numpy.frexp#
- numpy.frexp(x, [out1, out2, ]/, [out=(None, None), ]*, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'frexp'>#
Decompose the elements of x into mantissa and twos exponent.
Returns (mantissa, exponent), where
x = mantissa * 2**exponent
. The mantissa lies in the open interval(-1, 1), while the twos exponent is a signed integer.- Parameters:
- xarray_like
Array of numbers to be decomposed.
- out1ndarray, optional
Output array for the mantissa. Must have the same shape as x.
- out2ndarray, optional
Output array for the exponent. Must have the same shape as x.
- outndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
- wherearray_like, optional
This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default
out=None
, locations within it where the condition is False will remain uninitialized.- **kwargs
For other keyword-only arguments, see the ufunc docs.
- Returns:
- mantissandarray
Floating values between -1 and 1. This is a scalar if x is a scalar.
- exponentndarray
Integer exponents of 2. This is a scalar if x is a scalar.
Notes
Complex dtypes are not supported, they will raise a TypeError.
Examples
>>> import numpy as np >>> x = np.arange(9) >>> y1, y2 = np.frexp(x) >>> y1 array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875, 0.5 ]) >>> y2 array([0, 1, 2, 2, 3, 3, 3, 3, 4], dtype=int32) >>> y1 * 2**y2 array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.])