numpy.ndarray.tolist#
method
- ndarray.tolist()#
- Return the array as an - a.ndim-levels deep nested list of Python scalars.- Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible builtin Python type, via the - itemfunction.- If - a.ndimis 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python scalar.- Parameters:
- none
 
- Returns:
- yobject, or list of object, or list of list of object, or …
- The possibly nested list of array elements. 
 
 - Notes - The array may be recreated via - a = np.array(a.tolist()), although this may sometimes lose precision.- Examples - For a 1D array, - a.tolist()is almost the same as- list(a), except that- tolistchanges numpy scalars to Python scalars:- >>> import numpy as np >>> a = np.uint32([1, 2]) >>> a_list = list(a) >>> a_list [np.uint32(1), np.uint32(2)] >>> type(a_list[0]) <class 'numpy.uint32'> >>> a_tolist = a.tolist() >>> a_tolist [1, 2] >>> type(a_tolist[0]) <class 'int'> - Additionally, for a 2D array, - tolistapplies recursively:- >>> a = np.array([[1, 2], [3, 4]]) >>> list(a) [array([1, 2]), array([3, 4])] >>> a.tolist() [[1, 2], [3, 4]] - The base case for this recursion is a 0D array: - >>> a = np.array(1) >>> list(a) Traceback (most recent call last): ... TypeError: iteration over a 0-d array >>> a.tolist() 1