in mind that when you are cross compiling, you must use the numpy for the platform you are building for,
not the native one for the build machine. Otherwise you pick up a static library built for the wrong architecture.

When you build with numpy.distutils (deprecated), then use this in your setup.py:

>>> from numpy.distutils.misc_util import get_info
>>> info = get_info('npymath')
>>> _ = config.add_extension('foo', sources=['foo.c'], extra_info=info)

In other words, the usage of info is exactly the same as when using blas_info and co.
When you are building with Meson, use:

Note that this will get easier in the future, when Meson has
support for numpy built in; most of this can then be replaced
by `dependency('numpy')`.
incdir_numpy = run_command(py3,
[
'-c',
'import os; os.chdir(".."); import numpy; print(numpy.get_include())'

],
check: true

).stdout().strip()

(continues on next page)

1992 2. C API

https://mesonbuild.com

NumPy Reference, Release 2.2.0

(continued from previous page)

inc_np = include_directories(incdir_numpy)

cc = meson.get_compiler('c')
npymath_path = incdir_numpy / '..' / 'lib'
npymath_lib = cc.find_library('npymath', dirs: npymath_path)

py3.extension_module('module_name',
...
include_directories: inc_np,
dependencies: [npymath_lib],

Half-precision functions

The header file <numpy/halffloat.h> provides functions to work with IEEE 754-2008 16-bit floating point values.
While this format is not typically used for numerical computations, it is useful for storing values which require floating
point but do not need much precision. It can also be used as an educational tool to understand the nature of floating point
round-off error.
Like for other types, NumPy includes a typedef npy_half for the 16 bit float. Unlike for most of the other types, you
cannot use this as a normal type in C, since it is a typedef for npy_uint16. For example, 1.0 looks like 0x3c00 to C, and
if you do an equality comparison between the different signed zeros, you will get -0.0 != 0.0 (0x8000 != 0x0000), which
is incorrect.
For these reasons, NumPy provides an API to work with npy_half values accessible by including <numpy/
halffloat.h> and linking to npymath. For functions that are not provided directly, such as the arithmetic op-
erations, the preferred method is to convert to float or double and back again, as in the following example.

npy_half sum(int n, npy_half *array) {
float ret = 0;
while(n--) {

ret += npy_half_to_float(*array++);
}
return npy_float_to_half(ret);

}

External Links:
• 754-2008 IEEE Standard for Floating-Point Arithmetic
• Half-precision Float Wikipedia Article.
• OpenGL Half Float Pixel Support
• The OpenEXR image format.

NPY_HALF_ZERO

This macro is defined to positive zero.
NPY_HALF_PZERO

This macro is defined to positive zero.
NPY_HALF_NZERO

This macro is defined to negative zero.
NPY_HALF_ONE

This macro is defined to 1.0.

2.1. NumPy C-API 1993

https://ieeexplore.ieee.org/document/4610935/
https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_half_float_pixel.txt
https://www.openexr.com/about.html

NumPy Reference, Release 2.2.0

NPY_HALF_NEGONE

This macro is defined to -1.0.
NPY_HALF_PINF

This macro is defined to +inf.
NPY_HALF_NINF

This macro is defined to -inf.
NPY_HALF_NAN

This macro is defined to a NaN value, guaranteed to have its sign bit unset.
float npy_half_to_float(npy_half h)

Converts a half-precision float to a single-precision float.
double npy_half_to_double(npy_half h)

Converts a half-precision float to a double-precision float.
npy_half npy_float_to_half(float f)

Converts a single-precision float to a half-precision float. The value is rounded to the nearest representable half,
with ties going to the nearest even. If the value is too small or too big, the system’s floating point underflow or
overflow bit will be set.

npy_half npy_double_to_half(double d)
Converts a double-precision float to a half-precision float. The value is rounded to the nearest representable half,
with ties going to the nearest even. If the value is too small or too big, the system’s floating point underflow or
overflow bit will be set.

int npy_half_eq(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 == h2).

int npy_half_ne(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 != h2).

int npy_half_le(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 <= h2).

int npy_half_lt(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 < h2).

int npy_half_ge(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 >= h2).

int npy_half_gt(npy_half h1, npy_half h2)
Compares two half-precision floats (h1 > h2).

int npy_half_eq_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 == h2). If a value is NaN, the result is
undefined.

int npy_half_lt_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 < h2). If a value is NaN, the result is
undefined.

int npy_half_le_nonan(npy_half h1, npy_half h2)
Compares two half-precision floats that are known to not be NaN (h1 <= h2). If a value is NaN, the result is
undefined.

1994 2. C API

NumPy Reference, Release 2.2.0

int npy_half_iszero(npy_half h)
Tests whether the half-precision float has a value equal to zero. This may be slightly faster than calling
npy_half_eq(h, NPY_ZERO).

int npy_half_isnan(npy_half h)
Tests whether the half-precision float is a NaN.

int npy_half_isinf(npy_half h)
Tests whether the half-precision float is plus or minus Inf.

int npy_half_isfinite(npy_half h)
Tests whether the half-precision float is finite (not NaN or Inf).

int npy_half_signbit(npy_half h)
Returns 1 is h is negative, 0 otherwise.

npy_half npy_half_copysign(npy_half x, npy_half y)
Returns the value of x with the sign bit copied from y. Works for any value, including Inf and NaN.

npy_half npy_half_spacing(npy_half h)
This is the same for half-precision float as npy_spacing and npy_spacingf described in the low-level floating point
section.

npy_half npy_half_nextafter(npy_half x, npy_half y)
This is the same for half-precision float as npy_nextafter and npy_nextafterf described in the low-level floating
point section.

npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f)
Low-level function which converts a 32-bit single-precision float, stored as a uint32, into a 16-bit half-precision
float.

npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d)
Low-level function which converts a 64-bit double-precision float, stored as a uint64, into a 16-bit half-precision
float.

npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h)
Low-level function which converts a 16-bit half-precision float into a 32-bit single-precision float, stored as a uint32.

npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h)
Low-level function which converts a 16-bit half-precision float into a 64-bit double-precision float, stored as a
uint64.

2.1.10 Datetime API

NumPy represents dates internally using an int64 counter and a unit metadata struct. Time differences are represented
similarly using an int64 and a unit metadata struct. The functions described below are available to to facilitate converting
between ISO 8601 date strings, NumPy datetimes, and Python datetime objects in C.

2.1. NumPy C-API 1995

NumPy Reference, Release 2.2.0

Data types

In addition to the npy_datetime and npy_timedelta typedefs for npy_int64, NumPy defines two additional
structs that represent time unit metadata and an “exploded” view of a datetime.
type PyArray_DatetimeMetaData

Represents datetime unit metadata.

typedef struct {
NPY_DATETIMEUNIT base;
int num;

} PyArray_DatetimeMetaData;

NPY_DATETIMEUNIT base

The unit of the datetime.
int num

A multiplier for the unit.
type npy_datetimestruct

An “exploded” view of a datetime value

typedef struct {
npy_int64 year;
npy_int32 month, day, hour, min, sec, us, ps, as;

} npy_datetimestruct;

enum NPY_DATETIMEUNIT

Time units supported by NumPy. The “FR” in the names of the enum variants is short for frequency.
enumerator NPY_FR_ERROR

Error or undetermined units.
enumerator NPY_FR_Y

Years
enumerator NPY_FR_M

Months
enumerator NPY_FR_W

Weeks
enumerator NPY_FR_D

Days
enumerator NPY_FR_h

Hours
enumerator NPY_FR_m

Minutes
enumerator NPY_FR_s

Seconds
enumerator NPY_FR_ms

Milliseconds

1996 2. C API

NumPy Reference, Release 2.2.0

enumerator NPY_FR_us
Microseconds

enumerator NPY_FR_ns
Nanoseconds

enumerator NPY_FR_ps
Picoseconds

enumerator NPY_FR_fs
Femtoseconds

enumerator NPY_FR_as
Attoseconds

enumerator NPY_FR_GENERIC
Unbound units, can convert to anything

Conversion functions

int NpyDatetime_ConvertDatetimeStructToDatetime64(PyArray_DatetimeMetaData *meta, const
npy_datetimestruct *dts, npy_datetime *out)

Converts a datetime from a datetimestruct to a datetime in the units specified by the unit metadata. The date is
assumed to be valid.
If the num member of the metadata struct is large, there may be integer overflow in this function.
Returns 0 on success and -1 on failure.

int NpyDatetime_ConvertDatetime64ToDatetimeStruct(PyArray_DatetimeMetaData *meta,
npy_datetime dt, npy_datetimestruct *out)

Converts a datetime with units specified by the unit metadata to an exploded datetime struct.
Returns 0 on success and -1 on failure.

int NpyDatetime_ConvertPyDateTimeToDatetimeStruct(PyObject *obj, npy_datetimestruct *out,
NPY_DATETIMEUNIT *out_bestunit, int
apply_tzinfo)

Tests for and converts a Python datetime.datetime or datetime.date object into a NumPy
npy_datetimestruct.
out_bestunit gives a suggested unit based on whether the object was a datetime.date or datetime.
datetime object.
If apply_tzinfo is 1, this function uses the tzinfo to convert to UTC time, otherwise it returns the struct with
the local time.
Returns -1 on error, 0 on success, and 1 (with no error set) if obj doesn’t have the needed date or datetime attributes.

int NpyDatetime_ParseISO8601Datetime(char const *str, Py_ssize_t len, NPY_DATETIMEUNIT unit,
NPY_CASTING casting, npy_datetimestruct *out,
NPY_DATETIMEUNIT *out_bestunit, npy_bool *out_special)

Parses (almost) standard ISO 8601 date strings. The differences are:
• The date “20100312” is parsed as the year 20100312, not as equivalent to “2010-03-12”. The ‘-’ in the dates
are not optional.

• Only seconds may have a decimal point, with up to 18 digits after it (maximum attoseconds precision).

2.1. NumPy C-API 1997

https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/intro.html#c.Py_ssize_t

NumPy Reference, Release 2.2.0

• Either a ‘T’ as in ISO 8601 or a ‘ ‘ may be used to separate the date and the time. Both are treated equivalently.
• Doesn’t (yet) handle the “YYYY-DDD” or “YYYY-Www” formats.
• Doesn’t handle leap seconds (seconds value has 60 in these cases).
• Doesn’t handle 24:00:00 as synonym for midnight (00:00:00) tomorrow
• Accepts special values “NaT” (not a time), “Today”, (current day according to local time) and “Now” (current
time in UTC).

str must be a NULL-terminated string, and len must be its length.
unit should contain -1 if the unit is unknown, or the unit which will be used if it is.
casting controls how the detected unit from the string is allowed to be cast to the ‘unit’ parameter.
out gets filled with the parsed date-time.
out_bestunit gives a suggested unit based on the amount of resolution provided in the string, or -1 for NaT.
out_special gets set to 1 if the parsed time was ‘today’, ‘now’, empty string, or ‘NaT’. For ‘today’, the unit
recommended is ‘D’, for ‘now’, the unit recommended is ‘s’, and for ‘NaT’ the unit recommended is ‘Y’.
Returns 0 on success, -1 on failure.

int NpyDatetime_GetDatetimeISO8601StrLen(int local, NPY_DATETIMEUNIT base)
Returns the string length to use for converting datetime objects with the given local time and unit settings to strings.
Use this when constructing strings to supply to NpyDatetime_MakeISO8601Datetime.

int NpyDatetime_MakeISO8601Datetime(npy_datetimestruct *dts, char *outstr, npy_intp outlen, int local, int
utc, NPY_DATETIMEUNIT base, int tzoffset, NPY_CASTING
casting)

Converts an npy_datetimestruct to an (almost) ISO 8601 NULL-terminated string. If the string fits in the
space exactly, it leaves out the NULL terminator and returns success.
The differences from ISO 8601 are the ‘NaT’ string, and the number of year digits is >= 4 instead of strictly 4.
If local is non-zero, it produces a string in local time with a +-#### timezone offset. If local is zero and utc
is non-zero, produce a string ending with ‘Z’ to denote UTC. By default, no time zone information is attached.
base restricts the output to that unit. Set base to -1 to auto-detect a base after which all the values are zero.
tzoffset is used if local is enabled, and tzoffset is set to a value other than -1. This is a manual override
for the local time zone to use, as an offset in minutes.
casting controls whether data loss is allowed by truncating the data to a coarser unit. This interacts with local,
slightly, in order to form a date unit string as a local time, the casting must be unsafe.
Returns 0 on success, -1 on failure (for example if the output string was too short).

2.1.11 C API deprecations

Background

The API exposed by NumPy for third-party extensions has grown over years of releases, and has allowed programmers to
directly access NumPy functionality from C. This API can be best described as “organic”. It has emerged from multiple
competing desires and from multiple points of view over the years, strongly influenced by the desire to make it easy for
users to move to NumPy from Numeric and Numarray. The core API originated with Numeric in 1995 and there are
patterns such as the heavy use of macros written to mimic Python’s C-API as well as account for compiler technology of
the late 90’s. There is also only a small group of volunteers who have had very little time to spend on improving this API.

1998 2. C API

NumPy Reference, Release 2.2.0

There is an ongoing effort to improve the API. It is important in this effort to ensure that code that compiles for NumPy 1.X
continues to compile for NumPy 1.X. At the same time, certain API’s will be marked as deprecated so that future-looking
code can avoid these API’s and follow better practices.
Another important role played by deprecation markings in the C API is to move towards hiding internal details of the
NumPy implementation. For those needing direct, easy, access to the data of ndarrays, this will not remove this abil-
ity. Rather, there are many potential performance optimizations which require changing the implementation details, and
NumPy developers have been unable to try them because of the high value of preserving ABI compatibility. By depre-
cating this direct access, we will in the future be able to improve NumPy’s performance in ways we cannot presently.

Deprecation mechanism NPY_NO_DEPRECATED_API

In C, there is no equivalent to the deprecation warnings that Python supports. One way to do deprecations is to flag
them in the documentation and release notes, then remove or change the deprecated features in a future major version
(NumPy 2.0 and beyond). Minor versions of NumPy should not have major C-API changes, however, that prevent code
that worked on a previous minor release. For example, we will do our best to ensure that code that compiled and worked
on NumPy 1.4 should continue to work on NumPy 1.7 (but perhaps with compiler warnings).
To use the NPY_NO_DEPRECATED_APImechanism, you need to #define it to the target API version of NumPy before
#including any NumPy headers. If you want to confirm that your code is clean against 1.7, use:

#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION

On compilers which support a #warning mechanism, NumPy issues a compiler warning if you do not define the symbol
NPY_NO_DEPRECATED_API. This way, the fact that there are deprecations will be flagged for third-party developers
who may not have read the release notes closely.
Note that defining NPY_NO_DEPRECATED_API is not sufficient to make your extension ABI compatible with a given
NumPy version. See for-downstream-package-authors.

2.1.12 Memory management in NumPy

The numpy.ndarray is a python class. It requires additional memory allocations to hold numpy.ndarray.
strides, numpy.ndarray.shape and numpy.ndarray.data attributes. These attributes are specially al-
located after creating the python object in __new__. The strides and shape are stored in a piece of memory
allocated internally.
The data allocation used to store the actual array values (which could be pointers in the case of object arrays) can
be very large, so NumPy has provided interfaces to manage its allocation and release. This document details how those
interfaces work.

Historical overview

Since version 1.7.0, NumPy has exposed a set of PyDataMem_* functions (PyDataMem_NEW , PyDataMem_FREE,
PyDataMem_RENEW) which are backed by alloc, free, realloc respectively.
Since those early days, Python also improved its memory management capabilities, and began providing various manage-
ment policies beginning in version 3.4. These routines are divided into a set of domains, each domain has a PyMemAl-
locatorEx structure of routines for memory management. Python also added a tracemallocmodule to trace calls
to the various routines. These tracking hooks were added to the NumPy PyDataMem_* routines.
NumPy added a small cache of allocated memory in its internal npy_alloc_cache, npy_alloc_cache_zero,
and npy_free_cache functions. These wrap alloc, alloc-and-memset(0) and free respectively, but when
npy_free_cache is called, it adds the pointer to a short list of available blocks marked by size. These blocks can be
re-used by subsequent calls to npy_alloc*, avoiding memory thrashing.

2.1. NumPy C-API 1999

https://docs.python.org/3/reference/datamodel.html#object.__new__
https://docs.python.org/3/c-api/memory.html#memoryoverview
https://docs.python.org/3/c-api/memory.html#memoryoverview
https://docs.python.org/3/c-api/memory.html#c.PyMemAllocatorEx
https://docs.python.org/3/c-api/memory.html#c.PyMemAllocatorEx
https://docs.python.org/3/library/tracemalloc.html#module-tracemalloc

NumPy Reference, Release 2.2.0

Configurable memory routines in NumPy (NEP 49)

Users may wish to override the internal data memory routines with ones of their own. Since NumPy does not use the
Python domain strategy to manage data memory, it provides an alternative set of C-APIs to change memory routines.
There are no Python domain-wide strategies for large chunks of object data, so those are less suited to NumPy’s needs.
User who wish to change the NumPy data memory management routines can use PyDataMem_SetHandler, which
uses a PyDataMem_Handler structure to hold pointers to functions used to manage the data memory. The calls
are still wrapped by internal routines to call PyTraceMalloc_Track, PyTraceMalloc_Untrack. Since the
functions may change during the lifetime of the process, each ndarray carries with it the functions used at the time of
its instantiation, and these will be used to reallocate or free the data memory of the instance.
type PyDataMem_Handler

A struct to hold function pointers used to manipulate memory

typedef struct {
char name[127]; /* multiple of 64 to keep the struct aligned */
uint8_t version; /* currently 1 */
PyDataMemAllocator allocator;

} PyDataMem_Handler;

where the allocator structure is

/* The declaration of free differs from PyMemAllocatorEx */
typedef struct {

void *ctx;
void* (*malloc) (void *ctx, size_t size);
void* (*calloc) (void *ctx, size_t nelem, size_t elsize);
void* (*realloc) (void *ctx, void *ptr, size_t new_size);
void (*free) (void *ctx, void *ptr, size_t size);

} PyDataMemAllocator;

PyObject *PyDataMem_SetHandler(PyObject *handler)
Set a new allocation policy. If the input value is NULL, will reset the policy to the default. Return the previous
policy, or return NULL if an error has occurred. We wrap the user-provided functions so they will still call the
python and numpy memory management callback hooks.

PyObject *PyDataMem_GetHandler()
Return the current policy that will be used to allocate data for the next PyArrayObject. On failure, return
NULL.

For an example of setting up and using the PyDataMem_Handler, see the test in numpy/_core/tests/
test_mem_policy.py

What happens when deallocating if there is no policy set

A rare but useful technique is to allocate a buffer outside NumPy, use PyArray_NewFromDescr to wrap the buffer
in a ndarray, then switch the OWNDATA flag to true. When the ndarray is released, the appropriate function
from the ndarray’s PyDataMem_Handler should be called to free the buffer. But the PyDataMem_Handler
field was never set, it will be NULL. For backward compatibility, NumPy will call free() to release the buffer. If
NUMPY_WARN_IF_NO_MEM_POLICY is set to 1, a warning will be emitted. The current default is not to emit a
warning, this may change in a future version of NumPy.
A better technique would be to use a PyCapsule as a base object:

2000 2. C API

https://docs.python.org/3/c-api/memory.html#c.PyTraceMalloc_Track
https://docs.python.org/3/c-api/memory.html#c.PyTraceMalloc_Untrack
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject
https://docs.python.org/3/c-api/structures.html#c.PyObject

NumPy Reference, Release 2.2.0

/* define a PyCapsule_Destructor, using the correct deallocator for buff */
void free_wrap(void *capsule){

void * obj = PyCapsule_GetPointer(capsule, PyCapsule_GetName(capsule));
free(obj);

};

/* then inside the function that creates arr from buff */
...
arr = PyArray_NewFromDescr(... buf, ...);
if (arr == NULL) {

return NULL;
}
capsule = PyCapsule_New(buf, "my_wrapped_buffer",

(PyCapsule_Destructor)&free_wrap);
if (PyArray_SetBaseObject(arr, capsule) == -1) {

Py_DECREF(arr);
return NULL;

}
...

Example of memory tracing with np.lib.tracemalloc_domain

Note that since Python 3.6 (or newer), the builtin tracemallocmodule can be used to track allocations inside NumPy.
NumPy places its CPU memory allocations into the np.lib.tracemalloc_domain domain. For additional infor-
mation, check: https://docs.python.org/3/library/tracemalloc.html.
Here is an example on how to use np.lib.tracemalloc_domain:

"""
The goal of this example is to show how to trace memory
from an application that has NumPy and non-NumPy sections.
We only select the sections using NumPy related calls.

"""

import tracemalloc
import numpy as np

Flag to determine if we select NumPy domain
use_np_domain = True

nx = 300
ny = 500

Start to trace memory
tracemalloc.start()

Section 1

NumPy related call
a = np.zeros((nx,ny))

non-NumPy related call
b = [i**2 for i in range(nx*ny)]

snapshot1 = tracemalloc.take_snapshot()

(continues on next page)

2.1. NumPy C-API 2001

https://docs.python.org/3/library/tracemalloc.html

NumPy Reference, Release 2.2.0

(continued from previous page)
We filter the snapshot to only select NumPy related calls
np_domain = np.lib.tracemalloc_domain
dom_filter = tracemalloc.DomainFilter(inclusive=use_np_domain,

domain=np_domain)
snapshot1 = snapshot1.filter_traces([dom_filter])
top_stats1 = snapshot1.statistics('traceback')

print("================ SNAPSHOT 1 =================")
for stat in top_stats1:

print(f"{stat.count} memory blocks: {stat.size / 1024:.1f} KiB")
print(stat.traceback.format()[-1])

Clear traces of memory blocks allocated by Python
before moving to the next section.
tracemalloc.clear_traces()

Section 2
#----------

We are only using NumPy
c = np.sum(a*a)

snapshot2 = tracemalloc.take_snapshot()
top_stats2 = snapshot2.statistics('traceback')

print()
print("================ SNAPSHOT 2 =================")
for stat in top_stats2:

print(f"{stat.count} memory blocks: {stat.size / 1024:.1f} KiB")
print(stat.traceback.format()[-1])

tracemalloc.stop()

print()
print("==")
print("\nTracing Status : ", tracemalloc.is_tracing())

try:
print("\nTrying to Take Snapshot After Tracing is Stopped.")
snap = tracemalloc.take_snapshot()

except Exception as e:
print("Exception : ", e)

2002 2. C API

CHAPTER

THREE

OTHER TOPICS

3.1 Array API standard compatibility

NumPy’s main namespace as well as the numpy.fft and numpy.linalg namespaces are compatible1 with the
2022.12 version of the Python array API standard.
NumPy aims to implement support for the 2023.12 version and future versions of the standard - assuming that those
future versions can be upgraded to given NumPy’s backwards compatibility policy.
For usage guidelines for downstream libraries and end users who want to write code that will work with both NumPy and
other array libraries, we refer to the documentation of the array API standard itself and to code and developer-focused
documentation in SciPy and scikit-learn.
Note that in order to use standard-complaint code with older NumPy versions (< 2.0), the array-api-compat package
may be useful. For testing whether NumPy-using code is only using standard-compliant features rather than anything
NumPy-specific, the array-api-strict package can be used.

History
NumPy 1.22.0 was the first version to include support for the array API standard, via a separate numpy.array_api
submodule. This module was marked as experimental (it emitted a warning on import) and removed in NumPy 2.0
because full support was included in the main namespace. NEP 47 and NEP 56 describe the motivation and scope for
implementing the array API standard in NumPy.

3.1.1 Entry point

NumPy installs an entry point that can be used for discovery purposes:

>>> from importlib.metadata import entry_points
>>> entry_points(group='array_api', name='numpy')
[EntryPoint(name='numpy', value='numpy', group='array_api')]

Note that leaving outname='numpy'will cause a list of entry points to be returned for all arrayAPI standard compatible
implementations that installed an entry point.

1 With a few very minor exceptions, as documented in NEP 56. The sum, prod and trace behavior adheres to the 2023.12 version instead, as
do function signatures; the only known incompatibility that may remain is that the standard forbids unsafe casts for in-place operators while NumPy
supports those.

2003

https://data-apis.org/array-api/2022.12/index.html
https://data-apis.org/array-api/2023.12/index.html
https://numpy.org/neps/nep-0023-backwards-compatibility.html#nep23
https://github.com/data-apis/array-api-compat
https://github.com/data-apis/array-api-strict
https://numpy.org/neps/nep-0047-array-api-standard.html#nep47
https://numpy.org/neps/nep-0056-array-api-main-namespace.html#nep56
https://packaging.python.org/en/latest/specifications/entry-points/
https://numpy.org/neps/nep-0056-array-api-main-namespace.html#nep56

NumPy Reference, Release 2.2.0

3.1.2 Inspection

NumPy implements the array API inspection utilities. These functions can be accessed via the __ar-
ray_namespace_info__() function, which returns a namespace containing the inspection utilities.

__array_namespace_info__() Get the array API inspection namespace for NumPy.

class numpy.__array_namespace_info__

Get the array API inspection namespace for NumPy.
The array API inspection namespace defines the following functions:

• capabilities()
• default_device()
• default_dtypes()
• dtypes()
• devices()

See https://data-apis.org/array-api/latest/API_specification/inspection.html for more details.
Returns

info
[ModuleType] The array API inspection namespace for NumPy.

Examples

>>> info = np.__array_namespace_info__()
>>> info.default_dtypes()
{'real floating': numpy.float64,
'complex floating': numpy.complex128,
'integral': numpy.int64,
'indexing': numpy.int64}

Methods

capabilities() Return a dictionary of array API library capabilities.
default_device() The default device used for new NumPy arrays.
default_dtypes(*[, device]) The default data types used for new NumPy arrays.
devices() The devices supported by NumPy.
dtypes(*[, device, kind]) The array API data types supported by NumPy.

method
__array_namespace_info__.capabilities()

Return a dictionary of array API library capabilities.
The resulting dictionary has the following keys:
• “boolean indexing”: boolean indicating whether an array library supports boolean indexing. Always
True for NumPy.

2004 3. Other topics

https://data-apis.org/array-api/latest/API_specification/inspection.html
https://data-apis.org/array-api/latest/API_specification/inspection.html

NumPy Reference, Release 2.2.0

• “data-dependent shapes”: boolean indicating whether an array library supports data-dependent output
shapes. Always True for NumPy.

See https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html for
more details.

Returns
capabilities
[dict] A dictionary of array API library capabilities.

See also:

__array_namespace_info__.default_device
__array_namespace_info__.default_dtypes
__array_namespace_info__.dtypes
__array_namespace_info__.devices

Examples

>>> info = np.__array_namespace_info__()
>>> info.capabilities()
{'boolean indexing': True,
'data-dependent shapes': True}

method
__array_namespace_info__.default_device()

The default device used for new NumPy arrays.
For NumPy, this always returns 'cpu'.

Returns
device
[str] The default device used for new NumPy arrays.

See also:

__array_namespace_info__.capabilities
__array_namespace_info__.default_dtypes
__array_namespace_info__.dtypes
__array_namespace_info__.devices

Examples

>>> info = np.__array_namespace_info__()
>>> info.default_device()
'cpu'

method
__array_namespace_info__.default_dtypes(*, device=None)

The default data types used for new NumPy arrays.
For NumPy, this always returns the following dictionary:
• “real floating”: numpy.float64

3.1. Array API standard compatibility 2005

https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html

NumPy Reference, Release 2.2.0

• “complex floating”: numpy.complex128
• “integral”: numpy.intp
• “indexing”: numpy.intp

Parameters
device
[str, optional] The device to get the default data types for. For NumPy, only 'cpu' is
allowed.

Returns
dtypes
[dict] A dictionary describing the default data types used for new NumPy arrays.

See also:

__array_namespace_info__.capabilities
__array_namespace_info__.default_device
__array_namespace_info__.dtypes
__array_namespace_info__.devices

Examples

>>> info = np.__array_namespace_info__()
>>> info.default_dtypes()
{'real floating': numpy.float64,
'complex floating': numpy.complex128,
'integral': numpy.int64,
'indexing': numpy.int64}

method
__array_namespace_info__.devices()

The devices supported by NumPy.
For NumPy, this always returns ['cpu'].

Returns
devices
[list of str] The devices supported by NumPy.

See also:

__array_namespace_info__.capabilities
__array_namespace_info__.default_device
__array_namespace_info__.default_dtypes
__array_namespace_info__.dtypes

2006 3. Other topics

NumPy Reference, Release 2.2.0

Examples

>>> info = np.__array_namespace_info__()
>>> info.devices()
['cpu']

method
__array_namespace_info__.dtypes(*, device=None, kind=None)

The array API data types supported by NumPy.
Note that this function only returns data types that are defined by the array API.

Parameters
device
[str, optional] The device to get the data types for. For NumPy, only 'cpu' is allowed.

kind
[str or tuple of str, optional] The kind of data types to return. If None, all data types are re-
turned. If a string, only data types of that kind are returned. If a tuple, a dictionary containing
the union of the given kinds is returned. The following kinds are supported:
• 'bool': boolean data types (i.e., bool).
• 'signed integer': signed integer data types (i.e., int8, int16, int32, int64).
• 'unsigned integer': unsigned integer data types (i.e., uint8, uint16,
uint32, uint64).

• 'integral': integer data types. Shorthand for ('signed integer', 'un-
signed integer').

• 'real floating': real-valued floating-point data types (i.e., float32, float64).
• 'complex floating': complex floating-point data types (i.e., complex64, com-
plex128).

• 'numeric': numeric data types. Shorthand for ('integral', 'real float-
ing', 'complex floating').

Returns
dtypes
[dict] A dictionary mapping the names of data types to the corresponding NumPy data types.

See also:

__array_namespace_info__.capabilities
__array_namespace_info__.default_device
__array_namespace_info__.default_dtypes
__array_namespace_info__.devices

3.1. Array API standard compatibility 2007

NumPy Reference, Release 2.2.0

Examples

>>> info = np.__array_namespace_info__()
>>> info.dtypes(kind='signed integer')
{'int8': numpy.int8,
'int16': numpy.int16,
'int32': numpy.int32,
'int64': numpy.int64}

3.2 CPU/SIMD optimizations

NumPy comes with a flexible working mechanism that allows it to harness the SIMD features that CPUs own, in order to
provide faster and more stable performance on all popular platforms. Currently, NumPy supports the X86, IBM/Power,
ARM7 and ARM8 architectures.
The optimization process in NumPy is carried out in three layers:

• Code is written using the universal intrinsics which is a set of types, macros and functions that are mapped to each
supported instruction-sets by using guards that will enable use of the them only when the compiler recognizes them.
This allow us to generate multiple kernels for the same functionality, in which each generated kernel represents a set
of instructions that related one or multiple certain CPU features. The first kernel represents the minimum (baseline)
CPU features, and the other kernels represent the additional (dispatched) CPU features.

• At compile time, CPU build options are used to define the minimum and additional features to support, based on
user choice and compiler support. The appropriate intrinsics are overlaid with the platform / architecture intrinsics,
and multiple kernels are compiled.

• At runtime import, the CPU is probed for the set of supported CPU features. A mechanism is used to grab the
pointer to the most appropriate kernel, and this will be the one called for the function.

Note: NumPy community had a deep discussion before implementing this work, please check NEP-38 for more clari-
fication.

3.2.1 CPU build options

Description

The following options are mainly used to change the default behavior of optimizations that target certain CPU features:
• cpu-baseline: minimal set of required CPU features.

Default value is min which provides the minimum CPU features that can safely run on a wide range of
platforms within the processor family.

Note: During the runtime, NumPy modules will fail to load if any of specified features are not supported
by the target CPU (raises Python runtime error).

• cpu-dispatch: dispatched set of additional CPU features.
Default value is max -xop -fma4 which enables all CPU features, except for AMD legacy features (in
case of X86).

2008 3. Other topics

https://numpy.org/neps/nep-0038-SIMD-optimizations.html

NumPy Reference, Release 2.2.0

Note: During the runtime, NumPy modules will skip any specified features that are not available in the
target CPU.

These options are accessible at build time by passing setup arguments to meson-python via the build frontend (e.g., pip
or build). They accept a set of CPU features or groups of features that gather several features or special options that
perform a series of procedures.
To customize CPU/build options:

pip install . -Csetup-args=-Dcpu-baseline="avx2 fma3" -Csetup-args=-Dcpu-dispatch="max
↪→"

Quick start

In general, the default settings tend to not impose certain CPU features that may not be available on some older processors.
Raising the ceiling of the baseline features will often improve performance and may also reduce binary size.
The following are the most common scenarios that may require changing the default settings:

I am building NumPy for my local use
And I do not intend to export the build to other users or target a different CPU than what the host has.
Set native for baseline, or manually specify the CPU features in case of option native isn’t supported by your
platform:

python -m build --wheel -Csetup-args=-Dcpu-baseline="native"

Building NumPy with extra CPU features isn’t necessary for this case, since all supported features are already defined
within the baseline features:

python -m build --wheel -Csetup-args=-Dcpu-baseline="native" \
-Csetup-args=-Dcpu-dispatch="none"

Note: A fatal error will be raised if native isn’t supported by the host platform.

I do not want to support the old processors of the x86 architecture
Since most of the CPUs nowadays support at least AVX, F16C features, you can use:

python -m build --wheel -Csetup-args=-Dcpu-baseline="avx f16c"

Note: cpu-baseline force combine all implied features, so there’s no need to add SSE features.

3.2. CPU/SIMD optimizations 2009

NumPy Reference, Release 2.2.0

I’m facing the same case above but with ppc64 architecture
Then raise the ceiling of the baseline features to Power8:

python -m build --wheel -Csetup-args=-Dcpu-baseline="vsx2"

Having issues with AVX512 features?
You may have some reservations about including of AVX512 or any other CPU feature and you want to exclude from the
dispatched features:

python -m build --wheel -Csetup-args=-Dcpu-dispatch="max -avx512f -avx512cd \
-avx512_knl -avx512_knm -avx512_skx -avx512_clx -avx512_cnl -avx512_icl"

Supported features

The names of the features can express one feature or a group of features, as shown in the following tables supported
depend on the lowest interest:

Note: The following features may not be supported by all compilers, also some compilers may produce different set of
implied features when it comes to features like AVX512, AVX2, and FMA3. See Platform differences for more details.

2010 3. Other topics

NumPy Reference, Release 2.2.0

On x86

Name Implies Gathers
SSE SSE2
SSE2 SSE
SSE3 SSE SSE2
SSSE3 SSE SSE2 SSE3
SSE41 SSE SSE2 SSE3 SSSE3
POPCNT SSE SSE2 SSE3 SSSE3 SSE41
SSE42 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT
AVX SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42
XOP SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX
FMA4 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX
F16C SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX
FMA3 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C
AVX2 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C
AVX512FSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3

AVX2
AVX512CDSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3

AVX2 AVX512F
AVX512_KNLSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3

AVX2 AVX512F AVX512CD
AVX512ER AVX512PF

AVX512_KNMSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3
AVX2 AVX512F AVX512CD AVX512_KNL

AVX5124FMAPS
AVX5124VNNIW
AVX512VPOPCNTDQ

AVX512_SKXSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3
AVX2 AVX512F AVX512CD

AVX512VL AVX512BW
AVX512DQ

AVX512_CLXSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3
AVX2 AVX512F AVX512CD AVX512_SKX

AVX512VNNI

AVX512_CNLSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3
AVX2 AVX512F AVX512CD AVX512_SKX

AVX512IFMA
AVX512VBMI

AVX512_ICLSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C
FMA3 AVX2 AVX512F AVX512CD AVX512_SKX AVX512_CLX
AVX512_CNL

AVX512VBMI2
AVX512BITALG
AVX512VPOPCNTDQ

AVX512_SPRSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C
FMA3 AVX2 AVX512F AVX512CD AVX512_SKX AVX512_CLX
AVX512_CNL AVX512_ICL

AVX512FP16

On IBM/POWER big-endian

Name Implies
VSX
VSX2 VSX
VSX3 VSX VSX2
VSX4 VSX VSX2 VSX3

3.2. CPU/SIMD optimizations 2011

NumPy Reference, Release 2.2.0

On IBM/POWER little-endian

Name Implies
VSX VSX2
VSX2 VSX
VSX3 VSX VSX2
VSX4 VSX VSX2 VSX3

On ARMv7/A32

Name Implies
NEON
NEON_FP16 NEON
NEON_VFPV4 NEON NEON_FP16
ASIMD NEON NEON_FP16 NEON_VFPV4
ASIMDHP NEON NEON_FP16 NEON_VFPV4 ASIMD
ASIMDDP NEON NEON_FP16 NEON_VFPV4 ASIMD
ASIMDFHM NEON NEON_FP16 NEON_VFPV4 ASIMD ASIMDHP

On ARMv8/A64

Name Implies
NEON NEON_FP16 NEON_VFPV4 ASIMD
NEON_FP16 NEON NEON_VFPV4 ASIMD
NEON_VFPV4 NEON NEON_FP16 ASIMD
ASIMD NEON NEON_FP16 NEON_VFPV4
ASIMDHP NEON NEON_FP16 NEON_VFPV4 ASIMD
ASIMDDP NEON NEON_FP16 NEON_VFPV4 ASIMD
ASIMDFHM NEON NEON_FP16 NEON_VFPV4 ASIMD ASIMDHP

On IBM/ZSYSTEM(S390X)

Name Implies
VX
VXE VX
VXE2 VX VXE

Special options

• NONE: enable no features.
• NATIVE: Enables all CPU features that supported by the host CPU, this operation is based on the compiler flags
(-march=native, -xHost, /QxHost)

• MIN: Enables the minimum CPU features that can safely run on a wide range of platforms:

2012 3. Other topics

NumPy Reference, Release 2.2.0

For Arch Implies
x86 (32-bit mode) SSE SSE2
x86_64 SSE SSE2 SSE3
IBM/POWER (big-endian mode) NONE
IBM/POWER (little-endian mode) VSX VSX2
ARMHF NONE
ARM64 A.K. AARCH64 NEON NEON_FP16 NEON_VFPV4 ASIMD
IBM/ZSYSTEM(S390X) NONE

• MAX: Enables all supported CPU features by the compiler and platform.
• Operators-/+: remove or add features, useful with options MAX, MIN and NATIVE.

Behaviors

• CPU features and other options are case-insensitive, for example:

python -m build --wheel -Csetup-args=-Dcpu-dispatch="SSE41 avx2 FMA3"

• The order of the requested optimizations doesn’t matter:

python -m build --wheel -Csetup-args=-Dcpu-dispatch="SSE41 AVX2 FMA3"
equivalent to
python -m build --wheel -Csetup-args=-Dcpu-dispatch="FMA3 AVX2 SSE41"

• Either commas or spaces or ‘+’ can be used as a separator, for example:

python -m build --wheel -Csetup-args=-Dcpu-dispatch="avx2 avx512f"
or
python -m build --wheel -Csetup-args=-Dcpu-dispatch=avx2,avx512f
or
python -m build --wheel -Csetup-args=-Dcpu-dispatch="avx2+avx512f"

all works but arguments should be enclosed in quotes or escaped by backslash if any spaces are used.
• cpu-baseline combines all implied CPU features, for example:

python -m build --wheel -Csetup-args=-Dcpu-baseline=sse42
equivalent to
python -m build --wheel -Csetup-args=-Dcpu-baseline="sse sse2 sse3 ssse3 sse41␣
↪→popcnt sse42"

• cpu-baseline will be treated as “native” if compiler native flag -march=native or -xHost or /QxHost
is enabled through environment variable CFLAGS:

export CFLAGS="-march=native"
pip install .
is equivalent to
pip install . -Csetup-args=-Dcpu-baseline=native

• cpu-baseline escapes any specified features that aren’t supported by the target platform or compiler rather
than raising fatal errors.

Note: Since cpu-baseline combines all implied features, the maximum supported of implied features will
be enabled rather than escape all of them. For example:

3.2. CPU/SIMD optimizations 2013

NumPy Reference, Release 2.2.0

Requesting `AVX2,FMA3` but the compiler only support **SSE** features
python -m build --wheel -Csetup-args=-Dcpu-baseline="avx2 fma3"
is equivalent to
python -m build --wheel -Csetup-args=-Dcpu-baseline="sse sse2 sse3 ssse3 sse41␣
↪→popcnt sse42"

• cpu-dispatch does not combine any of implied CPU features, so you must add them unless you want to disable
one or all of them:

Only dispatches AVX2 and FMA3
python -m build --wheel -Csetup-args=-Dcpu-dispatch=avx2,fma3
Dispatches AVX and SSE features
python -m build --wheel -Csetup-args=-Dcpu-dispatch=ssse3,sse41,sse42,avx,avx2,
↪→fma3

• cpu-dispatch escapes any specified baseline features and also escapes any features not supported by the target
platform or compiler without raising fatal errors.

Eventually, you should always check the final report through the build log to verify the enabled features. See Build report
for more details.

Platform differences

Some exceptional conditions force us to link some features together when it come to certain compilers or architectures,
resulting in the impossibility of building them separately.
These conditions can be divided into two parts, as follows:
Architectural compatibility
The need to align certain CPU features that are assured to be supported by successive generations of the same architecture,
some cases:

• On ppc64le VSX(ISA 2.06) and VSX2(ISA 2.07) both imply one another since the first generation that
supports little-endian mode is Power-8`(ISA 2.07)`

• On AArch64 NEON NEON_FP16 NEON_VFPV4 ASIMD implies each other since they are part of the hardware
baseline.

For example:

On ARMv8/A64, specify NEON is going to enable Advanced SIMD
and all predecessor extensions
python -m build --wheel -Csetup-args=-Dcpu-baseline=neon
which is equivalent to
python -m build --wheel -Csetup-args=-Dcpu-baseline="neon neon_fp16 neon_vfpv4 asimd"

Note: Please take a deep look at Supported features, in order to determine the features that imply one another.

Compilation compatibility
Some compilers don’t provide independent support for all CPU features. For instance Intel’s compiler doesn’t provide
separated flags for AVX2 and FMA3, it makes sense since all Intel CPUs that comes with AVX2 also support FMA3, but
this approach is incompatible with other x86 CPUs from AMD or VIA.
For example:

2014 3. Other topics

NumPy Reference, Release 2.2.0

Specify AVX2 will force enables FMA3 on Intel compilers
python -m build --wheel -Csetup-args=-Dcpu-baseline=avx2
which is equivalent to
python -m build --wheel -Csetup-args=-Dcpu-baseline="avx2 fma3"

The following tables only show the differences imposed by some compilers from the general context that been shown in
the Supported features tables:

Note: Features names with strikeout represent the unsupported CPU features.

On x86::Intel Compiler

Name Implies Gath-
ers

FMA3 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C AVX2
AVX2 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3
AVX512F SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512CD
XOP SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX
FMA4 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX
AVX512_SPRSSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F

AVX512CD AVX512_SKX AVX512_CLX AVX512_CNL AVX512_ICL
AVX512FP16

On x86::Microsoft Visual C/C++

Name Implies Gathers
FMA3 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C AVX2
AVX2 SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3
AVX512FSSE SSE2 SSE3 SSSE3 SSE41 POPCNTSSE42AVXF16CFMA3AVX2

AVX512CD AVX512_SKX
AVX512CDSSE SSE2 SSE3 SSSE3 SSE41 POPCNTSSE42AVXF16CFMA3AVX2

AVX512F AVX512_SKX
AVX512_KNLSSE SSE2 SSE3 SSSE3 SSE41 POPCNTSSE42AVXF16CFMA3AVX2

AVX512F AVX512CD
AVX512ER AVX512PF

AVX512_KNMSSE SSE2 SSE3 SSSE3 SSE41 POPCNTSSE42AVXF16CFMA3AVX2
AVX512F AVX512CD AVX512_KNL

AVX5124FMAPS
AVX5124VNNIW
AVX512VPOPCNTDQ

AVX512_SPRSSE SSE2 SSE3 SSSE3 SSE41 POPCNTSSE42AVXF16CFMA3AVX2
AVX512F AVX512CD AVX512_SKX AVX512_CLX AVX512_CNL
AVX512_ICL

AVX512FP16

3.2. CPU/SIMD optimizations 2015

NumPy Reference, Release 2.2.0

Build report

In most cases, the CPU build options do not produce any fatal errors that lead to hanging the build. Most of the errors
that may appear in the build log serve as heavy warnings due to the lack of some expected CPU features by the compiler.
So we strongly recommend checking the final report log, to be aware of what kind of CPU features are enabled and what
are not.
You can find the final report of CPU optimizations at the end of the build log, and here is how it looks on x86_64/gcc:

########### EXT COMPILER OPTIMIZATION ###########
Platform :
Architecture: x64
Compiler : gcc

CPU baseline :
Requested : 'min'
Enabled : SSE SSE2 SSE3
Flags : -msse -msse2 -msse3
Extra checks: none

CPU dispatch :
Requested : 'max -xop -fma4'
Enabled : SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD AVX512_

↪→KNL AVX512_KNM AVX512_SKX AVX512_CLX AVX512_CNL AVX512_ICL
Generated :

:
SSE41 : SSE SSE2 SSE3 SSSE3
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1
Extra checks: none
Detect : SSE SSE2 SSE3 SSSE3 SSE41

: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithmetic.
↪→dispatch.c

: numpy/_core/src/umath/_umath_tests.dispatch.c
:

SSE42 : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2
Extra checks: none
Detect : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42

: build/src.linux-x86_64-3.9/numpy/_core/src/_simd/_simd.dispatch.c
:

AVX2 : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2 -mavx -mf16c -

↪→mavx2
Extra checks: none
Detect : AVX F16C AVX2

: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithm_fp.
↪→dispatch.c

: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithmetic.
↪→dispatch.c

: numpy/_core/src/umath/_umath_tests.dispatch.c
:

(FMA3 AVX2) : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2 -mavx -mf16c -

↪→mfma -mavx2
Extra checks: none
Detect : AVX F16C FMA3 AVX2

: build/src.linux-x86_64-3.9/numpy/_core/src/_simd/_simd.dispatch.c

(continues on next page)

2016 3. Other topics

NumPy Reference, Release 2.2.0

(continued from previous page)
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_exponent_log.

↪→dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_trigonometric.

↪→dispatch.c
:

AVX512F : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2 -mavx -mf16c -

↪→mfma -mavx2 -mavx512f
Extra checks: AVX512F_REDUCE
Detect : AVX512F

: build/src.linux-x86_64-3.9/numpy/_core/src/_simd/_simd.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithm_fp.

↪→dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithmetic.

↪→dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_exponent_log.

↪→dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_trigonometric.

↪→dispatch.c
:

AVX512_SKX : SSE SSE2 SSE3 SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F␣
↪→AVX512CD
Flags : -msse -msse2 -msse3 -mssse3 -msse4.1 -mpopcnt -msse4.2 -mavx -mf16c -

↪→mfma -mavx2 -mavx512f -mavx512cd -mavx512vl -mavx512bw -mavx512dq
Extra checks: AVX512BW_MASK AVX512DQ_MASK
Detect : AVX512_SKX

: build/src.linux-x86_64-3.9/numpy/_core/src/_simd/_simd.dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_arithmetic.

↪→dispatch.c
: build/src.linux-x86_64-3.9/numpy/_core/src/umath/loops_exponent_log.

↪→dispatch.c
CCompilerOpt.cache_flush[804] : write cache to path -> /home/seiko/work/repos/numpy/
↪→build/temp.linux-x86_64-3.9/ccompiler_opt_cache_ext.py

########### CLIB COMPILER OPTIMIZATION ###########
Platform :
Architecture: x64
Compiler : gcc

CPU baseline :
Requested : 'min'
Enabled : SSE SSE2 SSE3
Flags : -msse -msse2 -msse3
Extra checks: none

CPU dispatch :
Requested : 'max -xop -fma4'
Enabled : SSSE3 SSE41 POPCNT SSE42 AVX F16C FMA3 AVX2 AVX512F AVX512CD AVX512_

↪→KNL AVX512_KNM AVX512_SKX AVX512_CLX AVX512_CNL AVX512_ICL
Generated : none

There is a separate report for each of build_ext and build_clib that includes several sections, and each section
has several values, representing the following:
Platform:

• Architecture: The architecture name of target CPU. It should be one of x86, x64, ppc64, ppc64le, armhf,
aarch64, s390x or unknown.

3.2. CPU/SIMD optimizations 2017

NumPy Reference, Release 2.2.0

• Compiler: The compiler name. It should be one of gcc, clang, msvc, icc, iccw or unix-like.
CPU baseline:

• Requested: The specific features and options to cpu-baseline as-is.
• Enabled: The final set of enabled CPU features.
• Flags: The compiler flags that were used to all NumPy C/C++ sources during the compilation except for temporary
sources that have been used for generating the binary objects of dispatched features.

• Extra checks: list of internal checks that activate certain functionality or intrinsics related to the enabled features,
useful for debugging when it comes to developing SIMD kernels.

CPU dispatch:
• Requested: The specific features and options to cpu-dispatch as-is.
• Enabled: The final set of enabled CPU features.
• Generated: At the beginning of the next row of this property, the features for which optimizations have been
generated are shown in the form of several sections with similar properties explained as follows:

– One or multiple dispatched feature: The implied CPU features.
– Flags: The compiler flags that been used for these features.
– Extra checks: Similar to the baseline but for these dispatched features.
– Detect: Set of CPU features that need be detected in runtime in order to execute the generated optimizations.
– The lines that come after the above property and end with a ‘:’ on a separate line, represent the paths of c/c++
sources that define the generated optimizations.

Runtime dispatch

Importing NumPy triggers a scan of the available CPU features from the set of dispatchable features. This can be further
restricted by setting the environment variable NPY_DISABLE_CPU_FEATURES to a comma-, tab-, or space-separated
list of features to disable. This will raise an error if parsing fails or if the feature was not enabled. For instance, on
x86_64 this will disable AVX2 and FMA3:

NPY_DISABLE_CPU_FEATURES="AVX2,FMA3"

If the feature is not available, a warning will be emitted.

Tracking dispatched functions

Discovering which CPU targets are enabled for different optimized functions is achievable through the Python func-
tion numpy.lib.introspect.opt_func_info. This function offers the flexibility of applying filters using two
optional arguments: one for refining function names and the other for specifying data types in the signatures.
For example:

>> func_info = numpy.lib.introspect.opt_func_info(func_name='add|abs', signature=
↪→'float64|complex64')
>> print(json.dumps(func_info, indent=2))
{
"absolute": {
"dd": {
"current": "SSE41",

(continues on next page)

2018 3. Other topics

NumPy Reference, Release 2.2.0

(continued from previous page)
"available": "SSE41 baseline(SSE SSE2 SSE3)"

},
"Ff": {
"current": "FMA3__AVX2",
"available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)"

},
"Dd": {
"current": "FMA3__AVX2",
"available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)"

}
},
"add": {
"ddd": {
"current": "FMA3__AVX2",
"available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)"

},
"FFF": {
"current": "FMA3__AVX2",
"available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)"

}
}

}

3.2.2 How does the CPU dispatcher work?

NumPy dispatcher is based on multi-source compiling, which means taking a certain source and compiling it multiple
times with different compiler flags and also with different C definitions that affect the code paths. This enables certain
instruction-sets for each compiled object depending on the required optimizations and ends with linking the returned
objects together.

This mechanism should support all compilers and it doesn’t require any compiler-specific extension, but at the same time
it adds a few steps to normal compilation that are explained as follows.

1- Configuration

Configuring the required optimization by the user before starting to build the source files via the two command arguments
as explained above:

• --cpu-baseline: minimal set of required optimizations.
• --cpu-dispatch: dispatched set of additional optimizations.

3.2. CPU/SIMD optimizations 2019

NumPy Reference, Release 2.2.0

2- Discovering the environment

In this part, we check the compiler and platform architecture and cache some of the intermediary results to speed up
rebuilding.

3- Validating the requested optimizations

By testing them against the compiler, and seeing what the compiler can support according to the requested optimizations.

4- Generating the main configuration header

The generated header _cpu_dispatch.h contains all the definitions and headers of instruction-sets for the required
optimizations that have been validated during the previous step.
It also contains extra C definitions that are used for defining NumPy’s Python-level module attributes
__cpu_baseline__ and __cpu_dispatch__.
What is in this header?
The example header was dynamically generated by gcc on an X86 machine. The compiler supports
--cpu-baseline="sse sse2 sse3" and --cpu-dispatch="ssse3 sse41", and the result is below.

// The header should be located at numpy/numpy/_core/src/common/_cpu_dispatch.h
/**NOTE
** C definitions prefixed with "NPY_HAVE_" represent
** the required optimizations.
**
** C definitions prefixed with 'NPY__CPU_TARGET_' are protected and
** shouldn't be used by any NumPy C sources.
*/
/******* baseline features *******/
/** SSE **/
#define NPY_HAVE_SSE 1
#include <xmmintrin.h>
/** SSE2 **/
#define NPY_HAVE_SSE2 1
#include <emmintrin.h>
/** SSE3 **/
#define NPY_HAVE_SSE3 1
#include <pmmintrin.h>

/******* dispatch-able features *******/
#ifdef NPY__CPU_TARGET_SSSE3
/** SSSE3 **/
#define NPY_HAVE_SSSE3 1
#include <tmmintrin.h>

#endif
#ifdef NPY__CPU_TARGET_SSE41
/** SSE41 **/
#define NPY_HAVE_SSE41 1
#include <smmintrin.h>

#endif

Baseline features are the minimal set of required optimizations configured via --cpu-baseline. They have no
preprocessor guards and they’re always on, which means they can be used in any source.
Does this mean NumPy’s infrastructure passes the compiler’s flags of baseline features to all sources?

2020 3. Other topics

NumPy Reference, Release 2.2.0

Definitely, yes. But the dispatch-able sources are treated differently.
What if the user specifies certain baseline features during the build but at runtime the machine doesn’t support even
these features? Will the compiled code be called via one of these definitions, or maybe the compiler itself auto-
generated/vectorized certain piece of code based on the provided command line compiler flags?
During the loading of the NumPy module, there’s a validation step which detects this behavior. It will raise a Python
runtime error to inform the user. This is to prevent the CPU reaching an illegal instruction error causing a segfault.
Dispatch-able features are our dispatched set of additional optimizations that were configured via --cpu-dispatch.
They are not activated by default and are always guarded by other C definitions prefixed with NPY__CPU_TARGET_. C
definitions NPY__CPU_TARGET_ are only enabled within dispatch-able sources.

5- Dispatch-able sources and configuration statements

Dispatch-able sources are special C files that can be compiled multiple times with different compiler flags and also with
different C definitions. These affect code paths to enable certain instruction-sets for each compiled object according to
“the configuration statements” that must be declared between a C comment(/**/) and start with a special mark
@targets at the top of each dispatch-able source. At the same time, dispatch-able sources will be treated as normal C
sources if the optimization was disabled by the command argument --disable-optimization .
What are configuration statements?
Configuration statements are sort of keywords combined together to determine the required optimization for the dispatch-
able source.
Example:

/*@targets avx2 avx512f vsx2 vsx3 asimd asimdhp */
// C code

The keywords mainly represent the additional optimizations configured through --cpu-dispatch, but it can also
represent other options such as:

• Target groups: pre-configured configuration statements used for managing the required optimizations from outside
the dispatch-able source.

• Policies: collections of options used for changing the default behaviors or forcing the compilers to perform certain
things.

• “baseline”: a unique keyword represents the minimal optimizations that configured through --cpu-baseline
Numpy’s infrastructure handles dispatch-able sources in four steps:

• (A) Recognition: Just like source templates and F2PY, the dispatch-able sources requires a special extension *.
dispatch.c to mark C dispatch-able source files, and for C++ *.dispatch.cpp or *.dispatch.cxx
NOTE: C++ not supported yet.

• (B) Parsing and validating: In this step, the dispatch-able sources that had been filtered by the previous step are
parsed and validated by the configuration statements for each one of them one by one in order to determine the
required optimizations.

• (C)Wrapping: This is the approach taken by NumPy’s infrastructure, which has proved to be sufficiently flexible in
order to compile a single source multiple times with different C definitions and flags that affect the code paths. The
process is achieved by creating a temporary C source for each required optimization that related to the additional
optimization, which contains the declarations of theC definitions and includes the involved source via theC directive
#include. For more clarification take a look at the following code for AVX512F :

3.2. CPU/SIMD optimizations 2021

NumPy Reference, Release 2.2.0

/*
* this definition is used by NumPy utilities as suffixes for the
* exported symbols
*/
#define NPY__CPU_TARGET_CURRENT AVX512F
/*
* The following definitions enable
* definitions of the dispatch-able features that are defined within the main
* configuration header. These are definitions for the implied features.
*/
#define NPY__CPU_TARGET_SSE
#define NPY__CPU_TARGET_SSE2
#define NPY__CPU_TARGET_SSE3
#define NPY__CPU_TARGET_SSSE3
#define NPY__CPU_TARGET_SSE41
#define NPY__CPU_TARGET_POPCNT
#define NPY__CPU_TARGET_SSE42
#define NPY__CPU_TARGET_AVX
#define NPY__CPU_TARGET_F16C
#define NPY__CPU_TARGET_FMA3
#define NPY__CPU_TARGET_AVX2
#define NPY__CPU_TARGET_AVX512F
// our dispatch-able source
#include "/the/absolute/path/of/hello.dispatch.c"

• (D) Dispatch-able configuration header: The infrastructure generates a config header for each dispatch-able
source, this header mainly contains two abstract C macros used for identifying the generated objects, so they can
be used for runtime dispatching certain symbols from the generated objects by any C source. It is also used for
forward declarations.
The generated header takes the name of the dispatch-able source after excluding the extension and replace it with
.h, for example assume we have a dispatch-able source called hello.dispatch.c and contains the following:

// hello.dispatch.c
/*@targets baseline sse42 avx512f */
#include <stdio.h>
#include "numpy/utils.h" // NPY_CAT, NPY_TOSTR

#ifndef NPY__CPU_TARGET_CURRENT
// wrapping the dispatch-able source only happens to the additional␣

↪→optimizations
// but if the keyword 'baseline' provided within the configuration statements,
// the infrastructure will add extra compiling for the dispatch-able source by
// passing it as-is to the compiler without any changes.
#define CURRENT_TARGET(X) X
#define NPY__CPU_TARGET_CURRENT baseline // for printing only

#else
// since we reach to this point, that's mean we're dealing with
// the additional optimizations, so it could be SSE42 or AVX512F

#define CURRENT_TARGET(X) NPY_CAT(NPY_CAT(X, _), NPY__CPU_TARGET_CURRENT)
#endif
// Macro 'CURRENT_TARGET' adding the current target as suffix to the exported␣
↪→symbols,
// to avoid linking duplications, NumPy already has a macro called
// 'NPY_CPU_DISPATCH_CURFX' similar to it, located at
// numpy/numpy/_core/src/common/npy_cpu_dispatch.h
// NOTE: we tend to not adding suffixes to the baseline exported symbols

(continues on next page)

2022 3. Other topics

NumPy Reference, Release 2.2.0

(continued from previous page)
void CURRENT_TARGET(simd_whoami)(const char *extra_info)
{

printf("I'm " NPY_TOSTR(NPY__CPU_TARGET_CURRENT) ", %s\n", extra_info);
}

Now assume you attached hello.dispatch.c to the source tree, then the infrastructure should generate a temporary
config header called hello.dispatch.h that can be reached by any source in the source tree, and it should contain
the following code :

#ifndef NPY__CPU_DISPATCH_EXPAND_
// To expand the macro calls in this header
#define NPY__CPU_DISPATCH_EXPAND_(X) X

#endif
// Undefining the following macros, due to the possibility of including config␣
↪→headers
// multiple times within the same source and since each config header represents
// different required optimizations according to the specified configuration
// statements in the dispatch-able source that derived from it.
#undef NPY__CPU_DISPATCH_BASELINE_CALL
#undef NPY__CPU_DISPATCH_CALL
// nothing strange here, just a normal preprocessor callback
// enabled only if 'baseline' specified within the configuration statements
#define NPY__CPU_DISPATCH_BASELINE_CALL(CB, ...) \
NPY__CPU_DISPATCH_EXPAND_(CB(__VA_ARGS__))

// 'NPY__CPU_DISPATCH_CALL' is an abstract macro is used for dispatching
// the required optimizations that specified within the configuration statements.
//
// @param CHK, Expected a macro that can be used to detect CPU features
// in runtime, which takes a CPU feature name without string quotes and
// returns the testing result in a shape of boolean value.
// NumPy already has macro called "NPY_CPU_HAVE", which fits this requirement.
//
// @param CB, a callback macro that expected to be called multiple times depending
// on the required optimizations, the callback should receive the following␣
↪→arguments:
// 1- The pending calls of @param CHK filled up with the required CPU features,
// that need to be tested first in runtime before executing call belong to
// the compiled object.
// 2- The required optimization name, same as in 'NPY__CPU_TARGET_CURRENT'
// 3- Extra arguments in the macro itself
//
// By default the callback calls are sorted depending on the highest interest
// unless the policy "$keep_sort" was in place within the configuration statements
// see "Dive into the CPU dispatcher" for more clarification.
#define NPY__CPU_DISPATCH_CALL(CHK, CB, ...) \
NPY__CPU_DISPATCH_EXPAND_(CB((CHK(AVX512F)), AVX512F, __VA_ARGS__)) \
NPY__CPU_DISPATCH_EXPAND_(CB((CHK(SSE)&&CHK(SSE2)&&CHK(SSE3)&&CHK(SSSE3)&&

↪→CHK(SSE41)), SSE41, __VA_ARGS__))

An example of using the config header in light of the above:

// NOTE: The following macros are only defined for demonstration purposes only.
// NumPy already has a collections of macros located at
// numpy/numpy/_core/src/common/npy_cpu_dispatch.h, that covers all dispatching
// and declarations scenarios.

(continues on next page)

3.2. CPU/SIMD optimizations 2023

NumPy Reference, Release 2.2.0

(continued from previous page)
#include "numpy/npy_cpu_features.h" // NPY_CPU_HAVE
#include "numpy/utils.h" // NPY_CAT, NPY_EXPAND

// An example for setting a macro that calls all the exported symbols at once
// after checking if they're supported by the running machine.
#define DISPATCH_CALL_ALL(FN, ARGS) \

NPY__CPU_DISPATCH_CALL(NPY_CPU_HAVE, DISPATCH_CALL_ALL_CB, FN, ARGS) \
NPY__CPU_DISPATCH_BASELINE_CALL(DISPATCH_CALL_BASELINE_ALL_CB, FN, ARGS)

// The preprocessor callbacks.
// The same suffixes as we define it in the dispatch-able source.
#define DISPATCH_CALL_ALL_CB(CHECK, TARGET_NAME, FN, ARGS) \
if (CHECK) { NPY_CAT(NPY_CAT(FN, _), TARGET_NAME) ARGS; }

#define DISPATCH_CALL_BASELINE_ALL_CB(FN, ARGS) \
FN NPY_EXPAND(ARGS);

// An example for setting a macro that calls the exported symbols of highest
// interest optimization, after checking if they're supported by the running␣
↪→machine.
#define DISPATCH_CALL_HIGH(FN, ARGS) \
if (0) {} \
NPY__CPU_DISPATCH_CALL(NPY_CPU_HAVE, DISPATCH_CALL_HIGH_CB, FN, ARGS) \
NPY__CPU_DISPATCH_BASELINE_CALL(DISPATCH_CALL_BASELINE_HIGH_CB, FN, ARGS)

// The preprocessor callbacks
// The same suffixes as we define it in the dispatch-able source.
#define DISPATCH_CALL_HIGH_CB(CHECK, TARGET_NAME, FN, ARGS) \
else if (CHECK) { NPY_CAT(NPY_CAT(FN, _), TARGET_NAME) ARGS; }

#define DISPATCH_CALL_BASELINE_HIGH_CB(FN, ARGS) \
else { FN NPY_EXPAND(ARGS); }

// NumPy has a macro called 'NPY_CPU_DISPATCH_DECLARE' can be used
// for forward declarations any kind of prototypes based on
// 'NPY__CPU_DISPATCH_CALL' and 'NPY__CPU_DISPATCH_BASELINE_CALL'.
// However in this example, we just handle it manually.
void simd_whoami(const char *extra_info);
void simd_whoami_AVX512F(const char *extra_info);
void simd_whoami_SSE41(const char *extra_info);

void trigger_me(void)
{

// bring the auto-generated config header
// which contains config macros 'NPY__CPU_DISPATCH_CALL' and
// 'NPY__CPU_DISPATCH_BASELINE_CALL'.
// it is highly recommended to include the config header before executing

// the dispatching macros in case if there's another header in the scope.
#include "hello.dispatch.h"
DISPATCH_CALL_ALL(simd_whoami, ("all"))
DISPATCH_CALL_HIGH(simd_whoami, ("the highest interest"))
// An example of including multiple config headers in the same source
// #include "hello2.dispatch.h"
// DISPATCH_CALL_HIGH(another_function, ("the highest interest"))

}

2024 3. Other topics

NumPy Reference, Release 2.2.0

3.3 Thread Safety

NumPy supports use in a multithreaded context via the threading module in the standard library. Many NumPy
operations release the GIL, so unlikemany situations in Python, it is possible to improve parallel performance by exploiting
multithreaded parallelism in Python.
The easiest performance gains happen when each worker thread owns its own array or set of array objects, with no data
directly shared between threads. Because NumPy releases the GIL for many low-level operations, threads that spend most
of the time in low-level code will run in parallel.
It is possible to share NumPy arrays between threads, but extreme care must be taken to avoid creating thread safety
issues when mutating arrays that are shared between multiple threads. If two threads simultaneously read from and write
to the same array, they will at best produce inconsistent, racey results that are not reproducible, let alone correct. It is
also possible to crash the Python interpreter by, for example, resizing an array while another thread is reading from it to
compute a ufunc operation.
In the future, we may add locking to ndarray to make writing multithreaded algorithms using NumPy arrays safer, but
for now we suggest focusing on read-only access of arrays that are shared between threads, or adding your own locking if
you need to mutation and multithreading.
Note that operations that do not release the GIL will see no performance gains from use of the threadingmodule, and
instead might be better served with multiprocessing. In particular, operations on arrays with dtype=object
do not release the GIL.

3.3.1 Free-threaded Python

New in version 2.1.
Starting with NumPy 2.1 and CPython 3.13, NumPy also has experimental support for python runtimes with the GIL
disabled. See https://py-free-threading.github.io for more information about installing and using free-threaded Python,
as well as information about supporting it in libraries that depend on NumPy.
Because free-threaded Python does not have a global interpreter lock to serialize access to Python objects, there are
more opportunities for threads to mutate shared state and create thread safety issues. In addition to the limitations about
locking of the ndarray object noted above, this also means that arrays with dtype=object are not protected by the
GIL, creating data races for python objects that are not possible outside free-threaded python.

3.4 Global Configuration Options

NumPy has a few import-time, compile-time, or runtime configuration options which change the global behaviour. Most
of these are related to performance or for debugging purposes and will not be interesting to the vast majority of users.

3.4.1 Performance-related options

Number of threads used for linear algebra

NumPy itself is normally intentionally limited to a single thread during function calls, however it does support multi-
ple Python threads running at the same time. Note that for performant linear algebra NumPy uses a BLAS backend
such as OpenBLAS or MKL, which may use multiple threads that may be controlled by environment variables such as
OMP_NUM_THREADS depending on what is used. One way to control the number of threads is the package threadpoolctl

3.3. Thread Safety 2025

https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://py-free-threading.github.io
https://pypi.org/project/threadpoolctl/

NumPy Reference, Release 2.2.0

madvise hugepage on Linux

When working with very large arrays on modern Linux kernels, you can experience a significant speedup when transparent
hugepage is used. The current system policy for transparent hugepages can be seen by:

cat /sys/kernel/mm/transparent_hugepage/enabled

When set to madvise NumPy will typically use hugepages for a performance boost. This behaviour can be modified by
setting the environment variable:

NUMPY_MADVISE_HUGEPAGE=0

or setting it to 1 to always enable it. When not set, the default is to use madvise on Kernels 4.6 and newer. These kernels
presumably experience a large speedup with hugepage support. This flag is checked at import time.

SIMD feature selection

Setting NPY_DISABLE_CPU_FEATURES will exclude simd features at runtime. See Runtime dispatch.

3.4.2 Debugging-related options

Warn if no memory allocation policy when deallocating data

Some users might pass ownership of the data pointer to the ndarray by setting the OWNDATA flag. If
they do this without setting (manually) a memory allocation policy, the default will be to call free. If
NUMPY_WARN_IF_NO_MEM_POLICY is set to "1", a RuntimeWarning will be emitted. A better alternative
is to use a PyCapsule with a deallocator and set the ndarray.base.
Changed in version 1.25.2: This variable is only checked on the first import.

3.5 NumPy security

Security issues can be reported privately as described in the project README and when opening a new issue on the issue
tracker. The Python security reporting guidelines are a good resource and its notes apply also to NumPy.
NumPy’s maintainers are not security experts. However, we are conscientious about security and experts of both the
NumPy codebase and how it’s used. Please do notify us before creating security advisories against NumPy as we are
happy to prioritize issues or help with assessing the severity of a bug. A security advisory we are not aware of beforehand
can lead to a lot of work for all involved parties.

3.5.1 Advice for using NumPy on untrusted data

A user who can freely execute NumPy (or Python) functions must be considered to have the same privilege as the pro-
cess/Python interpreter.
That said, NumPy should be generally safe to use on data provided by unprivileged users and read through safe API
functions (e.g. loaded from a text file or .npy file without pickle support). Malicious values or data sizes should never
lead to privilege escalation. Note that the above refers to array data. We do not currently consider for example f2py to
be safe: it is typically used to compile a program that is then run. Any f2py invocation must thus use the same privilege
as the later execution.
The following points may be useful or should be noted when working with untrusted data:

2026 3. Other topics

https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://github.com/numpy/numpy/issues/new/choose
https://github.com/numpy/numpy/issues/new/choose
https://www.python.org/dev/security/

NumPy Reference, Release 2.2.0

• Exhausting memory can result in an out-of-memory kill, which is a possible denial of service attack. Possible
causes could be:

– Functions reading text files, which may require much more memory than the original input file size.
– If users can create arbitrarily shaped arrays, NumPy’s broadcasting means that intermediate or result arrays
can be much larger than the inputs.

• NumPy structured dtypes allow for a large amount of complexity. Fortunately, most code fails gracefully when a
structured dtype is provided unexpectedly. However, code should either disallow untrusted users to provide these
(e.g. via .npy files) or carefully check the fields included for nested structured/subarray dtypes.

• Passing on user input should generally be considered unsafe (except for the data being read). An example would
be np.dtype(user_string) or dtype=user_string.

• The speed of operations can depend on values and memory order can lead to larger temporary memory use and
slower execution. This means that operations may be significantly slower or use more memory compared to simple
test cases.

• When reading data, consider enforcing a specific shape (e.g. one dimensional) or dtype such as float64,
float32, or int64 to reduce complexity.

When working with non-trivial untrusted data, it is advisable to sandbox the analysis to guard against potential privilege
escalation. This is especially advisable if further libraries based on NumPy are used since these add additional complexity
and potential security issues.

3.6 Status of numpy.distutils and migration advice

numpy.distutils has been deprecated in NumPy 1.23.0. It will be removed for Python 3.12; for Python <= 3.11
it will not be removed until 2 years after the Python 3.12 release (Oct 2025).

Warning: numpy.distutils is only tested with setuptools < 60.0, newer versions may break. See
Interaction of numpy.distutils with setuptools for details.

3.6.1 Migration advice

There are several build systems which are good options to migrate to. Assuming you have compiled code in your package
(if not, you have several good options, e.g. the build backends offered by Poetry, Hatch or PDM) and you want to be
using a well-designed, modern and reliable build system, we recommend:

1. Meson, and the meson-python build backend
2. CMake, and the scikit-build-core build backend

If you have modest needs (only simple Cython/C extensions; no need for Fortran, BLAS/LAPACK, nested setup.py
files, or other features of numpy.distutils) and have been happy with numpy.distutils so far, you can also
consider switching to setuptools. Note that most functionality of numpy.distutils is unlikely to be ported to
setuptools.

3.6. Status of numpy.distutils and migration advice 2027

https://mesonbuild.com/
https://meson-python.readthedocs.io
https://cmake.org/
https://scikit-build-core.readthedocs.io/en/latest/

NumPy Reference, Release 2.2.0

Moving to Meson

SciPy has moved to Meson and meson-python for its 1.9.0 release. During this process, remaining issues with Meson’s
Python support and feature parity with numpy.distutilswere resolved. Note: parity means a large superset (because
Meson is a good general-purpose build system); only a few BLAS/LAPACK library selection niceties are missing. SciPy uses
almost all functionality that numpy.distutils offers, so if SciPy has successfully made a release with Meson as the
build system, there should be no blockers left to migrate, and SciPy will be a good reference for other packages who are
migrating. For more details about the SciPy migration, see:

• RFC: switch to Meson as a build system
• Tracking issue for Meson support

NumPy will migrate to Meson for the 1.26 release.

Moving to CMake / scikit-build

The next generation of scikit-build is called scikit-build-core. Where the older scikit-build used setuptools
underneath, the rewrite does not. Like Meson, CMake is a good general-purpose build system.

Moving to setuptools

For projects that only use numpy.distutils for historical reasons, and do not actually use features beyond those that
setuptools also supports, moving to setuptools is likely the solution which costs the least effort. To assess that,
there are the numpy.distutils features that are not present in setuptools:

• Nested setup.py files
• Fortran build support
• BLAS/LAPACK library support (OpenBLAS,MKL,ATLAS,Netlib LAPACK/BLAS, BLIS, 64-bit ILP interface,
etc.)

• Support for a few other scientific libraries, like FFTW and UMFPACK
• Better MinGW support
• Per-compiler build flag customization (e.g. -O3 and SSE2 flags are default)
• a simple user build config system, see site.cfg.example
• SIMD intrinsics support
• Support for the NumPy-specific .src templating format for .c/.h files

The most widely used feature is nested setup.py files. This feature may perhaps still be ported to setuptools in the
future (it needs a volunteer though, see gh-18588 for status). Projects only using that feature couldmove to setuptools
after that is done. In case a project uses only a couple of setup.py files, it also could make sense to simply aggregate
all the content of those files into a single setup.py file and then move to setuptools. This involves dropping all
Configuration instances, and using Extension instead. E.g.,:

from distutils.core import setup
from distutils.extension import Extension
setup(name='foobar',

version='1.0',
ext_modules=[

Extension('foopkg.foo', ['foo.c']),
Extension('barpkg.bar', ['bar.c']),

(continues on next page)

2028 3. Other topics

https://github.com/scipy/scipy/issues/13615
https://github.com/rgommers/scipy/issues/22
https://scikit-build-core.readthedocs.io/en/latest/
https://github.com/numpy/numpy/blob/master/site.cfg.example
https://github.com/numpy/numpy/issues/18588

NumPy Reference, Release 2.2.0

(continued from previous page)
],

)

For more details, see the setuptools documentation

3.6.2 Interaction of numpy.distutils with setuptools

It is recommended to use setuptools < 60.0. Newer versions may work, but are not guaranteed to. The reason
for this is that setuptools 60.0 enabled a vendored copy of distutils, including backwards incompatible changes
that affect some functionality in numpy.distutils.
If you are using only simple Cython or C extensions with minimal use of numpy.distutils functionality beyond
nested setup.py files (its most popular feature, see Configuration), then latestsetuptools is likely to continue
working. In case of problems, you can also try SETUPTOOLS_USE_DISTUTILS=stdlib to avoid the backwards
incompatible changes in setuptools.
Whatever you do, it is recommended to put an upper bound on your setuptools build requirement in pyproject.
toml to avoid future breakage - see for-downstream-package-authors.

3.7 numpy.distutils user guide

Warning: numpy.distutils is deprecated, and will be removed for Python >= 3.12. For more details, see
Status of numpy.distutils and migration advice

3.7.1 SciPy structure

Currently SciPy project consists of two packages:
• NumPy — it provides packages like:

– numpy.distutils - extension to Python distutils
– numpy.f2py - a tool to bind Fortran/C codes to Python
– numpy._core - future replacement of Numeric and numarray packages
– numpy.lib - extra utility functions
– numpy.testing - numpy-style tools for unit testing
– etc

• SciPy — a collection of scientific tools for Python.
The aim of this document is to describe how to add new tools to SciPy.

3.7. numpy.distutils user guide 2029

https://setuptools.pypa.io/en/latest/setuptools.html

NumPy Reference, Release 2.2.0

3.7.2 Requirements for SciPy packages

SciPy consists of Python packages, called SciPy packages, that are available to Python users via the scipy namespace.
Each SciPy package may contain other SciPy packages. And so on. Therefore, the SciPy directory tree is a tree of
packages with arbitrary depth and width. Any SciPy package may depend on NumPy packages but the dependence on
other SciPy packages should be kept minimal or zero.
A SciPy package contains, in addition to its sources, the following files and directories:

• setup.py— building script
• __init__.py— package initializer
• tests/— directory of unittests

Their contents are described below.

3.7.3 The setup.py file

In order to add a Python package to SciPy, its build script (setup.py) must meet certain requirements. The most
important requirement is that the package define a configuration(parent_package='',top_path=None)
function which returns a dictionary suitable for passing to numpy.distutils.core.setup(..). To simplify the
construction of this dictionary, numpy.distutils.misc_util provides the Configuration class, described
below.

SciPy pure Python package example

Below is an example of a minimal setup.py file for a pure SciPy package:

#!/usr/bin/env python3
def configuration(parent_package='',top_path=None):

from numpy.distutils.misc_util import Configuration
config = Configuration('mypackage',parent_package,top_path)
return config

if __name__ == "__main__":
from numpy.distutils.core import setup
#setup(**configuration(top_path='').todict())
setup(configuration=configuration)

The arguments of the configuration function specify the name of parent SciPy package (parent_package) and
the directory location of the main setup.py script (top_path). These arguments, along with the name of the current
package, should be passed to the Configuration constructor.
The Configuration constructor has a fourth optional argument, package_path, that can be used when package
files are located in a different location than the directory of the setup.py file.
Remaining Configuration arguments are all keyword arguments that will be used to initialize attributes of Con-
figuration instance. Usually, these keywords are the same as the ones that setup(..) function would expect,
for example, packages, ext_modules, data_files, include_dirs, libraries, headers, scripts,
package_dir, etc. However, the direct specification of these keywords is not recommended as the content of these
keyword arguments will not be processed or checked for the consistency of SciPy building system.
Finally, Configuration has .todict() method that returns all the configuration data as a dictionary suitable for
passing on to the setup(..) function.

2030 3. Other topics

NumPy Reference, Release 2.2.0

Configuration instance attributes

In addition to attributes that can be specified via keyword arguments to Configuration constructor, Configura-
tion instance (let us denote as config) has the following attributes that can be useful in writing setup scripts:

• config.name - full name of the current package. The names of parent packages can be extracted as config.
name.split('.').

• config.local_path - path to the location of current setup.py file.
• config.top_path - path to the location of main setup.py file.

Configuration instance methods

• config.todict()— returns configuration dictionary suitable for passing to numpy.distutils.core.
setup(..) function.

• config.paths(*paths) --- applies ``glob.glob(..) to items of paths if necessary. Fixes
paths item that is relative to config.local_path.

• config.get_subpackage(subpackage_name,subpackage_path=None)— returns a list of sub-
package configurations. Subpackage is looked in the current directory under the name subpackage_name but
the path can be specified also via optional subpackage_path argument. If subpackage_name is speci-
fied as None then the subpackage name will be taken the basename of subpackage_path. Any * used for
subpackage names are expanded as wildcards.

• config.add_subpackage(subpackage_name,subpackage_path=None)—add SciPy subpack-
age configuration to the current one. The meaning and usage of arguments is explained above, see config.
get_subpackage() method.

• config.add_data_files(*files)— prepend files to data_files list. If files item is a tuple
then its first element defines the suffix of where data files are copied relative to package installation directory and the
second element specifies the path to data files. By default data files are copied under package installation directory.
For example,

config.add_data_files('foo.dat',
('fun',['gun.dat','nun/pun.dat','/tmp/sun.dat']),
'bar/car.dat'.
'/full/path/to/can.dat',
)

will install data files to the following locations

<installation path of config.name package>/
foo.dat
fun/
gun.dat
pun.dat
sun.dat

bar/
car.dat

can.dat

Path to data files can be a function taking no arguments and returning path(s) to data files – this is a useful when
data files are generated while building the package. (XXX: explain the step when this function are called exactly)

• config.add_data_dir(data_path)— add directory data_path recursively to data_files. The
whole directory tree starting atdata_pathwill be copied under package installation directory. Ifdata_path is
a tuple then its first element defines the suffix of where data files are copied relative to package installation directory

3.7. numpy.distutils user guide 2031

NumPy Reference, Release 2.2.0

and the second element specifies the path to data directory. By default, data directory are copied under package
installation directory under the basename of data_path. For example,

config.add_data_dir('fun') # fun/ contains foo.dat bar/car.dat
config.add_data_dir(('sun','fun'))
config.add_data_dir(('gun','/full/path/to/fun'))

will install data files to the following locations

<installation path of config.name package>/
fun/

foo.dat
bar/

car.dat
sun/

foo.dat
bar/

car.dat
gun/

foo.dat
bar/

car.dat

• config.add_include_dirs(*paths) — prepend paths to include_dirs list. This list will be
visible to all extension modules of the current package.

• config.add_headers(*files) — prepend files to headers list. By default, headers will be in-
stalled under <prefix>/include/pythonX.X/<config.name.replace('.','/')>/ directory.
If files item is a tuple then it’s first argument specifies the installation suffix relative to <prefix>/include/
pythonX.X/ path. This is a Python distutils method; its use is discouraged for NumPy and SciPy in favour of
config.add_data_files(*files).

• config.add_scripts(*files) — prepend files to scripts list. Scripts will be installed under
<prefix>/bin/ directory.

• config.add_extension(name,sources,**kw) — create and add an Extension instance to
ext_modules list. The first argument name defines the name of the extension module that will be installed
under config.name package. The second argument is a list of sources. add_extension method takes
also keyword arguments that are passed on to the Extension constructor. The list of allowed keywords
is the following: include_dirs, define_macros, undef_macros, library_dirs, libraries,
runtime_library_dirs, extra_objects, extra_compile_args, extra_link_args, ex-
port_symbols, swig_opts, depends, language, f2py_options, module_dirs, extra_info,
extra_f77_compile_args, extra_f90_compile_args.
Note that config.paths method is applied to all lists that may contain paths. extra_info is a dictionary
or a list of dictionaries that content will be appended to keyword arguments. The list depends contains paths to
files or directories that the sources of the extension module depend on. If any path in the depends list is newer
than the extension module, then the module will be rebuilt.
The list of sources may contain functions (‘source generators’) with a pattern def <funcname>(ext,
build_dir): return <source(s) or None>. If funcname returns None, no sources are generated.
And if the Extension instance has no sources after processing all source generators, no extension module will
be built. This is the recommended way to conditionally define extension modules. Source generator functions are
called by the build_src sub-command of numpy.distutils.
For example, here is a typical source generator function:

2032 3. Other topics

NumPy Reference, Release 2.2.0

def generate_source(ext,build_dir):
import os
from distutils.dep_util import newer
target = os.path.join(build_dir,'somesource.c')
if newer(target,__file__):

create target file
return target

The first argument contains the Extension instance that can be useful to access its attributes like depends,
sources, etc. lists and modify them during the building process. The second argument gives a path to a build
directory that must be used when creating files to a disk.

• config.add_library(name, sources, **build_info) — add a library to libraries list.
Allowed keywords arguments are depends, macros, include_dirs, extra_compiler_args,
f2py_options, extra_f77_compile_args, extra_f90_compile_args. See .
add_extension() method for more information on arguments.

• config.have_f77c() — return True if Fortran 77 compiler is available (read: a simple Fortran 77 code
compiled successfully).

• config.have_f90c() — return True if Fortran 90 compiler is available (read: a simple Fortran 90 code
compiled successfully).

• config.get_version()— return version string of the current package, None if version information could
not be detected. This methods scans files __version__.py, <packagename>_version.py, version.
py, __svn_version__.py for string variablesversion, __version__, <packagename>_version.

• config.make_svn_version_py() — appends a data function to data_files list that will generate
__svn_version__.py file to the current package directory. The file will be removed from the source directory
when Python exits.

• config.get_build_temp_dir() — return a path to a temporary directory. This is the place where one
should build temporary files.

• config.get_distribution()— return distutils Distribution instance.
• config.get_config_cmd()— returns numpy.distutils config command instance.
• config.get_info(*names)—

Conversion of .src files using templates

NumPy distutils supports automatic conversion of source files named <somefile>.src. This facility can be used to maintain
very similar code blocks requiring only simple changes between blocks. During the build phase of setup, if a template
file named <somefile>.src is encountered, a new file named <somefile> is constructed from the template and placed in
the build directory to be used instead. Two forms of template conversion are supported. The first form occurs for files
named <file>.ext.src where ext is a recognized Fortran extension (f, f90, f95, f77, for, ftn, pyf). The second form is used
for all other cases.

3.7. numpy.distutils user guide 2033

NumPy Reference, Release 2.2.0

Fortran files

This template converter will replicate all function and subroutine blocks in the file with names that contain ‘<…>’
according to the rules in ‘<…>’. The number of comma-separated words in ‘<…>’ determines the number of times the
block is repeated. What these words are indicates what that repeat rule, ‘<…>’, should be replaced with in each block.
All of the repeat rules in a block must contain the same number of comma-separated words indicating the number of
times that block should be repeated. If the word in the repeat rule needs a comma, leftarrow, or rightarrow, then prepend
it with a backslash ‘ '. If a word in the repeat rule matches ‘ \<index>’ then it will be replaced with the <index>-th word
in the same repeat specification. There are two forms for the repeat rule: named and short.

Named repeat rule
A named repeat rule is useful when the same set of repeats must be used several times in a block. It is specified using
<rule1=item1, item2, item3,…, itemN>, where N is the number of times the block should be repeated. On each repeat
of the block, the entire expression, ‘<…>’ will be replaced first with item1, and then with item2, and so forth until N
repeats are accomplished. Once a named repeat specification has been introduced, the same repeat rule may be used in
the current block by referring only to the name (i.e. <rule1>).

Short repeat rule
A short repeat rule looks like <item1, item2, item3, …, itemN>. The rule specifies that the entire expression, ‘<…>’
should be replaced first with item1, and then with item2, and so forth until N repeats are accomplished.

Pre-defined names
The following predefined named repeat rules are available:

• <prefix=s,d,c,z>
• <_c=s,d,c,z>
• <_t=real, double precision, complex, double complex>
• <ftype=real, double precision, complex, double complex>
• <ctype=float, double, complex_float, complex_double>
• <ftypereal=float, double precision, \0, \1>
• <ctypereal=float, double, \0, \1>

Other files

Non-Fortran files use a separate syntax for defining template blocks that should be repeated using a variable expansion
similar to the named repeat rules of the Fortran-specific repeats.
NumPy Distutils preprocesses C source files (extension: .c.src) written in a custom templating language to generate C
code. The @ symbol is used to wrap macro-style variables to empower a string substitution mechanism that might describe
(for instance) a set of data types.
The template language blocks are delimited by /**begin repeat and /**end repeat**/ lines, which may also
be nested using consecutively numbered delimiting lines such as /**begin repeat1 and /**end repeat1**/:

1. /**begin repeat on a line by itself marks the beginning of a segment that should be repeated.
2. Named variable expansions are defined using #name=item1, item2, item3, ..., itemN# and placed

on successive lines. These variables are replaced in each repeat block with corresponding word. All named variables
in the same repeat block must define the same number of words.

2034 3. Other topics

NumPy Reference, Release 2.2.0

3. In specifying the repeat rule for a named variable, item*N is short- hand for item, item, ..., item
repeatedN times. In addition, parenthesis in combination with*N can be used for grouping several items that should
be repeated. Thus, #name=(item1, item2)*4# is equivalent to #name=item1, item2, item1,
item2, item1, item2, item1, item2#.

4. */ on a line by itself marks the end of the variable expansion naming. The next line is the first line that will be
repeated using the named rules.

5. Inside the block to be repeated, the variables that should be expanded are specified as @name@.
6. /**end repeat**/ on a line by itself marks the previous line as the last line of the block to be repeated.
7. A loop in the NumPy C source code may have a @TYPE@ variable, targeted for string substitution, which is pre-

processed to a number of otherwise identical loops with several strings such as INT, LONG, UINT, ULONG. The
@TYPE@ style syntax thus reduces code duplication and maintenance burden by mimicking languages that have
generic type support.

The above rules may be clearer in the following template source example:

1 /* TIMEDELTA to non-float types */
2

3 /**begin repeat
4 *
5 * #TOTYPE = BYTE, UBYTE, SHORT, USHORT, INT, UINT, LONG, ULONG,
6 * LONGLONG, ULONGLONG, DATETIME,
7 * TIMEDELTA#
8 * #totype = npy_byte, npy_ubyte, npy_short, npy_ushort, npy_int, npy_uint,
9 * npy_long, npy_ulong, npy_longlong, npy_ulonglong,
10 * npy_datetime, npy_timedelta#
11 */
12

13 /**begin repeat1
14 *
15 * #FROMTYPE = TIMEDELTA#
16 * #fromtype = npy_timedelta#
17 */
18 static void
19 @FROMTYPE@_to_@TOTYPE@(void *input, void *output, npy_intp n,
20 void *NPY_UNUSED(aip), void *NPY_UNUSED(aop))
21 {
22 const @fromtype@ *ip = input;
23 @totype@ *op = output;
24

25 while (n--) {
26 *op++ = (@totype@)*ip++;
27 }
28 }
29 /**end repeat1**/
30

31 /**end repeat**/

The preprocessing of generically-typed C source files (whether in NumPy proper or in any third party package using
NumPyDistutils) is performed by conv_template.py. The type-specific C files generated (extension: .c) by thesemodules
during the build process are ready to be compiled. This form of generic typing is also supported for C header files
(preprocessed to produce .h files).

3.7. numpy.distutils user guide 2035

https://github.com/numpy/numpy/blob/main/numpy/distutils/conv_template.py

NumPy Reference, Release 2.2.0

Useful functions in numpy.distutils.misc_util

• get_numpy_include_dirs() — return a list of NumPy base include directories. NumPy base include
directories contain header files such as numpy/arrayobject.h, numpy/funcobject.h etc. For installed
NumPy the returned list has length 1 but when building NumPy the list may contain more directories, for example,
a path to config.h file that numpy/base/setup.py file generates and is used by numpy header files.

• append_path(prefix,path)— smart append path to prefix.
• gpaths(paths, local_path='')— apply glob to paths and prepend local_path if needed.
• njoin(*path)— join pathname components + convert /-separated path to os.sep-separated path and re-
solve .., . from paths. Ex. njoin('a',['b','./c'],'..','g') -> os.path.join('a','b',
'g').

• minrelpath(path)— resolves dots in path.
• rel_path(path, parent_path)— return path relative to parent_path.
• def get_cmd(cmdname,_cache={})— returns numpy.distutils command instance.
• all_strings(lst)

• has_f_sources(sources)

• has_cxx_sources(sources)

• filter_sources(sources) — return c_sources, cxx_sources, f_sources, fmod-
ule_sources

• get_dependencies(sources)

• is_local_src_dir(directory)

• get_ext_source_files(ext)

• get_script_files(scripts)

• get_lib_source_files(lib)

• get_data_files(data)

• dot_join(*args)— join non-zero arguments with a dot.
• get_frame(level=0)— return frame object from call stack with given level.
• cyg2win32(path)

• mingw32()— return True when using mingw32 environment.
• terminal_has_colors(), red_text(s), green_text(s), yellow_text(s),
blue_text(s), cyan_text(s)

• get_path(mod_name,parent_path=None) — return path of a module relative to parent_path when
given. Handles also __main__ and __builtin__ modules.

• allpath(name)— replaces / with os.sep in name.
• cxx_ext_match, fortran_ext_match, f90_ext_match, f90_module_name_match

2036 3. Other topics

NumPy Reference, Release 2.2.0

numpy.distutils.system_info module

• get_info(name,notfound_action=0)

• combine_paths(*args,**kws)

• show_all()

numpy.distutils.cpuinfo module

• cpuinfo

numpy.distutils.log module

• set_verbosity(v)

numpy.distutils.exec_command module

• get_pythonexe()

• find_executable(exe, path=None)

• exec_command(command, execute_in='', use_shell=None, use_tee=None, **env)

3.7.4 The __init__.py file

The header of a typical SciPy __init__.py is:

"""
Package docstring, typically with a brief description and function listing.
"""

import functions into module namespace
from .subpackage import *
...

__all__ = [s for s in dir() if not s.startswith('_')]

from numpy.testing import Tester
test = Tester().test
bench = Tester().bench

3.7.5 Extra features in NumPy Distutils

Specifying config_fc options for libraries in setup.py script

It is possible to specify config_fc options in setup.py scripts. For example, using:

config.add_library('library',
sources=[...],
config_fc={'noopt':(__file__,1)})

3.7. numpy.distutils user guide 2037

NumPy Reference, Release 2.2.0

will compile the library sources without optimization flags.
It’s recommended to specify only those config_fc options in such a way that are compiler independent.

Getting extra Fortran 77 compiler options from source

Some old Fortran codes need special compiler options in order to work correctly. In order to specify compiler options
per source file, numpy.distutils Fortran compiler looks for the following pattern:

CF77FLAGS(<fcompiler type>) = <fcompiler f77flags>

in the first 20 lines of the source and use the f77flags for specified type of the fcompiler (the first character C is
optional).
TODO: This feature can be easily extended for Fortran 90 codes as well. Let us know if you would need such a feature.

3.8 NumPy and SWIG

Introduction

The Simple Wrapper and Interface Generator (or SWIG) is a powerful tool for generating wrapper code for interfacing to
a wide variety of scripting languages. SWIG can parse header files, and using only the code prototypes, create an interface
to the target language. But SWIG is not omnipotent. For example, it cannot know from the prototype:

double rms(double* seq, int n);

what exactly seq is. Is it a single value to be altered in-place? Is it an array, and if so what is its length? Is it input-only?
Output-only? Input-output? SWIG cannot determine these details, and does not attempt to do so.
If we designed rms, we probably made it a routine that takes an input-only array of length n of double values called
seq and returns the root mean square. The default behavior of SWIG, however, will be to create a wrapper function that
compiles, but is nearly impossible to use from the scripting language in the way the C routine was intended.
For Python, the preferred way of handling contiguous (or technically, strided) blocks of homogeneous data is with NumPy,
which provides full object-oriented access to multidimensial arrays of data. Therefore, the most logical Python interface
for the rms function would be (including doc string):

def rms(seq):
"""
rms: return the root mean square of a sequence
rms(numpy.ndarray) -> double
rms(list) -> double
rms(tuple) -> double
"""

where seq would be a NumPy array of double values, and its length n would be extracted from seq internally before
being passed to the C routine. Even better, since NumPy supports construction of arrays from arbitrary Python sequences,
seq itself could be a nearly arbitrary sequence (so long as each element can be converted to a double) and the wrapper
code would internally convert it to a NumPy array before extracting its data and length.
SWIG allows these types of conversions to be defined via a mechanism called typemaps. This document provides infor-
mation on how to use numpy.i, a SWIG interface file that defines a series of typemaps intended to make the type of
array-related conversions described above relatively simple to implement. For example, suppose that the rms function
prototype defined above was in a header file named rms.h. To obtain the Python interface discussed above, your SWIG
interface file would need the following:

2038 3. Other topics

https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org

NumPy Reference, Release 2.2.0

%{
#define SWIG_FILE_WITH_INIT
#include "rms.h"
%}

%include "numpy.i"

%init %{
import_array();
%}

%apply (double* IN_ARRAY1, int DIM1) {(double* seq, int n)};
%include "rms.h"

Typemaps are keyed off a list of one or more function arguments, either by type or by type and name. We will refer to
such lists as signatures. One of the many typemaps defined by numpy.i is used above and has the signature (double*
IN_ARRAY1, int DIM1). The argument names are intended to suggest that the double* argument is an input
array of one dimension and that the int represents the size of that dimension. This is precisely the pattern in the rms
prototype.
Most likely, no actual prototypes to be wrapped will have the argument names IN_ARRAY1 and DIM1. We use the
SWIG %apply directive to apply the typemap for one-dimensional input arrays of type double to the actual prototype
used by rms. Using numpy.i effectively, therefore, requires knowing what typemaps are available and what they do.
A SWIG interface file that includes the SWIG directives given above will produce wrapper code that looks something
like:

1 PyObject *_wrap_rms(PyObject *args) {
2 PyObject *resultobj = 0;
3 double *arg1 = (double *) 0 ;
4 int arg2 ;
5 double result;
6 PyArrayObject *array1 = NULL ;
7 int is_new_object1 = 0 ;
8 PyObject * obj0 = 0 ;
9
10 if (!PyArg_ParseTuple(args,(char *)"O:rms",&obj0)) SWIG_fail;
11 {
12 array1 = obj_to_array_contiguous_allow_conversion(
13 obj0, NPY_DOUBLE, &is_new_object1);
14 npy_intp size[1] = {
15 -1
16 };
17 if (!array1 || !require_dimensions(array1, 1) ||
18 !require_size(array1, size, 1)) SWIG_fail;
19 arg1 = (double*) array1->data;
20 arg2 = (int) array1->dimensions[0];
21 }
22 result = (double)rms(arg1,arg2);
23 resultobj = SWIG_From_double((double)(result));
24 {
25 if (is_new_object1 && array1) Py_DECREF(array1);
26 }
27 return resultobj;
28 fail:
29 {
30 if (is_new_object1 && array1) Py_DECREF(array1);

(continues on next page)

3.8. NumPy and SWIG 2039

https://www.swig.org
https://www.swig.org
https://www.swig.org

NumPy Reference, Release 2.2.0

(continued from previous page)
31 }
32 return NULL;
33 }

The typemaps from numpy.i are responsible for the following lines of code: 12–20, 25 and 30. Line 10 parses the
input to the rms function. From the format string "O:rms", we can see that the argument list is expected to be a single
Python object (specified by the O before the colon) and whose pointer is stored in obj0. A number of functions, supplied
by numpy.i, are called to make and check the (possible) conversion from a generic Python object to a NumPy array.
These functions are explained in the section Helper Functions, but hopefully their names are self-explanatory. At line 12
we use obj0 to construct a NumPy array. At line 17, we check the validity of the result: that it is non-null and that it has
a single dimension of arbitrary length. Once these states are verified, we extract the data buffer and length in lines 19 and
20 so that we can call the underlying C function at line 22. Line 25 performs memory management for the case where
we have created a new array that is no longer needed.
This code has a significant amount of error handling. Note the SWIG_fail is a macro for goto fail, referring to
the label at line 28. If the user provides the wrong number of arguments, this will be caught at line 10. If construction
of the NumPy array fails or produces an array with the wrong number of dimensions, these errors are caught at line 17.
And finally, if an error is detected, memory is still managed correctly at line 30.
Note that if the C function signature was in a different order:

double rms(int n, double* seq);

that SWIG would not match the typemap signature given above with the argument list for rms. Fortunately, numpy.i
has a set of typemaps with the data pointer given last:

%apply (int DIM1, double* IN_ARRAY1) {(int n, double* seq)};

This simply has the effect of switching the definitions of arg1 and arg2 in lines 3 and 4 of the generated code above,
and their assignments in lines 19 and 20.

Using numpy.i

The numpy.i file is currently located in the tools/swig sub-directory under the numpy installation directory. Typ-
ically, you will want to copy it to the directory where you are developing your wrappers.
A simple module that only uses a single SWIG interface file should include the following:

%{
#define SWIG_FILE_WITH_INIT
%}
%include "numpy.i"
%init %{
import_array();
%}

Within a compiled Python module, import_array() should only get called once. This could be in a C/C++ file
that you have written and is linked to the module. If this is the case, then none of your interface files should #define
SWIG_FILE_WITH_INIT or call import_array(). Or, this initialization call could be in a wrapper file generated
by SWIG from an interface file that has the %init block as above. If this is the case, and you have more than one SWIG
interface file, then only one interface file should #define SWIG_FILE_WITH_INIT and call import_array().

2040 3. Other topics

https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org

NumPy Reference, Release 2.2.0

Available typemaps

The typemap directives provided by numpy.i for arrays of different data types, say double and int, and dimensions
of different types, say int or long, are identical to one another except for the C and NumPy type specifications. The
typemaps are therefore implemented (typically behind the scenes) via a macro:

%numpy_typemaps(DATA_TYPE, DATA_TYPECODE, DIM_TYPE)

that can be invoked for appropriate (DATA_TYPE, DATA_TYPECODE, DIM_TYPE) triplets. For example:

%numpy_typemaps(double, NPY_DOUBLE, int)
%numpy_typemaps(int, NPY_INT , int)

The numpy.i interface file uses the %numpy_typemapsmacro to implement typemaps for the following C data types
and int dimension types:

• signed char

• unsigned char

• short

• unsigned short

• int

• unsigned int

• long

• unsigned long

• long long

• unsigned long long

• float

• double

In the following descriptions, we reference a generic DATA_TYPE, which could be any of the C data types listed above,
and DIM_TYPE which should be one of the many types of integers.
The typemap signatures are largely differentiated on the name given to the buffer pointer. Names with FARRAY are for
Fortran-ordered arrays, and names with ARRAY are for C-ordered (or 1D arrays).

Input Arrays
Input arrays are defined as arrays of data that are passed into a routine but are not altered in-place or returned to the user.
The Python input array is therefore allowed to be almost any Python sequence (such as a list) that can be converted to the
requested type of array. The input array signatures are
1D:

• (DATA_TYPE IN_ARRAY1[ANY])

• (DATA_TYPE* IN_ARRAY1, int DIM1)

• (int DIM1, DATA_TYPE* IN_ARRAY1)

2D:
• (DATA_TYPE IN_ARRAY2[ANY][ANY])

• (DATA_TYPE* IN_ARRAY2, int DIM1, int DIM2)

3.8. NumPy and SWIG 2041

NumPy Reference, Release 2.2.0

• (int DIM1, int DIM2, DATA_TYPE* IN_ARRAY2)

• (DATA_TYPE* IN_FARRAY2, int DIM1, int DIM2)

• (int DIM1, int DIM2, DATA_TYPE* IN_FARRAY2)

3D:
• (DATA_TYPE IN_ARRAY3[ANY][ANY][ANY])

• (DATA_TYPE* IN_ARRAY3, int DIM1, int DIM2, int DIM3)

• (int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_ARRAY3)

• (DATA_TYPE* IN_FARRAY3, int DIM1, int DIM2, int DIM3)

• (int DIM1, int DIM2, int DIM3, DATA_TYPE* IN_FARRAY3)

4D:
• (DATA_TYPE IN_ARRAY4[ANY][ANY][ANY][ANY])

• (DATA_TYPE* IN_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE
DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE*
IN_ARRAY4)

• (DATA_TYPE* IN_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE*
IN_FARRAY4)

The first signature listed, (DATA_TYPE IN_ARRAY[ANY]) is for one-dimensional arrays with hard-coded di-
mensions. Likewise, (DATA_TYPE IN_ARRAY2[ANY][ANY]) is for two-dimensional arrays with hard-coded
dimensions, and similarly for three-dimensional.

In-Place Arrays
In-place arrays are defined as arrays that are modified in-place. The input values may or may not be used, but the values
at the time the function returns are significant. The provided Python argument must therefore be a NumPy array of the
required type. The in-place signatures are
1D:

• (DATA_TYPE INPLACE_ARRAY1[ANY])

• (DATA_TYPE* INPLACE_ARRAY1, int DIM1)

• (int DIM1, DATA_TYPE* INPLACE_ARRAY1)

2D:
• (DATA_TYPE INPLACE_ARRAY2[ANY][ANY])

• (DATA_TYPE* INPLACE_ARRAY2, int DIM1, int DIM2)

• (int DIM1, int DIM2, DATA_TYPE* INPLACE_ARRAY2)

• (DATA_TYPE* INPLACE_FARRAY2, int DIM1, int DIM2)

• (int DIM1, int DIM2, DATA_TYPE* INPLACE_FARRAY2)

3D:
• (DATA_TYPE INPLACE_ARRAY3[ANY][ANY][ANY])

2042 3. Other topics

NumPy Reference, Release 2.2.0

• (DATA_TYPE* INPLACE_ARRAY3, int DIM1, int DIM2, int DIM3)

• (int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_ARRAY3)

• (DATA_TYPE* INPLACE_FARRAY3, int DIM1, int DIM2, int DIM3)

• (int DIM1, int DIM2, int DIM3, DATA_TYPE* INPLACE_FARRAY3)

4D:
• (DATA_TYPE INPLACE_ARRAY4[ANY][ANY][ANY][ANY])

• (DATA_TYPE* INPLACE_ARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, , DIM_TYPE DIM4, DATA_TYPE*
INPLACE_ARRAY4)

• (DATA_TYPE* INPLACE_FARRAY4, DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3,
DIM_TYPE DIM4)

• (DIM_TYPE DIM1, DIM_TYPE DIM2, DIM_TYPE DIM3, DIM_TYPE DIM4, DATA_TYPE*
INPLACE_FARRAY4)

These typemaps now check to make sure that the INPLACE_ARRAY arguments use native byte ordering. If not, an
exception is raised.
There is also a “flat” in-place array for situations in which you would like to modify or process each element, regardless
of the number of dimensions. One example is a “quantization” function that quantizes each element of an array in-place,
be it 1D, 2D or whatever. This form checks for continuity but allows either C or Fortran ordering.
ND:

• (DATA_TYPE* INPLACE_ARRAY_FLAT, DIM_TYPE DIM_FLAT)

Argout Arrays
Argout arrays are arrays that appear in the input arguments in C, but are in fact output arrays. This pattern occurs often
when there is more than one output variable and the single return argument is therefore not sufficient. In Python, the
conventional way to return multiple arguments is to pack them into a sequence (tuple, list, etc.) and return the sequence.
This is what the argout typemaps do. If a wrapped function that uses these argout typemaps has more than one return
argument, they are packed into a tuple or list, depending on the version of Python. The Python user does not pass
these arrays in, they simply get returned. For the case where a dimension is specified, the python user must provide that
dimension as an argument. The argout signatures are
1D:

• (DATA_TYPE ARGOUT_ARRAY1[ANY])

• (DATA_TYPE* ARGOUT_ARRAY1, int DIM1)

• (int DIM1, DATA_TYPE* ARGOUT_ARRAY1)

2D:
• (DATA_TYPE ARGOUT_ARRAY2[ANY][ANY])

3D:
• (DATA_TYPE ARGOUT_ARRAY3[ANY][ANY][ANY])

4D:
• (DATA_TYPE ARGOUT_ARRAY4[ANY][ANY][ANY][ANY])

3.8. NumPy and SWIG 2043

NumPy Reference, Release 2.2.0

These are typically used in situations where in C/C++, you would allocate a(n) array(s) on the heap, and call the function
to fill the array(s) values. In Python, the arrays are allocated for you and returned as new array objects.
Note that we support DATA_TYPE* argout typemaps in 1D, but not 2D or 3D. This is because of a quirk with the SWIG
typemap syntax and cannot be avoided. Note that for these types of 1D typemaps, the Python function will take a single
argument representing DIM1.

Argout View Arrays
Argoutview arrays are for when your C code provides you with a view of its internal data and does not require any memory
to be allocated by the user. This can be dangerous. There is almost no way to guarantee that the internal data from the C
code will remain in existence for the entire lifetime of the NumPy array that encapsulates it. If the user destroys the object
that provides the view of the data before destroying the NumPy array, then using that array may result in bad memory
references or segmentation faults. Nevertheless, there are situations, working with large data sets, where you simply have
no other choice.
The C code to be wrapped for argoutview arrays are characterized by pointers: pointers to the dimensions and double
pointers to the data, so that these values can be passed back to the user. The argoutview typemap signatures are therefore
1D:

• (DATA_TYPE** ARGOUTVIEW_ARRAY1, DIM_TYPE* DIM1)

• (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEW_ARRAY1)

2D:
• (DATA_TYPE** ARGOUTVIEW_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_ARRAY2)

• (DATA_TYPE** ARGOUTVIEW_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEW_FARRAY2)

3D:
• (DATA_TYPE** ARGOUTVIEW_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** AR-
GOUTVIEW_ARRAY3)

• (DATA_TYPE** ARGOUTVIEW_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** AR-
GOUTVIEW_FARRAY3)

4D:
• (DATA_TYPE** ARGOUTVIEW_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE**
ARGOUTVIEW_ARRAY4)

• (DATA_TYPE** ARGOUTVIEW_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE**
ARGOUTVIEW_FARRAY4)

Note that arrays with hard-coded dimensions are not supported. These cannot follow the double pointer signatures of
these typemaps.

2044 3. Other topics

https://www.swig.org

NumPy Reference, Release 2.2.0

Memory Managed Argout View Arrays
A recent addition to numpy.i are typemaps that permit argout arrays with views into memory that is managed.
1D:

• (DATA_TYPE** ARGOUTVIEWM_ARRAY1, DIM_TYPE* DIM1)

• (DIM_TYPE* DIM1, DATA_TYPE** ARGOUTVIEWM_ARRAY1)

2D:
• (DATA_TYPE** ARGOUTVIEWM_ARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_ARRAY2)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY2, DIM_TYPE* DIM1, DIM_TYPE* DIM2)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DATA_TYPE** ARGOUTVIEWM_FARRAY2)

3D:
• (DATA_TYPE** ARGOUTVIEWM_ARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** AR-
GOUTVIEWM_ARRAY3)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY3, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DATA_TYPE** AR-
GOUTVIEWM_FARRAY3)

4D:
• (DATA_TYPE** ARGOUTVIEWM_ARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE**
ARGOUTVIEWM_ARRAY4)

• (DATA_TYPE** ARGOUTVIEWM_FARRAY4, DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE*
DIM3, DIM_TYPE* DIM4)

• (DIM_TYPE* DIM1, DIM_TYPE* DIM2, DIM_TYPE* DIM3, DIM_TYPE* DIM4, DATA_TYPE**
ARGOUTVIEWM_FARRAY4)

Output Arrays
The numpy.i interface file does not support typemaps for output arrays, for several reasons. First, C/C++ return argu-
ments are limited to a single value. This prevents obtaining dimension information in a general way. Second, arrays with
hard-coded lengths are not permitted as return arguments. In other words:

double[3] newVector(double x, double y, double z);

is not legal C/C++ syntax. Therefore, we cannot provide typemaps of the form:

%typemap(out) (TYPE[ANY]);

If you run into a situation where a function or method is returning a pointer to an array, your best bet is to write your own
version of the function to be wrapped, either with %extend for the case of class methods or %ignore and %rename
for the case of functions.

3.8. NumPy and SWIG 2045

NumPy Reference, Release 2.2.0

Other Common Types: bool
Note that C++ type bool is not supported in the list in the Available Typemaps section. NumPy bools are a single byte,
while the C++ bool is four bytes (at least on my system). Therefore:

%numpy_typemaps(bool, NPY_BOOL, int)

will result in typemaps that will produce code that reference improper data lengths. You can implement the following
macro expansion:

%numpy_typemaps(bool, NPY_UINT, int)

to fix the data length problem, and Input Arrays will work fine, but In-Place Arrays might fail type-checking.

Other Common Types: complex
Typemap conversions for complex floating-point types is also not supported automatically. This is because Python and
NumPy are written in C, which does not have native complex types. Both Python and NumPy implement their own
(essentially equivalent) struct definitions for complex variables:

/* Python */
typedef struct {double real; double imag;} Py_complex;

/* NumPy */
typedef struct {float real, imag;} npy_cfloat;
typedef struct {double real, imag;} npy_cdouble;

We could have implemented:

%numpy_typemaps(Py_complex , NPY_CDOUBLE, int)
%numpy_typemaps(npy_cfloat , NPY_CFLOAT , int)
%numpy_typemaps(npy_cdouble, NPY_CDOUBLE, int)

which would have provided automatic type conversions for arrays of type Py_complex, npy_cfloat and
npy_cdouble. However, it seemed unlikely that there would be any independent (non-Python, non-NumPy) ap-
plication code that people would be using SWIG to generate a Python interface to, that also used these definitions
for complex types. More likely, these application codes will define their own complex types, or in the case of
C++, use std::complex. Assuming these data structures are compatible with Python and NumPy complex types,
%numpy_typemap expansions as above (with the user’s complex type substituted for the first argument) should work.

NumPy array scalars and SWIG

SWIG has sophisticated type checking for numerical types. For example, if your C/C++ routine expects an integer as
input, the code generated by SWIG will check for both Python integers and Python long integers, and raise an overflow
error if the provided Python integer is too big to cast down to a C integer. With the introduction of NumPy scalar arrays
into your Python code, you might conceivably extract an integer from a NumPy array and attempt to pass this to a SWIG-
wrapped C/C++ function that expects an int, but the SWIG type checking will not recognize the NumPy array scalar
as an integer. (Often, this does in fact work – it depends on whether NumPy recognizes the integer type you are using as
inheriting from the Python integer type on the platform you are using. Sometimes, this means that code that works on a
32-bit machine will fail on a 64-bit machine.)
If you get a Python error that looks like the following:

TypeError: in method 'MyClass_MyMethod', argument 2 of type 'int'

2046 3. Other topics

https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org

NumPy Reference, Release 2.2.0

and the argument you are passing is an integer extracted from a NumPy array, then you have stumbled upon this problem.
The solution is to modify the SWIG type conversion system to accept NumPy array scalars in addition to the standard
integer types. Fortunately, this capability has been provided for you. Simply copy the file:

pyfragments.swg

to the working build directory for you project, and this problem will be fixed. It is suggested that you do this anyway, as
it only increases the capabilities of your Python interface.

Why is There a Second File?
The SWIG type checking and conversion system is a complicated combination of C macros, SWIG macros, SWIG
typemaps and SWIG fragments. Fragments are a way to conditionally insert code into your wrapper file if it is needed,
and not insert it if not needed. If multiple typemaps require the same fragment, the fragment only gets inserted into your
wrapper code once.
There is a fragment for converting a Python integer to a C long. There is a different fragment that converts a Python
integer to a C int, that calls the routine defined in the long fragment. We can make the changes we want here by
changing the definition for the long fragment. SWIG determines the active definition for a fragment using a “first come,
first served” system. That is, we need to define the fragment for long conversions prior to SWIG doing it internally.
SWIG allows us to do this by putting our fragment definitions in the file pyfragments.swg. If we were to put the
new fragment definitions in numpy.i, they would be ignored.

Helper functions

The numpy.i file contains several macros and routines that it uses internally to build its typemaps. However, these
functions may be useful elsewhere in your interface file. These macros and routines are implemented as fragments, which
are described briefly in the previous section. If you try to use one or more of the following macros or functions, but your
compiler complains that it does not recognize the symbol, then you need to force these fragments to appear in your code
using:

%fragment("NumPy_Fragments");

in your SWIG interface file.

Macros
is_array(a)

Evaluates as true if a is non-NULL and can be cast to a PyArrayObject*.
array_type(a)

Evaluates to the integer data type code of a, assuming a can be cast to a PyArrayObject*.
array_numdims(a)

Evaluates to the integer number of dimensions of a, assuming a can be cast to a PyArrayObject*.
array_dimensions(a)

Evaluates to an array of type npy_intp and length array_numdims(a), giving the lengths of all of the
dimensions of a, assuming a can be cast to a PyArrayObject*.

array_size(a,i)
Evaluates to the i-th dimension size of a, assuming a can be cast to a PyArrayObject*.

array_strides(a)
Evaluates to an array of type npy_intp and length array_numdims(a), giving the stridess of all of the
dimensions of a, assuming a can be cast to a PyArrayObject*. A stride is the distance in bytes between an
element and its immediate neighbor along the same axis.

3.8. NumPy and SWIG 2047

https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org
https://www.swig.org

NumPy Reference, Release 2.2.0

array_stride(a,i)
Evaluates to the i-th stride of a, assuming a can be cast to a PyArrayObject*.

array_data(a)
Evaluates to a pointer of type void* that points to the data buffer of a, assuming a can be cast to a PyArray-
Object*.

array_descr(a)
Returns a borrowed reference to the dtype property (PyArray_Descr*) of a, assuming a can be cast to a
PyArrayObject*.

array_flags(a)
Returns an integer representing the flags of a, assuming a can be cast to a PyArrayObject*.

array_enableflags(a,f)
Sets the flag represented by f of a, assuming a can be cast to a PyArrayObject*.

array_is_contiguous(a)
Evaluates as true if a is a contiguous array. Equivalent to (PyArray_ISCONTIGUOUS(a)).

array_is_native(a)
Evaluates as true if the data buffer of a uses native byte order. Equivalent to (PyArray_ISNOTSWAPPED(a)).

array_is_fortran(a)
Evaluates as true if a is FORTRAN ordered.

Routines
pytype_string()

Return type: const char*

Arguments:
• PyObject* py_obj, a general Python object.

Return a string describing the type of py_obj.
typecode_string()

Return type: const char*

Arguments:
• int typecode, a NumPy integer typecode.

Return a string describing the type corresponding to the NumPy typecode.
type_match()

Return type: int
Arguments:

• int actual_type, the NumPy typecode of a NumPy array.
• int desired_type, the desired NumPy typecode.

Make sure that actual_type is compatible with desired_type. For example, this allows character and byte
types, or int and long types, to match. This is now equivalent to PyArray_EquivTypenums().

obj_to_array_no_conversion()
Return type: PyArrayObject*
Arguments:

• PyObject* input, a general Python object.
• int typecode, the desired NumPy typecode.

2048 3. Other topics

NumPy Reference, Release 2.2.0

Cast input to a PyArrayObject* if legal, and ensure that it is of type typecode. If input cannot be cast,
or the typecode is wrong, set a Python error and return NULL.

obj_to_array_allow_conversion()
Return type: PyArrayObject*
Arguments:

• PyObject* input, a general Python object.
• int typecode, the desired NumPy typecode of the resulting array.
• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Convert input to a NumPy array with the given typecode. On success, return a valid PyArrayObject*
with the correct type. On failure, the Python error string will be set and the routine returns NULL.

make_contiguous()
Return type: PyArrayObject*
Arguments:

• PyArrayObject* ary, a NumPy array.
• int* is_new_object, returns a value of 0 if no conversion performed, else 1.
• int min_dims, minimum allowable dimensions.
• int max_dims, maximum allowable dimensions.

Check to see if ary is contiguous. If so, return the input pointer and flag it as not a new object. If it is not
contiguous, create a new PyArrayObject* using the original data, flag it as a new object and return the pointer.

make_fortran()
Return type: PyArrayObject*
Arguments

• PyArrayObject* ary, a NumPy array.
• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Check to see if ary is Fortran contiguous. If so, return the input pointer and flag it as not a new object. If it is not
Fortran contiguous, create a new PyArrayObject* using the original data, flag it as a new object and return the
pointer.

obj_to_array_contiguous_allow_conversion()
Return type: PyArrayObject*
Arguments:

• PyObject* input, a general Python object.
• int typecode, the desired NumPy typecode of the resulting array.
• int* is_new_object, returns a value of 0 if no conversion performed, else 1.

Convert input to a contiguous PyArrayObject* of the specified type. If the input object is not a contiguous
PyArrayObject*, a new one will be created and the new object flag will be set.

obj_to_array_fortran_allow_conversion()
Return type: PyArrayObject*
Arguments:

• PyObject* input, a general Python object.
• int typecode, the desired NumPy typecode of the resulting array.

3.8. NumPy and SWIG 2049

NumPy Reference, Release 2.2.0

• int* is_new_object, returns a value of 0 if no conversion performed, else 1.
Convert input to a Fortran contiguous PyArrayObject* of the specified type. If the input object is not a
Fortran contiguous PyArrayObject*, a new one will be created and the new object flag will be set.

require_contiguous()
Return type: int
Arguments:

• PyArrayObject* ary, a NumPy array.
Test whether ary is contiguous. If so, return 1. Otherwise, set a Python error and return 0.

require_native()
Return type: int
Arguments:

• PyArray_Object* ary, a NumPy array.
Require that ary is not byte-swapped. If the array is not byte-swapped, return 1. Otherwise, set a Python error
and return 0.

require_dimensions()
Return type: int
Arguments:

• PyArrayObject* ary, a NumPy array.
• int exact_dimensions, the desired number of dimensions.

Require ary to have a specified number of dimensions. If the array has the specified number of dimensions, return
1. Otherwise, set a Python error and return 0.

require_dimensions_n()
Return type: int
Arguments:

• PyArrayObject* ary, a NumPy array.
• int* exact_dimensions, an array of integers representing acceptable numbers of dimensions.
• int n, the length of exact_dimensions.

Require ary to have one of a list of specified number of dimensions. If the array has one of the specified number
of dimensions, return 1. Otherwise, set the Python error string and return 0.

require_size()
Return type: int
Arguments:

• PyArrayObject* ary, a NumPy array.
• npy_int* size, an array representing the desired lengths of each dimension.
• int n, the length of size.

Require ary to have a specified shape. If the array has the specified shape, return 1. Otherwise, set the Python
error string and return 0.

require_fortran()
Return type: int
Arguments:

2050 3. Other topics

NumPy Reference, Release 2.2.0

• PyArrayObject* ary, a NumPy array.
Require the given PyArrayObject to be Fortran ordered. If the PyArrayObject is already Fortran ordered,
do nothing. Else, set the Fortran ordering flag and recompute the strides.

Beyond the provided typemaps

There are many C or C++ array/NumPy array situations not covered by a simple %include "numpy.i" and subse-
quent %apply directives.

A Common Example
Consider a reasonable prototype for a dot product function:

double dot(int len, double* vec1, double* vec2);

The Python interface that we want is:

def dot(vec1, vec2):
"""
dot(PyObject,PyObject) -> double
"""

The problem here is that there is one dimension argument and two array arguments, and our typemaps are set up for
dimensions that apply to a single array (in fact, SWIG does not provide a mechanism for associating len with vec2 that
takes two Python input arguments). The recommended solution is the following:

%apply (int DIM1, double* IN_ARRAY1) {(int len1, double* vec1),
(int len2, double* vec2)}

%rename (dot) my_dot;
%exception my_dot {

$action
if (PyErr_Occurred()) SWIG_fail;

}
%inline %{
double my_dot(int len1, double* vec1, int len2, double* vec2) {

if (len1 != len2) {
PyErr_Format(PyExc_ValueError,

"Arrays of lengths (%d,%d) given",
len1, len2);

return 0.0;
}
return dot(len1, vec1, vec2);

}
%}

If the header file that contains the prototype for double dot() also contains other prototypes that you want to wrap,
so that you need to %include this header file, then you will also need a %ignore dot; directive, placed after the
%rename and before the %include directives. Or, if the function in question is a class method, you will want to use
%extend rather than %inline in addition to %ignore.
A note on error handling: Note that my_dot returns a double but that it can also raise a Python error. The resulting
wrapper function will return a Python float representation of 0.0 when the vector lengths do not match. Since this is not
NULL, the Python interpreter will not know to check for an error. For this reason, we add the %exception directive
above for my_dot to get the behavior we want (note that $action is a macro that gets expanded to a valid call to
my_dot). In general, you will probably want to write a SWIG macro to perform this task.

3.8. NumPy and SWIG 2051

https://www.swig.org
https://www.swig.org

NumPy Reference, Release 2.2.0

Other Situations
There are other wrapping situations in which numpy.i may be helpful when you encounter them.

• In some situations, it is possible that you could use the %numpy_typemaps macro to implement typemaps for
your own types. See the Other Common Types: bool or Other Common Types: complex sections for examples.
Another situation is if your dimensions are of a type other than int (say long for example):

%numpy_typemaps(double, NPY_DOUBLE, long)

• You can use the code in numpy.i to write your own typemaps. For example, if you had a five-dimensional array
as a function argument, you could cut-and-paste the appropriate four-dimensional typemaps into your interface file.
The modifications for the fourth dimension would be trivial.

• Sometimes, the best approach is to use the %extend directive to define new methods for your classes (or overload
existing ones) that take a PyObject* (that either is or can be converted to a PyArrayObject*) instead of a
pointer to a buffer. In this case, the helper routines in numpy.i can be very useful.

• Writing typemaps can be a bit nonintuitive. If you have specific questions about writing SWIG typemaps for
NumPy, the developers of numpy.i do monitor the Numpy-discussion and Swig-user mail lists.

A Final Note
When you use the %apply directive, as is usually necessary to use numpy.i, it will remain in effect until you tell SWIG
that it shouldn’t be. If the arguments to the functions or methods that you are wrapping have common names, such as
length or vector, these typemaps may get applied in situations you do not expect or want. Therefore, it is always a
good idea to add a %clear directive after you are done with a specific typemap:

%apply (double* IN_ARRAY1, int DIM1) {(double* vector, int length)}
%include "my_header.h"
%clear (double* vector, int length);

In general, you should target these typemap signatures specifically where you want them, and then clear them after you
are done.

Summary

Out of the box, numpy.i provides typemaps that support conversion between NumPy arrays and C arrays:
• That can be one of 12 different scalar types: signed char, unsigned char, short, unsigned short,
int, unsigned int, long, unsigned long, long long, unsigned long long, float and
double.

• That support 74 different argument signatures for each data type, including:
– One-dimensional, two-dimensional, three-dimensional and four-dimensional arrays.
– Input-only, in-place, argout, argoutview, and memory managed argoutview behavior.
– Hard-coded dimensions, data-buffer-then-dimensions specification, and dimensions-then-data-buffer specifi-
cation.

– Both C-ordering (“last dimension fastest”) or Fortran-ordering (“first dimension fastest”) support for 2D, 3D
and 4D arrays.

The numpy.i interface file also provides additional tools for wrapper developers, including:
• A SWIG macro (%numpy_typemaps) with three arguments for implementing the 74 argument signatures for
the user’s choice of (1) C data type, (2) NumPy data type (assuming they match), and (3) dimension type.

2052 3. Other topics

https://www.swig.org
mailto:Numpy-discussion@python.org
mailto:Swig-user@lists.sourceforge.net
https://www.swig.org
https://www.swig.org

NumPy Reference, Release 2.2.0

• Fourteen C macros and fifteen C functions that can be used to write specialized typemaps, extensions, or inlined
functions that handle cases not covered by the provided typemaps. Note that the macros and functions are coded
specifically to work with the NumPy C/API regardless of NumPy version number, both before and after the dep-
recation of some aspects of the API after version 1.6.

3.8.1 Testing the numpy.i typemaps

Introduction

Writing tests for the numpy.i SWIG interface file is a combinatorial headache. At present, 12 different data types are
supported, each with 74 different argument signatures, for a total of 888 typemaps supported “out of the box”. Each
of these typemaps, in turn, might require several unit tests in order to verify expected behavior for both proper and
improper inputs. Currently, this results in more than 1,000 individual unit tests executed when make test is run in the
numpy/tools/swig subdirectory.
To facilitate this many similar unit tests, some high-level programming techniques are employed, including C and SWIG
macros, as well as Python inheritance. The purpose of this document is to describe the testing infrastructure employed
to verify that the numpy.i typemaps are working as expected.

Testing organization

There are three independent testing frameworks supported, for one-, two-, and three-dimensional arrays respectively. For
one-dimensional arrays, there are two C++ files, a header and a source, named:

Vector.h
Vector.cxx

that contain prototypes and code for a variety of functions that have one-dimensional arrays as function arguments. The
file:

Vector.i

is a SWIG interface file that defines a python module Vector that wraps the functions in Vector.h while utilizing the
typemaps in numpy.i to correctly handle the C arrays.
The Makefile calls swig to generate Vector.py and Vector_wrap.cxx, and also executes the setup.py
script that compiles Vector_wrap.cxx and links together the extension module _Vector.so or _Vector.
dylib, depending on the platform. This extension module and the proxy file Vector.py are both placed in a subdi-
rectory under the build directory.
The actual testing takes place with a Python script named:

testVector.py

that uses the standard Python library module unittest, which performs several tests of each function defined in
Vector.h for each data type supported.
Two-dimensional arrays are tested in exactly the same manner. The above description applies, but with Matrix substi-
tuted for Vector. For three-dimensional tests, substitute Tensor for Vector. For four-dimensional tests, substitute
SuperTensor for Vector. For flat in-place array tests, substitute Flat for Vector. For the descriptions that fol-
low, we will reference the Vector tests, but the same information applies to Matrix, Tensor and SuperTensor
tests.
The command make test will ensure that all of the test software is built and then run all three test scripts.

3.8. NumPy and SWIG 2053

https://www.swig.org/
https://www.swig.org/
https://www.swig.org/

NumPy Reference, Release 2.2.0

Testing header files

Vector.h is a C++ header file that defines a C macro called TEST_FUNC_PROTOS that takes two arguments: TYPE,
which is a data type name such as unsigned int; and SNAME, which is a short name for the same data type with
no spaces, e.g. uint. This macro defines several function prototypes that have the prefix SNAME and have at least one
argument that is an array of type TYPE. Those functions that have return arguments return a TYPE value.
TEST_FUNC_PROTOS is then implemented for all of the data types supported by numpy.i:

• signed char

• unsigned char

• short

• unsigned short

• int

• unsigned int

• long

• unsigned long

• long long

• unsigned long long

• float

• double

Testing source files

Vector.cxx is a C++ source file that implements compilable code for each of the function prototypes specified
in Vector.h. It defines a C macro TEST_FUNCS that has the same arguments and works in the same way as
TEST_FUNC_PROTOS does in Vector.h. TEST_FUNCS is implemented for each of the 12 data types as above.

Testing SWIG interface files

Vector.i is a SWIG interface file that defines python module Vector. It follows the conventions for using numpy.i
as described in this chapter. It defines a SWIGmacro %apply_numpy_typemaps that has a single argument TYPE. It
uses the SWIG directive %apply to apply the provided typemaps to the argument signatures found in Vector.h. This
macro is then implemented for all of the data types supported by numpy.i. It then does a %include "Vector.h"
to wrap all of the function prototypes in Vector.h using the typemaps in numpy.i.

Testing Python scripts

After make is used to build the testing extension modules, testVector.py can be run to execute the tests. As
with other scripts that use unittest to facilitate unit testing, testVector.py defines a class that inherits from
unittest.TestCase:

class VectorTestCase(unittest.TestCase):

However, this class is not run directly. Rather, it serves as a base class to several other python classes, each one specific
to a particular data type. The VectorTestCase class stores two strings for typing information:

2054 3. Other topics

https://www.swig.org/
https://www.swig.org/
https://www.swig.org/

NumPy Reference, Release 2.2.0

self.typeStr
A string that matches one of the SNAME prefixes used in Vector.h and Vector.cxx. For example, "dou-
ble".

self.typeCode
A short (typically single-character) string that represents a data type in numpy and corresponds to self.
typeStr. For example, if self.typeStr is "double", then self.typeCode should be "d".

Each test defined by theVectorTestCase class extracts the python function it is trying to test by accessing theVector
module’s dictionary:

length = Vector.__dict__[self.typeStr + "Length"]

In the case of double precision tests, this will return the python function Vector.doubleLength.
We then define a new test case class for each supported data type with a short definition such as:

class doubleTestCase(VectorTestCase):
def __init__(self, methodName="runTest"):

VectorTestCase.__init__(self, methodName)
self.typeStr = "double"
self.typeCode = "d"

Each of these 12 classes is collected into a unittest.TestSuite, which is then executed. Errors and failures are
summed together and returned as the exit argument. Any non-zero result indicates that at least one test did not pass.

3.8. NumPy and SWIG 2055

NumPy Reference, Release 2.2.0

2056 3. Other topics

CHAPTER

FOUR

ACKNOWLEDGEMENTS

Large parts of this manual originate from Travis E. Oliphant’s book Guide to NumPy (which generously entered Public
Domain in August 2008). The reference documentation for many of the functions are written by numerous contributors
and developers of NumPy.

2057

https://archive.org/details/NumPyBook

NumPy Reference, Release 2.2.0

2058 4. Acknowledgements

BIBLIOGRAPHY

[CT] Cooley, JamesW., and JohnW. Tukey, 1965, “An algorithm for themachine calculation of complex Fourier series,”
Math. Comput. 19: 297-301.

[CT] Cooley, JamesW., and JohnW. Tukey, 1965, “An algorithm for themachine calculation of complex Fourier series,”
Math. Comput. 19: 297-301.

[NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P., 2007, Numerical Recipes: The Art of Scientific
Computing, ch. 12-13. Cambridge Univ. Press, Cambridge, UK.

[1] Cormen, “Introduction to Algorithms”, Chapter 15.2, p. 370-378
[2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication
[1] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University Press,

1996, pg. 8.
[1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222.
[1] G. H. Golub and C. F. Van Loan,Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985, pg.

15
[1] G. Strang, Linear Algebra and Its Applications, Orlando, FL, Academic Press, Inc., 1980, pg. 285.
[1] MATLAB reference documentation, “Rank” https://www.mathworks.com/help/techdoc/ref/rank.html
[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes (3rd edition)”, Cambridge

University Press, 2007, page 795.
[1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22.
[1] Wikipedia, “Condition number”, https://en.wikipedia.org/wiki/Condition_number
[1] G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142.
[1] Daniel Lemire., “Fast Random Integer Generation in an Interval”, ACM Transactions on Modeling and Computer

Simulation 29 (1), 2019, https://arxiv.org/abs/1805.10941.
[1] Wikipedia, “Beta distribution”, https://en.wikipedia.org/wiki/Beta_distribution
[1] Dalgaard, Peter, “Introductory Statistics with R”, Springer-Verlag, 2002.
[2] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.
[3] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.
[4] Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/BinomialDistribution.html
[5] Wikipedia, “Binomial distribution”, https://en.wikipedia.org/wiki/Binomial_distribution

2059

https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://www.mathworks.com/help/techdoc/ref/rank.html
https://en.wikipedia.org/wiki/Condition_number
https://arxiv.org/abs/1805.10941
https://en.wikipedia.org/wiki/Beta_distribution
https://mathworld.wolfram.com/BinomialDistribution.html
https://mathworld.wolfram.com/BinomialDistribution.html
https://en.wikipedia.org/wiki/Binomial_distribution

NumPy Reference, Release 2.2.0

[1] NIST “Engineering Statistics Handbook” https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
[1] David McKay, “Information Theory, Inference and Learning Algorithms,” chapter 23, https://www.inference.org.

uk/mackay/itila/
[2] Wikipedia, “Dirichlet distribution”, https://en.wikipedia.org/wiki/Dirichlet_distribution
[1] Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.
[2] Wikipedia, “Poisson process”, https://en.wikipedia.org/wiki/Poisson_process
[3] Wikipedia, “Exponential distribution”, https://en.wikipedia.org/wiki/Exponential_distribution
[1] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.
[2] Wikipedia, “F-distribution”, https://en.wikipedia.org/wiki/F-distribution
[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/GammaDistribution.html
[2] Wikipedia, “Gamma distribution”, https://en.wikipedia.org/wiki/Gamma_distribution
[1] Wikipedia, “Geometric distribution”, https://en.wikipedia.org/wiki/Geometric_distribution
[1] Gumbel, E. J., “Statistics of Extremes,” New York: Columbia University Press, 1958.
[2] Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and

Other Fields,” Basel: Birkhauser Verlag, 2001.
[1] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.
[2] Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource. https://

mathworld.wolfram.com/HypergeometricDistribution.html
[3] Wikipedia, “Hypergeometric distribution”, https://en.wikipedia.org/wiki/Hypergeometric_distribution
[4] Stadlober, Ernst, “The ratio of uniforms approach for generating discrete random variates”, Journal of Computa-

tional and Applied Mathematics, 31, pp. 181-189 (1990).
[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, 9th printing,” New York: Dover, 1972.
[2] Kotz, Samuel, et. al. “The Laplace Distribution and Generalizations, “ Birkhauser, 2001.
[3] Weisstein, Eric W. “Laplace Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/LaplaceDistribution.html
[4] Wikipedia, “Laplace distribution”, https://en.wikipedia.org/wiki/Laplace_distribution
[1] Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology

and Other Fields,” Birkhauser Verlag, Basel, pp 132-133.
[2] Weisstein, Eric W. “Logistic Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/LogisticDistribution.html
[3] Wikipedia, “Logistic-distribution”, https://en.wikipedia.org/wiki/Logistic_distribution
[1] Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions across the Sciences: Keys and Clues,” Bio-

Science, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
[2] Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme Values,” Basel: Birkhauser Verlag, 2001, pp. 31-32.
[1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution

of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999
, pp. 187-195(9).

2060 Bibliography

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
https://www.inference.org.uk/mackay/itila/
https://www.inference.org.uk/mackay/itila/
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Poisson_process
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/F-distribution
https://mathworld.wolfram.com/GammaDistribution.html
https://mathworld.wolfram.com/GammaDistribution.html
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Geometric_distribution
https://mathworld.wolfram.com/HypergeometricDistribution.html
https://mathworld.wolfram.com/HypergeometricDistribution.html
https://en.wikipedia.org/wiki/Hypergeometric_distribution
https://mathworld.wolfram.com/LaplaceDistribution.html
https://mathworld.wolfram.com/LaplaceDistribution.html
https://en.wikipedia.org/wiki/Laplace_distribution
https://mathworld.wolfram.com/LogisticDistribution.html
https://mathworld.wolfram.com/LogisticDistribution.html
https://en.wikipedia.org/wiki/Logistic_distribution
https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

NumPy Reference, Release 2.2.0

[2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number
of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58.

[3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.
[4] Wikipedia, “Logarithmic distribution”, https://en.wikipedia.org/wiki/Logarithmic_distribution
[1] Papoulis, A., “Probability, Random Variables, and Stochastic Processes,” 3rd ed., New York: McGraw-Hill, 1991.
[2] Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern Classification,” 2nd ed., New York: Wiley, 2001.
[1] Weisstein, Eric W. “Negative Binomial Distribution.” From MathWorld–A Wolfram Web Resource. https://

mathworld.wolfram.com/NegativeBinomialDistribution.html
[2] Wikipedia, “Negative binomial distribution”, https://en.wikipedia.org/wiki/Negative_binomial_distribution
[1] Wikipedia, “Noncentral chi-squared distribution” https://en.wikipedia.org/wiki/Noncentral_chi-squared_

distribution
[1] Weisstein, Eric W. “Noncentral F-Distribution.” FromMathWorld–AWolframWeb Resource. https://mathworld.

wolfram.com/NoncentralF-Distribution.html
[2] Wikipedia, “Noncentral F-distribution”, https://en.wikipedia.org/wiki/Noncentral_F-distribution
[1] Wikipedia, “Normal distribution”, https://en.wikipedia.org/wiki/Normal_distribution
[2] P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random Variables and Random Signal Principles”, 4th

ed., 2001, pp. 51, 51, 125.
[1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.
[2] Pareto, V. (1896). Course of Political Economy. Lausanne.
[3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30.
[4] Wikipedia, “Pareto distribution”, https://en.wikipedia.org/wiki/Pareto_distribution
[1] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/PoissonDistribution.html
[2] Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution
[1] Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley, 2003.
[2] Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Sub-

commands and Library Functions”, National Institute of Standards and Technology Handbook Series, June 2003.
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

[1] Brighton Webs Ltd., “Rayleigh Distribution,” https://web.archive.org/web/20090514091424/http:
//brighton-webs.co.uk:80/distributions/rayleigh.asp

[2] Wikipedia, “Rayleigh distribution” https://en.wikipedia.org/wiki/Rayleigh_distribution
[1] NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”, https://www.itl.nist.gov/div898/

handbook/eda/section3/eda3663.htm
[2] Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/CauchyDistribution.html
[3] Wikipedia, “Cauchy distribution” https://en.wikipedia.org/wiki/Cauchy_distribution
[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/GammaDistribution.html
[2] Wikipedia, “Gamma distribution”, https://en.wikipedia.org/wiki/Gamma_distribution
[1] Dalgaard, Peter, “Introductory Statistics With R”, Springer, 2002.

Bibliography 2061

https://en.wikipedia.org/wiki/Logarithmic_distribution
https://mathworld.wolfram.com/NegativeBinomialDistribution.html
https://mathworld.wolfram.com/NegativeBinomialDistribution.html
https://en.wikipedia.org/wiki/Negative_binomial_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://mathworld.wolfram.com/NoncentralF-Distribution.html
https://mathworld.wolfram.com/NoncentralF-Distribution.html
https://en.wikipedia.org/wiki/Noncentral_F-distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
https://mathworld.wolfram.com/PoissonDistribution.html
https://mathworld.wolfram.com/PoissonDistribution.html
https://en.wikipedia.org/wiki/Poisson_distribution
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
https://en.wikipedia.org/wiki/Rayleigh_distribution
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
https://mathworld.wolfram.com/CauchyDistribution.html
https://mathworld.wolfram.com/CauchyDistribution.html
https://en.wikipedia.org/wiki/Cauchy_distribution
https://mathworld.wolfram.com/GammaDistribution.html
https://mathworld.wolfram.com/GammaDistribution.html
https://en.wikipedia.org/wiki/Gamma_distribution

NumPy Reference, Release 2.2.0

[2] Wikipedia, “Student’s t-distribution” https://en.wikipedia.org/wiki/Student’s_t-distribution
[1] Wikipedia, “Triangular distribution” https://en.wikipedia.org/wiki/Triangular_distribution
[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, 9th printing,” New York: Dover, 1972.
[2] von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.
[1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.

brighton-webs.co.uk:80/distributions/wald.asp
[2] Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian Distribution: Theory : Methodology, and Applica-

tions”, CRC Press, 1988.
[3] Wikipedia, “Inverse Gaussian distribution” https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
[1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Ma-

terials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag,
Stockholm.

[2] Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics
ASME Paper 1951.

[3] Wikipedia, “Weibull distribution”, https://en.wikipedia.org/wiki/Weibull_distribution
[1] Zipf, G. K., “Selected Studies of the Principle of Relative Frequency in Language,” Cambridge, MA: Harvard

Univ. Press, 1932.
[1] M.Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom

number generator,” ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30, Jan. 1998.
[1] Dalgaard, Peter, “Introductory Statistics with R”, Springer-Verlag, 2002.
[2] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.
[3] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.
[4] Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/BinomialDistribution.html
[5] Wikipedia, “Binomial distribution”, https://en.wikipedia.org/wiki/Binomial_distribution
[1] NIST “Engineering Statistics Handbook” https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
[1] David McKay, “Information Theory, Inference and Learning Algorithms,” chapter 23, https://www.inference.org.

uk/mackay/itila/
[2] Wikipedia, “Dirichlet distribution”, https://en.wikipedia.org/wiki/Dirichlet_distribution
[1] Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.
[2] Wikipedia, “Poisson process”, https://en.wikipedia.org/wiki/Poisson_process
[3] Wikipedia, “Exponential distribution”, https://en.wikipedia.org/wiki/Exponential_distribution
[1] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.
[2] Wikipedia, “F-distribution”, https://en.wikipedia.org/wiki/F-distribution
[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/GammaDistribution.html
[2] Wikipedia, “Gamma distribution”, https://en.wikipedia.org/wiki/Gamma_distribution
[1] Gumbel, E. J., “Statistics of Extremes,” New York: Columbia University Press, 1958.

2062 Bibliography

https://en.wikipedia.org/wiki/Student's_t-distribution
https://en.wikipedia.org/wiki/Triangular_distribution
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
https://en.wikipedia.org/wiki/Weibull_distribution
https://mathworld.wolfram.com/BinomialDistribution.html
https://mathworld.wolfram.com/BinomialDistribution.html
https://en.wikipedia.org/wiki/Binomial_distribution
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
https://www.inference.org.uk/mackay/itila/
https://www.inference.org.uk/mackay/itila/
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Poisson_process
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/F-distribution
https://mathworld.wolfram.com/GammaDistribution.html
https://mathworld.wolfram.com/GammaDistribution.html
https://en.wikipedia.org/wiki/Gamma_distribution

NumPy Reference, Release 2.2.0

[2] Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and
Other Fields,” Basel: Birkhauser Verlag, 2001.

[1] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.
[2] Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource. https://

mathworld.wolfram.com/HypergeometricDistribution.html
[3] Wikipedia, “Hypergeometric distribution”, https://en.wikipedia.org/wiki/Hypergeometric_distribution
[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, 9th printing,” New York: Dover, 1972.
[2] Kotz, Samuel, et. al. “The Laplace Distribution and Generalizations, “ Birkhauser, 2001.
[3] Weisstein, Eric W. “Laplace Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/LaplaceDistribution.html
[4] Wikipedia, “Laplace distribution”, https://en.wikipedia.org/wiki/Laplace_distribution
[1] Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology

and Other Fields,” Birkhauser Verlag, Basel, pp 132-133.
[2] Weisstein, Eric W. “Logistic Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/LogisticDistribution.html
[3] Wikipedia, “Logistic-distribution”, https://en.wikipedia.org/wiki/Logistic_distribution
[1] Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions across the Sciences: Keys and Clues,” Bio-

Science, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
[2] Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme Values,” Basel: Birkhauser Verlag, 2001, pp. 31-32.
[1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution

of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999
, pp. 187-195(9).

[2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number
of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58.

[3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.
[4] Wikipedia, “Logarithmic distribution”, https://en.wikipedia.org/wiki/Logarithmic_distribution
[1] Papoulis, A., “Probability, Random Variables, and Stochastic Processes,” 3rd ed., New York: McGraw-Hill, 1991.
[2] Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern Classification,” 2nd ed., New York: Wiley, 2001.
[1] Weisstein, Eric W. “Negative Binomial Distribution.” From MathWorld–A Wolfram Web Resource. https://

mathworld.wolfram.com/NegativeBinomialDistribution.html
[2] Wikipedia, “Negative binomial distribution”, https://en.wikipedia.org/wiki/Negative_binomial_distribution
[1] Wikipedia, “Noncentral chi-squared distribution” https://en.wikipedia.org/wiki/Noncentral_chi-squared_

distribution
[1] Weisstein, Eric W. “Noncentral F-Distribution.” FromMathWorld–AWolframWeb Resource. https://mathworld.

wolfram.com/NoncentralF-Distribution.html
[2] Wikipedia, “Noncentral F-distribution”, https://en.wikipedia.org/wiki/Noncentral_F-distribution
[1] Wikipedia, “Normal distribution”, https://en.wikipedia.org/wiki/Normal_distribution
[2] P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random Variables and Random Signal Principles”, 4th

ed., 2001, pp. 51, 51, 125.
[1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.

Bibliography 2063

https://mathworld.wolfram.com/HypergeometricDistribution.html
https://mathworld.wolfram.com/HypergeometricDistribution.html
https://en.wikipedia.org/wiki/Hypergeometric_distribution
https://mathworld.wolfram.com/LaplaceDistribution.html
https://mathworld.wolfram.com/LaplaceDistribution.html
https://en.wikipedia.org/wiki/Laplace_distribution
https://mathworld.wolfram.com/LogisticDistribution.html
https://mathworld.wolfram.com/LogisticDistribution.html
https://en.wikipedia.org/wiki/Logistic_distribution
https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
https://en.wikipedia.org/wiki/Logarithmic_distribution
https://mathworld.wolfram.com/NegativeBinomialDistribution.html
https://mathworld.wolfram.com/NegativeBinomialDistribution.html
https://en.wikipedia.org/wiki/Negative_binomial_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://mathworld.wolfram.com/NoncentralF-Distribution.html
https://mathworld.wolfram.com/NoncentralF-Distribution.html
https://en.wikipedia.org/wiki/Noncentral_F-distribution
https://en.wikipedia.org/wiki/Normal_distribution

NumPy Reference, Release 2.2.0

[2] Pareto, V. (1896). Course of Political Economy. Lausanne.
[3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30.
[4] Wikipedia, “Pareto distribution”, https://en.wikipedia.org/wiki/Pareto_distribution
[1] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/PoissonDistribution.html
[2] Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution
[1] Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley, 2003.
[2] Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Sub-

commands and Library Functions”, National Institute of Standards and Technology Handbook Series, June 2003.
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

[1] Brighton Webs Ltd., “Rayleigh Distribution,” https://web.archive.org/web/20090514091424/http:
//brighton-webs.co.uk:80/distributions/rayleigh.asp

[2] Wikipedia, “Rayleigh distribution” https://en.wikipedia.org/wiki/Rayleigh_distribution
[1] NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”, https://www.itl.nist.gov/div898/

handbook/eda/section3/eda3663.htm
[2] Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/CauchyDistribution.html
[3] Wikipedia, “Cauchy distribution” https://en.wikipedia.org/wiki/Cauchy_distribution
[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/GammaDistribution.html
[2] Wikipedia, “Gamma distribution”, https://en.wikipedia.org/wiki/Gamma_distribution
[1] Dalgaard, Peter, “Introductory Statistics With R”, Springer, 2002.
[2] Wikipedia, “Student’s t-distribution” https://en.wikipedia.org/wiki/Student’s_t-distribution
[1] Wikipedia, “Triangular distribution” https://en.wikipedia.org/wiki/Triangular_distribution
[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, 9th printing,” New York: Dover, 1972.
[2] von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.
[1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.

brighton-webs.co.uk:80/distributions/wald.asp
[2] Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian Distribution: Theory : Methodology, and Applica-

tions”, CRC Press, 1988.
[3] Wikipedia, “Inverse Gaussian distribution” https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
[1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Ma-

terials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag,
Stockholm.

[2] Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics
ASME Paper 1951.

[3] Wikipedia, “Weibull distribution”, https://en.wikipedia.org/wiki/Weibull_distribution
[1] Zipf, G. K., “Selected Studies of the Principle of Relative Frequency in Language,” Cambridge, MA: Harvard

Univ. Press, 1932.
[1] Dalgaard, Peter, “Introductory Statistics with R”, Springer-Verlag, 2002.

2064 Bibliography

https://en.wikipedia.org/wiki/Pareto_distribution
https://mathworld.wolfram.com/PoissonDistribution.html
https://mathworld.wolfram.com/PoissonDistribution.html
https://en.wikipedia.org/wiki/Poisson_distribution
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
https://en.wikipedia.org/wiki/Rayleigh_distribution
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
https://mathworld.wolfram.com/CauchyDistribution.html
https://mathworld.wolfram.com/CauchyDistribution.html
https://en.wikipedia.org/wiki/Cauchy_distribution
https://mathworld.wolfram.com/GammaDistribution.html
https://mathworld.wolfram.com/GammaDistribution.html
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Student's_t-distribution
https://en.wikipedia.org/wiki/Triangular_distribution
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
https://en.wikipedia.org/wiki/Weibull_distribution

NumPy Reference, Release 2.2.0

[2] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.
[3] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.
[4] Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/BinomialDistribution.html
[5] Wikipedia, “Binomial distribution”, https://en.wikipedia.org/wiki/Binomial_distribution
[1] NIST “Engineering Statistics Handbook” https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
[1] David McKay, “Information Theory, Inference and Learning Algorithms,” chapter 23, https://www.inference.org.

uk/mackay/itila/
[2] Wikipedia, “Dirichlet distribution”, https://en.wikipedia.org/wiki/Dirichlet_distribution
[1] Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.
[2] Wikipedia, “Poisson process”, https://en.wikipedia.org/wiki/Poisson_process
[3] Wikipedia, “Exponential distribution”, https://en.wikipedia.org/wiki/Exponential_distribution
[1] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.
[2] Wikipedia, “F-distribution”, https://en.wikipedia.org/wiki/F-distribution
[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/GammaDistribution.html
[2] Wikipedia, “Gamma distribution”, https://en.wikipedia.org/wiki/Gamma_distribution
[1] Gumbel, E. J., “Statistics of Extremes,” New York: Columbia University Press, 1958.
[2] Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and

Other Fields,” Basel: Birkhauser Verlag, 2001.
[1] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.
[2] Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource. https://

mathworld.wolfram.com/HypergeometricDistribution.html
[3] Wikipedia, “Hypergeometric distribution”, https://en.wikipedia.org/wiki/Hypergeometric_distribution
[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, 9th printing,” New York: Dover, 1972.
[2] Kotz, Samuel, et. al. “The Laplace Distribution and Generalizations, “ Birkhauser, 2001.
[3] Weisstein, Eric W. “Laplace Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/LaplaceDistribution.html
[4] Wikipedia, “Laplace distribution”, https://en.wikipedia.org/wiki/Laplace_distribution
[1] Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology

and Other Fields,” Birkhauser Verlag, Basel, pp 132-133.
[2] Weisstein, Eric W. “Logistic Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/LogisticDistribution.html
[3] Wikipedia, “Logistic-distribution”, https://en.wikipedia.org/wiki/Logistic_distribution
[1] Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions across the Sciences: Keys and Clues,” Bio-

Science, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
[2] Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme Values,” Basel: Birkhauser Verlag, 2001, pp. 31-32.

Bibliography 2065

https://mathworld.wolfram.com/BinomialDistribution.html
https://mathworld.wolfram.com/BinomialDistribution.html
https://en.wikipedia.org/wiki/Binomial_distribution
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
https://www.inference.org.uk/mackay/itila/
https://www.inference.org.uk/mackay/itila/
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Poisson_process
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/F-distribution
https://mathworld.wolfram.com/GammaDistribution.html
https://mathworld.wolfram.com/GammaDistribution.html
https://en.wikipedia.org/wiki/Gamma_distribution
https://mathworld.wolfram.com/HypergeometricDistribution.html
https://mathworld.wolfram.com/HypergeometricDistribution.html
https://en.wikipedia.org/wiki/Hypergeometric_distribution
https://mathworld.wolfram.com/LaplaceDistribution.html
https://mathworld.wolfram.com/LaplaceDistribution.html
https://en.wikipedia.org/wiki/Laplace_distribution
https://mathworld.wolfram.com/LogisticDistribution.html
https://mathworld.wolfram.com/LogisticDistribution.html
https://en.wikipedia.org/wiki/Logistic_distribution
https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

NumPy Reference, Release 2.2.0

[1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution
of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999
, pp. 187-195(9).

[2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number
of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58.

[3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.
[4] Wikipedia, “Logarithmic distribution”, https://en.wikipedia.org/wiki/Logarithmic_distribution
[1] Papoulis, A., “Probability, Random Variables, and Stochastic Processes,” 3rd ed., New York: McGraw-Hill, 1991.
[2] Duda, R. O., Hart, P. E., and Stork, D. G., “Pattern Classification,” 2nd ed., New York: Wiley, 2001.
[1] Weisstein, Eric W. “Negative Binomial Distribution.” From MathWorld–A Wolfram Web Resource. https://

mathworld.wolfram.com/NegativeBinomialDistribution.html
[2] Wikipedia, “Negative binomial distribution”, https://en.wikipedia.org/wiki/Negative_binomial_distribution
[1] Wikipedia, “Noncentral chi-squared distribution” https://en.wikipedia.org/wiki/Noncentral_chi-squared_

distribution
[1] Weisstein, Eric W. “Noncentral F-Distribution.” FromMathWorld–AWolframWeb Resource. https://mathworld.

wolfram.com/NoncentralF-Distribution.html
[2] Wikipedia, “Noncentral F-distribution”, https://en.wikipedia.org/wiki/Noncentral_F-distribution
[1] Wikipedia, “Normal distribution”, https://en.wikipedia.org/wiki/Normal_distribution
[2] P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random Variables and Random Signal Principles”, 4th

ed., 2001, pp. 51, 51, 125.
[1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.
[2] Pareto, V. (1896). Course of Political Economy. Lausanne.
[3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30.
[4] Wikipedia, “Pareto distribution”, https://en.wikipedia.org/wiki/Pareto_distribution
[1] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/PoissonDistribution.html
[2] Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution
[1] Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley, 2003.
[2] Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Sub-

commands and Library Functions”, National Institute of Standards and Technology Handbook Series, June 2003.
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

[1] Brighton Webs Ltd., “Rayleigh Distribution,” https://web.archive.org/web/20090514091424/http:
//brighton-webs.co.uk:80/distributions/rayleigh.asp

[2] Wikipedia, “Rayleigh distribution” https://en.wikipedia.org/wiki/Rayleigh_distribution
[1] M.Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom

number generator,” ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, pp. 3-30, Jan. 1998.
[1] NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”, https://www.itl.nist.gov/div898/

handbook/eda/section3/eda3663.htm
[2] Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.

wolfram.com/CauchyDistribution.html
[3] Wikipedia, “Cauchy distribution” https://en.wikipedia.org/wiki/Cauchy_distribution

2066 Bibliography

https://en.wikipedia.org/wiki/Logarithmic_distribution
https://mathworld.wolfram.com/NegativeBinomialDistribution.html
https://mathworld.wolfram.com/NegativeBinomialDistribution.html
https://en.wikipedia.org/wiki/Negative_binomial_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://mathworld.wolfram.com/NoncentralF-Distribution.html
https://mathworld.wolfram.com/NoncentralF-Distribution.html
https://en.wikipedia.org/wiki/Noncentral_F-distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
https://mathworld.wolfram.com/PoissonDistribution.html
https://mathworld.wolfram.com/PoissonDistribution.html
https://en.wikipedia.org/wiki/Poisson_distribution
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
https://en.wikipedia.org/wiki/Rayleigh_distribution
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
https://mathworld.wolfram.com/CauchyDistribution.html
https://mathworld.wolfram.com/CauchyDistribution.html
https://en.wikipedia.org/wiki/Cauchy_distribution

NumPy Reference, Release 2.2.0

[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. https://mathworld.
wolfram.com/GammaDistribution.html

[2] Wikipedia, “Gamma distribution”, https://en.wikipedia.org/wiki/Gamma_distribution
[1] Dalgaard, Peter, “Introductory Statistics With R”, Springer, 2002.
[2] Wikipedia, “Student’s t-distribution” https://en.wikipedia.org/wiki/Student’s_t-distribution
[1] Wikipedia, “Triangular distribution” https://en.wikipedia.org/wiki/Triangular_distribution
[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, 9th printing,” New York: Dover, 1972.
[2] von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.
[1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.

brighton-webs.co.uk:80/distributions/wald.asp
[2] Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian Distribution: Theory : Methodology, and Applica-

tions”, CRC Press, 1988.
[3] Wikipedia, “Inverse Gaussian distribution” https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
[1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Ma-

terials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag,
Stockholm.

[2] Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics
ASME Paper 1951.

[3] Wikipedia, “Weibull distribution”, https://en.wikipedia.org/wiki/Weibull_distribution
[1] Zipf, G. K., “Selected Studies of the Principle of Relative Frequency in Language,” Cambridge, MA: Harvard

Univ. Press, 1932.
[1] Hiroshi Haramoto, Makoto Matsumoto, and Pierre L’Ecuyer, “A Fast Jump Ahead Algorithm for Linear Recur-

rences in a Polynomial Space”, Sequences and Their Applications - SETA, 290–298, 2008.
[2] Hiroshi Haramoto, Makoto Matsumoto, Takuji Nishimura, François Panneton, Pierre L’Ecuyer, “Efficient Jump

Ahead for F2-Linear Random Number Generators”, INFORMS JOURNAL ON COMPUTING, Vol. 20, No. 3,
Summer 2008, pp. 385-390.

[1] Matsumoto, M, Generating multiple disjoint streams of pseudorandom number sequences. Accessed on: May 6,
2020. http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/JUMP/

[2] Hiroshi Haramoto, Makoto Matsumoto, Takuji Nishimura, François Panneton, Pierre L’Ecuyer, “Efficient Jump
Ahead for F2-Linear Random Number Generators”, INFORMS JOURNAL ON COMPUTING, Vol. 20, No. 3,
Summer 2008, pp. 385-390.

[1] “PCG, A Family of Better Random Number Generators”
[2] O’Neill, Melissa E. “PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random

Number Generation”
[1] “PCG, A Family of Better Random Number Generators”
[2] O’Neill, Melissa E. “PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random

Number Generation”
[1] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw, “Parallel Random Numbers: As Easy as 1,

2, 3,” Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis (SC11), New York, NY: ACM, 2011.

[1] “PractRand”

Bibliography 2067

https://mathworld.wolfram.com/GammaDistribution.html
https://mathworld.wolfram.com/GammaDistribution.html
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Student's_t-distribution
https://en.wikipedia.org/wiki/Triangular_distribution
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
https://en.wikipedia.org/wiki/Weibull_distribution
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/JUMP/
https://www.pcg-random.org/
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
http://www.pcg-random.org/
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://pracrand.sourceforge.net/RNG_engines.txt

NumPy Reference, Release 2.2.0

[2] “Random Invertible Mapping Statistics”
[1] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University Press,

1996, pg. 8.
[1] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University Press,

1996, pg. 8.
[1] Wikipedia, “Curve fitting”, https://en.wikipedia.org/wiki/Curve_fitting
[2] Wikipedia, “Polynomial interpolation”, https://en.wikipedia.org/wiki/Polynomial_interpolation
[1] Array API documentation, https://data-apis.org/array-api/latest/design_topics/data_interchange.html#

syntax-for-data-interchange-with-dlpack
[2] Python specification for DLPack, https://dmlc.github.io/dlpack/latest/python_spec.html
[1] Wikipedia, “Two’s complement”, https://en.wikipedia.org/wiki/Two’s_complement
[1] Wikipedia, “Two’s complement”, https://en.wikipedia.org/wiki/Two’s_complement
[1] Wikipedia, “Two’s complement”, https://en.wikipedia.org/wiki/Two’s_complement
[1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, pp.1-70, 2008, https://doi.org/10.1109/

IEEESTD.2008.4610935
[2] Wikipedia, “Denormal Numbers”, https://en.wikipedia.org/wiki/Denormal_number
[1] https://en.wikipedia.org/wiki/IEEE_754
[1] Generalized universal function API

[1] Format Specification Mini-Language, Python Documentation.
[1] NumPy User Guide, section I/O with NumPy.
[1] ISO/IEC standard 9899:1999, “Programming language C.”
[1] ISO/IEC standard 9899:1999, “Programming language C.”
[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

https://personal.math.ubc.ca/~cbm/aands/page_83.htm
[2] Wikipedia, “Hyperbolic function”, https://en.wikipedia.org/wiki/Hyperbolic_function
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. https://

personal.math.ubc.ca/~cbm/aands/page_86.htm
[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arcsinh
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. https://

personal.math.ubc.ca/~cbm/aands/page_86.htm
[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arcsinh
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. https://

personal.math.ubc.ca/~cbm/aands/page_86.htm
[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arccosh
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. https://

personal.math.ubc.ca/~cbm/aands/page_86.htm
[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arccosh
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. https://

personal.math.ubc.ca/~cbm/aands/page_86.htm

2068 Bibliography

https://www.pcg-random.org/posts/random-invertible-mapping-statistics.html
https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Polynomial_interpolation
https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack
https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack
https://dmlc.github.io/dlpack/latest/python_spec.html
https://en.wikipedia.org/wiki/Two's_complement
https://en.wikipedia.org/wiki/Two's_complement
https://en.wikipedia.org/wiki/Two's_complement
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/IEEE_754
https://docs.python.org/library/string.html#format-specification-mini-language
https://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html
https://personal.math.ubc.ca/~cbm/aands/page_83.htm
https://en.wikipedia.org/wiki/Hyperbolic_function
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://en.wikipedia.org/wiki/Arcsinh
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://en.wikipedia.org/wiki/Arcsinh
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://en.wikipedia.org/wiki/Arccosh
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://en.wikipedia.org/wiki/Arccosh
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://personal.math.ubc.ca/~cbm/aands/page_86.htm

NumPy Reference, Release 2.2.0

[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arctanh
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. https://

personal.math.ubc.ca/~cbm/aands/page_86.htm
[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arctanh
[1] “Lecture Notes on the Status of IEEE 754”, William Kahan, https://people.eecs.berkeley.edu/~wkahan/

ieee754status/IEEE754.PDF
[1] Quarteroni A., Sacco R., Saleri F. (2007) Numerical Mathematics (Texts in Applied Mathematics). New York:

Springer.
[2] Durran D. R. (1999) Numerical Methods forWave Equations in Geophysical Fluid Dynamics. NewYork: Springer.
[3] Fornberg B. (1988) Generation of Finite Difference Formulas on Arbitrarily Spaced Grids, Mathematics of Com-

putation 51, no. 184 : 699-706. PDF.
[1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule
[2] Illustration image: https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
[1] Wikipedia, “Exponential function”, https://en.wikipedia.org/wiki/Exponential_function
[2] M. Abramovitz and I. A. Stegun, “Handbook ofMathematical Functions with Formulas, Graphs, andMathematical

Tables,” Dover, 1964, p. 69, https://personal.math.ubc.ca/~cbm/aands/page_69.htm
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. https://

personal.math.ubc.ca/~cbm/aands/page_67.htm
[2] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. https://

personal.math.ubc.ca/~cbm/aands/page_67.htm
[2] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. https://

personal.math.ubc.ca/~cbm/aands/page_67.htm
[2] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm
[1] C. W. Clenshaw, “Chebyshev series for mathematical functions”, in National Physical Laboratory Mathematical

Tables, vol. 5, London: Her Majesty’s Stationery Office, 1962.
[2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 10th printing, New York: Dover, 1964,

pp. 379. https://personal.math.ubc.ca/~cbm/aands/page_379.htm
[3] https://metacpan.org/pod/distribution/Math-Cephes/lib/Math/Cephes.pod#i0:-Modified-Bessel-function-of-order-zero
[1] Weisstein, Eric W. “Sinc Function.” From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.

com/SincFunction.html
[2] Wikipedia, “Sinc function”, https://en.wikipedia.org/wiki/Sinc_function
[1] Wikipedia, “Convolution”, https://en.wikipedia.org/wiki/Convolution
[1] Wikipedia, “Heaviside step function”, https://en.wikipedia.org/wiki/Heaviside_step_function
[1] https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
[2] Wikipedia, “Hamming weight”, https://en.wikipedia.org/wiki/Hamming_weight
[3] http://aggregate.ee.engr.uky.edu/MAGIC/#Population%20Count%20(Ones%20Count)
[1] Wikipedia, “Curve fitting”, https://en.wikipedia.org/wiki/Curve_fitting

Bibliography 2069

https://en.wikipedia.org/wiki/Arctanh
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://personal.math.ubc.ca/~cbm/aands/page_86.htm
https://en.wikipedia.org/wiki/Arctanh
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf
https://en.wikipedia.org/wiki/Trapezoidal_rule
https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
https://en.wikipedia.org/wiki/Exponential_function
https://personal.math.ubc.ca/~cbm/aands/page_69.htm
https://personal.math.ubc.ca/~cbm/aands/page_67.htm
https://personal.math.ubc.ca/~cbm/aands/page_67.htm
https://en.wikipedia.org/wiki/Logarithm
https://personal.math.ubc.ca/~cbm/aands/page_67.htm
https://personal.math.ubc.ca/~cbm/aands/page_67.htm
https://en.wikipedia.org/wiki/Logarithm
https://personal.math.ubc.ca/~cbm/aands/page_67.htm
https://personal.math.ubc.ca/~cbm/aands/page_67.htm
https://en.wikipedia.org/wiki/Logarithm
https://personal.math.ubc.ca/~cbm/aands/page_379.htm
https://metacpan.org/pod/distribution/Math-Cephes/lib/Math/Cephes.pod#i0:-Modified-Bessel-function-of-order-zero
https://mathworld.wolfram.com/SincFunction.html
https://mathworld.wolfram.com/SincFunction.html
https://en.wikipedia.org/wiki/Sinc_function
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Heaviside_step_function
https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
https://en.wikipedia.org/wiki/Hamming_weight
http://aggregate.ee.engr.uky.edu/MAGIC/#Population%20Count%20(Ones%20Count
https://en.wikipedia.org/wiki/Curve_fitting

NumPy Reference, Release 2.2.0

[1] A. T. Benjamin, et al., “Combinatorial Trigonometry with Chebyshev Polynomials,” Journal of Statistical Planning
and Inference 14, 2008 (https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/
papers/CombTrig.pdf, pg. 4)

[1] Wikipedia, “Curve fitting”, https://en.wikipedia.org/wiki/Curve_fitting
[1] Wikipedia, “Curve fitting”, https://en.wikipedia.org/wiki/Curve_fitting
[1] Wikipedia, “Curve fitting”, https://en.wikipedia.org/wiki/Curve_fitting
[1] Wikipedia, “Curve fitting”, https://en.wikipedia.org/wiki/Curve_fitting
[1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), Handbook of Mathematics, New York,

Van Nostrand Reinhold Co., 1985, pg. 720.
[1] M. Sullivan and M. Sullivan, III, “Algebra and Trigonometry, Enhanced With Graphing Utilities,” Prentice-Hall,

pg. 318, 1996.
[2] G. Strang, “Linear Algebra and Its Applications, 2nd Edition,” Academic Press, pg. 182, 1980.
[1] R. A. Horn & C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University Press, 1999, pp. 146-7.
[1] Wikipedia, “Curve fitting”, https://en.wikipedia.org/wiki/Curve_fitting
[2] Wikipedia, “Polynomial interpolation”, https://en.wikipedia.org/wiki/Polynomial_interpolation
[1] R. J. Hyndman and Y. Fan, “Sample quantiles in statistical packages,” The American Statistician, 50(4), pp. 361-

365, 1996
[1] R. J. Hyndman and Y. Fan, “Sample quantiles in statistical packages,” The American Statistician, 50(4), pp. 361-

365, 1996
[1] R. J. Hyndman and Y. Fan, “Sample quantiles in statistical packages,” The American Statistician, 50(4), pp. 361-

365, 1996
[1] R. J. Hyndman and Y. Fan, “Sample quantiles in statistical packages,” The American Statistician, 50(4), pp. 361-

365, 1996
[1] Wikipedia, “Cross-correlation”, https://en.wikipedia.org/wiki/Cross-correlation
[1] M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika 37, 1-16, 1950.
[2] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-110.
[3] A.V. Oppenheim and R.W. Schafer, “Discrete-Time Signal Processing”, Prentice-Hall, 1999, pp. 468-471.
[4] Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function
[5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University

Press, 1986, page 429.
[1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.
[2] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-110.
[3] Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function
[4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University

Press, 1986, page 425.
[1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.
[2] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 106-108.
[3] Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function
[4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University

Press, 1986, page 425.

2070 Bibliography

https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf
https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf
https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Polynomial_interpolation
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Window_function
https://en.wikipedia.org/wiki/Window_function
https://en.wikipedia.org/wiki/Window_function

NumPy Reference, Release 2.2.0

[1] J. F. Kaiser, “Digital Filters” - Ch 7 in “Systems analysis by digital computer”, Editors: F.F. Kuo and J.F. Kaiser,
p 218-285. John Wiley and Sons, New York, (1966).

[2] E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 177-178.
[3] Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function

Bibliography 2071

https://en.wikipedia.org/wiki/Window_function

NumPy Reference, Release 2.2.0

2072 Bibliography

PYTHON MODULE INDEX

n
numpy, ??
numpy.char, 500
numpy.ctypeslib, 449
numpy.distutils, 565
numpy.distutils.ccompiler, 569
numpy.distutils.ccompiler_opt, 573
numpy.distutils.exec_command, 583
numpy.distutils.misc_util, 566
numpy.dtypes, 452
numpy.exceptions, 4
numpy.f2py, 606
numpy.fft, 7
numpy.lib, 461
numpy.lib.array_utils, 464
numpy.lib.format, 467
numpy.lib.introspect, 474
numpy.lib.mixins, 476
numpy.lib.npyio, 477
numpy.lib.scimath, 481
numpy.lib.stride_tricks, 488
numpy.linalg, 37
numpy.ma, 1043
numpy.matlib, 838
numpy.polynomial, 107
numpy.polynomial.chebyshev, 1567
numpy.polynomial.hermite, 1608
numpy.polynomial.hermite_e, 1648
numpy.polynomial.laguerre, 1686
numpy.polynomial.legendre, 1726
numpy.polynomial.polynomial, 1528
numpy.polynomial.polyutils, 1763
numpy.random, 110
numpy.rec, 493
numpy.strings, 380
numpy.testing, 415
numpy.testing.overrides, 436
numpy.typing, 444
numpy.typing.mypy_plugin, 445

2073

	Python API
	NumPy’s module structure
	Main namespaces
	Special-purpose namespaces
	Legacy namespaces
	Exceptions and Warnings (numpy.exceptions)
	Warnings
	Exceptions

	Discrete Fourier Transform (numpy.fft)
	Standard FFTs
	Real FFTs
	Hermitian FFTs
	Helper routines
	Background information
	Implementation details
	Type Promotion
	Normalization
	Real and Hermitian transforms
	Higher dimensions
	References
	Examples

	Linear algebra (numpy.linalg)
	The @ operator
	Matrix and vector products
	Decompositions
	Matrix eigenvalues
	Norms and other numbers
	Solving equations and inverting matrices
	Other matrix operations
	Exceptions
	Linear algebra on several matrices at once

	numpy.polynomial
	Convenience Classes
	Constants
	Creation
	Conversion
	Calculus
	Validation
	Misc

	Configuration

	Random sampling (numpy.random)
	Quick start
	Design
	Parallel Generation

	Concepts
	Random Generator
	Accessing the BitGenerator and spawning
	Simple random data
	Permutations
	In-place vs. copy
	Handling the axis parameter
	Shuffling non-NumPy sequences
	Distributions
	Legacy random generation
	Seeding and state
	Simple random data
	Permutations
	Distributions
	Functions in numpy.random
	Bit generators
	Supported BitGenerators
	Mersenne Twister (MT19937)
	State
	Parallel generation
	Extending
	Permuted congruential generator (64-bit, PCG64)
	State
	Parallel generation
	Extending
	Permuted congruential generator (64-bit, PCG64 DXSM)
	State
	Parallel generation
	Extending
	Philox counter-based RNG
	State
	Parallel generation
	Extending
	SFC64 Small Fast Chaotic PRNG
	State
	Extending
	Seeding and entropy
	Upgrading PCG64 with PCG64DXSM
	Does this affect me?
	Technical details
	Compatibility policy

	Features
	Parallel random number generation
	SeedSequence spawning
	Sequence of integer seeds
	Independent streams
	Jumping the BitGenerator state
	Multithreaded generation
	What’s new or different
	Performance
	Recommendation
	Timings
	Performance on different operating systems
	64-bit Linux
	64-bit Windows
	32-bit Windows
	C API for random
	Extending
	Numba
	Cython
	CFFI
	New BitGenerators
	Examples
	Extending via Numba
	Extending via Numba and CFFI
	Extending numpy.random via Cython
	meson.build
	extending.pyx
	extending_distributions.pyx
	Extending via CFFI
	Original Source of the Generator and BitGenerators

	String functionality
	String operations
	Comparison
	String information

	Test support (numpy.testing)
	Asserts
	Asserts (not recommended)
	Decorators
	Test running
	Testing custom array containers (numpy.testing.overrides)
	Guidelines
	Testing guidelines
	Introduction
	Testing NumPy
	Running tests from inside Python
	Running tests from the command line
	Running doctests
	Other methods of running tests
	Writing your own tests
	Using C code in tests
	Labeling tests
	Easier setup and teardown functions / methods
	Parametric tests
	Doctests
	tests/
	__init__.py and setup.py
	Tips & Tricks
	Known failures & skipping tests
	Tests on random data
	Documentation for numpy.test

	Typing (numpy.typing)
	Mypy plugin
	Examples

	Differences from the runtime NumPy API
	ArrayLike
	ndarray
	DTypeLike
	Number precision
	Timedelta64
	0D arrays
	Record array dtypes

	API

	ctypes foreign function interface (numpy.ctypeslib)
	Data type classes (numpy.dtypes)
	DType classes
	Boolean
	Bit-sized integers
	C-named integers (may be aliases)
	Floating point
	Complex
	Strings and Bytestrings
	Times
	Others

	Mathematical functions with automatic domain
	Functions

	Lib module (numpy.lib)
	Functions & other objects
	Submodules
	NPY format
	Capabilities
	Limitations
	File extensions
	Version numbering
	Format Version 1.0
	Format Version 2.0
	Format Version 3.0
	Notes

	Record Arrays (numpy.rec)
	Functions

	Version information
	Legacy fixed-width string functionality
	String operations
	Comparison
	String information
	Convenience class

	Packaging (numpy.distutils)
	Modules in numpy.distutils
	distutils.misc_util

	Configuration class
	Building installable C libraries
	npy-pkg-config files
	Reusing a C library from another package

	Conversion of .src files

	F2PY user guide and reference manual
	F2PY user guide
	Three ways to wrap - getting started
	The quick way
	The smart way
	The quick and smart way
	Using F2PY
	Using f2py as a command-line tool
	1. Signature file generation
	2. Extension module construction
	3. Building a module
	Other options
	Python module numpy.f2py
	Automatic extension module generation
	F2PY examples
	F2PY walkthrough: a basic extension module
	Creating source for a basic extension module
	Creating a compiled extension module
	Improving the basic interface
	Inserting directives in Fortran source
	A filtering example
	depends keyword example
	Read more

	F2PY reference manual
	Signature file
	Signature files syntax
	Python module block
	Fortran/C routine signatures
	Type declarations
	Statements
	Attribute statements
	Use statements
	Common block statements
	Other statements
	F2PY statements
	Attributes
	Extensions
	F2PY directives
	C expressions
	Multi-line blocks
	Extended char-selector
	Using F2PY bindings in Python
	Fortran type objects
	Scalar arguments
	String arguments
	Array arguments
	Call-back arguments
	Resolving arguments to call-back functions
	Common blocks
	Fortran 90 module data
	Allocatable arrays
	F2PY and build systems
	Basic concepts
	Build systems
	Using via numpy.distutils
	Extensions to distutils
	Using via meson
	Fibonacci walkthrough (F77)
	Automating wrapper generation
	Salient points
	Using via cmake
	Fibonacci walkthrough (F77)
	Using via scikit-build
	Fibonacci walkthrough (F77)
	CMake modules only
	setuptools replacement
	1 Migrating to meson
	1.1 Baseline
	1.2 Compilation options
	1.2.1 Basic Usage
	1.2.2 Specify the backend
	1.2.3 Pass a compiler name
	1.2.4 Dependencies
	1.2.5 Libraries
	1.3 Customizing builds
	Advanced F2PY use cases
	Adding user-defined functions to F2PY generated modules
	Adding user-defined variables
	Dealing with KIND specifiers
	Character strings
	Assumed length character strings
	Boilerplate reduction and templating
	Using FYPP for binding generic interfaces
	Basic example: Addition module
	F2PY test suite
	Adding a test
	Example

	F2PY and Windows
	Overview
	Baseline
	PowerShell and MSVC
	Microsoft Store Python paths
	F2PY and Windows Intel Fortran
	F2PY and Windows with MSYS2
	F2PY and Conda on Windows
	F2PY and PGI Fortran on Windows

	Masked array operations
	Constants
	Creation
	From existing data
	Ones and zeros

	Inspecting the array
	Manipulating a MaskedArray
	Changing the shape
	Modifying axes
	Changing the number of dimensions
	Joining arrays

	Operations on masks
	Creating a mask
	Accessing a mask
	Finding masked data
	Modifying a mask

	Conversion operations
	> to a masked array
	> to a ndarray
	> to another object
	Filling a masked array

	Masked arrays arithmetic
	Arithmetic
	Minimum/maximum
	Sorting
	Algebra
	Polynomial fit
	Clipping and rounding
	Set operations
	Miscellanea

	Matrix library (numpy.matlib)

	Array objects
	The N-dimensional array (ndarray)
	Constructing arrays
	Indexing arrays
	Internal memory layout of an ndarray
	Array attributes
	Memory layout
	Data type
	Other attributes
	Array interface
	ctypes foreign function interface

	Array methods
	Array conversion
	Shape manipulation
	Item selection and manipulation
	Calculation

	Arithmetic, matrix multiplication, and comparison operations
	Special methods

	Scalars
	Built-in scalar types
	Integer types
	Signed integer types
	Unsigned integer types

	Inexact types
	Floating-point types
	Complex floating-point types

	Other types
	Sized aliases

	Attributes
	Indexing
	Methods
	Defining new types

	Data type objects (dtype)
	Specifying and constructing data types
	Checking the data type
	dtype
	Attributes
	Methods

	Data type promotion in NumPy
	Detailed behavior of Python scalars
	Numerical promotion
	Exceptions to the general promotion rules
	Behavior of sum and prod
	Notable behavior with NumPy or Python integer scalars

	Promotion of non-numerical datatypes
	Details of promoted dtype instances

	Iterating over arrays
	Single array iteration
	Controlling iteration order
	Modifying array values
	Using an external loop
	Tracking an index or multi-index
	Alternative looping and element access
	Buffering the array elements
	Iterating as a specific data type

	Broadcasting array iteration
	Iterator-allocated output arrays
	Outer product iteration
	Reduction iteration

	Putting the inner loop in Cython

	Standard array subclasses
	Special attributes and methods
	Matrix objects
	Memory-mapped file arrays
	Character arrays (numpy.char)
	Record arrays
	Masked arrays (numpy.ma)
	Standard container class
	Array iterators
	Default iteration
	Flat iteration
	N-dimensional enumeration
	Iterator for broadcasting

	Masked arrays
	The numpy.ma module
	Rationale
	What is a masked array?
	The numpy.ma module

	Using numpy.ma
	Constructing masked arrays
	Accessing the data
	Accessing the mask
	Accessing only the valid entries
	Modifying the mask
	Masking an entry
	Unmasking an entry

	Indexing and slicing
	Operations on masked arrays

	Examples
	Data with a given value representing missing data
	Filling in the missing data
	Numerical operations
	Ignoring extreme values

	Constants of the numpy.ma module
	The MaskedArray class
	Attributes and properties of masked arrays

	MaskedArray methods
	Conversion
	Shape manipulation
	Item selection and manipulation
	Pickling and copy
	Calculations
	Arithmetic and comparison operations
	Comparison operators:
	Truth value of an array (bool()):
	Arithmetic:
	Arithmetic, in-place:

	Representation
	Special methods
	Specific methods
	Handling the mask
	Handling the fill_value
	Counting the missing elements

	The array interface protocol
	Python side
	C-struct access
	Type description examples
	Differences with array interface (version 2)

	Datetimes and timedeltas
	Datetime64 conventions and assumptions
	Basic datetimes
	Datetime and timedelta arithmetic
	Datetime units
	Business day functionality
	np.is_busday():
	np.busday_count():
	Custom weekmasks

	Datetime64 shortcomings

	Universal functions (ufunc)
	ufunc
	Optional keyword arguments
	Attributes
	Methods

	Available ufuncs
	Math operations
	Trigonometric functions
	Bit-twiddling functions
	Comparison functions
	Floating functions

	Routines and objects by topic
	Constants
	Array creation routines
	From shape or value
	From existing data
	Creating record arrays
	Creating character arrays (numpy.char)
	Numerical ranges
	Building matrices
	The matrix class

	Array manipulation routines
	Basic operations
	Changing array shape
	Transpose-like operations
	Changing number of dimensions
	Changing kind of array
	Joining arrays
	Splitting arrays
	Tiling arrays
	Adding and removing elements
	Rearranging elements

	Bit-wise operations
	Elementwise bit operations
	Bit packing
	Output formatting

	Datetime support functions
	Business day functions

	Data type routines
	Creating data types
	Data type information
	Data type testing
	Miscellaneous

	Floating point error handling
	Setting and getting error handling

	Functional programming
	Input and output
	NumPy binary files (npy, npz)
	Text files
	Raw binary files
	String formatting
	Memory mapping files
	Text formatting options
	Base-n representations
	Data sources
	Binary format description

	Indexing routines
	Generating index arrays
	Indexing-like operations
	Inserting data into arrays
	Iterating over arrays

	Logic functions
	Truth value testing
	Array contents
	Array type testing
	Logical operations
	Comparison

	Mathematical functions
	Trigonometric functions
	Hyperbolic functions
	Rounding
	Sums, products, differences
	Exponents and logarithms
	Other special functions
	Floating point routines
	Rational routines
	Arithmetic operations
	Handling complex numbers
	Extrema finding
	Miscellaneous

	Miscellaneous routines
	Performance tuning
	Memory ranges
	Utility
	NumPy-specific help function

	Polynomials
	Transitioning from numpy.poly1d to numpy.polynomial
	Quick Reference
	Transition Guide

	Documentation for the polynomial package
	Using the convenience classes
	Basics
	Calculus
	Other polynomial constructors
	Fitting

	Power Series (numpy.polynomial.polynomial)
	Classes
	Constants
	Arithmetic
	Calculus
	Misc Functions
	See Also

	Chebyshev Series (numpy.polynomial.chebyshev)
	Classes
	Constants
	Arithmetic
	Calculus
	Misc Functions
	See also
	Notes
	References

	Hermite Series, “Physicists” (numpy.polynomial.hermite)
	Classes
	Constants
	Arithmetic
	Calculus
	Misc Functions
	See also

	HermiteE Series, “Probabilists” (numpy.polynomial.hermite_e)
	Classes
	Constants
	Arithmetic
	Calculus
	Misc Functions
	See also

	Laguerre Series (numpy.polynomial.laguerre)
	Classes
	Constants
	Arithmetic
	Calculus
	Misc Functions
	See also

	Legendre Series (numpy.polynomial.legendre)
	Classes
	Constants
	Arithmetic
	Calculus
	Misc Functions
	See also

	Polyutils
	Functions

	Documentation for legacy polynomials
	Poly1d
	Basics
	Fitting
	Calculus
	Arithmetic

	Set routines
	Making proper sets
	Boolean operations

	Sorting, searching, and counting
	Sorting
	Searching
	Counting

	Statistics
	Order statistics
	Averages and variances
	Correlating
	Histograms

	Window functions
	Various windows

	C API
	NumPy C-API
	Python types and C-structures
	New Python types defined
	PyArray_Type and PyArrayObject
	PyGenericArrType_Type
	PyArrayDescr_Type and PyArray_Descr
	PyArray_ArrFuncs
	PyArrayMethod_Context and PyArrayMethod_Spec
	PyArray_DTypeMeta and PyArrayDTypeMeta_Spec
	Exposed DTypes classes (PyArray_DTypeMeta objects)
	PyUFunc_Type and PyUFuncObject
	PyArrayIter_Type and PyArrayIterObject
	PyArrayMultiIter_Type and PyArrayMultiIterObject
	PyArrayNeighborhoodIter_Type and PyArrayNeighborhoodIterObject
	ScalarArrayTypes

	Other C-structures
	PyArray_Dims
	PyArray_Chunk
	PyArrayInterface
	Internally used structures

	NumPy C-API and C complex

	System configuration
	Data type sizes
	Platform information
	Compiler directives

	Data type API
	Enumerated types
	Defines
	Max and min values for integers
	Number of bits in data types
	Bit-width references to enumerated typenums
	Further integer aliases

	C-type names
	Boolean
	(Un)Signed Integer
	(Complex) Floating point
	Bit-width names
	Time and timedelta

	Printf formatting

	Array API
	Array structure and data access
	Data access

	Creating arrays
	From scratch
	From other objects

	Dealing with types
	General check of Python Type
	Data-type accessors
	Data-type checking
	Converting data types
	User-defined data types
	Special functions for NPY_OBJECT

	Array flags
	Basic Array Flags
	Combinations of array flags
	Flag-like constants
	Flag checking

	ArrayMethod API
	Slots and Typedefs
	Flags
	Typedefs
	API Functions and Typedefs
	Wrapping Loop Example

	API for calling array methods
	Conversion
	Shape Manipulation
	Item selection and manipulation
	Calculation

	Functions
	Array Functions
	Other functions

	Auxiliary data with object semantics
	Array iterators
	Broadcasting (multi-iterators)
	Neighborhood iterator
	Array scalars
	Data-type descriptors
	Data Type Promotion and Inspection
	Custom Data Types
	Flags
	Slot IDs and API Function Typedefs
	PyArray_ArrFuncs slots

	Macros and Static Inline Functions

	Conversion utilities
	For use with PyArg_ParseTuple
	Other conversions

	Including and importing the C API
	Mechanism details and dynamic linking
	Checking the API Version
	Memory management
	Threading support
	Group 1
	Group 2

	Priority
	Default buffers
	Other constants
	Miscellaneous Macros
	Enumerated Types

	Array iterator API
	Array iterator
	Iteration example
	Multi-iteration example
	Multi index tracking example
	Iterator data types
	Construction and destruction
	Functions for iteration
	Converting from previous NumPy iterators

	ufunc API
	Constants
	Macros
	Types
	Functions
	Generic functions
	Importing the API

	Generalized universal function API
	Definitions
	Details of signature
	C-API for implementing elementary functions
	Customizing core dimension size processing

	NpyString API
	Examples
	Loading a String
	Packing a String

	Types
	Functions

	NumPy core math library
	Floating point classification
	Useful math constants
	Low-level floating point manipulation
	Support for complex numbers
	Linking against the core math library in an extension
	Half-precision functions

	Datetime API
	Data types
	Conversion functions

	C API deprecations
	Background
	Deprecation mechanism NPY_NO_DEPRECATED_API

	Memory management in NumPy
	Historical overview
	Configurable memory routines in NumPy (NEP 49)
	What happens when deallocating if there is no policy set
	Example of memory tracing with np.lib.tracemalloc_domain

	Other topics
	Array API standard compatibility
	Entry point
	Inspection

	CPU/SIMD optimizations
	CPU build options
	Description
	Quick start
	I am building NumPy for my local use
	I do not want to support the old processors of the x86 architecture
	I’m facing the same case above but with ppc64 architecture
	Having issues with AVX512 features?

	Supported features
	On x86
	On IBM/POWER big-endian
	On IBM/POWER little-endian
	On ARMv7/A32
	On ARMv8/A64
	On IBM/ZSYSTEM(S390X)

	Special options
	Behaviors
	Platform differences
	On x86::Intel Compiler
	On x86::Microsoft Visual C/C++

	Build report
	Runtime dispatch
	Tracking dispatched functions

	How does the CPU dispatcher work?
	1- Configuration
	2- Discovering the environment
	3- Validating the requested optimizations
	4- Generating the main configuration header
	5- Dispatch-able sources and configuration statements

	Thread Safety
	Free-threaded Python

	Global Configuration Options
	Performance-related options
	Number of threads used for linear algebra
	madvise hugepage on Linux
	SIMD feature selection

	Debugging-related options
	Warn if no memory allocation policy when deallocating data

	NumPy security
	Advice for using NumPy on untrusted data

	Status of numpy.distutils and migration advice
	Migration advice
	Moving to Meson
	Moving to CMake / scikit-build
	Moving to setuptools

	Interaction of numpy.distutils with setuptools

	numpy.distutils user guide
	SciPy structure
	Requirements for SciPy packages
	The setup.py file
	SciPy pure Python package example
	Configuration instance attributes
	Configuration instance methods
	Conversion of .src files using templates
	Fortran files
	Named repeat rule
	Short repeat rule
	Pre-defined names

	Other files
	Useful functions in numpy.distutils.misc_util
	numpy.distutils.system_info module
	numpy.distutils.cpuinfo module
	numpy.distutils.log module
	numpy.distutils.exec_command module

	The __init__.py file
	Extra features in NumPy Distutils
	Specifying config_fc options for libraries in setup.py script
	Getting extra Fortran 77 compiler options from source

	NumPy and SWIG
	Introduction
	Using numpy.i
	Available typemaps
	Input Arrays
	In-Place Arrays
	Argout Arrays
	Argout View Arrays
	Memory Managed Argout View Arrays
	Output Arrays
	Other Common Types: bool
	Other Common Types: complex

	NumPy array scalars and SWIG
	Why is There a Second File?

	Helper functions
	Macros
	Routines

	Beyond the provided typemaps
	A Common Example
	Other Situations
	A Final Note

	Summary

	Testing the numpy.i typemaps
	Introduction
	Testing organization
	Testing header files
	Testing source files
	Testing SWIG interface files
	Testing Python scripts

	Acknowledgements
	Bibliography
	Python Module Index

