This guide is an overview and explains the important features; details are found in reference.
WHAT IS NUMPY?

NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multi-dimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much more.

At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional arrays of homogeneous data types, with many operations being performed in compiled code for performance. There are several important differences between NumPy arrays and the standard Python sequences:

- NumPy arrays have a fixed size at creation, unlike Python lists (which can grow dynamically). Changing the size of an ndarray will create a new array and delete the original.
- The elements in a NumPy array are all required to be of the same data type, and thus will be the same size in memory. The exception: one can have arrays of (Python, including NumPy) objects, thereby allowing for arrays of different sized elements.
- NumPy arrays facilitate advanced mathematical and other types of operations on large numbers of data. Typically, such operations are executed more efficiently and with less code than is possible using Python’s built-in sequences.
- A growing plethora of scientific and mathematical Python-based packages are using NumPy arrays; though these typically support Python-sequence input, they convert such input to NumPy arrays prior to processing, and they often output NumPy arrays. In other words, in order to efficiently use much (perhaps even most) of today’s scientific/mathematical Python-based software, just knowing how to use Python’s built-in sequence types is insufficient - one also needs to know how to use NumPy arrays.

The points about sequence size and speed are particularly important in scientific computing. As a simple example, consider the case of multiplying each element in a 1-D sequence with the corresponding element in another sequence of the same length. If the data are stored in two Python lists, a and b, we could iterate over each element:

```python
for i in range(len(a)):
    c.append(a[i]*b[i])
```

This produces the correct answer, but if a and b each contain millions of numbers, we will pay the price for the inefficiencies of looping in Python. We could accomplish the same task much more quickly in C by writing (for clarity we neglect variable declarations and initializations, memory allocation, etc.)

```c
for (i = 0; i < rows; i++) {
    c[i] = a[i]*b[i];
}
```

This saves all the overhead involved in interpreting the Python code and manipulating Python objects, but at the expense of the benefits gained from coding in Python. Furthermore, the coding work required increases with the dimensionality of our data. In the case of a 2-D array, for example, the C code (abridged as before) expands to
for (i = 0; i < rows; i++) {
 for (j = 0; j < columns; j++) {
 c[i][j] = a[i][j] * b[i][j];
 }
}

NumPy gives us the best of both worlds: element-by-element operations are the “default mode” when an ndarray is involved, but the element-by-element operation is speedily executed by pre-compiled C code. In NumPy

c = a * b

does what the earlier examples do, at near-C speeds, but with the code simplicity we expect from something based on Python. Indeed, the NumPy idiom is even simpler! This last example illustrates two of NumPy’s features which are the basis of much of its power: vectorization and broadcasting.

1.1 Why is NumPy Fast?

Vectorization describes the absence of any explicit looping, indexing, etc., in the code - these things are taking place, of course, just “behind the scenes” in optimized, pre-compiled C code. Vectorized code has many advantages, among which are:

- vectorized code is more concise and easier to read
- fewer lines of code generally means fewer bugs
- the code more closely resembles standard mathematical notation (making it easier, typically, to correctly code mathematical constructs)
- vectorization results in more “Pythonic” code. Without vectorization, our code would be littered with inefficient and difficult to read for loops.

Broadcasting is the term used to describe the implicit element-by-element behavior of operations; generally speaking, in NumPy all operations, not just arithmetic operations, but logical, bit-wise, functional, etc., behave in this implicit element-by-element fashion, i.e., they broadcast. Moreover, in the example above, a and b could be multidimensional arrays of the same shape, or a scalar and an array, or even two arrays of with different shapes, provided that the smaller array is “expandable” to the shape of the larger in such a way that the resulting broadcast is unambiguous. For detailed “rules” of broadcasting see basics.broadcasting.

1.2 Who Else Uses NumPy?

NumPy fully supports an object-oriented approach, starting, once again, with ndarray. For example, ndarray is a class, possessing numerous methods and attributes. Many of its methods are mirrored by functions in the outer-most NumPy namespace, allowing the programmer to code in whichever paradigm they prefer. This flexibility has allowed the NumPy array dialect and NumPy ndarray class to become the de-facto language of multi-dimensional data interchange used in Python.
2.1 Prerequisites

You'll need to know a bit of Python. For a refresher, see the Python tutorial.

To work the examples, you'll need matplotlib installed in addition to NumPy.

Learner profile

This is a quick overview of algebra and arrays in NumPy. It demonstrates how n-dimensional ($n \geq 2$) arrays are represented and can be manipulated. In particular, if you don't know how to apply common functions to n-dimensional arrays (without using for-loops), or if you want to understand axis and shape properties for n-dimensional arrays, this article might be of help.

Learning Objectives

After reading, you should be able to:

- Understand the difference between one-, two- and n-dimensional arrays in NumPy;
- Understand how to apply some linear algebra operations to n-dimensional arrays without using for-loops;
- Understand axis and shape properties for n-dimensional arrays.

2.2 The Basics

NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of non-negative integers. In NumPy dimensions are called axes.

For example, the coordinates of a point in 3D space $[1, 2, 1]$ has one axis. That axis has 3 elements in it, so we say it has a length of 3. In the example pictured below, the array has 2 axes. The first axis has a length of 2, the second axis has a length of 3.

```
[[ 1., 0., 0.],
 [ 0., 1., 2.]]
```

NumPy's array class is called ndarray. It is also known by the alias array. Note that numpy.array is not the same as the Standard Python Library class array.array, which only handles one-dimensional arrays and offers less functionality. The more important attributes of an ndarray object are:

```python
ndarray.ndim
```

the number of axes (dimensions) of the array.
ndarray.shape

the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a matrix with \(n \) rows and \(m \) columns, \(\text{shape} \) will be \((n, m)\). The length of the \(\text{shape} \) tuple is therefore the number of axes, \(\text{ndim} \).

ndarray.size

the total number of elements of the array. This is equal to the product of the elements of \(\text{shape} \).

ndarray.dtype

an object describing the type of the elements in the array. One can create or specify dtype's using standard Python types. Additionally NumPy provides types of its own. numpy.int32, numpy.int16, and numpy.float64 are some examples.

ndarray.itemsize

the size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize 8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.

ndarray.data

the buffer containing the actual elements of the array. Normally, we won’t need to use this attribute because we will access the elements in an array using indexing facilities.

2.2.1 An example

```python
>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<class 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<class 'numpy.ndarray'>
```
2.2.2 Array Creation

There are several ways to create arrays.

For example, you can create an array from a regular Python list or tuple using the array function. The type of the resulting array is deduced from the type of the elements in the sequences.

```python
>>> import numpy as np
>>> a = np.array([2, 3, 4])
>>> a
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b
dtype('float64')
```

A frequent error consists in calling array with multiple arguments, rather than providing a single sequence as an argument.

```python
>>> a = np.array(1, 2, 3, 4)  # WRONG
Traceback (most recent call last):
  ...
TypeError: array() takes from 1 to 2 positional arguments but 4 were given
>>> a = np.array([1, 2, 3, 4])  # RIGHT
```

array transforms sequences of sequences into two-dimensional arrays, sequences of sequences of sequences into three-dimensional arrays, and so on.

```python
>>> b = np.array([[1.5, 2.], [4.5, 6.]])
>>> b
array([[1.5, 2. ],
       [4.5, 6. ]])
```

The type of the array can also be explicitly specified at creation time:

```python
>>> c = np.array([ [1,2], [3,4] ], dtype=complex)
>>> c
array([[1.+0.j, 2.+0.j],
       [3.+0.j, 4.+0.j]])
```

Often, the elements of an array are originally unknown, but its size is known. Hence, NumPy offers several functions to create arrays with initial placeholder content. These minimize the necessity of growing arrays, an expensive operation.

The function zeros creates an array full of zeros, the function ones creates an array full of ones, and the function empty creates an array whose initial content is random and depends on the state of the memory. By default, the dtype of the created array is float64.

```python
>>> np.zeros((3, 4))
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])
>>> np.ones((2,3,4), dtype=np.int16)  # dtype can also be specified
array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],
       [[1, 1, 1, 1]],
       [[1, 1, 1, 1]],
       [[1, 1, 1, 1]],
       [[1, 1, 1, 1]],
       [[1, 1, 1, 1]]])
```

(continues on next page)
To create sequences of numbers, NumPy provides the `arange` function which is analogous to the Python built-in `range`, but returns an array.

```python
>>> np.arange(10, 30, 5)
array([10, 15, 20, 25])
>>> np.arange(0, 2, 0.3)
# it accepts float arguments
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
```

When `arange` is used with floating point arguments, it is generally not possible to predict the number of elements obtained, due to the finite floating point precision. For this reason, it is usually better to use the function `linspace` that receives as an argument the number of elements that we want, instead of the step:

```python
>>> from numpy import pi
>>> np.linspace(0, 2, 9)  # 9 numbers from 0 to 2
array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
>>> x = np.linspace(0, 2*pi, 100)  # useful to evaluate function at lots of points
>>> f = np.sin(x)
```

See also:

- `array`, `zeros`, `zeros_like`, `ones`, `ones_like`, `empty`, `empty_like`, `arange`, `linspace`, `numpy.random.Generator.rand`, `numpy.random.Generator.randn`, `fromfunction`, `fromfile`

2.2.3 Printing Arrays

When you print an array, NumPy displays it in a similar way to nested lists, but with the following layout:

- the last axis is printed from left to right,
- the second-to-last is printed from top to bottom,
- the rest are also printed from top to bottom, with each slice separated from the next by an empty line.

One-dimensional arrays are then printed as rows, bidimensionals as matrices and tridimensionals as lists of matrices.

```python
>>> a = np.arange(6)  # 1d array
>>> print(a)
[0 1 2 3 4 5]

>>> b = np.arange(12).reshape(4,3)  # 2d array
>>> print(b)
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]

>>> c = np.arange(24).reshape(2,3,4)  # 3d array
>>> print(c)
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

(continues on previous page)
See below to get more details on reshape.

If an array is too large to be printed, NumPy automatically skips the central part of the array and only prints the corners:

```python
>>> print(np.arange(10000))
[0 1 2 ... 9997 9998 9999]
>>> print(np.arange(10000).reshape(100,100))
[[0 1 2 ... 97 98 99]
 [100 101 102 ... 197 198 199]
 [200 201 202 ... 297 298 299]
 ...
 [9700 9701 9702 ... 9797 9798 9799]
 [9800 9801 9802 ... 9897 9898 9899]
 [9900 9901 9902 ... 9997 9998 9999]]
```

To disable this behaviour and force NumPy to print the entire array, you can change the printing options using `set_printoptions`.

```python
>>> np.set_printoptions(threshold=sys.maxsize) # sys module should be imported
```

## 2.2.4 Basic Operations

Arithmetic operators on arrays apply *elementwise*. A new array is created and filled with the result.

```python
>>> a = np.array([20,30,40,50])
>>> b = np.arange(4)
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 19, 18, 17])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([True, True, False, False])
```

Unlike in many matrix languages, the product operator `*` operates elementwise in NumPy arrays. The matrix product can be performed using the `@` operator (in python >=3.5) or the `dot` function or method:

```python
>>> A = np.array([[1,1],
... [0,1]])
>>> B = np.array([[2,0],
... [3,4]])
>>> A @ B # elementwise product
array([[2, 0]])
```
>>> A @ B  # matrix product
array([[5, 4],
        [3, 4]])
>>> A.dot(B)  # another matrix product
array([[5, 4],
        [3, 4]])

Some operations, such as += and *=, act in place to modify an existing array rather than create a new one.

```python
>>> rg = np.random.default_rng(1) # create instance of default random number generator
>>> a = np.ones((2,3), dtype=int)
>>> a *= 3
>>> a
array([[3, 3, 3],
 [3, 3, 3]])
>>> b += a
>>> b
array([[3.51182162, 3.9504637 , 3.14415961],
 [3.94864945, 3.31183145, 3.42332645]])
>>> a += b # b is not automatically converted to integer
type Traceback (most recent call last):
 ... numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'add' output from dtype('float64') to dtype('int64') with casting rule 'same_kind'

When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise one (a behavior known as upcasting).

```python
>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
'float64'
>>> c = a+b
>>> c
array([1. , 2.57079633, 4.14159265])
>>> c.dtype.name
'float64'
>>> d = np.exp(c*1j)
>>> d
array([-0.95892427-0.30855335j, 0.41116827-0.81229111j, 0.95892427+0.30855335j])
>>> d.dtype.name
'complex128'
```

Many unary operations, such as computing the sum of all the elements in the array, are implemented as methods of the ndarray class.

```python
>>> a = rg.random((2,3))
>>> a
array([[0.82770259, 0.40919914, 0.54959369],
        [0.02755911, 0.75351311, 0.53814331]])
>>> a.sum()
```

(continues on next page)
By default, these operations apply to the array as though it were a list of numbers, regardless of its shape. However, by specifying the axis parameter you can apply an operation along the specified axis of an array:

```python
>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
```

```python
>>> b.sum(axis=0)  # sum of each column
array([12, 15, 18, 21])
```

```python
>>> b.min(axis=1)  # min of each row
array([0, 4, 8])
```

```python
>>> b.cumsum(axis=1)  # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])
```

2.2.5 Universal Functions

NumPy provides familiar mathematical functions such as sin, cos, and exp. In NumPy, these are called “universal functions” (ufunc). Within NumPy, these functions operate elementwise on an array, producing an array as output.

```python
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
```

```python
>>> np.exp(B)
array([1. , 2.71828183, 7.3890561])
```

```python
>>> np.sqrt(B)
array([0. , 1. , 1.41421356])
```

```python
>>> C = np.array([2., -1., 4.])
```

```python
>>> np.add(B, C)
array([2., 0., 6.])
```

See also:

all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor, inner, invert, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var, vdot, vectorize, where
2.2.6 Indexing, Slicing and Iterating

One-dimensional arrays can be indexed, sliced and iterated over, much like lists and other Python sequences.

>>> a = np.arange(10)**3
>>> a
array([0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([8, 27, 64])
equivalent to a[0:6:2] = 1000;
from start to position 6, exclusive, set every 2nd element to 1000
>>> a[6:2] = 1000
>>> a
array([1000, 1000, 27, 1000, 125, 216, 343, 512, 729, 1000])
>>> for i in a:
... print(i**1/3.)
...
9.999999999999998
1.0
9.999999999999998
3.0
9.999999999999998
4.999999999999999
5.999999999999999
6.999999999999999
7.999999999999999
8.999999999999999

Multidimensional arrays can have one index per axis. These indices are given in a tuple separated by commas:

>>> def f(x,y):
... return 10*x+y
... return
>>> b = np.fromfunction(f,(5,4),dtype=int)
>>> b
array([[0, 1, 2, 3],
 [10, 11, 12, 13],
 [20, 21, 22, 23],
 [30, 31, 32, 33],
 [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1] # each row in the second column of b
array([1, 11, 21, 31, 41])
>>> b[:,1] # equivalent to the previous example
array([1, 11, 21, 31, 41])
>>> b[1:3, :] # each column in the second and third row of b
array([[10, 11, 12, 13],
 [20, 21, 22, 23]])

When fewer indices are provided than the number of axes, the missing indices are considered complete slices:

>>> b[-1] # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])
The expression within brackets in `b[1]` is treated as an `1` followed by as many instances of `:` as needed to represent the remaining axes. NumPy also allows you to write this using dots as `b[i,...]`.

The **dots** `(...)` represent as many colons as needed to produce a complete indexing tuple. For example, if `x` is an array with 5 axes, then

- `x[1,2,...]` is equivalent to `x[1,2,:,:,:,:]`,
- `x[...,...,3]` to `x[::,:,:,:,:,:,:,3]` and
- `x[4,...,5,:,...]` to `x[4,:,:,:,5,:,...]`.

```python
>>> c = np.array([[[ 0,  1,  2], # a 3D array (two stacked 2D arrays)
...                  [ 10, 12, 13]],
...                  [[100,101,102],
...                  [110,112,113]]])
>>> c.shape
(2, 2, 3)
>>> c[1,...] # same as c[1,:,:] or c[1]
array([[100, 101, 102],
       [110, 112, 113]])
>>> c[...,2] # same as c[:,:,2]
array([[  2,  13],
       [102, 113]])
```

Iterating over multidimensional arrays is done with respect to the first axis:

```python
>>> for row in b:
...     print(row)
... [0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]
```

However, if one wants to perform an operation on each element in the array, one can use the `flat` attribute which is an iterator over all the elements of the array:

```python
>>> for element in b.flat:
...     print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
```

(continues on next page)
See also:
Indexing, arrays.indexing (reference), newaxis, ndenumerate, indices

2.3 Shape Manipulation

2.3.1 Changing the shape of an array

An array has a shape given by the number of elements along each axis:

```python
>>> a = np.floor(10*rg.random((3,4)))
>>> a
array([[3., 7., 3., 4.],
       [1., 4., 2., 2.],
       [7., 2., 4., 9.]])
>>> a.shape
(3, 4)
```

The shape of an array can be changed with various commands. Note that the following three commands all return a modified array, but do not change the original array:

```python
>>> a.ravel()  # returns the array, flattened
array([3., 7., 3., 4., 1., 4., 2., 2., 7., 2., 4., 9.])
>>> a.reshape(6,2)  # returns the array with a modified shape
array([[3., 7.],
       [3., 4.],
       [1., 4.],
       [2., 2.],
       [7., 2.],
       [4., 9.]])
>>> a.T  # returns the array, transposed
array([[3., 1., 7.],
       [7., 4., 2.],
       [3., 2., 4.],
       [4., 2., 9.]])
```

The order of the elements in the array resulting from ravel() is normally “C-style”, that is, the rightmost index “changes the fastest”, so the element after a[0,0] is a[0,1]. If the array is reshaped to some other shape, again the array is treated as “C-style”. NumPy normally creates arrays stored in this order, so ravel() will usually not need to copy its argument, but if the array was made by taking slices of another array or created with unusual options, it may need to be copied. The functions ravel() and reshape() can also be instructed, using an optional argument, to use FORTRAN-style arrays, in which the leftmost index changes the fastest.

The reshape function returns its argument with a modified shape, whereas the ndarray.resize method modifies the array itself:
```python
>>> a
array([[3., 7., 3., 4.],
       [1., 4., 2., 2.],
       [7., 2., 4., 9.]]
>>> a.resize((2,6))
>>> a
array([[3., 7., 3., 4., 1., 4.],
       [2., 2., 7., 2., 4., 9.]]

If a dimension is given as -1 in a reshaping operation, the other dimensions are automatically calculated:

```python
>>> a.reshape(3,-1)
array([[3., 7., 3., 4.],
 [1., 4., 2., 2.],
 [7., 2., 4., 9.]])
```

See also:
ndarray.shape, reshape, resize, ravel

### 2.3.2 Stacking together different arrays

Several arrays can be stacked together along different axes:

```python
>>> a = np.floor(10*rg.random((2,2)))
>>> a
array([[9., 7.],
 [5., 2.]])
>>> b = np.floor(10*rg.random((2,2)))
>>> b
array([[1., 9.],
 [5., 1.]])
>>> np.vstack((a,b))
array([[9., 7.],
 [5., 2.],
 [1., 9.],
 [5., 1.]])
>>> np.hstack((a,b))
array([[9., 7., 1., 9.],
 [5., 2., 5., 1.]])
```

The function `column_stack` stacks 1D arrays as columns into a 2D array. It is equivalent to `hstack` only for 2D arrays:

```python
>>> from numpy import newaxis
>>> np.column_stack((a,b)) # with 2D arrays
array([[9., 7., 1., 9.],
 [5., 2., 5., 1.]])
>>> a = np.array([4., 2.])
>>> b = np.array([3., 8.])
>>> np.column_stack((a,b)) # returns a 2D array
array([[4., 3.],
 [2., 8.1]])
>>> np.hstack((a,b)) # the result is different
array([4., 2., 3., 8.])
>>> a[:,newaxis] # view `a` as a 2D column vector
```

(continues on next page)
On the other hand, the function `row_stack` is equivalent to `vstack` for any input arrays. In fact, `row_stack` is an alias for `vstack`:

```python
>>> np.column_stack is np.hstack
False
>>> np.row_stack is np.vstack
True
```

In general, for arrays with more than two dimensions, `hstack` stacks along their second axes, `vstack` stacks along their first axes, and `concatenate` allows for an optional arguments giving the number of the axis along which the concatenation should happen.

**Note**

In complex cases, `r_` and `c_` are useful for creating arrays by stacking numbers along one axis. They allow the use of range literals (`"[:]")

```python
>>> np.r_[1:4,0,4]
array([1, 2, 3, 0, 4])
```

When used with arrays as arguments, `r_` and `c_` are similar to `vstack` and `hstack` in their default behavior, but allow for an optional argument giving the number of the axis along which to concatenate.

**See also:**

`hstack`, `vstack`, `column_stack`, `concatenate`, `c_`, `r_`

### 2.3.3 Splitting one array into several smaller ones

Using `hsplit`, you can split an array along its horizontal axis, either by specifying the number of equally shaped arrays to return, or by specifying the columns after which the division should occur:

```python
>>> a = np.floor(10*rg.random((2,12)))
>>> a
array([[6., 7., 6., 9., 0., 5., 4., 0., 6., 8., 5., 2.],
 [8., 5., 5., 7., 1., 8., 6., 7., 1., 8., 1., 0.]])
Split a into 3
>>> np.hsplit(a,3)
[array([[6., 7., 6., 9.],
 [8., 5., 5., 7.]]), array([[0., 5., 4., 0.],
 [1., 8., 6., 7.]]), array([[6., 8., 5., 2.],
 [1., 8., 1., 0.]])]
Split a after the third and the fourth column
>>> np.hsplit(a,(3,4))
[array([[6., 7., 6.],
 [8., 5., 5.]]), array([[9.],
 [8., 5., 5.]]), array([[9.],
 [1., 8., 1.]])]
```

(continues on next page)
vspli​t splits along the vertical axis, and an​ray_split allows one to specify along which axis to split.

### 2.4 Copies and Views

When operating and manipulating arrays, their data is sometimes copied into a new array and sometimes not. This is often a source of confusion for beginners. There are three cases:

#### 2.4.1 No Copy at All

Simple assignments make no copy of objects or their data.

```python
>>> a = np.array([[0, 1, 2, 3],
... [4, 5, 6, 7],
... [8, 9, 10, 11]])
>>> b = a # no new object is created
>>> b is a # a and b are two names for the same ndarray object
True
```

Python passes mutable objects as references, so function calls make no copy.

```python
>>> def f(x):
... print(id(x))
... return

>>> id(a) # id is a unique identifier of an object
148293216 # may vary
>>> f(a)
148293216 # may vary
```

#### 2.4.2 View or Shallow Copy

Different array objects can share the same data. The **view** method creates a new array object that looks at the same data.

```python
>>> c = a.view()
>>> c is a
False
>>> c.base is a # c is a view of the data owned by a
True
>>> c.flags.owndata
False
>>> c = c.reshape((2, 6)) # a's shape doesn't change
>>> a.shape
(3, 4)
>>> c[0, 4] = 1234 # a's data changes
>>> a
array([[0, 1, 2, 3, 1234],
[5, 6, 7, 1234],
[8, 9, 10, 11]])
```
Slicing an array returns a view of it:

```python
>>> s = a[:, 1:3] # spaces added for clarity; could also be written "s = a[:,...
 → 1:3]"
>>> s[:] = 10 # s[:] is a view of s. Note the difference between s = 10 and...
 → s[:] = 10
```

```python
>>> a
array([[0, 10, 10, 3],
 [1234, 10, 10, 7],
 [8, 10, 10, 11]])
```

### 2.4.3 Deep Copy

The `copy` method makes a complete copy of the array and its data.

```python
>>> d = a.copy() # a new array object with new data is...
 → created
>>> d is a
False
>>> d.base is a
False
>>> d[0,0] = 9999
>>> a
array([[0, 10, 10, 3],
 [1234, 10, 10, 7],
 [8, 10, 10, 11]])
```

Sometimes `copy` should be called after slicing if the original array is not required anymore. For example, suppose `a` is a huge intermediate result and the final result `b` only contains a small fraction of `a`, a deep copy should be made when constructing `b` with slicing:

```python
>>> a = np.arange(int(1e8))
>>> b = a[:100].copy()
>>> del a # the memory of ``a`` can be released.
```

If `b = a[:100]` is used instead, `a` is referenced by `b` and will persist in memory even if `del a` is executed.

### 2.4.4 Functions and Methods Overview

Here is a list of some useful NumPy functions and methods names ordered in categories. See routines for the full list.

**Array Creation**

- `arange`, `array`, `copy`, `empty`, `empty_like`, `eye`, `fromfile`, `fromfunction`, `identity`, `linspace`, `logspace`, `mgrid`, `ogrid`, `ones`, `ones_like`, `_`, `zeros`, `zeros_like`

**Conversions**

- `ndarray.astype`, `atleast_1d`, `atleast_2d`, `atleast_3d`, `mat`

**Manipulations**

- `array_split`, `column_stack`, `concatenate`, `diagonal`, `dsplit`, `dstack`, `hsplit`, `hstack`, `ndarray.item`, `newaxis`, `ravel`, `repeat`, `reshape`, `resize`, `squeeze`, `swapaxes`, `take`, `transpose`, `vsplit`, `vstack`
Questions

all, any, nonzero, where

Ordering

argmax, argmin, argsort, max, min, ptp, searchsorted, sort

Operations

choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum

Basic Statistics

cov, mean, std, var

Basic Linear Algebra

cross, dot, outer, linalg.svd, vdot

2.5 Less Basic

2.5.1 Broadcasting rules

Broadcasting allows universal functions to deal in a meaningful way with inputs that do not have exactly the same shape. The first rule of broadcasting is that if all input arrays do not have the same number of dimensions, a “1” will be repeatedly prepended to the shapes of the smaller arrays until all the arrays have the same number of dimensions.

The second rule of broadcasting ensures that arrays with a size of 1 along a particular dimension act as if they had the size of the array with the largest shape along that dimension. The value of the array element is assumed to be the same along that dimension for the “broadcast” array.

After application of the broadcasting rules, the sizes of all arrays must match. More details can be found in Broadcasting.

2.6 Advanced indexing and index tricks

NumPy offers more indexing facilities than regular Python sequences. In addition to indexing by integers and slices, as we saw before, arrays can be indexed by arrays of integers and arrays of booleans.

2.6.1 Indexing with Arrays of Indices

```python
>>> a = np.arange(12)**2 # the first 12 square numbers
>>> i = np.array([1, 1, 3, 8, 5]) # an array of indices
>>> a[i] # the elements of a at the positions i
array([1, 1, 9, 64, 25])
>>> j = np.array([[3, 4], [9, 7]]) # a bidimensional array of indices
>>> a[j] # the same shape as j
array([[9, 16],
 [81, 49]])
```

When the indexed array `a` is multidimensional, a single array of indices refers to the first dimension of `a`. The following example shows this behavior by converting an image of labels into a color image using a palette.
```python
>>> palette = np.array([[0, 0, 0], # black
... [255, 0, 0], # red
... [0, 255, 0], # green
... [0, 0, 255]], # blue
... [255, 255, 255]]) # white

>>> image = np.array([[0, 1, 2, 0], # each value corresponds to a color in the...
... [0, 3, 4, 0]])

>>> palette[image] # the (2, 4, 3) color image
array([[[0, 0, 0],
 [255, 0, 0],
 [0, 255, 0],
 [0, 0, 0]],

 [[0, 0, 0],
 [0, 0, 255],
 [255, 255, 255],
 [0, 0, 0]]])

We can also give indexes for more than one dimension. The arrays of indices for each dimension must have the same shape.

```
However, we cannot do this by putting $i$ and $j$ into an array, because this array will be interpreted as indexing the first dimension of $a$.

```
>>> s = np.array([[i, j]])
not what we want
>>> a[s]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 0 with size 3
same as a[i, j]
>>> a[tuple(s)]
array([[2, 5],
 [7, 11]])
```

Another common use of indexing with arrays is the search of the maximum value of time-dependent series:

```
>>> time = np.linspace(20, 145, 5) # time scale
>>> data = np.sin(np.arange(20)).reshape(5,4) # 4 time-dependent series
>>> time
array([20. , 51.25, 82.5 , 113.75, 145.])
>>> data
array([[-0.7568025 , -0.95892427, -0.2794155 , 0.6569866],
 [0.98935825, 0.41211849, -0.54402111, -0.99999021],
 [-0.53657292, 0.42016704, 0.99060736, 0.65028784],
 [-0.28790332, -0.96139749, -0.75098725, 0.14987721]])
index of the maxima for each series
>>> ind = data.argmax(axis=0)
>>> ind
array([2, 0, 3, 1])
times corresponding to the maxima
>>> time_max = time[ind]
>>> data_max = data[ind, range(data.shape[1])] # => data[ind[0],0], data[ind[1],1]...

>>> time_max
array([82.5 , 20. , 113.75, 51.25])
>>> data_max
array([[0.98935825, 0.84147098, 0.90929743, 0.14112001],
 [0.99060736, 0.41211849, -0.54402111, -0.99999021],
 [0.65028784, 0.99060736, 0.65028784, 0.65028784],
 [0.14987721, -0.96139749, -0.75098725, 0.14987721]])
>>> np.all(data_max == data.max(axis=0))
True
```

You can also use indexing with arrays as a target to assign to:

```
>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a[[1,3,4]] = 0
>>> a
array([0, 0, 2, 0, 0])
```
However, when the list of indices contains repetitions, the assignment is done several times, leaving behind the last value:

```python
>>> a = np.arange(5)
>>> a[[0,0,2]] = [1,2,3]
>>> a
array([2, 1, 3, 3, 4])
```

This is reasonable enough, but watch out if you want to use Python’s `+=` construct, as it may not do what you expect:

```python
>>> a = np.arange(5)
>>> a[[0,0,2]] = 1
>>> a
array([1, 1, 3, 3, 4])
```

Even though 0 occurs twice in the list of indices, the 0th element is only incremented once. This is because Python requires “a+=1” to be equivalent to “a = a + 1”.

### 2.6.2 Indexing with Boolean Arrays

When we index arrays with arrays of (integer) indices we are providing the list of indices to pick. With boolean indices the approach is different; we explicitly choose which items in the array we want and which ones we don’t.

The most natural way one can think of for boolean indexing is to use boolean arrays that have the same shape as the original array:

```python
>>> a = np.arange(12).reshape(3,4)
>>> b = a > 4 # b is a boolean with a's shape
>>> b
array([[False, False, False, False],
 [False, True, True, True],
 [True, True, True, True]])
>>> a[b] # 1d array with the selected elements
array([5, 6, 7, 8, 9, 10, 11])
```

This property can be very useful in assignments:

```python
>>> a[b] = 0 # All elements of 'a' higher than 4... --become 0
>>> a
array([[0, 1, 2, 3],
 [4, 0, 0, 0],
 [0, 0, 0, 0]])
```

You can look at the following example to see how to use boolean indexing to generate an image of the Mandelbrot set:

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> def mandelbrot(h,w, maxit=20):
... """Returns an image of the Mandelbrot fractal of size (h,w).""
... y,x = np.ogrid[-1.4:1.4:h*1j,-2:0.8:w*1j]
... c = x+y*1j
... z = c
... divtime = maxit + np.zeros(z.shape, dtype=int)
... for i in range(maxit):
... z = z**2 + c
... return z
```

(continues on next page)
... diverge = z*np.conj(z) > 2**2               # who is diverging
... div_now = diverge & (divtime==maxit)    # who is diverging now
... divtime[div_now] = i                  # note when
... z[diverge] = 2                        # avoid diverging too much
...
... return divtime

>>> plt.imshow(mandelbrot(400,400))

The second way of indexing with booleans is more similar to integer indexing; for each dimension of the array we give a 1D boolean array selecting the slices we want:

```python
>>> a = np.arange(12).reshape(3,4)
>>> b1 = np.array([False,True,True]) # first dim selection
>>> b2 = np.array([True,False,True,False]) # second dim selection

>>> a[b1,:] # selecting rows
array([[4, 5, 6, 7],
 [8, 9, 10, 11]])

>>> a[b1] # same thing
array([[4, 5, 6, 7],
 [8, 9, 10, 11]])

>>> a[::,b2] # selecting columns
array([[0, 2],
 [4, 6],
 [8, 10]])

>>> a[b1,b2] # a weird thing to do
array([4, 10])
```

Note that the length of the 1D boolean array must coincide with the length of the dimension (or axis) you want to slice. In the previous example, b1 has length 3 (the number of rows in a), and b2 (of length 4) is suitable to index the 2nd axis (columns) of a.
2.6.3 The ix() function

The ix_ function can be used to combine different vectors so as to obtain the result for each n-uplet. For example, if you want to compute all the a+b*c for all the triplets taken from each of the vectors a, b and c:

```python
c = np.array([5, 4, 6, 8, 3])
a + b*c = np.ix_(a, b, c)
```

You could also implement the reduce as follows:

```python
def ufunc_reduce(ufct, *vectors):
 vs = np.ix_(*vectors)
 r = ufct.identity
 for v in vs:
 r = ufct(r, v)
 return r
```

and then use it as:
The advantage of this version of reduce compared to the normal ufunc.reduce is that it makes use of the broadcasting rules in order to avoid creating an argument array the size of the output times the number of vectors.

2.6.4 Indexing with strings

See *Structured arrays*.

2.7 Linear Algebra

Work in progress. Basic linear algebra to be included here.

2.7.1 Simple Array Operations

See linalg.py in numpy folder for more.

```python
>>> import numpy as np
>>> a = np.array([[1.0, 2.0], [3.0, 4.0]])
>>> print(a)
[[1. 2.]
 [3. 4.]]

>>> a.transpose()
array([[1., 3.],
 [2., 4.]])

>>> np.linalg.inv(a)
array([[-2., 1.],
 [1.5, -0.5]])

>>> u = np.eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[1., 0.],
 [0., 1.]])

>>> j = np.array([[0.0, -1.0], [1.0, 0.0]])
```
\[ A \times B \]

\[
\begin{pmatrix}
-1.0 & 0.0 \\
0.0 & -1.0
\end{pmatrix}
\]

>> np.trace(u)  # trace
2.0

>>> y = np.array([[5.0], [7.0]])
>>> np.linalg.solve(a, y)
array([-3.0],
     [ 4.0])

>>> np.linalg.eig(j)
(array([0.0+1.0j, 0.0-1.0j]), array([[0.70710678+0.0j , 0.70710678-0.0j ],
    [0.0 -0.70710678j, 0.0 +0.70710678j]]))

Parameters:
- square matrix

Returns
- The eigenvalues, each repeated according to its multiplicity.
- The normalized (unit "length") eigenvectors, such that the
column \`v[:,i]\` is the eigenvector corresponding to the
eigenvalue \`w[i]\`.

2.8 Tricks and Tips

Here we give a list of short and useful tips.

2.8.1 “Automatic” Reshaping

To change the dimensions of an array, you can omit one of the sizes which will then be deduced automatically:

```python
>>> a = np.arange(30)
>>> b = a.reshape((2, -1, 3)) # -1 means "whatever is needed"
>>> b.shape
(2, 5, 3)
>>> b
array([[[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11],
 [12, 13, 14]],
 [[15, 16, 17],
 [18, 19, 20],
 [21, 22, 23],
 [24, 25, 26],
 [27, 28, 29]]])
```
2.8.2 Vector Stacking

How do we construct a 2D array from a list of equally-sized row vectors? In MATLAB this is quite easy: if \( x \) and \( y \) are two vectors of the same length you only need \( m=[x;y] \). In NumPy this works via the functions \texttt{column_stack}, \texttt{dstack}, \texttt{hstack} and \texttt{vstack}, depending on the dimension in which the stacking is to be done. For example:

```python
>>> x = np.arange(0,10,2)
>>> y = np.arange(5)
>>> m = np.vstack([x,y])
>>> m
array([[0, 2, 4, 6, 8],
 [0, 1, 2, 3, 4]])
```

The logic behind those functions in more than two dimensions can be strange.

See also:

\textit{NumPy for MATLAB users}

2.8.3 Histograms

The NumPy \texttt{histogram} function applied to an array returns a pair of vectors: the histogram of the array and a vector of the bin edges. Beware: \texttt{matplotlib} also has a function to build histograms (called \texttt{hist}, as in Matlab) that differs from the one in NumPy. The main difference is that \texttt{pylab.hist} plots the histogram automatically, while \texttt{numpy.histogram} only generates the data.

```python
>>> import numpy as np
>>> import matplotlib.pyplot as plt

>>> # Build a vector of 10000 normal deviates with variance 0.5^2 and mean 2
>>> mu, sigma = 2, 0.5
>>> v = np.random.default_rng(1)
>>> v = np.random.normal(mu,sigma,10000)

>>> # Plot a normalized histogram with 50 bins
>>> plt.hist(v, bins=50, density=True) # matplotlib version (plot)

>>> # Compute the histogram with numpy and then plot it
>>> (n, bins) = np.histogram(v, bins=50, density=True) # NumPy version (no plot)

>>> plt.plot(.5*(bins[1:]+bins[:-1]), n)
```

2.9 Further reading

- The Python tutorial
- reference
- SciPy Tutorial
- SciPy Lecture Notes
- A matlab, R, IDL, NumPy/SciPy dictionary
Welcome to the absolute beginner’s guide to NumPy! If you have comments or suggestions, please don’t hesitate to reach out!

3.1 Welcome to NumPy!

NumPy (Numerical Python) is an open source Python library that’s used in almost every field of science and engineering. It’s the universal standard for working with numerical data in Python, and it’s at the core of the scientific Python and PyData ecosystems. NumPy users include everyone from beginning coders to experienced researchers doing state-of-the-art scientific and industrial research and development. The NumPy API is used extensively in Pandas, SciPy, Matplotlib, scikit-learn, scikit-image and most other data science and scientific Python packages.

The NumPy library contains multidimensional array and matrix data structures (you’ll find more information about this in later sections). It provides ndarray, a homogeneous n-dimensional array object, with methods to efficiently operate on it. NumPy can be used to perform a wide variety of mathematical operations on arrays. It adds powerful data structures to Python that guarantee efficient calculations with arrays and matrices and it supplies an enormous library of high-level mathematical functions that operate on these arrays and matrices.

Learn more about NumPy here!

3.2 Installing NumPy

To install NumPy, we strongly recommend using a scientific Python distribution. If you’re looking for the full instructions for installing NumPy on your operating system, you can find all of the details here.

If you already have Python, you can install NumPy with:

```bash
conda install numpy
```

or

```bash
pip install numpy
```

If you don’t have Python yet, you might want to consider using Anaconda. It’s the easiest way to get started. The good thing about getting this distribution is the fact that you don’t need to worry too much about separately installing NumPy or any of the major packages that you’ll be using for your data analyses, like pandas, Scikit-Learn, etc.

You can find all of the installation details in the Installation section at SciPy.
3.3 How to import NumPy

Any time you want to use a package or library in your code, you first need to make it accessible.

In order to start using NumPy and all of the functions available in NumPy, you'll need to import it. This can be easily done with this import statement:

\[
\text{import numpy as np}
\]

(We shorten numpy to np in order to save time and also to keep code standardized so that anyone working with your code can easily understand and run it.)

3.4 Reading the example code

If you aren’t already comfortable with reading tutorials that contain a lot of code, you might not know how to interpret a code block that looks like this:

\[
\begin{align*}
>>> & a = np.arange(6) \\
>>> & a2 = a[np.newaxis, :] \\
>>> & a2.shape \\
& (1, 6)
\end{align*}
\]

If you aren’t familiar with this style, it’s very easy to understand. If you see >>>, you're looking at input, or the code that you would enter. Everything that doesn’t have >>> in front of it is output, or the results of running your code. This is the style you see when you run python on the command line, but if you’re using IPython, you might see a different style.

3.5 What’s the difference between a Python list and a NumPy array?

NumPy gives you an enormous range of fast and efficient ways of creating arrays and manipulating numerical data inside them. While a Python list can contain different data types within a single list, all of the elements in a NumPy array should be homogeneous. The mathematical operations that are meant to be performed on arrays would be extremely inefficient if the arrays weren’t homogeneous.

Why use NumPy?

NumPy arrays are faster and more compact than Python lists. An array consumes less memory and is convenient to use. NumPy uses much less memory to store data and it provides a mechanism of specifying the data types. This allows the code to be optimized even further.

3.6 What is an array?

An array is a central data structure of the NumPy library. An array is a grid of values and it contains information about the raw data, how to locate an element, and how to interpret an element. It has a grid of elements that can be indexed in various ways. The elements are all of the same type, referred to as the array dtype.

An array can be indexed by a tuple of nonnegative integers, by booleans, by another array, or by integers. The rank of the array is the number of dimensions. The shape of the array is a tuple of integers giving the size of the array along each dimension.

One way we can initialize NumPy arrays is from Python lists, using nested lists for two- or higher-dimensional data.
For example:

```python
>>> a = np.array([1, 2, 3, 4, 5, 6])
```

or:

```python
>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
```

We can access the elements in the array using square brackets. When you're accessing elements, remember that indexing in NumPy starts at 0. That means that if you want to access the first element in your array, you'll be accessing element “0”.

```python
>>> print(a[0])
[1 2 3 4]
```

### 3.7 More information about arrays

This section covers 1D array, 2D array, ndarray, vector, matrix

You might occasionally hear an array referred to as a “ndarray,” which is shorthand for “N-dimensional array.” An N-dimensional array is simply an array with any number of dimensions. You might also hear 1-D, or one-dimensional array, 2-D, or two-dimensional array, and so on. The NumPy ndarray class is used to represent both matrices and vectors. A vector is an array with a single dimension (there's no difference between row and column vectors), while a matrix refers to an array with two dimensions. For 3-D or higher dimensional arrays, the term tensor is also commonly used.

**What are the attributes of an array?**

An array is usually a fixed-size container of items of the same type and size. The number of dimensions and items in an array is defined by its shape. The shape of an array is a tuple of non-negative integers that specify the sizes of each dimension.

In NumPy, dimensions are called axes. This means that if you have a 2D array that looks like this:

```
[[0., 0., 0.],
 [1., 1., 1.]]
```

Your array has 2 axes. The first axis has a length of 2 and the second axis has a length of 3.

Just like in other Python container objects, the contents of an array can be accessed and modified by indexing or slicing the array. Unlike the typical container objects, different arrays can share the same data, so changes made on one array might be visible in another.

Array attributes reflect information intrinsic to the array itself. If you need to get, or even set, properties of an array without creating a new array, you can often access an array through its attributes.

Read more about array attributes here and learn about array objects here.
3.8 How to create a basic array

This section covers np.array(), np.zeros(), np.ones(), np.empty(), np.arange(), np.linspace(), dtype

To create a NumPy array, you can use the function np.array().

All you need to do to create a simple array is pass a list to it. If you choose to, you can also specify the type of data in your list. You can find more information about data types here.

```python
>>> import numpy as np
>>> a = np.array([1, 2, 3])
```

You can visualize your array this way:

![Visualization of np.array([1, 2, 3])]

Be aware that these visualizations are meant to simplify ideas and give you a basic understanding of NumPy concepts and mechanics. Arrays and array operations are much more complicated than are captured here!

Besides creating an array from a sequence of elements, you can easily create an array filled with 0’s:

```python
>>> np.zeros(2)
array([0., 0.])
```

Or an array filled with 1’s:

```python
>>> np.ones(2)
array([1., 1.])
```

Or even an empty array! The function empty creates an array whose initial content is random and depends on the state of the memory. The reason to use empty over zeros (or something similar) is speed - just make sure to fill every element afterwards!

```python
>>> # Create an empty array with 2 elements
>>> np.empty(2)
array([3.14, 42.]) # may vary
```

You can create an array with a range of elements:

```python
>>> np.arange(4)
array([0, 1, 2, 3])
```

And even an array that contains a range of evenly spaced intervals. To do this, you will specify the first number, last number, and the step size.

```python
>>> np.arange(2, 9, 2)
array([2, 4, 6, 8])
```
You can also use `np.linspace()` to create an array with values that are spaced linearly in a specified interval:

```python
>>> np.linspace(0, 10, num=5)
array([0. , 2.5, 5. , 7.5, 10.])
```

### Specifying your data type

While the default data type is floating point (`np.float64`), you can explicitly specify which data type you want using the `dtype` keyword.

```python
>>> x = np.ones(2, dtype=np.int64)
>>> x
array([1, 1])
```

Learn more about creating arrays here

### 3.9 Adding, removing, and sorting elements

This section covers `np.sort()`, `np.concatenate()`

Sorting an element is simple with `np.sort()`. You can specify the axis, kind, and order when you call the function.

If you start with this array:

```python
>>> arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])
```

You can quickly sort the numbers in ascending order with:

```python
>>> np.sort(arr)
array([1, 2, 3, 4, 5, 6, 7, 8])
```

In addition to sort, which returns a sorted copy of an array, you can use:

- `argsort`, which is an indirect sort along a specified axis,
- `lexsort`, which is an indirect stable sort on multiple keys,
- `searchsorted`, which will find elements in a sorted array, and
- `partition`, which is a partial sort.

To read more about sorting an array, see: `sort`.

If you start with these arrays:

```python
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([5, 6, 7, 8])
```

You can concatenate them with `np.concatenate()`

```python
>>> np.concatenate((a, b))
array([1, 2, 3, 4, 5, 6, 7, 8])
```

Or, if you start with these arrays:

```python
>>> x = np.array([[1, 2], [3, 4]])
>>> y = np.array([[5, 6]])
```
You can concatenate them with:

```python
>>> np.concatenate((x, y), axis=0)
array([[1, 2],
 [3, 4],
 [5, 6]])
```

In order to remove elements from an array, it’s simple to use indexing to select the elements that you want to keep.

To read more about concatenate, see: `concatenate`.

### 3.10 How do you know the shape and size of an array?

This section covers `ndarray.ndim`, `ndarray.size`, `ndarray.shape`

`ndarray.ndim` will tell you the number of axes, or dimensions, of the array.

`ndarray.size` will tell you the total number of elements of the array. This is the product of the elements of the array’s shape.

`ndarray.shape` will display a tuple of integers that indicate the number of elements stored along each dimension of the array. If, for example, you have a 2-D array with 2 rows and 3 columns, the shape of your array is `(2, 3)`.

For example, if you create this array:

```python
>>> array_example = np.array([[0, 1, 2, 3],
 ... [4, 5, 6, 7]],
 ...
 ...
 ...
 [[0, 1, 2, 3],
 ... [4, 5, 6, 7]],
 ...
 ...
 [[0, 1, 2, 3],
 ... [4, 5, 6, 7]]])
```

To find the number of dimensions of the array, run:

```python
>>> array_example.ndim
3
```

To find the total number of elements in the array, run:

```python
>>> array_example.size
24
```

And to find the shape of your array, run:

```python
>>> array_example.shape
(3, 2, 4)
```
3.11 Can you reshape an array?

This section covers `arr.reshape()`

Yes!

Using `arr.reshape()` will give a new shape to an array without changing the data. Just remember that when you use the reshape method, the array you want to produce needs to have the same number of elements as the original array. If you start with an array with 12 elements, you'll need to make sure that your new array also has a total of 12 elements.

If you start with this array:

```python
>>> a = np.arange(6)
>>> print(a)
[0 1 2 3 4 5]
```

You can use `reshape()` to reshape your array. For example, you can reshape this array to an array with three rows and two columns:

```python
>>> b = a.reshape(3, 2)
>>> print(b)
[[0 1]
 [2 3]
 [4 5]]
```

With `np.reshape`, you can specify a few optional parameters:

```python
>>> numpy.reshape(a, newshape=(1, 6), order='C')
```

*a* is the array to be reshaped.

`newshape` is the new shape you want. You can specify an integer or a tuple of integers. If you specify an integer, the result will be an array of that length. The shape should be compatible with the original shape.

`order`: C means to read/write the elements using C-like index order, F means to read/write the elements using Fortran-like index order, A means to read/write the elements in Fortran-like index order if a is Fortran contiguous in memory, C-like order otherwise. (This is an optional parameter and doesn’t need to be specified.)

If you want to learn more about C and Fortran order, you can read more about the internal organization of NumPy arrays here. Essentially, C and Fortran orders have to do with how indices correspond to the order the array is stored in memory. In Fortran, when moving through the elements of a two-dimensional array as it is stored in memory, the first index is the most rapidly varying index. As the first index moves to the next row as it changes, the matrix is stored one column at a time. This is why Fortran is thought of as a Column-major language. In C on the other hand, the last index changes the most rapidly. The matrix is stored by rows, making it a Row-major language. What you do for C or Fortran depends on whether it’s more important to preserve the indexing convention or not reorder the data.

Learn more about shape manipulation here.
3.12 How to convert a 1D array into a 2D array (how to add a new axis to an array)

This section covers `np.newaxis`, `np.expand_dims`

You can use `np.newaxis` and `np.expand_dims` to increase the dimensions of your existing array.

Using `np.newaxis` will increase the dimensions of your array by one dimension when used once. This means that a 1D array will become a 2D array, a 2D array will become a 3D array, and so on.

For example, if you start with this array:

```python
>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> a.shape
(6,)
```

You can use `np.newaxis` to add a new axis:

```python
>>> a2 = a[np.newaxis, :]
>>> a2.shape
(1, 6)
```

You can explicitly convert a 1D array with either a row vector or a column vector using `np.newaxis`. For example, you can convert a 1D array to a row vector by inserting an axis along the first dimension:

```python
>>> row_vector = a[np.newaxis, :]
>>> row_vector.shape
(1, 6)
```

Or, for a column vector, you can insert an axis along the second dimension:

```python
>>> col_vector = a[:, np.newaxis]
>>> col_vector.shape
(6, 1)
```

You can also expand an array by inserting a new axis at a specified position with `np.expand_dims`.

For example, if you start with this array:

```python
>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> a.shape
(6,)
```

You can use `np.expand_dims` to add an axis at index position 1 with:

```python
>>> b = np.expand_dims(a, axis=1)
>>> b.shape
(6, 1)
```

You can add an axis at index position 0 with:

```python
>>> c = np.expand_dims(a, axis=0)
>>> c.shape
(1, 6)
```

Find more information about `newaxis` here and `expand_dims` at `expand_dims`. 
### 3.13 Indexing and slicing

You can index and slice NumPy arrays in the same ways you can slice Python lists.

```python
>>> data = np.array([1, 2, 3])

>>> data[1]
2
>>> data[0:2]
array([1, 2])
```

```python
>>> data[1:]
array([2, 3])
```

```python
>>> data[-2:]
array([2, 3])
```

You can visualize it this way:

You may want to take a section of your array or specific array elements to use in further analysis or additional operations. To do that, you’ll need to subset, slice, and/or index your arrays.

If you want to select values from your array that fulfill certain conditions, it’s straightforward with NumPy.

For example, if you start with this array:

```python
>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
```

You can easily print all of the values in the array that are less than 5.

```python
>>> print(a[a < 5])
[1 2 3 4]
```

You can also select, for example, numbers that are equal to or greater than 5, and use that condition to index an array.

```python
>>> five_up = (a >= 5)
>>> print(a[five_up])
[5 6 7 8 9 10 11 12]
```

You can select elements that are divisible by 2:

```python
>>> divisible_by_2 = a[a%2==0]
>>> print(divisible_by_2)
[2 4 6 8 10 12]
```

Or you can select elements that satisfy two conditions using the & and | operators:
You can also make use of the logical operators & and | in order to return boolean values that specify whether or not the values in an array fulfill a certain condition. This can be useful with arrays that contain names or other categorical values.

```python
>>> five_up = (a > 5) | (a == 5)
>>> print(five_up)
[[False False False False]
 [True True True True]
 [True True True True]]
```

You can also use `np.nonzero()` to select elements or indices from an array.

Starting with this array:

```python
>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
```

You can use `np.nonzero()` to print the indices of elements that are, for example, less than 5:

```python
>>> b = np.nonzero(a < 5)
>>> print(b)
(array([0, 0, 0, 0]), array([0, 1, 2, 3]))
```

In this example, a tuple of arrays was returned: one for each dimension. The first array represents the row indices where these values are found, and the second array represents the column indices where the values are found.

If you want to generate a list of coordinates where the elements exist, you can zip the arrays, iterate over the list of coordinates, and print them. For example:

```python
>>> list_of_coordinates = list(zip(b[0], b[1]))
>>> for coord in list_of_coordinates:
... print(coord)
(0, 0)
(0, 1)
(0, 2)
(0, 3)
```

You can also use `np.nonzero()` to print the elements in an array that are less than 5 with:

```python
>>> print(a[b])
[1 2 3 4]
```

If the element you’re looking for doesn’t exist in the array, then the returned array of indices will be empty. For example:

```python
>>> not_there = np.nonzero(a == 42)
>>> print(not_there)
(array([], dtype=int64), array([], dtype=int64))
```

Learn more about indexing and slicing here and here.

Read more about using the nonzero function at: nonzero.
3.14 How to create an array from existing data

This section covers slicing and indexing, np.vstack(), np.hstack(), np.hsplit(), .view(), copy()

You can easily use create a new array from a section of an existing array.

Let’s say you have this array:

```python
>>> a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
```

You can create a new array from a section of your array any time by specifying where you want to slice your array.

```python
>>> arr1 = a[3:8]
>>> arr1
array([4, 5, 6, 7, 8])
```

Here, you grabbed a section of your array from index position 3 through index position 8.

You can also stack two existing arrays, both vertically and horizontally. Let’s say you have two arrays, a1 and a2:

```python
>>> a1 = np.array([[1, 1],
... [2, 2]])
>>> a2 = np.array([[3, 3],
... [4, 4]])
```

You can stack them vertically with `vstack`:

```python
>>> np.vstack((a1, a2))
array([[1, 1],
 [2, 2],
 [3, 3],
 [4, 4]])
```

Or stack them horizontally with `hstack`:

```python
>>> np.hstack((a1, a2))
array([[1, 1, 3, 3],
 [2, 2, 4, 4]])
```

You can split an array into several smaller arrays using `hsplit`. You can specify either the number of equally shaped arrays to return or the columns after which the division should occur.

Let’s say you have this array:

```python
>>> x = np.arange(1, 25).reshape(2, 12)
>>> x
array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
 [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]])
```

If you wanted to split this array into three equally shaped arrays, you would run:

```python
>>> np.hsplit(x, 3)
[array([[1, 2, 3, 4],
 [13, 14, 15, 16]]), array([[5, 6, 7, 8],
 [19, 20, 21, 22]]), array([[9, 10, 11, 12],
 [23, 24]])]
```
If you wanted to split your array after the third and fourth column, you’d run:

```python
>>> np.hsplit(x, (3, 4))
[array([[1, 2, 3],
 [13, 14, 15]]), array([[4],
 [16]]), array([[5, 6, 7, 8, 9, 10, 11, 12],
 [17, 18, 19, 20, 21, 22, 23, 24]])
```

Learn more about stacking and splitting arrays here.

You can use the `view` method to create a new array object that looks at the same data as the original array (a shallow copy).

Views are an important NumPy concept! NumPy functions, as well as operations like indexing and slicing, will return views whenever possible. This saves memory and is faster (no copy of the data has to be made). However it’s important to be aware of this - modifying data in a view also modifies the original array!

Let’s say you create this array:

```python
>>> a = np.array([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]])
```

Now we create an array `b1` by slicing `a` and modify the first element of `b1`. This will modify the corresponding element in `a` as well!

```python
>>> b1 = a[0, :]
>>> b1
array([1, 2, 3, 4])
>>> b1[0] = 99
>>> b1
array([99, 2, 3, 4])
>>> a
array([[[99, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]]])
```

Using the `copy` method will make a complete copy of the array and its data (a deep copy). To use this on your array, you could run:

```python
>>> b2 = a.copy()
```

Learn more about copies and views here.

### 3.15 Basic array operations

This section covers addition, subtraction, multiplication, division, and more

Once you’ve created your arrays, you can start to work with them. Let’s say, for example, that you’ve created two arrays, one called “data” and one called “ones”
You can add the arrays together with the plus sign.

```python
>>> data = np.array([1, 2])
>>> ones = np.ones(2, dtype=int)
>>> data + ones
array([2, 3])
```

You can, of course, do more than just addition!

```python
>>> data - ones
array([0, 1])
>>> data * data
array([1, 4])
>>> data / data
array([1., 1.])
```

Basic operations are simple with NumPy. If you want to find the sum of the elements in an array, you’d use `sum()`. This works for 1D arrays, 2D arrays, and arrays in higher dimensions.

```python
>>> a = np.array([1, 2, 3, 4])
>>> a.sum()
10
```

To add the rows or the columns in a 2D array, you would specify the axis.

If you start with this array:

3.15. Basic array operations
```python
>>> b = np.array([[1, 1], [2, 2]])
```

You can sum the rows with:

```python
>>> b.sum(axis=0)
array([3, 3])
```

You can sum the columns with:

```python
>>> b.sum(axis=1)
array([2, 4])
```

Learn more about basic operations here.

### 3.16 Broadcasting

There are times when you might want to carry out an operation between an array and a single number (also called an operation between a vector and a scalar) or between arrays of two different sizes. For example, your array (we’ll call it “data”) might contain information about distance in miles but you want to convert the information to kilometers. You can perform this operation with:

```python
>>> data = np.array([1.0, 2.0])
>>> data * 1.6
array([1.6, 3.2])
```

NumPy understands that the multiplication should happen with each cell. That concept is called **broadcasting**. Broadcasting is a mechanism that allows NumPy to perform operations on arrays of different shapes. The dimensions of your array must be compatible, for example, when the dimensions of both arrays are equal or when one of them is 1. If the dimensions are not compatible, you will get a `ValueError`.

Learn more about broadcasting here.

### 3.17 More useful array operations

This section covers maximum, minimum, sum, mean, product, standard deviation, and more

NumPy also performs aggregation functions. In addition to `min`, `max`, and `sum`, you can easily run `mean` to get the average, `prod` to get the result of multiplying the elements together, `std` to get the standard deviation, and more.
Let’s start with this array, called “a”

```python
>>> a = np.array([[0.45053314, 0.17296777, 0.34376245, 0.5510652],
 ... [0.54627315, 0.05093587, 0.40067661, 0.55645993],
 ... [0.12697628, 0.82485143, 0.26590556, 0.56917101]])
```

It’s very common to want to aggregate along a row or column. By default, every NumPy aggregation function will return the aggregate of the entire array. To find the sum or the minimum of the elements in your array, run:

```python
>>> a.sum()
4.8595784
```

Or:

```python
>>> a.min()
0.05093587
```

You can specify on which axis you want the aggregation function to be computed. For example, you can find the minimum value within each column by specifying `axis=0`.

```python
>>> a.min(axis=0)
array([0.12697628, 0.05093587, 0.26590556, 0.5510652])
```

The four values listed above correspond to the number of columns in your array. With a four-column array, you will get four values as your result.

Read more about array methods here.

### 3.18 Creating matrices

You can pass Python lists of lists to create a 2-D array (or “matrix”) to represent them in NumPy.

```python
>>> data = np.array([[1, 2], [3, 4]])
>>> data
array([[1, 2],
 [3, 4]])
```
Indexing and slicing operations are useful when you’re manipulating matrices:

```python
>>> data[0, 1]
2
>>> data[1:3]
array([[3, 4]])
>>> data[0:2, 0]
array([1, 3])
```

You can aggregate matrices the same way you aggregated vectors:

```python
>>> data.max()
4
>>> data.min()
1
>>> data.sum()
10
```

You can aggregate all the values in a matrix and you can aggregate them across columns or rows using the `axis` parameter:

```python
>>> data.max(axis=0)
array([3, 4])
>>> data.max(axis=1)
array([2, 4])
```
Once you've created your matrices, you can add and multiply them using arithmetic operators if you have two matrices that are the same size.

```python
>>> data = np.array([[1, 2], [3, 4]])
>>> ones = np.array([[1, 1], [1, 1]])
>>> data + ones
array([[2, 3],
 [4, 5]])
```

You can do these arithmetic operations on matrices of different sizes, but only if one matrix has only one column or one row. In this case, NumPy will use its broadcast rules for the operation.

```python
>>> data = np.array([[1, 2], [3, 4], [5, 6]])
>>> ones_row = np.array([[1, 1]])
>>> data + ones_row
array([[2, 3],
 [4, 5],
 [6, 7]])
```

Be aware that when NumPy prints N-dimensional arrays, the last axis is looped over the fastest while the first axis is the slowest. For instance:

```python
>>> np.ones((4, 3, 2))
array([[[1., 1.],
 [1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.],
 [1., 1.]],
 [[1., 1.],
 [1., 1.],
 [1., 1.]]])
```
NumPy offers functions like `ones()` and `zeros()`, and the `random.Generator` class for random number generation for that. All you need to do is pass in the number of elements you want it to generate:

```python
>>> np.ones(3)
array([1., 1., 1.])
>>> np.zeros(3)
array([0., 0., 0.])
the simplest way to generate random numbers
>>> rng = np.random.default_rng(0)
>>> rng.random(3)
array([0.63696169, 0.26978671, 0.04097352])
```

You can also use `ones()`, `zeros()`, and `random()` to create a 2D array if you give them a tuple describing the dimensions of the matrix:

```python
>>> np.ones((3, 2))
array([[1., 1.],
 [1., 1.],
 [1., 1.]])
>>> np.zeros((3, 2))
array([[0., 0.],
 [0., 0.],
 [0., 0.]])
```
3.19 Generating random numbers

The use of random number generation is an important part of the configuration and evaluation of many numerical and machine learning algorithms. Whether you need to randomly initialize weights in an artificial neural network, split data into random sets, or randomly shuffle your dataset, being able to generate random numbers (actually, repeatable pseudo-random numbers) is essential.

With `Generator.integers`, you can generate random integers from low (remember that this is inclusive with NumPy) to high (exclusive). You can set `endpoint=True` to make the high number inclusive.

You can generate a 2 x 4 array of random integers between 0 and 4 with:

```python
>>> rng.integers(5, size=(2, 4))
array([[2, 1, 1, 0],
 [0, 0, 0, 4]]) # may vary
```

Read more about random number generation here.

3.20 How to get unique items and counts

This section covers `np.unique()`

You can find the unique elements in an array easily with `np.unique`. For example, if you start with this array:

```python
>>> a = np.array([11, 11, 12, 13, 14, 15, 16, 17, 12, 13, 11, 14, 18, 19, 20])
```

you can use `np.unique` to print the unique values in your array:
To get the indices of unique values in a NumPy array (an array of first index positions of unique values in the array), just pass the `return_index` argument in `np.unique()` as well as your array.

```python
>>> unique_values, indices_list = np.unique(a, return_index=True)
>>> print(indices_list)
[0 2 3 4 5 6 7 12 13 14]
```

You can pass the `return_counts` argument in `np.unique()` along with your array to get the frequency count of unique values in a NumPy array.

```python
>>> unique_values, occurrence_count = np.unique(a, return_counts=True)
>>> print(occurrence_count)
[3 2 2 1 1 1 1 1]
```

This also works with 2D arrays! If you start with this array:

```python
>>> a_2d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]])
```

You can find unique values with:

```python
>>> unique_values = np.unique(a_2d)
>>> print(unique_values)
[1 2 3 4 5 6 7 8 9 10 11 12]
```

If the `axis` argument isn’t passed, your 2D array will be flattened.

If you want to get the unique rows or columns, make sure to pass the `axis` argument. To find the unique rows, specify `axis=0` and for columns, specify `axis=1`.

```python
>>> unique_rows = np.unique(a_2d, axis=0)
>>> print(unique_rows)
[[1 2 3 4]
 [5 6 7 8]
 [9 10 11 12]]
```

To get the unique rows, index position, and occurrence count, you can use:

```python
>>> unique_rows, indices, occurrence_count = np.unique(a_2d, axis=0, return_counts=True, return_index=True)
>>> print(unique_rows)
[[1 2 3 4]
 [5 6 7 8]
 [9 10 11 12]]
>>> print(indices)
[0 1 2]
>>> print(occurrence_count)
[2 1 1]
```

To learn more about finding the unique elements in an array, see `unique`. 
3.21 Transposing and reshaping a matrix

This section covers arr.reshape(), arr.transpose(), arr.T

It’s common to need to transpose your matrices. NumPy arrays have the property T that allows you to transpose a matrix.

You may also need to switch the dimensions of a matrix. This can happen when, for example, you have a model that expects a certain input shape that is different from your dataset. This is where the reshape method can be useful. You simply need to pass in the new dimensions that you want for the matrix.

```python
>>> data.reshape(2, 3)
array([[1, 2, 3],
 [4, 5, 6]])
>>> data.reshape(3, 2)
array([[1, 2],
 [3, 4],
 [5, 6]])
```

You can also use .transpose() to reverse or change the axes of an array according to the values you specify.

If you start with this array:

```python
>>> arr = np.arange(6).reshape((2, 3))
>>> arr
array([[0, 1, 2],
 [3, 4, 5]])
```

You can transpose your array with arr.transpose().
You can also use `arr.T`:

```python
>>> arr.T
array([[0, 3],
 [1, 4],
 [2, 5]])
```

To learn more about transposing and reshaping arrays, see `transpose` and `reshape`.

### 3.22 How to reverse an array

*This section covers `np.flip()`*

NumPy's `np.flip()` function allows you to flip, or reverse, the contents of an array along an axis. When using `np.flip()`, specify the array you would like to reverse and the axis. If you don’t specify the axis, NumPy will reverse the contents along all of the axes of your input array.

#### Reversing a 1D array

If you begin with a 1D array like this one:

```python
>>> arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
```

You can reverse it with:

```python
>>> reversed_arr = np.flip(arr)
```

If you want to print your reversed array, you can run:

```python
>>> print('Reversed Array: ', reversed_arr)
Reversed Array: [8 7 6 5 4 3 2 1]
```

#### Reversing a 2D array

A 2D array works much the same way.

If you start with this array:

```python
>>> arr_2d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
```

You can reverse the content in all of the rows and all of the columns with:

```python
>>> reversed_arr = np.flip(arr_2d)
>>> print(reversed_arr)
[[12 11 10 9]
 [8 7 6 5]
 [4 3 2 1]]
```

You can easily reverse only the rows with:
```python
>>> reversed_arr_rows = np.flip(arr_2d, axis=0)
>>> print(reversed_arr_rows)
[[9 10 11 12]
 [5 6 7 8]
 [1 2 3 4]]
```

Or reverse only the columns with:

```python
>>> reversed_arr_columns = np.flip(arr_2d, axis=1)
>>> print(reversed_arr_columns)
[[4 3 2 1]
 [8 7 6 5]
 [12 11 10 9]]
```

You can also reverse the contents of only one column or row. For example, you can reverse the contents of the row at index position 1 (the second row):

```python
>>> arr_2d[1] = np.flip(arr_2d[1])
```  
```python
>>> print(arr_2d)
[[1 2 3 4]
 [8 7 6 5]
 [9 10 11 12]]
```

You can also reverse the column at index position 1 (the second column):

```python
>>> arr_2d[:,1] = np.flip(arr_2d[:,1])
```  
```python
>>> print(arr_2d)
[[1 10 3 4]
 [8 7 6 5]
 [9 2 11 12]]
```

Read more about reversing arrays at `flip`.

### 3.23 Reshaping and flattening multidimensional arrays

This section covers `.flatten()`, `.ravel()`

There are two popular ways to flatten an array: `.flatten()` and `.ravel()`. The primary difference between the two is that the new array created using `ravel()` is actually a reference to the parent array (i.e., a “view”). This means that any changes to the new array will affect the parent array as well. Since `ravel` does not create a copy, it's memory efficient.

If you start with this array:

```python
>>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
```

You can use `flatten` to flatten your array into a 1D array.

```python
>>> x.flatten()
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
```

When you use `flatten`, changes to your new array won’t change the parent array.

For example:
But when you use `ravel`, the changes you make to the new array will affect the parent array.

For example:

```python
>>> a2 = x.ravel()
>>> a2[0] = 98
>>> print(x) # Original array
[[98 2 3 4]
 [5 6 7 8]
 [98 10 11 12]]
>>> print(a2) # New array
[98 2 3 4 5 6 7 8 9 10 11 12]
```

Read more about `flatten` at `ndarray.flatten` and `ravel` at `ravel`.

### 3.24 How to access the docstring for more information

This section covers `help()`, `?`, `??`

When it comes to the data science ecosystem, Python and NumPy are built with the user in mind. One of the best examples of this is the built-in access to documentation. Every object contains the reference to a string, which is known as the docstring. In most cases, this docstring contains a quick and concise summary of the object and how to use it. Python has a built-in `help()` function that can help you access this information. This means that nearly any time you need more information, you can use `help()` to quickly find the information that you need.

For example:

```python
>>> help(max)
Help on built-in function max in module builtins:

max(...)
 max(iterable, *, default=obj, key=func) -> value
 max(arg1, arg2, *args, *[, key=func]) -> value

 With a single iterable argument, return its biggest item. The
 default keyword-only argument specifies an object to return if
 the provided iterable is empty.
 With two or more arguments, return the largest argument.
```

Because access to additional information is so useful, IPython uses the `?` character as a shorthand for accessing this documentation along with other relevant information. IPython is a command shell for interactive computing in multiple languages. You can find more information about IPython here.
You can even use this notation for object methods and objects themselves.

Let's say you create this array:

```python
>>> a = np.array([1, 2, 3, 4, 5, 6])
```

Then you can obtain a lot of useful information (first details about `a` itself, followed by the docstring of `ndarray` of which `a` is an instance):

```python
In [1]: a
Type: ndarray
String form: [1 2 3 4 5 6]
Length: 6
File: ~/anaconda3/lib/python3.7/site-packages/numpy/__init__.py
Docstring: <no docstring>
Class docstring:
ndarray(shape, dtype=float, buffer=None, offset=0,
 strides=None, order=None)

An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type object describes the
format of each element in the array (its byte-order, how many bytes it
occupies in memory, whether it is an integer, a floating point number,
or something else, etc.)

Arrays should be constructed using `array`, `zeros` or `empty` (refer
to the See Also section below). The parameters given here refer to
a low-level method (`ndarray(...)`) for instantiating an array.

For more information, refer to the `numpy` module and examine the
methods and attributes of an array.

Parameters

(for the __new__ method; see Notes below)

shape : tuple of ints
Shape of created array.

...
```

This also works for functions and other objects that you create. Just remember to include a docstring with your function using a string literal (""" """" or ''' ''' around your documentation).

For example, if you create this function:

```python
>>> def double(a):
... '''Return a * 2'''
... return a * 2
```

3.24. How to access the docstring for more information
You can obtain information about the function:

```python
In [2]: double?
Signature: double(a)
Docstring: Return a * 2
File: ~/Desktop/<ipython-input-23-b5adf20be596>
Type: function
```

You can reach another level of information by reading the source code of the object you're interested in. Using a double question mark (??) allows you to access the source code.

For example:

```python
In [3]: double??
Signature: double(a)
Source:
def double(a):
 '''Return a * 2'''
 return a * 2
File: ~/Desktop/<ipython-input-23-b5adf20be596>
Type: function
```

If the object in question is compiled in a language other than Python, using ?? will return the same information as ?.

You'll find this with a lot of built-in objects and types, for example:

```python
In [4]: len?
Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin_function_or_method
```

and:

```python
In [5]: len??
Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin_function_or_method
```

have the same output because they were compiled in a programming language other than Python.

### 3.25 Working with mathematical formulas

The ease of implementing mathematical formulas that work on arrays is one of the things that make NumPy so widely used in the scientific Python community.

For example, this is the mean square error formula (a central formula used in supervised machine learning models that deal with regression):
Implementing this formula is simple and straightforward in NumPy:

\[
\text{MeanSquareError} = \frac{1}{n} \sum_{i=1}^{n} (Y_{\text{prediction},i} - Y_i)^2
\]

What makes this work so well is that predictions and labels can contain one or a thousand values. They only need to be the same size.

You can visualize it this way:

\[
\text{error} = \frac{1}{n} \cdot \text{np.
sum} (\text{np.
square} (\text{predictions} - \text{labels}))
\]

In this example, both the predictions and labels vectors contain three values, meaning \( n \) has a value of three. After we carry out subtractions the values in the vector are squared. Then NumPy sums the values, and your result is the error value for that prediction and a score for the quality of the model.

\[
\text{error} = \frac{1}{3} \cdot \text{np.
sum} (\text{np.
square} (\begin{array}{c}
1 \\
1 \\
1 
\end{array} - \begin{array}{c}
1 \\
2 \\
3 
\end{array}))
\]

\[
\text{error} = \frac{1}{3} \cdot \text{np.
sum} (\text{np.
square} (\begin{array}{c}
0 \\
-1 \\
-2 
\end{array}))
\]

\[
\text{error} = \frac{1}{3} \cdot \text{np.
sum} (\begin{array}{c}
0 \\
1 \\
4 
\end{array})
\]

\[
\text{error} = \frac{1}{3} \cdot 5
\]
3.26 How to save and load NumPy objects

This section covers np.save, np.savez, np.savetxt, np.load, np.loadtxt

You will, at some point, want to save your arrays to disk and load them back without having to re-run the code. Fortunately, there are several ways to save and load objects with NumPy. The ndarray objects can be saved to and loaded from the disk files with loadtxt and savetxt functions that handle normal text files, load and save functions that handle NumPy binary files with a .npy file extension, and a savez function that handles NumPy files with a .npz file extension.

The .npy and .npz files store data, shape, dtype, and other information required to reconstruct the ndarray in a way that allows the array to be correctly retrieved, even when the file is on another machine with different architecture.

If you want to store a single ndarray object, store it as a .npy file using np.save. If you want to store more than one ndarray object in a single file, save it as a .npz file using np.savez. You can also save several arrays into a single file in compressed npz format with savez_compressed.

It's easy to save and load and array with np.save(). Just make sure to specify the array you want to save and a file name. For example, if you create this array:

```python
>>> a = np.array([1, 2, 3, 4, 5, 6])
```

You can save it as “filename.npy” with:

```python
>>> np.save('filename', a)
```

You can use np.load() to reconstruct your array.

```python
>>> b = np.load('filename.npy')
```

If you want to check your array, you can run:

```python
>>> print(b)
[1 2 3 4 5 6]
```

You can save a NumPy array as a plain text file like a .csv or .txt file with np.savetxt.

For example, if you create this array:

```python
>>> csv_arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
```

You can easily save it as a .csv file with the name “new_file.csv” like this:

```python
>>> np.savetxt('new_file.csv', csv_arr)
```

You can quickly and easily load your saved text file using loadtxt():

```python
>>> np.loadtxt('new_file.csv')
array([1., 2., 3., 4., 5., 6., 7., 8.])
```

The savetxt() and loadtxt() functions accept additional optional parameters such as header, footer, and delimiter. While text files can be easier for sharing .npy and .npz files are smaller and faster to read. If you need more sophisticated handling of your text file (for example, if you need to work with lines that contain missing values), you will want to use the genfromtxt function.

With savetxt, you can specify headers, footers, comments, and more.

Learn more about input and output routines here.
3.27 Importing and exporting a CSV

It’s simple to read in a CSV that contains existing information. The best and easiest way to do this is to use Pandas.

```python
>>> import pandas as pd
>>> # If all of your columns are the same type:
>>> x = pd.read_csv('music.csv', header=0).values
>>> print(x)
[['Billie Holiday' 'Jazz' 1300000 27000000]
['Jimmie Hendrix' 'Rock' 2700000 70000000]
['Miles Davis' 'Jazz' 1500000 48000000]
['SIA' 'Pop' 2000000 74000000]]
>>> # You can also simply select the columns you need:
>>> x = pd.read_csv('music.csv', usecols=['Artist', 'Plays']).values
>>> print(x)
[['Billie Holiday' 27000000]
['Jimmie Hendrix' 70000000]
['Miles Davis' 48000000]
['SIA' 74000000]]
```

It’s simple to use Pandas in order to export your array as well. If you are new to NumPy, you may want to create a Pandas dataframe from the values in your array and then write the data frame to a CSV file with Pandas.

If you created this array “a”

```python
>>> a = np.array([[-2.58289208, 0.43014843, -1.24082018, 1.59572603],
... [0.99027828, 1.17150989, 0.94125714, -0.14692469],
... [0.76989341, 0.81299683, -0.95068423, 0.11769564],
... [0.20484034, 0.34784527, 1.96979195, 0.51992837]])
```

You could create a Pandas dataframe

```python
>>> df = pd.DataFrame(a)
>>> print(df)
 0 1 2 3
0 -2.582892 0.430148 -1.240820 1.595726
1 0.990278 1.171509 0.941257 -0.146925
2 0.769893 0.812997 -0.950684 0.117696
3 0.204840 0.347845 1.969792 0.519928
```

You can easily save your dataframe with:

```python
```
And read your CSV with:

```python
>>> data = pd.read_csv('pd.csv')
```

You can also save your array with the NumPy `savetxt` method.

```python
>>> np.savetxt('np.csv', a, fmt='%.2f', delimiter=',', header='1, 2, 3, 4')
```

If you're using the command line, you can read your saved CSV any time with a command such as:

```
$ cat np.csv
1, 2, 3, 4
-2.58,0.43,-1.24,1.60
0.99,1.17,0.94,-0.15
0.77,0.81,-0.95,0.12
0.20,0.35,1.97,0.52
```

Or you can open the file any time with a text editor!

If you're interested in learning more about Pandas, take a look at the official Pandas documentation. Learn how to install Pandas with the official Pandas installation information.

### 3.28 Plotting arrays with Matplotlib

If you need to generate a plot for your values, it's very simple with Matplotlib.

For example, you may have an array like this one:

```python
>>> a = np.array([2, 1, 5, 7, 4, 6, 8, 14, 10, 9, 18, 20, 22])
```

If you already have Matplotlib installed, you can import it with:

```python
>>> import matplotlib.pyplot as plt
```

All you need to do to plot your values is run:

```python
>>> plt.plot(a)
```

For example, you can plot a 1D array like this:
With Matplotlib, you have access to an enormous number of visualization options.

```python
>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure()
>>> ax = Axes3D(fig)
>>> X = np.arange(-5, 5, 0.15)
>>> Y = np.arange(-5, 5, 0.15)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)
```
To read more about Matplotlib and what it can do, take a look at the official documentation. For directions regarding installing Matplotlib, see the official installation section.

*Math image credits: Jay Alammar http://jalammar.github.io/*
4.1 Data types

See also:
Data type objects

4.1.1 Array types and conversions between types

NumPy supports a much greater variety of numerical types than Python does. This section shows which are available, and how to modify an array's data-type.

The primitive types supported are tied closely to those in C:
NumPy User Guide, Release 1.20.0

### Numpy type

<table>
<thead>
<tr>
<th>Numpy type</th>
<th>C type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>numpy.bool_</td>
<td>bool</td>
<td>Boolean (True or False) stored as a byte</td>
</tr>
<tr>
<td>numpy.byte</td>
<td>signed char</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.ubyte</td>
<td>unsigned char</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.short</td>
<td>short</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.ushort</td>
<td>unsigned short</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.intc</td>
<td>int</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.uintc</td>
<td>unsigned int</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.int_</td>
<td>long</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.uint</td>
<td>unsigned long</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.longlong</td>
<td>long long</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.ulonglong</td>
<td>unsigned long long</td>
<td>Platform-defined</td>
</tr>
<tr>
<td>numpy.half</td>
<td>float16</td>
<td>Half precision float: sign bit, 5 bits exponent, 10 bits mantissa</td>
</tr>
<tr>
<td>numpy.single</td>
<td>float</td>
<td>Platform-defined single precision float: typically sign bit, 8 bits exponent, 23 bits mantissa</td>
</tr>
<tr>
<td>numpy.double</td>
<td>double</td>
<td>Platform-defined double precision float: typically sign bit, 11 bits exponent, 52 bits mantissa</td>
</tr>
<tr>
<td>numpy.longdouble</td>
<td>long double</td>
<td>Platform-defined extended-precision float</td>
</tr>
<tr>
<td>numpy.csingle</td>
<td>float complex</td>
<td>Complex number, represented by two single-precision floats (real and imaginary components)</td>
</tr>
<tr>
<td>numpy.cdouble</td>
<td>double complex</td>
<td>Complex number, represented by two double-precision floats (real and imaginary components)</td>
</tr>
<tr>
<td>numpy.clongdouble</td>
<td>long double complex</td>
<td>Complex number, represented by two extended-precision floats (real and imaginary components)</td>
</tr>
</tbody>
</table>

Since many of these have platform-dependent definitions, a set of fixed-size aliases are provided:

<table>
<thead>
<tr>
<th>Numpy type</th>
<th>C type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>numpy.int8</td>
<td>int8_t</td>
<td>Byte (-128 to 127)</td>
</tr>
<tr>
<td>numpy.int16</td>
<td>int16_t</td>
<td>Integer (-32768 to 32767)</td>
</tr>
<tr>
<td>numpy.int32</td>
<td>int32_t</td>
<td>Integer (-2147483648 to 2147483647)</td>
</tr>
<tr>
<td>numpy.int64</td>
<td>int64_t</td>
<td>Integer (-9223372036854775808 to 9223372036854775807)</td>
</tr>
<tr>
<td>numpy.uint8</td>
<td>uint8_t</td>
<td>Unsigned integer (0 to 255)</td>
</tr>
<tr>
<td>numpy.uint16</td>
<td>uint16_t</td>
<td>Unsigned integer (0 to 65535)</td>
</tr>
<tr>
<td>numpy.uint32</td>
<td>uint32_t</td>
<td>Unsigned integer (0 to 4294967295)</td>
</tr>
<tr>
<td>numpy.uint64</td>
<td>uint64_t</td>
<td>Unsigned integer (0 to 18446744073709551615)</td>
</tr>
<tr>
<td>numpy.intp</td>
<td>intptr_t</td>
<td>Integer used for indexing, typically the same as ssize_t</td>
</tr>
<tr>
<td>numpy.uintp</td>
<td>uintptr_t</td>
<td>Integer large enough to hold a pointer</td>
</tr>
<tr>
<td>numpy.float32</td>
<td>float</td>
<td>Note that this matches the precision of the builtin python float.</td>
</tr>
<tr>
<td>numpy.float64 / numpy.float_</td>
<td>double</td>
<td>Note that this matches the precision of the builtin python complex.</td>
</tr>
<tr>
<td>numpy.complex64</td>
<td>float complex</td>
<td>Complex number, represented by two 32-bit floats (real and imaginary components)</td>
</tr>
<tr>
<td>numpy.complex128 / numpy.complex_</td>
<td>double complex</td>
<td>Note that this matches the precision of the builtin python complex.</td>
</tr>
</tbody>
</table>

Chapter 4. NumPy basics
NumPy numerical types are instances of \texttt{dtype} (data-type) objects, each having unique characteristics. Once you have imported NumPy using

\begin{verbatim}
>>> import numpy as np
\end{verbatim}

the dtypes are available as \texttt{np.bool	extunderscore}, \texttt{np.float32}, etc.

Advanced types, not listed in the table above, are explored in section \textit{Structured arrays}.

There are 5 basic numerical types representing booleans (bool), integers (int), unsigned integers (uint) floating point (float) and complex. Those with numbers in their name indicate the bitsize of the type (i.e. how many bits are needed to represent a single value in memory). Some types, such as \texttt{int} and \texttt{intp}, have differing bitsizes, dependent on the platforms (e.g. 32-bit vs. 64-bit machines). This should be taken into account when interfacing with low-level code (such as C or Fortran) where the raw memory is addressed.

Data-types can be used as functions to convert python numbers to array scalars (see the array scalar section for an explanation), python sequences of numbers to arrays of that type, or as arguments to the dtype keyword that many numpy functions or methods accept. Some examples:

\begin{verbatim}
>>> import numpy as np

>>> x = np.float32(1.0)
1.0
>>> y = np.int_([1,2,4])
array([1, 2, 4])
>>> z = np.arange(3, dtype=np.uint8)
array([0, 1, 2], dtype=uint8)
\end{verbatim}

Array types can also be referred to by character codes, mostly to retain backward compatibility with older packages such as Numeric. Some documentation may still refer to these, for example:

\begin{verbatim}
>>> np.array([1, 2, 3], dtype='f')
array([ 1., 2., 3.], dtype=float32)
\end{verbatim}

We recommend using dtype objects instead.

To convert the type of an array, use the \texttt{.astype()} method (preferred) or the type itself as a function. For example:

\begin{verbatim}
>>> z.astype(float)
array([ 0., 1., 2.])
>>> np.int8(z)
array([0, 1, 2], dtype=int8)
\end{verbatim}

Note that, above, we use the \textit{Python} float object as a dtype. NumPy knows that \texttt{int} refers to \texttt{np.int	extunderscore}, \texttt{bool} means \texttt{np.bool	extunderscore}, that \texttt{float} is \texttt{np.float} and \texttt{complex} is \texttt{np.complex}. The other data-types do not have Python equivalents.

To determine the type of an array, look at the dtype attribute:

\begin{verbatim}
>>> z.dtype
dtype('uint8')
\end{verbatim}

dtype objects also contain information about the type, such as its bit-width and its byte-order. The data type can also be used indirectly to query properties of the type, such as whether it is an integer:
4.1.2 Array Scalars

NumPy generally returns elements of arrays as array scalars (a scalar with an associated dtype). Array scalars differ from Python scalars, but for the most part they can be used interchangeably (the primary exception is for versions of Python older than v2.x, where integer array scalars cannot act as indices for lists and tuples). There are some exceptions, such as when code requires very specific attributes of a scalar or when it checks specifically whether a value is a Python scalar. Generally, problems are easily fixed by explicitly converting array scalars to Python scalars, using the corresponding Python type function (e.g., `int`, `float`, `complex`, `str`, `unicode`).

The primary advantage of using array scalars is that they preserve the array type (Python may not have a matching scalar type available, e.g. `int16`). Therefore, the use of array scalars ensures identical behaviour between arrays and scalars, irrespective of whether the value is inside an array or not. NumPy scalars also have many of the same methods arrays do.

4.1.3 Overflow Errors

The fixed size of NumPy numeric types may cause overflow errors when a value requires more memory than available in the data type. For example, `numpy.power` evaluates `100 * 10 ** 8` correctly for 64-bit integers, but gives `1874919424` (incorrect) for a 32-bit integer.

```
>>> np.power(100, 100, dtype=np.int64)
10000000000000000
>>> np.power(100, 100, dtype=np.int32)
1874919424
```

The behaviour of NumPy and Python integer types differs significantly for integer overflows and may confuse users expecting NumPy integers to behave similar to Python's `int`. Unlike NumPy, the size of Python's `int` is flexible. This means Python integers may expand to accommodate any integer and will not overflow.

NumPy provides `numpy.iinfo` and `numpy.finfo` to verify the minimum or maximum values of NumPy integer and floating point values respectively.

```
>>> np.iinfo(int) # Bounds of the default integer on this system.
iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)
>>> np.iinfo(np.int32) # Bounds of a 32-bit integer
iinfo(min=-2147483648, max=2147483647, dtype=int32)
>>> np.iinfo(np.int64) # Bounds of a 64-bit integer
iinfo(min=-9223372036854775808, max=9223372036854775807, dtype=int64)
```

If 64-bit integers are still too small the result may be cast to a floating point number. Floating point numbers offer a larger, but inexact, range of possible values.

```
>>> np.power(100, 100, dtype=np.int64) # Incorrect even with 64-bit int
0
```
4.1.4 Extended Precision

Python's floating-point numbers are usually 64-bit floating-point numbers, nearly equivalent to `np.float64`. In some unusual situations it may be useful to use floating-point numbers with more precision. Whether this is possible in numpy depends on the hardware and on the development environment: specifically, x86 machines provide hardware floating-point with 80-bit precision, and while most C compilers provide this as their `long double` type, MSVC (standard for Windows builds) makes `long double` identical to `double` (64 bits). NumPy makes the compiler's `long double` available as `np.longdouble` (and `np.clongdouble` for the complex numbers). You can find out what your numpy provides with `np.finfo(np.longdouble)

NumPy does not provide a dtype with more precision than C's `long double`; in particular, the 128-bit IEEE quad precision data type (FORTRAN's `REAL*16`) is not available.

For efficient memory alignment, `np.longdouble` is usually stored padded with zero bits, either to 96 or 128 bits. Which is more efficient depends on hardware and development environment; typically on 32-bit systems they are padded to 96 bits, while on 64-bit systems they are typically padded to 128 bits. `np.longdouble` is padded to the system default; `np.float96` and `np.float128` are provided for users who want specific padding. In spite of the names, `np.float96` and `np.float128` provide only as much precision as `np.longdouble`, that is, 80 bits on most x86 machines and 64 bits in standard Windows builds.

Be warned that even if `np.longdouble` offers more precision than python float, it is easy to lose that extra precision, since python often forces values to pass through float. For example, the `%` formatting operator requires its arguments to be converted to standard python types, and it is therefore impossible to preserve extended precision even if many decimal places are requested. It can be useful to test your code with the value `1 + np.finfo(np.longdouble).eps`.

4.2 Array creation

See also:

Array creation routines

4.2.1 Introduction

There are 5 general mechanisms for creating arrays:

1) Conversion from other Python structures (e.g., lists, tuples)
2) Intrinsic numpy array creation objects (e.g., arange, ones, zeros, etc.)
3) Reading arrays from disk, either from standard or custom formats
4) Creating arrays from raw bytes through the use of strings or buffers
5) Use of special library functions (e.g., random)

This section will not cover means of replicating, joining, or otherwise expanding or mutating existing arrays. Nor will it cover creating object arrays or structured arrays. Both of those are covered in their own sections.
4.2.2 Converting Python array_like Objects to NumPy Arrays

In general, numerical data arranged in an array-like structure in Python can be converted to arrays through the use of the array() function. The most obvious examples are lists and tuples. See the documentation for array() for details for its use. Some objects may support the array-protocol and allow conversion to arrays this way. A simple way to find out if the object can be converted to a numpy array using array() is simply to try it interactively and see if it works! (The Python Way).

Examples:

```python
>>> x = np.array([2, 3, 1, 0])
>>> x = np.array([2, 3, 1, 0])
>>> x = np.array([[1, 2.0], [0, 0], (1+1j, 3.)]) # note mix of tuple and lists,
and types
>>> x = np.array([[1.+0.j, 2.+0.j], [0.+0.j, 0.+0.j], [1.+1.j, 3.+0.j]])
```

4.2.3 Intrinsic NumPy Array Creation

NumPy has built-in functions for creating arrays from scratch:

zeros(shape) will create an array filled with 0 values with the specified shape. The default dtype is float64.

```python
>>> np.zeros((2, 3))
array([[0., 0., 0.], [0., 0., 0.]])
```

ones(shape) will create an array filled with 1 values. It is identical to zeros in all other respects.

arange() will create arrays with regularly incrementing values. Check the docstring for complete information on the various ways it can be used. A few examples will be given here:

```python
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(2, 10, dtype=float)
array([2., 3., 4., 5., 6., 7., 8., 9.])
>>> np.arange(2, 3, 0.1)
array([2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])
```

Note that there are some subtleties regarding the last usage that the user should be aware of that are described in the arange docstring.

linspace() will create arrays with a specified number of elements, and spaced equally between the specified beginning and end values. For example:

```python
>>> np.linspace(1., 4., 6)
array([1. , 1.6, 2.2, 2.8, 3.4, 4.])
```

The advantage of this creation function is that one can guarantee the number of elements and the starting and end point, which arange() generally will not do for arbitrary start, stop, and step values.

indices() will create a set of arrays (stacked as a one-higher dimensioned array), one per dimension with each representing variation in that dimension. An example illustrates much better than a verbal description:

```python
>>> np.indices((3,3))
array([[[0, 0, 0], [1, 1, 1], [2, 2, 2]], [[0, 1, 2], [0, 1, 2], [0, 1, 2]]])
```

This is particularly useful for evaluating functions of multiple dimensions on a regular grid.
4.2.4 Reading Arrays From Disk

This is presumably the most common case of large array creation. The details, of course, depend greatly on the format of data on disk and so this section can only give general pointers on how to handle various formats.

Standard Binary Formats

Various fields have standard formats for array data. The following lists the ones with known python libraries to read them and return numpy arrays (there may be others for which it is possible to read and convert to numpy arrays so check the last section as well)

<table>
<thead>
<tr>
<th>Format</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDF5</td>
<td>h5py</td>
</tr>
<tr>
<td>FITS</td>
<td>Astropy</td>
</tr>
</tbody>
</table>

Examples of formats that cannot be read directly but for which it is not hard to convert are those formats supported by libraries like PIL (able to read and write many image formats such as jpg, png, etc).

Common ASCII Formats

Comma Separated Value files (CSV) are widely used (and an export and import option for programs like Excel). There are a number of ways of reading these files in Python. There are CSV functions in Python and functions in pylab (part of matplotlib).

More generic ascii files can be read using the io package in scipy.

Custom Binary Formats

There are a variety of approaches one can use. If the file has a relatively simple format then one can write a simple I/O library and use the numpy fromfile() function and .tofile() method to read and write numpy arrays directly (mind your byteorder though!) If a good C or C++ library exists that read the data, one can wrap that library with a variety of techniques though that certainly is much more work and requires significantly more advanced knowledge to interface with C or C++.

Use of Special Libraries

There are libraries that can be used to generate arrays for special purposes and it isn’t possible to enumerate all of them. The most common uses are use of the many array generation functions in random that can generate arrays of random values, and some utility functions to generate special matrices (e.g. diagonal).

4.3 I/O with NumPy

4.3.1 Importing data with genfromtxt

NumPy provides several functions to create arrays from tabular data. We focus here on the genfromtxt function.

In a nutshell, genfromtxt runs two main loops. The first loop converts each line of the file in a sequence of strings. The second loop converts each string to the appropriate data type. This mechanism is slower than a single loop, but gives more flexibility. In particular, genfromtxt is able to take missing data into account, when other faster and simpler functions like loadtxt cannot.
Note: When giving examples, we will use the following conventions:

```python
>>> import numpy as np
>>> from io import StringIO
```

**Defining the input**

The only mandatory argument of `genfromtxt` is the source of the data. It can be a string, a list of strings, a generator or an open file-like object with a `read` method, for example, a file or `io.StringIO` object. If a single string is provided, it is assumed to be the name of a local or remote file. If a list of strings or a generator returning strings is provided, each string is treated as one line in a file. When the URL of a remote file is passed, the file is automatically downloaded to the current directory and opened.

Recognized file types are text files and archives. Currently, the function recognizes `gzip` and `bz2` (bzip2) archives. The type of the archive is determined from the extension of the file: if the filename ends with `.gz`, a `gzip` archive is expected; if it ends with `bz2`, a `bzip2` archive is assumed.

**Splitting the lines into columns**

**The delimiter argument**

Once the file is defined and open for reading, `genfromtxt` splits each non-empty line into a sequence of strings. Empty or commented lines are just skipped. The `delimiter` keyword is used to define how the splitting should take place.

Quite often, a single character marks the separation between columns. For example, comma-separated files (CSV) use a comma (,) or a semicolon (;) as delimiter:

```python
>>> data = u"1, 2, 3\n4, 5, 6"
>>> np.genfromtxt(StringIO(data), delimiter=", ")
array([[1., 2., 3.],
 [4., 5., 6.]])
```

Another common separator is "\t", the tabulation character. However, we are not limited to a single character, any string will do. By default, `genfromtxt` assumes `delimiter=None`, meaning that the line is split along white spaces (including tabs) and that consecutive white spaces are considered as a single white space.

Alternatively, we may be dealing with a fixed-width file, where columns are defined as a given number of characters. In that case, we need to set `delimiter` to a single integer (if all the columns have the same size) or to a sequence of integers (if columns can have different sizes):

```python
>>> data = u"1 2 3\n4 5 67\n890123 4"
>>> np.genfromtxt(StringIO(data), delimiter=3)
array([[1., 2., 3.],
 [4., 5., 67.],
 [890., 123., 4.]])
```

```python
>>> data = u"123456789\n4 7 9\n4567 9"
>>> np.genfromtxt(StringIO(data), delimiter=(4, 3, 2))
array([[1234., 567., 89.],
 [4., 7., 9.],
 [4., 567., 9.]]
```
The `autostrip` argument

By default, when a line is decomposed into a series of strings, the individual entries are not stripped of leading nor trailing white spaces. This behavior can be overwritten by setting the optional argument `autostrip` to a value of `True`:

```python
>>> data = u"i, abc , 2\n3, xxx, 4"
>>> # Without autostrip
>>> np.genfromtxt(StringIO(data), delimiter="", dtype=|U5")
array([['1', ' abc ', ' 2'], ['3', ' xxx', ' 4']], dtype='<U5')
>>> # With autostrip
>>> np.genfromtxt(StringIO(data), delimiter="", dtype=|U5", autostrip=True)
array([['1', 'abc', '2'], ['3', 'xxx', '4']], dtype='<U5')
```

The `comments` argument

The optional argument `comments` is used to define a character string that marks the beginning of a comment. By default, `genfromtxt` assumes `comments='#'`. The comment marker may occur anywhere on the line. Any character present after the comment marker(s) is simply ignored:

```python
>>> data = u""
... # Skip me !
... # Skip me too !
... 1, 2
... 3, 4
... 5, 6 #This is the third line of the data
... 7, 8
... # And here comes the last line
... 9, 0
... ""
>>> np.genfromtxt(StringIO(data), comments="#", delimiter="",")
array([[1., 2.],
[3., 4.],
[5., 6.],
[7., 8.],
[9., 0.]]
```

New in version 1.7.0: When `comments` is set to `None`, no lines are treated as comments.

**Note:** There is one notable exception to this behavior: if the optional argument `names=True`, the first commented line will be examined for names.

Skipping lines and choosing columns

**The `skip_header` and `skip_footer` arguments**

The presence of a header in the file can hinder data processing. In that case, we need to use the `skip_header` optional argument. The values of this argument must be an integer which corresponds to the number of lines to skip at the beginning of the file, before any other action is performed. Similarly, we can skip the last `n` lines of the file by using the `skip_footer` attribute and giving it a value of `n`:

```python
>>> data = u"\n".join(str(i) for i in range(10))
>>> np.genfromtxt(StringIO(data),)
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
```
>>> np.genfromtxt(StringIO(data),
...       skip_header=3, skip_footer=5)
array([ 3.,  4.])

By default, skip_header=0 and skip_footer=0, meaning that no lines are skipped.

**The `usecols` argument**

In some cases, we are not interested in all the columns of the data but only a few of them. We can select which columns to import with the `usecols` argument. This argument accepts a single integer or a sequence of integers corresponding to the indices of the columns to import. Remember that by convention, the first column has an index of 0. Negative integers behave the same as regular Python negative indexes.

For example, if we want to import only the first and the last columns, we can use `usecols=(0, -1):

```python
>>> data = u"1 2 3\n4 5 6"
>>> np.genfromtxt(StringIO(data), usecols=(0, -1))
array([[1., 3.],
 [4., 6.]])
```

If the columns have names, we can also select which columns to import by giving their name to the `usecols` argument, either as a sequence of strings or a comma-separated string:

```python
>>> data = u"1 2 3\n4 5 6"
>>> np.genfromtxt(StringIO(data),
... names="a, b, c", usecols=("a", "c"))
array([(1.0, 3.0), (4.0, 6.0)],
 dtype=[('a', '<f8'), ('c', '<f8')])
>>> np.genfromtxt(StringIO(data),
... names="a, b, c", usecols=("a", "c"))
array([(1.0, 3.0), (4.0, 6.0)],
 dtype=[('a', '<f8'), ('c', '<f8')])
```

**Choosing the data type**

The main way to control how the sequences of strings we have read from the file are converted to other types is to set the `dtype` argument. Acceptable values for this argument are:

- a single type, such as `dtype=float`. The output will be 2D with the given dtype, unless a name has been associated with each column with the use of the `names` argument (see below). Note that `dtype=float` is the default for `genfromtxt`.

- a sequence of types, such as `dtype=(int, float, float)`.

- a comma-separated string, such as `dtype="i4,f8,|U3"`.

- a dictionary with two keys 'names' and 'formats'.

- a sequence of tuples `(name, type)`, such as `dtype=[('A', int), ('B', float)]`.

- an existing numpy `dtype` object.

- the special value `None`. In that case, the type of the columns will be determined from the data itself (see below).

In all the cases but the first one, the output will be a 1D array with a structured dtype. This dtype has as many fields as items in the sequence. The field names are defined with the `names` keyword.

When `dtype=None`, the type of each column is determined iteratively from its data. We start by checking whether a string can be converted to a boolean (that is, if the string matches `true` or `false` in lower cases); then whether it can
be converted to an integer, then to a float, then to a complex and eventually to a string. This behavior may be changed by modifying the default mapper of the StringConverter class.

The option dtype=None is provided for convenience. However, it is significantly slower than setting the dtype explicitly.

### Setting the names

#### The names argument

A natural approach when dealing with tabular data is to allocate a name to each column. A first possibility is to use an explicit structured dtype, as mentioned previously:

```python
>>> data = StringIO("1 2 3\n4 5 6")
>>> np.genfromtxt(data, dtype=[(_, int) for _ in "abc"],
 dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])
array([(1, 2, 3), (4, 5, 6)],
 dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])
```

Another simpler possibility is to use the names keyword with a sequence of strings or a comma-separated string:

```python
>>> data = StringIO("1 2 3\n4 5 6")
>>> np.genfromtxt(data, names="A, B, C",
 dtype=[('A', '<f8'), ('B', '<f8'), ('C', '<f8')])
array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)],
 dtype=[('A', '<f8'), ('B', '<f8'), ('C', '<f8')])
```

In the example above, we used the fact that by default, dtype=float. By giving a sequence of names, we are forcing the output to a structured dtype.

We may sometimes need to define the column names from the data itself. In that case, we must use the names keyword with a value of True. The names will then be read from the first line (after the skip_header ones), even if the line is commented out:

```python
>>> data = StringIO("So it goes\n1 2 3\n4 5 6")
>>> np.genfromtxt(data, skip_header=1, names=True,
 dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)],
 dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])
```

The default value of names is None. If we give any other value to the keyword, the new names will overwrite the field names we may have defined with the dtype:

```python
>>> data = StringIO("1 2 3\n4 5 6")
>>> ndtype=[('a', int), ('b', float), ('c', int)]
>>> names = ['A', 'B', 'C']
>>> np.genfromtxt(data, names=names, dtype=ndtype,
 dtype=[('A', '<i8'), ('B', '<f8'), ('C', '<f8')])
array([(1, 2, 3), (4, 5, 6)],
 dtype=[('A', '<i8'), ('B', '<f8'), ('C', '<f8')])
```

#### The default fmt argument

If names=None but a structured dtype is expected, names are defined with the standard NumPy default of "f%i", yielding names like f0, f1 and so forth:

```python
>>> data = StringIO("1 2 3\n4 5 6")
>>> np.genfromtxt(data, dtype=(int, float, int))
array([(1, 2.0, 3), (4, 5.0, 6)],
 dtype=[('f0', '<i8'), ('f1', '<f8'), ('f2', '<i8')])
```

In the same way, if we don’t give enough names to match the length of the dtype, the missing names will be defined with this default template:

#### 4.3. I/O with NumPy
We can overwrite this default with the `defaultfmt` argument, that takes any format string:

```python
>>> data = StringIO("1 2 3
4 5 6")
>>> np.genfromtxt(data, dtype=(int, float, int), defaultfmt="var_@02i")
array([[1, 2.0, 3],
 [4, 5.0, 6]],
 dtype=[('var_00', '<i8'), ('var_01', '<f8'), ('var_02', '<i8')])
```

**Note:** We need to keep in mind that `defaultfmt` is used only if some names are expected but not defined.

### Validating names

NumPy arrays with a structured dtypes can also be viewed as recarray, where a field can be accessed as if it were an attribute. For that reason, we may need to make sure that the field name does’t contain any space or invalid character, or that it does not correspond to the name of a standard attribute (like `size` or `shape`), which would confuse the interpreter. `genfromtxt` accepts three optional arguments that provide a finer control on the names:

- `deletechars`: Gives a string combining all the characters that must be deleted from the name. By default, invalid characters are `~!@#$%^&*()-=+~\|}\{';: /?.>,<`.

- `excludelist`: Gives a list of the names to exclude, such as `return`, `file`, `print`... If one of the input name is part of this list, an underscore character ('_') will be appended to it.

- `case_sensitive`: Whether the names should be case-sensitive (default is `case_sensitive=True`), converted to upper case (default is `case_sensitive=False` or `case_sensitive='upper'`) or to lower case (default is `case_sensitive='lower'`).

### Tweaking the conversion

#### The converters argument

Usually, defining a dtype is sufficient to define how the sequence of strings must be converted. However, some additional control may sometimes be required. For example, we may want to make sure that a date in a format `YYYY/MM/DD` is converted to a `datetime` object, or that a string like `xx%` is properly converted to a float between 0 and 1. In such cases, we should define conversion functions with the `converters` arguments.

The value of this argument is typically a dictionary with column indices or column names as keys and a conversion functions as values. These conversion functions can either be actual functions or lambda functions. In any case, they should accept only a string as input and output only a single element of the wanted type.

In the following example, the second column is converted from as string representing a percentage to a float between 0 and 1:

```python
>>> convertfunc = lambda x: float(x.strip(b"%"))/100.
>>> data = u"i1, 2.3%, 45.1n6, 78.9%, 0"
>>> names = ("i", "p", "n")
```
>>> # General case ....
>>> np.genfromtxt(StringIO(data), delimiter="", names=names)
array([[1., nan, 45.],
       [6., nan, 0.]],
       dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

We need to keep in mind that by default, dtype=float. A float is therefore expected for the second column. However, the strings ' 2.3%' and ' 78.9%' cannot be converted to float and we end up having np.nan instead. Let’s now use a converter:

>>> # Converted case ...
>>> np.genfromtxt(StringIO(data), delimiter="", names=names,
... converters={1: convertfunc})
array([[1.0, 0.023, 45.0],
       [6.0, 0.78900000000000003, 0.0]],
       dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

The same result can be obtained by using the name of the second column ("p") as key instead of its index (1):

>>> # Using a name for the converter ...
>>> np.genfromtxt(StringIO(data), delimiter="", names=names,
... converters={'p': convertfunc})
array([[1.0, 0.023, 45.0],
       [6.0, 0.78900000000000003, 0.0]],
       dtype=[('i', '<f8'), ('p', '<f8'), ('n', '<f8')])

Converters can also be used to provide a default for missing entries. In the following example, the converter convert transforms a stripped string into the corresponding float or into -999 if the string is empty. We need to explicitly strip the string from white spaces as it is not done by default:

>>> data = u"1, , 3\n 4, 5, 6"
>>> convert = lambda x: float(x.strip() or -999)
>>> np.genfromtxt(StringIO(data), delimiter="",
... converters={1: convert})
array([[ 1., -999., 3.],
       [ 4., 5., 6.]])

Using missing and filling values

Some entries may be missing in the dataset we are trying to import. In a previous example, we used a converter to transform an empty string into a float. However, user-defined converters may rapidly become cumbersome to manage.

The genfromtxt function provides two other complementary mechanisms: the missing_values argument is used to recognize missing data and a second argument, filling_values, is used to process these missing data.

missing_values

By default, any empty string is marked as missing. We can also consider more complex strings, such as "N/A" or "???” to represent missing or invalid data. The missing_values argument accepts three kind of values:

a string or a comma-separated string

This string will be used as the marker for missing data for all the columns

a sequence of strings

In that case, each item is associated to a column, in order.

a dictionary

Values of the dictionary are strings or sequence of strings. The corresponding keys can be column indices (integers) or column names (strings). In addition, the special key None can be used to define
a default applicable to all columns.

**filling_values**

We know how to recognize missing data, but we still need to provide a value for these missing entries. By default, this value is determined from the expected dtype according to this table:

<table>
<thead>
<tr>
<th>Expected type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool</td>
<td>False</td>
</tr>
<tr>
<td>int</td>
<td>-1</td>
</tr>
<tr>
<td>float</td>
<td>np.nan</td>
</tr>
<tr>
<td>complex</td>
<td>np.nan+0j</td>
</tr>
<tr>
<td>string</td>
<td>'???'</td>
</tr>
</tbody>
</table>

We can get a finer control on the conversion of missing values with the **filling_values** optional argument. Like **missing_values**, this argument accepts different kind of values:

- **a single value**
  
  This will be the default for all columns

- **a sequence of values**
  
  Each entry will be the default for the corresponding column

- **a dictionary**
  
  Each key can be a column index or a column name, and the corresponding value should be a single object. We can use the special key **None** to define a default for all columns.

In the following example, we suppose that the missing values are flagged with "N/A" in the first column and by "???" in the third column. We wish to transform these missing values to 0 if they occur in the first and second column, and to -999 if they occur in the last column:

```python
>>> data = u"N/A, 2, 3\n4, ,???
"n
>>> kwargs = dict(delimiter=",",
... dtype=int,
... names="a,b,c",
... missing_values=(0:"N/A", 'b':" ", 2:"???"),
... filling_values=(0:0, 'b':0, 2:-999))

>>> np.genfromtxt(StringIO(data), **kwargs)
array([[0, 2, 3], [4, 0, -999]],
 dtype=[('a', '<i8'), ('b', '<i8'), ('c', '<i8')])
```

**usemask**

We may also want to keep track of the occurrence of missing data by constructing a boolean mask, with **True** entries where data was missing and **False** otherwise. To do that, we just have to set the optional argument **usemask** to **True** (the default is **False**). The output array will then be a **MaskedArray**.
Shortcut functions

In addition to genfromtxt, the numpy.lib.npyio module provides several convenience functions derived from genfromtxt. These functions work the same way as the original, but they have different default values.

recfromtxt

Returns a standard numpy.recarray (if usemask=False) or a MaskedRecords array (if usemaske=True). The default dtype is dtype=None, meaning that the types of each column will be automatically determined.

recfromcsv

Like recfromtxt, but with a default delimiter="", ".

4.4 Indexing

See also:
Indexing
Indexing routines

Array indexing refers to any use of the square brackets ([]) to index array values. There are many options to indexing, which give numpy indexing great power, but with power comes some complexity and the potential for confusion. This section is just an overview of the various options and issues related to indexing. Aside from single element indexing, the details on most of these options are to be found in related sections.

4.4.1 Assignment vs referencing

Most of the following examples show the use of indexing when referencing data in an array. The examples work just as well when assigning to an array. See the section at the end for specific examples and explanations on how assignments work.

4.4.2 Single element indexing

Single element indexing for a 1-D array is what one expects. It work exactly like that for other standard Python sequences. It is 0-based, and accepts negative indices for indexing from the end of the array.

```python
>>> x = np.arange(10)
>>> x[2]
2
>>> x[-2]
8
```

Unlike lists and tuples, numpy arrays support multidimensional indexing for multidimensional arrays. That means that it is not necessary to separate each dimension's index into its own set of square brackets.

```python
>>> x.shape = (2,5) # now x is 2-dimensional
>>> x[1,3]
8
>>> x[1,-1]
9
```
Note that if one indexes a multidimensional array with fewer indices than dimensions, one gets a subdimensional array. For example:

```
>>> x[0]
array([0, 1, 2, 3, 4])
```

That is, each index specified selects the array corresponding to the rest of the dimensions selected. In the above example, choosing 0 means that the remaining dimension of length 5 is being left unspecified, and that what is returned is an array of that dimensionality and size. It must be noted that the returned array is not a copy of the original, but points to the same values in memory as does the original array. In this case, the 1-D array at the first position (0) is returned. So using a single index on the returned array, results in a single element being returned. That is:

```
>>> x[0][2]
2
```

So note that $x[0, 2] = x[0][2]$ though the second case is more inefficient as a new temporary array is created after the first index that is subsequently indexed by 2.

Note to those used to IDL or Fortran memory order as it relates to indexing. NumPy uses C-order indexing. That means that the last index usually represents the most rapidly changing memory location, unlike Fortran or IDL, where the first index represents the most rapidly changing location in memory. This difference represents a great potential for confusion.

### 4.4.3 Other indexing options

It is possible to slice and stride arrays to extract arrays of the same number of dimensions, but of different sizes than the original. The slicing and striding works exactly the same way it does for lists and tuples except that they can be applied to multiple dimensions as well. A few examples illustrates best:

```
>>> x = np.arange(10)
>>> x[2:5]
array([2, 3, 4])
>>> x[:,7]
array([7, 10, 13])
```

Note that slices of arrays do not copy the internal array data but only produce new views of the original data. This is different from list or tuple slicing and an explicit `copy()` is recommended if the original data is not required anymore.

It is possible to index arrays with other arrays for the purposes of selecting lists of values out of arrays into new arrays. There are two different ways of accomplishing this. One uses one or more arrays of index values. The other involves giving a boolean array of the proper shape to indicate the values to be selected. Index arrays are a very powerful tool that allow one to avoid looping over individual elements in arrays and thus greatly improve performance.

It is possible to use special features to effectively increase the number of dimensions in an array through indexing so the resulting array acquires the shape needed for use in an expression or with a specific function.
4.4.4 Index arrays

NumPy arrays may be indexed with other arrays (or any other sequence-like object that can be converted to an array, such as lists, with the exception of tuples; see the end of this document for why this is). The use of index arrays ranges from simple, straightforward cases to complex, hard-to-understand cases. For all cases of index arrays, what is returned is a copy of the original data, not a view as one gets for slices.

Index arrays must be of integer type. Each value in the array indicates which value in the array to use in place of the index. To illustrate:

```python
>>> x = np.arange(10, 1, -1)
>>> x
array([10, 9, 8, 7, 6, 5, 4, 3, 2])
>>> x[np.array([3, 3, 1, 8])]
array([7, 7, 9, 2])
```

The index array consisting of the values 3, 3, 1 and 8 correspondingly create an array of length 4 (same as the index array) where each index is replaced by the value the index array has in the array being indexed.

Negative values are permitted and work as they do with single indices or slices:

```python
>>> x[np.array([3, 3, -3, 8])]
array([7, 7, 4, 2])
```

It is an error to have index values out of bounds:

```python
>>> x[np.array([3, 20, 8])]
<type 'exceptions.IndexError'>: index 20 out of bounds 0<=index<9
```

Generally speaking, what is returned when index arrays are used is an array with the same shape as the index array, but with the type and values of the array being indexed. As an example, we can use a multidimensional index array instead:

```python
>>> x[np.array([[1,1],[2,3]])]
array([[9, 9],
 [8, 7]])
```

4.4.5 Indexing Multi-dimensional arrays

Things become more complex when multidimensional arrays are indexed, particularly with multidimensional index arrays. These tend to be more unusual uses, but they are permitted, and they are useful for some problems. We’ll start with the simplest multidimensional case (using the array y from the previous examples):

```python
>>> y[np.array([0,2]), np.array([0,1,2])]
array([0, 15, 30])
```

In this case, if the index arrays have a matching shape, and there is an index array for each dimension of the array being indexed, the resultant array has the same shape as the index arrays, and the values correspond to the index set for each position in the index arrays. In this example, the first index value is 0 for both index arrays, and thus the first value of the resultant array is y[0,0]. The next value is y[2,1], and the last is y[4,2].

If the index arrays do not have the same shape, there is an attempt to broadcast them to the same shape. If they cannot be broadcast to the same shape, an exception is raised:

```python
>>> y[np.array([0,2]), np.array([0,1])]
<type 'exceptions.ValueError'>: shape mismatch: objects cannot be broadcast to a single shape
```
The broadcasting mechanism permits index arrays to be combined with scalars for other indices. The effect is that the scalar value is used for all the corresponding values of the index arrays:

```python
>>> y[np.array([0,2,4]), 1]
array([1, 15, 29])
```

Jumping to the next level of complexity, it is possible to only partially index an array with index arrays. It takes a bit of thought to understand what happens in such cases. For example if we just use one index array with y:

```python
>>> y[np.array([0,2,4])]
array([[0, 1, 2, 3, 4, 5, 6],
 [14, 15, 16, 17, 18, 19, 20],
 [28, 29, 30, 31, 32, 33, 34]])
```

What results is the construction of a new array where each value of the index array selects one row from the array being indexed and the resultant array has the resulting shape (number of index elements, size of row).

An example of where this may be useful is for a color lookup table where we want to map the values of an image into RGB triples for display. The lookup table could have a shape (nlookup, 3). Indexing such an array with an image with shape (ny, nx) with dtype=np.uint8 (or any integer type so long as values are with the bounds of the lookup table) will result in an array of shape (ny, nx, 3) where a triple of RGB values is associated with each pixel location.

In general, the shape of the resultant array will be the concatenation of the shape of the index array (or the shape that all the index arrays were broadcast to) with the shape of any unused dimensions (those not indexed) in the array being indexed.

### 4.4.6 Boolean or “mask” index arrays

Boolean arrays used as indices are treated in a different manner entirely than index arrays. Boolean arrays must be of the same shape as the initial dimensions of the array being indexed. In the most straightforward case, the boolean array has the same shape:

```python
>>> b = y>20
>>> y[b]
array([21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34])
```

Unlike in the case of integer index arrays, in the boolean case, the result is a 1-D array containing all the elements in the indexed array corresponding to all the true elements in the boolean array. The elements in the indexed array are always iterated and returned in row-major (C-style) order. The result is also identical to `y[np.nonzero(b)]`. As with index arrays, what is returned is a copy of the data, not a view as one gets with slices.

The result will be multidimensional if y has more dimensions than b. For example:

```python
>>> b[:,5] # use a 1-D boolean whose first dim agrees with the first dim of y
array([False, False, False, True, True])
>>> y[b[:,5]]
array([[21, 22, 23, 24, 25, 26, 27],
 [28, 29, 30, 31, 32, 33, 34]])
```

Here the 4th and 5th rows are selected from the indexed array and combined to make a 2-D array.

In general, when the boolean array has fewer dimensions than the array being indexed, this is equivalent to `y[b, ...]`, which means y is indexed by b followed by as many : as are needed to fill out the rank of y. Thus the shape of the result is one dimension containing the number of True elements of the boolean array, followed by the remaining dimensions of the array being indexed.

For example, using a 2-D boolean array of shape (2,3) with four True elements to select rows from a 3-D array of shape (2,3,5) results in a 2-D result of shape (4,5):
>>> x = np.arange(30).reshape(2,3,5)
>>> x
array([[[ 0, 1, 2, 3, 4],
        [ 5, 6, 7, 8, 9],
        [10, 11, 12, 13, 14]],
       [[15, 16, 17, 18, 19],
        [20, 21, 22, 23, 24],
        [25, 26, 27, 28, 29]]])
>>> b = np.array([[True, True, False], [False, True, True]])
>>> x[b]
array([[[ 0, 1, 2, 3, 4],
        [ 5, 6, 7, 8, 9],
        [20, 21, 22, 23, 24],
        [25, 26, 27, 28, 29]]])

For further details, consult the numpy reference documentation on array indexing.

### 4.4.7 Combining index arrays with slices

Index arrays may be combined with slices. For example:

```python
>>> y[np.array([[0, 2, 4]], 1:3]
array([[15, 16],
 [29, 30]])
```

In effect, the slice and index array operation are independent. The slice operation extracts columns with index 1 and 2, (i.e. the 2nd and 3rd columns), followed by the index array operation which extracts rows with index 0, 2 and 4 (i.e the first, third and fifth rows).

This is equivalent to:

```python
>>> y[1:3][np.array([[0, 2, 4]], 1:3]
array([[15, 16],
 [29, 30]])
```

Likewise, slicing can be combined with broadcasted boolean indices:

```python
>>> b = y > 20
>>> b
array([[False, False, False, False, False, False, False, False, False, False],
 [False, False, False, False, False, False, False, False, False, False],
 [False, False, False, False, False, False, False, False, False, False],
 [True, True, True, True, True, True, True, True, True, True],
 [True, True, True, True, True, True, True, True, True, True]])
>>> y[b[:, 1:3]
array([[22, 23],
 [29, 30]])
```
4.4.8 Structural indexing tools

To facilitate easy matching of array shapes with expressions and in assignments, the np.newaxis object can be used within array indices to add new dimensions with a size of 1. For example:

```python
>>> y.shape
(5, 7)
>>> y[:, np.newaxis, :].shape
(5, 1, 7)
```

Note that there are no new elements in the array, just that the dimensionality is increased. This can be handy to combine two arrays in a way that otherwise would require explicitly reshaping operations. For example:

```python
>>> x = np.arange(5)
>>> x[:, np.newaxis] + x[np.newaxis, :]
array([[0, 1, 2, 3, 4],
 [1, 2, 3, 4, 5],
 [2, 3, 4, 5, 6],
 [3, 4, 5, 6, 7],
 [4, 5, 6, 7, 8]])
```

The ellipsis syntax maybe used to indicate selecting in full any remaining unspecified dimensions. For example:

```python
>>> z = np.arange(81).reshape(3, 3, 3, 3)
>>> z[1, ..., 2]
array([[[29, 32, 35],
 [38, 41, 44],
 [47, 50, 53]]])
```

This is equivalent to:

```python
>>> z[1, :, :, 2]
array([[[29, 32, 35],
 [38, 41, 44],
 [47, 50, 53]]])
```

4.4.9 Assigning values to indexed arrays

As mentioned, one can select a subset of an array to assign to using a single index, slices, and index and mask arrays. The value being assigned to the indexed array must be shape consistent (the same shape or broadcastable to the shape the index produces). For example, it is permitted to assign a constant to a slice:

```python
>>> x = np.arange(10)
>>> x[2:7] = 1
```

or an array of the right size:

```python
>>> x[2:7] = np.arange(5)
```

Note that assignments may result in changes if assigning higher types to lower types (like floats to ints) or even exceptions (assigning complex to floats or ints):

```python
>>> x[1] = 1.2
>>> x[1]
1
(continues on next page)```
Unlike some of the references (such as array and mask indices) assignments are always made to the original data in the array (indeed, nothing else would make sense!). Note though, that some actions may not work as one may naively expect. This particular example is often surprising to people:

```python
>>> x = np.arange(0, 50, 10)
>>> x
array([ 0, 10, 20, 30, 40])
>>> x[np.array([1, 1, 3, 1])] += 1
>>> x
array([ 0, 11, 20, 31, 40])
```

Where people expect that the 1st location will be incremented by 3. In fact, it will only be incremented by 1. The reason is because a new array is extracted from the original (as a temporary) containing the values at 1, 1, 3, 1, then the value 1 is added to the temporary, and then the temporary is assigned back to the original array. Thus the value of the array at x[1]+1 is assigned to x[1] three times, rather than being incremented 3 times.

4.4.10 Dealing with variable numbers of indices within programs

The index syntax is very powerful but limiting when dealing with a variable number of indices. For example, if you want to write a function that can handle arguments with various numbers of dimensions without having to write special case code for each number of possible dimensions, how can that be done? If one supplies to the index a tuple, the tuple will be interpreted as a list of indices. For example (using the previous definition for the array z):

```python
>>> indices = (1,1,1,1)
>>> z[indices]
40
```

So one can use code to construct tuples of any number of indices and then use these within an index.

Slices can be specified within programs by using the slice() function in Python. For example:

```python
>>> indices = (1,1,1,slice(0,2))  # same as [1,1,1,0:2]
>>> z[indices]
array([39, 40])
```

Likewise, ellipsis can be specified by code by using the Ellipsis object:

```python
>>> indices = (1, Ellipsis, 1)  # same as [1,...,1]
>>> z[indices]
array([[28, 31, 34],
       [37, 40, 43],
       [46, 49, 52]])
```

For this reason it is possible to use the output from the np.nonzero() function directly as an index since it always returns a tuple of index arrays.

Because the special treatment of tuples, they are not automatically converted to an array as a list would be. As an example:

```python
>>> z[[1,1,1,1]]  # produces a large array
array([[[27, 28, 29],
       [30, 31, 32], ...])
```
Broadcasting

See also:

numpy.broadcast
array-broadcasting-in-numpy

An introduction to the concepts discussed here

Note: See this article for illustrations of broadcasting concepts.

The term broadcasting describes how numpy treats arrays with different shapes during arithmetic operations. Subject to certain constraints, the smaller array is “broadcast” across the larger array so that they have compatible shapes. Broadcasting provides a means of vectorizing array operations so that looping occurs in C instead of Python. It does this without making needless copies of data and usually leads to efficient algorithm implementations. There are, however, cases where broadcasting is a bad idea because it leads to inefficient use of memory that slows computation.

NumPy operations are usually done on pairs of arrays on an element-by-element basis. In the simplest case, the two arrays must have exactly the same shape, as in the following example:

```python
>>> a = np.array([1.0, 2.0, 3.0])
>>> b = np.array([2.0, 2.0, 2.0])
>>> a * b
array([2., 4., 6.])
```

NumPy’s broadcasting rule relaxes this constraint when the arrays’ shapes meet certain constraints. The simplest broadcasting example occurs when an array and a scalar value are combined in an operation:

```python
>>> a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([2., 4., 6.])
```

The result is equivalent to the previous example where b was an array. We can think of the scalar b being stretched during the arithmetic operation into an array with the same shape as a. The new elements in b are simply copies of the original scalar. The stretching analogy is only conceptual. NumPy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible.

The code in the second example is more efficient than that in the first because broadcasting moves less memory around during the multiplication (b is a scalar rather than an array).
4.5.1 General Broadcasting Rules

When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing (i.e. rightmost) dimensions and works its way left. Two dimensions are compatible when

1) they are equal, or
2) one of them is 1

If these conditions are not met, a `ValueError: operands could not be broadcast together` exception is thrown, indicating that the arrays have incompatible shapes. The size of the resulting array is the size that is not 1 along each axis of the inputs.

Arrays do not need to have the same number of dimensions. For example, if you have a $256 \times 256 \times 3$ array of RGB values, and you want to scale each color in the image by a different value, you can multiply the image by a one-dimensional array with 3 values. Lining up the sizes of the trailing axes of these arrays according to the broadcast rules, shows that they are compatible:

<table>
<thead>
<tr>
<th>Image (3d array): 256 x 256 x 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale (1d array): 3</td>
</tr>
<tr>
<td>Result (3d array): 256 x 256 x 3</td>
</tr>
</tbody>
</table>

When either of the dimensions compared is one, the other is used. In other words, dimensions with size 1 are stretched or “copied” to match the other.

In the following example, both the A and B arrays have axes with length one that are expanded to a larger size during the broadcast operation:

<table>
<thead>
<tr>
<th>A (4d array): 8 x 1 x 6 x 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (3d array): 7 x 1 x 5</td>
</tr>
<tr>
<td>Result (4d array): 8 x 7 x 6 x 5</td>
</tr>
</tbody>
</table>

Here are some more examples:

<table>
<thead>
<tr>
<th>A (2d array): 5 x 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (1d array): 1</td>
</tr>
<tr>
<td>Result (2d array): 5 x 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A (2d array): 5 x 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (1d array): 4</td>
</tr>
<tr>
<td>Result (2d array): 5 x 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A (3d array): 15 x 3 x 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (3d array): 15 x 1 x 5</td>
</tr>
<tr>
<td>Result (3d array): 15 x 3 x 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A (3d array): 15 x 3 x 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (2d array): 3 x 5</td>
</tr>
<tr>
<td>Result (3d array): 15 x 3 x 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A (3d array): 15 x 3 x 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (2d array): 3 x 1</td>
</tr>
<tr>
<td>Result (3d array): 15 x 3 x 5</td>
</tr>
</tbody>
</table>

Here are examples of shapes that do not broadcast:

<table>
<thead>
<tr>
<th>A (1d array): 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (1d array): 4 # trailing dimensions do not match</td>
</tr>
</tbody>
</table>

(continues on next page)
An example of broadcasting in practice:

```python
>>> x = np.arange(4)
>>> xx = x.reshape(4, 1)
>>> y = np.ones(5)
>>> z = np.ones((3, 4))

>>> x.shape
(4,)

>>> y.shape
(5,)

>>> x + y
ValueError: operands could not be broadcast together with shapes (4,) (5,)

>>> xx.shape
(4, 1)

>>> y.shape
(5,)

>>> (xx + y).shape
(4, 5)

>>> xx + y
array([[ 1., 1., 1., 1., 1.],
       [ 2., 2., 2., 2., 2.],
       [ 3., 3., 3., 3., 3.],
       [ 4., 4., 4., 4., 4.]]))

>>> x.shape
(4,)

>>> z.shape
(3, 4)

>>> (x + z).shape
(3, 4)

>>> x + z
array([[ 1., 2., 3., 4.],
       [ 1., 2., 3., 4.],
       [ 1., 2., 3., 4.]]))
```

Broadcasting provides a convenient way of taking the outer product (or any other outer operation) of two arrays. The following example shows an outer addition operation of two 1-d arrays:

```python
>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[ 1.,  2.,  3.],
       [11., 12., 13.]])
```
Here the `newaxis` index operator inserts a new axis into `a`, making it a two-dimensional \(4 \times 1\) array. Combining the \(4 \times 1\) array with `b`, which has shape `(3,)`, yields a \(4 \times 3\) array.

4.6 Byte-swapping

4.6.1 Introduction to byte ordering and ndarrays

The `ndarray` is an object that provides a Python array interface to data in memory.

It often happens that the memory that you want to view with an array is not of the same byte ordering as the computer on which you are running Python.

For example, I might be working on a computer with a little-endian CPU - such as an Intel Pentium, but I have loaded some data from a file written by a computer that is big-endian. Let's say I have loaded 4 bytes from a file written by a Sun (big-endian) computer. I know that these 4 bytes represent two 16-bit integers. On a big-endian machine, a two-byte integer is stored with the Most Significant Byte (MSB) first, and then the Least Significant Byte (LSB). Thus the bytes are, in memory order:

1. MSB integer 1
2. LSB integer 1
3. MSB integer 2
4. LSB integer 2

Let's say the two integers were in fact 1 and 770. Because \(770 = 256 \times 3 + 2\), the 4 bytes in memory would contain respectively: 0, 1, 3, 2. The bytes I have loaded from the file would have these contents:

```python
>>> big_end_buffer = bytearray([0, 1, 3, 2])
>>> big_end_buffer
bytearray(b'\x00\x01\x03\x02')
```

We might want to use an `ndarray` to access these integers. In that case, we can create an array around this memory, and tell numpy that there are two integers, and that they are 16 bit and big-endian:

```python
>>> import numpy as np
>>> big_end_arr = np.ndarray(shape=(2,), dtype='>i2', buffer=big_end_buffer)
>>> big_end_arr[0]
1
>>> big_end_arr[1]
770
```

Note the array dtype above of >i2. The > means 'big-endian' (< is little-endian) and i2 means 'signed 2-byte integer'. For example, if our data represented a single unsigned 4-byte little-endian integer, the dttype string would be <u4.

In fact, why don't we try that?

```python
>>> little_end_u4 = np.ndarray(shape=(1,), dtype='<u4', buffer=big_end_buffer)
>>> little_end_u4[0] == 1 * 256**1 + 3 * 256**2 + 2 * 256**3
True
```
Returning to our `big_end_arr` - in this case our underlying data is big-endian (data endianness) and we've set the dtype to match (the dtype is also big-endian). However, sometimes you need to flip these around.

Warning: Scalars currently do not include byte order information, so extracting a scalar from an array will return an integer in native byte order. Hence:

```
>>> big_end_arr[0].dtype.byteorder == little_end_u4[0].dtype.byteorder
True
```

4.6.2 Changing byte ordering

As you can imagine from the introduction, there are two ways you can affect the relationship between the byte ordering of the array and the underlying memory it is looking at:

- Change the byte-ordering information in the array dtype so that it interprets the underlying data as being in a different byte order. This is the role of `arr.newbyteorder()`
- Change the byte-ordering of the underlying data, leaving the dtype interpretation as it was. This is what `arr.byteswap()` does.

The common situations in which you need to change byte ordering are:

1. Your data and dtype endianness don’t match, and you want to change the dtype so that it matches the data.
2. Your data and dtype endianness don’t match, and you want to swap the data so that they match the dtype
3. Your data and dtype endianness match, but you want the data swapped and the dtype to reflect this

Data and dtype endianness don’t match, change dtype to match data

We make something where they don’t match:

```
>>> wrong_end_dtype_arr = np.ndarray(shape=(2,), dtype='<i2', buffer=big_end_buffer)
```

```
256
```

The obvious fix for this situation is to change the dtype so it gives the correct endianness:

```
>>> fixed_end_dtype_arr = wrong_end_dtype_arr.newbyteorder()
```

```
1
```

Note the array has not changed in memory:

```
>>> fixed_end_dtype_arr.tobytes() == big_end_buffer
True
```
Data and type endianness don't match, change data to match dtype

You might want to do this if you need the data in memory to be a certain ordering. For example you might be writing the memory out to a file that needs a certain byte ordering.

```python
>>> fixed_end_mem_arr = wrong_end_dtype_arr.byteswap()
```

Now the array has changed in memory:

```python
>>> fixed_end_mem_arr.tobytes() == big_end_buffer
False
```

Data and dtype endianness match, swap data and dtype

You may have a correctly specified array dtype, but you need the array to have the opposite byte order in memory, and you want the dtype to match so the array values make sense. In this case you just do both of the previous operations:

```python
>>> swapped_end_arr = big_end_arr.byteswap().newbyteorder()
>>> swapped_end_arr[0]
1
>>> swapped_end_arr.tobytes() == big_end_buffer
False
```

An easier way of casting the data to a specific dtype and byte ordering can be achieved with the ndarray astype method:

```python
>>> swapped_end_arr = big_end_arr.astype('<i2')
>>> swapped_end_arr[0]
1
>>> swapped_end_arr.tobytes() == big_end_buffer
False
```

4.7 Structured arrays

4.7.1 Introduction

Structured arrays are ndarrays whose datatype is a composition of simpler datatypes organized as a sequence of named fields. For example,

```python
>>> x = np.array([(‘Rex’, 9, 81.0), (‘Fido’, 3, 27.0)],
               dtype=[(‘name’, ‘U10’), (‘age’, ‘i4’), (‘weight’, ‘f4’)])
```

Here x is a one-dimensional array of length two whose datatype is a structure with three fields: 1. A string of length 10 or less named ‘name’, 2. a 32-bit integer named ‘age’, and 3. a 32-bit float named ‘weight’.

If you index x at position 1 you get a structure:

```python
>>> x[1]
(‘Fido’, 3, 27.0)
```
You can access and modify individual fields of a structured array by indexing with the field name:

```python
>>> x['age']
array([9, 3], dtype=int32)
```

```python
>>> x['age'] = 5
```

```python
>>> x
array([('Rex', 5, 81.), ('Fido', 5, 27.)],
      dtype=[('name', 'U10'), ('age', '<i4'), ('weight', '<f4')])
```

Structured datatypes are designed to be able to mimic ‘structs’ in the C language, and share a similar memory layout. They are meant for interfacing with C code and for low-level manipulation of structured buffers, for example for interpreting binary blobs. For these purposes they support specialized features such as subarrays, nested datatypes, and unions, and allow control over the memory layout of the structure.

Users looking to manipulate tabular data, such as stored in csv files, may find other pydata projects more suitable, such as xarray, pandas, or DataArray. These provide a high-level interface for tabular data analysis and are better optimized for that use. For instance, the C-struct-like memory layout of structured arrays in numpy can lead to poor cache behavior in comparison.

4.7.2 Structured Datatypes

A structured datatype can be thought of as a sequence of bytes of a certain length (the structure’s *itemsize*) which is interpreted as a collection of fields. Each field has a name, a datatype, and a byte offset within the structure. The datatype of a field may be any numpy datatype including other structured datatypes, and it may also be a subarray data type which behaves like an ndarray of a specified shape. The offsets of the fields are arbitrary, and fields may even overlap. These offsets are usually determined automatically by numpy, but can also be specified.

Structured Datatype Creation

Structured datatypes may be created using the function `numpy.dtype`. There are 4 alternative forms of specification which vary in flexibility and conciseness. These are further documented in the Data Type Objects reference page, and in summary they are:

1. A list of tuples, one tuple per field

 Each tuple has the form `(fieldname, datatype, shape)` where shape is optional. `fieldname` is a string (or tuple if titles are used, see *Field Titles* below), `datatype` may be any object convertible to a datatype, and `shape` is a tuple of integers specifying subarray shape.

   ```python
   >>> np.dtype([('x', 'f4'), ('y', np.float32), ('z', 'f4', (2, 2))])
   dtype([('x', '<f4'), ('y', '<f4'), ('z', '<f4', (2, 2))])
   ```

 If `fieldname` is the empty string `'` the field will be given a default name of the form `f#`, where # is the integer index of the field, counting from 0 from the left:

   ```python
   >>> np.dtype([('x', 'f4'), ('', 'i4'), ('z', 'i8')])
   dtype([('x', '<f4'), ('f1', '<i4'), ('z', '<i8')])
   ```

 The byte offsets of the fields within the structure and the total structure itemsize are determined automatically.

2. A string of comma-separated dtype specifications

 In this shorthand notation any of the string dtype specifications may be used in a string and separated by commas. The itemsize and byte offsets of the fields are determined automatically, and the field names are given the default names `f0, f1, etc.`
3. A dictionary of field parameter arrays

This is the most flexible form of specification since it allows control over the byte-offsets of the fields and the itemsize of the structure.

The dictionary has two required keys, ‘names’ and ‘formats’, and four optional keys, ‘offsets’, ‘itemsize’, ‘aligned’ and ‘titles’. The values for ‘names’ and ‘formats’ should respectively be a list of field names and a list of dtype specifications, of the same length. The optional ‘offsets’ value should be a list of integer byte-offsets, one for each field within the structure. If ‘offsets’ is not given the offsets are determined automatically. The optional ‘itemsize’ value should be an integer describing the total size in bytes of the dtype, which must be large enough to contain all the fields.

```python
>>> np.dtype({'names': ['col1', 'col2'], 'formats': ['<i4', '<f4']})
dtype([('col1', '<i4'), ('col2', '<f4')])
```

Offsets may be chosen such that the fields overlap, though this will mean that assigning to one field may clobber any overlapping field’s data. As an exception, fields of numpy.object_ type cannot overlap with other fields, because of the risk of clobbering the internal object pointer and then dereferencing it.

The optional ‘aligned’ value can be set to True to make the automatic offset computation use aligned offsets (see Automatic Byte Offsets and Alignment), as if the ‘align’ keyword argument of numpy.dtype had been set to True.

The optional ‘titles’ value should be a list of titles of the same length as ‘names’, see Field Titles below.

4. A dictionary of field names

The use of this form of specification is discouraged, but documented here because older numpy code may use it. The keys of the dictionary are the field names and the values are tuples specifying type and offset:

```python
>>> np.dtype({'col1': ('i1', 0), 'col2': ('f4', 1)})
dtype([('col1', 'i1'), ('col2', '<f4')])
```

This form is discouraged because Python dictionaries do not preserve order in Python versions before Python 3.6, and the order of the fields in a structured dtype has meaning. Field Titles may be specified by using a 3-tuple, see below.

Manipulating and Displaying Structured Datatypes

The list of field names of a structured datatype can be found in the names attribute of the dtype object:

```python
>>> d = np.dtype([('x', 'i8'), ('y', 'f4')])
```

```python
>>> d.names
('x', 'y')
```

The field names may be modified by assigning to the names attribute using a sequence of strings of the same length.
The dtype object also has a dictionary-like attribute, fields, whose keys are the field names (and Field Titles, see below) and whose values are tuples containing the dtype and byte offset of each field.

```python
d.fields
mappingproxy({'x': (dtype('int64'), 0), 'y': (dtype('float32'), 8)})
```

Both the names and fields attributes will equal None for unstructured arrays. The recommended way to test if a dtype is structured is with if dt.names is not None rather than if dt.names, to account for dtypes with 0 fields.

The string representation of a structured datatype is shown in the “list of tuples” form if possible, otherwise numpy falls back to using the more general dictionary form.

Automatic Byte Offsets and Alignment

Numpy uses one of two methods to automatically determine the field byte offsets and the overall itemsize of a structured datatype, depending on whether align=True was specified as a keyword argument to numpy.dtype.

By default (align=False), numpy will pack the fields together such that each field starts at the byte offset the previous field ended, and the fields are contiguous in memory.

```python
>>> def print_offsets(d):
...     print("offsets:", [d.fields[name][1] for name in d.names])
...     print("itemsize:", d.itemsize)
...print_offsets(np.dtype('u1, u1, i4, u1, i8, u2'))
offsets: [0, 1, 2, 6, 7, 15]
itemsize: 17
```

If align=True is set, numpy will pad the structure in the same way many C compilers would pad a C-struct. Aligned structures can give a performance improvement in some cases, at the cost of increased datatype size. Padding bytes are inserted between fields such that each field’s byte offset will be a multiple of that field’s alignment, which is usually equal to the field’s size in bytes for simple datatypes, see PyArray_Descr.alignment. The structure will also have trailing padding added so that its itemsize is a multiple of the largest field’s alignment.

```python
>>> print_offsets(np.dtype('u1, u1, i4, u1, i8, u2', align=True))
offsets: [0, 1, 4, 8, 16, 24]
itemsize: 32
```

Note that although almost all modern C compilers pad in this way by default, padding in C structs is C-implementation-dependent so this memory layout is not guaranteed to exactly match that of a corresponding struct in a C program. Some work may be needed, either on the numpy side or the C side, to obtain exact correspondence.

If offsets were specified using the optional offsets key in the dictionary-based dtype specification, setting align=True will check that each field’s offset is a multiple of its size and that the itemsize is a multiple of the largest field size, and raise an exception if not.

If the offsets of the fields and itemsize of a structured array satisfy the alignment conditions, the array will have the ALIGNED flag set.

A convenience function numpy.lib.recfunctions.repack_fields converts an aligned dtype or array to a packed one and vice versa. It takes either a dtype or structured ndarray as an argument, and returns a copy with fields re-packed, with or without padding bytes.
Field Titles

In addition to field names, fields may also have an associated title, an alternate name, which is sometimes used as an additional description or alias for the field. The title may be used to index an array, just like a field name.

To add titles when using the list-of-tuples form of dtype specification, the field name may be specified as a tuple of two strings instead of a single string, which will be the field's title and field name respectively. For example:

```python
>>> np.dtype(((('my title', 'name'), 'f4'))
dtype(((('my title', 'name'), '<f4')))
```

When using the first form of dictionary-based specification, the titles may be supplied as an extra 'titles' key as described above. When using the second (discouraged) dictionary-based specification, the title can be supplied by providing a 3-element tuple (datatype, offset, title) instead of the usual 2-element tuple:

```python
>>> np.dtype({'name': ('i4', 0, 'my title'))
dtype(((('my title', 'name'), '<i4')))
```

The dtype.fields dictionary will contain titles as keys, if any titles are used. This means effectively that a field with a title will be represented twice in the fields dictionary. The tuple values for these fields will also have a third element, the field title. Because of this, and because the names attribute preserves the field order while the fields attribute may not, it is recommended to iterate through the fields of a dtype using the names attribute of the dtype, which will not list titles, as in:

```python
>>> for name in d.names:
...     print(d.fields[name][:-2])
(dtype('int64'), 0)
(dtype('float32'), 8)
```

Union types

Structured datatypes are implemented in numpy to have base type numpy.void by default, but it is possible to interpret other numpy types as structured types using the (base_dtype, dtype) form of dtype specification described in Data Type Objects. Here, base_dtype is the desired underlying dtype, and fields and flags will be copied from dtype. This dtype is similar to a 'union' in C.

4.7.3 Indexing and Assignment to Structured arrays

Assigning data to a Structured Array

There are a number of ways to assign values to a structured array: Using python tuples, using scalar values, or using other structured arrays.

Assignment from Python Native Types (Tuples)

The simplest way to assign values to a structured array is using python tuples. Each assigned value should be a tuple of length equal to the number of fields in the array, and not a list or array as these will trigger numpy's broadcasting rules. The tuple's elements are assigned to the successive fields of the array, from left to right:

```python
>>> x = np.array([(1, 2, 3), (4, 5, 6)], dtype='i8, f4, f8')
```

4.7. Structured arrays 91
Assignment from Scalars

A scalar assigned to a structured element will be assigned to all fields. This happens when a scalar is assigned to a structured array, or when an unstructured array is assigned to a structured array:

```
>>> x = np.zeros(2, dtype='i8, f4, ?, S1')
>>> x[:] = 3
>>> x
array([(3, 3.), (3, 3.)],
      dtype=[('f0', '<i8'), ('f1', '<f4'), ('f2', '?'), ('f3', 'S1')])
```

Structured arrays can also be assigned to unstructured arrays, but only if the structured datatype has just a single field:

```
>>> twofield = np.zeros(2, dtype=[('A', 'i4'), ('B', 'i4')])
>>> onefield = np.zeros(2, dtype=[('A', 'i4')])
>>> nostruct = np.zeros(2, dtype='i4')
>>> nostruct[:] = twofield
Traceback (most recent call last):
  ...  
TypeError: Cannot cast array data from dtype([('A', '<i4'), ('B', '<i4'))] to dtype(->'int32') according to the rule 'unsafe'
```

Assignment from other Structured Arrays

Assignment between two structured arrays occurs as if the source elements had been converted to tuples and then assigned to the destination elements. That is, the first field of the source array is assigned to the first field of the destination array, and the second field likewise, and so on, regardless of field names. Structured arrays with a different number of fields cannot be assigned to each other. Bytes of the destination structure which are not included in any of the fields are unaffected:

```
>>> a = np.zeros(3, dtype=[('a', 'i8'), ('b', 'f4'), ('c', 'S3')])
>>> b = np.ones(3, dtype=[('x', 'f4'), ('y', 'S3'), ('z', 'O')])
>>> b[:] = a
>>> b
array((0., b'0.0', b''), (0., b'0.0', b''), (0., b'0.0', b''),
      dtype=[('x', '<f4'), ('y', 'S3'), ('z', 'O')])
```

Assignment involving subarrays

When assigning to fields which are subarrays, the assigned value will first be broadcast to the shape of the subarray.

Indexing Structured Arrays

Accessing Individual Fields

Individual fields of a structured array may be accessed and modified by indexing the array with the field name.

```
>>> x = np.array([(1, 3, 4)], dtype=[('foo', 'i8'), ('bar', 'f4')])
>>> x['foo']
array([1, 3])
>>> x['foo'] = 10
>>> x
array([(10, 3, 4)],
      dtype=[('foo', '<i8'), ('bar', '<f4'))]
```
The resulting array is a view into the original array. It shares the same memory locations and writing to the view will modify the original array.

```python
>>> y = x['bar']
>>> y[:] = 11
>>> x
array([(10, 11.), (10, 11.)],
      dtype=[('foo', '<i8'), ('bar', '<f4')])
```

This view has the same dtype and itemsize as the indexed field, so it is typically a non-structured array, except in the case of nested structures.

```python
>>> y.dtype, y.shape, y.strides
(dtype('float32'), (2,), (12,))
```

If the accessed field is a subarray, the dimensions of the subarray are appended to the shape of the result:

```python
>>> x = np.zeros((2, 2), dtype=[('a', np.int32), ('b', np.float64, (3, 3))])
>>> x['a'].shape
(2,)
>>> x['b'].shape
(2, 2, 3, 3)
```

Accessing Multiple Fields

One can index and assign to a structured array with a multi-field index, where the index is a list of field names.

Warning: The behavior of multi-field indexes changed from Numpy 1.15 to Numpy 1.16.

The result of indexing with a multi-field index is a view into the original array, as follows:

```python
>>> a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'i4'), ('c', 'f4')])
>>> a[['a', 'c']]
array([(0, 0.), (0, 0.), (0, 0.)],
      dtype={'names': ['a', 'c'], 'formats': ['<i4', '<f4'], 'offsets': [0, 8], 'itemsize': 12})
```

Assignment to the view modifies the original array. The view's fields will be in the order they were indexed. Note that unlike for single-field indexing, the dtype of the view has the same itemsize as the original array, and has fields at the same offsets as in the original array, and unindexed fields are merely missing.

Warning: In Numpy 1.15, indexing an array with a multi-field index returned a copy of the result above, but with fields packed together in memory as if passed through `numpy.lib.recfunctions.repack_fields`. The new behavior as of Numpy 1.16 leads to extra “padding” bytes at the location of unindexed fields compared to 1.15. You will need to update any code which depends on the data having a “packed” layout. For instance code such as:

```python
>>> a[['a', 'c']].view('i8')  # Fails in Numpy 1.16
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: When changing to a smaller dtype, its size must be a divisor of the size of original dtype
```

will need to be changed. This code has raised a `FutureWarning` since Numpy 1.12, and similar code has raised `FutureWarning` since 1.7.

4.7. Structured arrays

93
In 1.16 a number of functions have been introduced in the `numpy.lib.recfunctions` module to help users account for this change. These are `numpy.lib.recfunctions.repack_fields`, `numpy.lib.recfunctions.structured_to_unstructured`, `numpy.lib.recfunctions.unstructured_to_structured`, `numpy.lib.recfunctions.apply_along_fields`, `numpy.lib.recfunctions.assign_fields_by_name`, and `numpy.lib.recfunctions.require_fields`.

The function `numpy.lib.recfunctions.repack_fields` can always be used to reproduce the old behavior, as it will return a packed copy of the structured array. The code above, for example, can be replaced with:

```python
>>> from numpy.lib.recfunctions import repack_fields
>>> repack_fields(a[['a', 'c']]).view('i8')  # supported in 1.16
array([0, 0, 0])
```

Furthermore, `numpy` now provides a new function `numpy.lib.recfunctions.structured_to_unstructured` which is a safer and more efficient alternative for users who wish to convert structured arrays to unstructured arrays, as the view above is often intended to do. This function allows safe conversion to an unstructured type taking into account padding, often avoids a copy, and also casts the datatypes as needed, unlike the view. Code such as:

```python
>>> b = np.zeros(3, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4'))
>>> b[['x', 'z']].view('f4')
array([0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)
```

can be made safer by replacing with:

```python
>>> from numpy.lib.recfunctions import structured_to_unstructured
>>> structured_to_unstructured(b[['x', 'z']])
array([0, 0, 0])
```

Assignment to an array with a multi-field index modifies the original array:

```python
>>> a[['a', 'c']] = (2, 3)
>>> a
array([(2, 0, 3.), (2, 0, 3.), (2, 0, 3.)],
      dtype=[('a', '<i4'), ('b', '<i4'), ('c', '<f4')])
```

This obeys the structured array assignment rules described above. For example, this means that one can swap the values of two fields using appropriate multi-field indexes:

```python
>>> a[['a', 'c']] = a[['c', 'a']]
```

Indexing with an Integer to get a Structured Scalar

Indexing a single element of a structured array (with an integer index) returns a structured scalar:

```python
>>> x = np.array(((1, 2., 3.)), dtype='i, f, f')
>>> scalar = x[0]
>>> scalar
(1, 2., 3.)
>>> type(scalar)
<class 'numpy.void'>
```

Unlike other `numpy` scalars, structured scalars are mutable and act like views into the original array, such that modifying the scalar will modify the original array. Structured scalars also support access and assignment by field name:
```python
>>> x = np.array([(1, 2), (3, 4)], dtype=[('foo', 'i8'), ('bar', 'f4')])
>>> s = x[0]
>>> s['bar'] = 100
>>> x
array([(1, 100.), (3, 4.)], dtype=[('foo', '<i8'), ('bar', '<f4')])
```

Similarly to tuples, structured scalars can also be indexed with an integer:

```python
>>> scalar = np.array([(1, 2., 3.)], dtype='i, f, f')[0]
>>> scalar[0]
1
>>> scalar[1] = 4

Thus, tuples might be thought of as the native Python equivalent to numpy’s structured types, much like native python integers are the equivalent to numpy’s integer types. Structured scalars may be converted to a tuple by calling `numpy.ndarray.item`:

```python
>>> scalar.item(), type(scalar.item())
((1, 4.0, 3.0), <class 'tuple'>)
```

### Viewing Structured Arrays Containing Objects

In order to prevent clobbering object pointers in fields of `object` type, numpy currently does not allow views of structured arrays containing objects.

### Structure Comparison

If the dtypes of two void structured arrays are equal, testing the equality of the arrays will result in a boolean array with the dimensions of the original arrays, with elements set to `True` where all fields of the corresponding structures are equal. Structured dtypes are equal if the field names, dtypes and titles are the same, ignoring endianness, and the fields are in the same order:

```python
>>> a = np.zeros(2, dtype=[('a', 'i4'), ('b', 'i4')])
>>> b = np.ones(2, dtype=[('a', 'i4'), ('b', 'i4')])
>>> a == b
array([False, False])
```

Currently, if the dtypes of two void structured arrays are not equivalent the comparison fails, returning the scalar value `False`. This behavior is deprecated as of numpy 1.10 and will raise an error or perform elementwise comparison in the future.

The `<` and `>` operators always return `False` when comparing void structured arrays, and arithmetic and bitwise operations are not supported.
4.7.4 Record Arrays

As an optional convenience numpy provides an ndarray subclass, `numpy.recarray` that allows access to fields of structured arrays by attribute instead of only by index. Record arrays use a special datatype, `numpy.record`, that allows field access by attribute on the structured scalars obtained from the array. The `numpy.rec` module provides functions for creating recarrays from various objects. Additional helper functions for creating and manipulating structured arrays can be found in `numpy.lib.recfunctions`.

The simplest way to create a record array is with `numpy.rec.array`:

```python
>>> recordarr = np.rec.array([(1, 2., 'Hello'), (2, 3., 'World')],
... dtype=[('foo', 'i4'), ('bar', 'f4'), ('baz', 'S10')])
```

`numpy.rec.array` can convert a wide variety of arguments into record arrays, including structured arrays:

```python
>>> arr = np.array([(1, 2., 'Hello'), (2, 3., 'World')],
... dtype=[('foo', 'i4'), ('bar', 'f4'), ('baz', 'S10')])

>>> recordarr = np.rec.array(arr)
```

The `numpy.rec` module provides a number of other convenience functions for creating record arrays, see record array creation routines.

A record array representation of a structured array can be obtained using the appropriate `view`:

```python
>>> arr = np.array([(1, 2., 'Hello'), (2, 3., 'World')],
... dtype=[('foo', 'i4'), ('bar', 'f4'), ('baz', 'S10')])

>>> recordarr = arr.view(dtype=np.dtype((np.record, arr.dtype)),
... type=np.recarray)
```

For convenience, viewing an ndarray as type `numpy.recarray` will automatically convert to `numpy.record` datatype, so the dtype can be left out of the view:

```python
>>> recordarr = arr.view(np.recarray)

>>> recordarr.dtype
```

To get back to a plain ndarray both the dtype and type must be reset. The following view does so, taking into account the unusual case that the recordarr was not a structured type:

```python
>>> recordarr = np.rec.array([(1, 2., 'Hello'), (2, 3., 'World')],
... dtype=[('foo', 'i4'), ('bar', 'f4'), ('baz', 'S10')])
```

(continues on next page)
Note that if a field has the same name as an ndarray attribute, the ndarray attribute takes precedence. Such fields will be inaccessible by attribute but will still be accessible by index.

### Recarray Helper Functions

Collection of utilities to manipulate structured arrays.

Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and extended for convenience.

`numpy.lib.recfunctions.append_fields(base, names, data, dtypes=None, fill_value=-1, use_mask=True, asrecarray=False)`

Add new fields to an existing array.

The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values.

**Parameters**

- `base`:
  - [array] Input array to extend.
- `names`:
  - [string, sequence] String or sequence of strings corresponding to the names of the new fields.
- `data`:
  - [array or sequence of arrays] Array or sequence of arrays storing the fields to add to the base.
- `dtypes`:
  - [sequence of datatypes, optional] Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`.
- `fill_value`:
  - [{float}, optional] Filling value used to pad missing data on the shorter arrays.
- `use_mask`:
  - [{False, True}, optional] Whether to return a masked array or not.
- `asrecarray`:
  - [{False, True}, optional] Whether to return a recarray (MaskedRecords) or not.

`numpy.lib.recfunctions.apply_along_fields(func, arr)`

Apply function ‘func’ as a reduction across fields of a structured array.

This is similar to `apply_along_axis`, but treats the fields of a structured array as an extra axis. The fields are all first cast to a common type following the type-promotion rules from `numpy.result_type` applied to the field’s dtypes.

**Parameters**
func

[function] Function to apply on the “field” dimension. This function must support an axis argument, like np.mean, np.sum, etc.

arr

[ndarray] Structured array for which to apply func.

Returns

out

[ndarray] Result of the reduction operation

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8, 11), (10, 11, 12)],
 dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
>>> rfn.apply_along_fields(np.mean, b)
array([2.66666667, 5.33333333, 8.66666667, 11.])
>>> rfn.apply_along_fields(np.mean, b[['x', 'z']])
array([3. , 5.5 , 9. , 11.])
```

numpy.lib.recfunctions.assign_fields_by_name(dst, src, zero_unassigned=True)

Assigns values from one structured array to another by field name.

Normally in numpy >= 1.14, assignment of one structured array to another copies fields “by position”, meaning that the first field from the src is copied to the first field of the dst, and so on, regardless of field name.

This function instead copies “by field name”, such that fields in the dst are assigned from the identically named field in the src. This applies recursively for nested structures. This is how structure assignment worked in numpy >= 1.6 to <= 1.13.

Parameters

dst

[ndarray]

src

[ndarray] The source and destination arrays during assignment.

zero_unassigned

[bool, optional] If True, fields in the dst for which there was no matching field in the src are filled with the value 0 (zero). This was the behavior of numpy <= 1.13. If False, those fields are not modified.

numpy.lib.recfunctions.drop_fields(base, drop_names, usemask=True, asrecarray=False)

Return a new array with fields in drop_names dropped.

Nested fields are supported.

Changed in version 1.18.0: drop_fields returns an array with 0 fields if all fields are dropped, rather than returning None as it did previously.

Parameters
**Examples**

```python
code
from numpy.lib import recfunctions as rfn
da = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
 dtype=[('a', np.int64), ('b', [('ba', np.double), ('bb', np.int64)])])
rfn.drop_fields(da, 'a') # array([(2., 3), (5., 6)], dtype=[('b', [('ba', '<f8'), ('bb', '<i8')])])
rfn.drop_fields(da, 'ba') # array([[1, (3,)], [4, (6,)]), dtype=[('a', '<i8'), ('b', [('bb', '<i8')])])
rfn.drop_fields(da, ['ba', 'bb']) # array([[1,], [4,]], dtype=[('a', '<i8')])
```

The `numpy.lib.recfunctions.find_duplicates` function helps in identifying duplicate values in structured arrays.

**Parameters**

- `a` ([array-like]) Input array
- `key` ([string, None], optional) Name of the fields along which to check the duplicates. If None, the search is performed by records.
- `ignoremask` ([True, False], optional) Whether masked data should be discarded or considered as duplicates.
- `return_index` ([False, True], optional) Whether to return the indices of the duplicated values.
Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> ndtype = [(('a', int))]
>>> a = np.ma.array([1, 1, 2, 2, 3, 3],
... mask=[0, 0, 1, 0, 0, 1]).view(ndtype)
>>> rfn.find_duplicates(a, ignoremask=True, return_index=True)
(masked_array(data=[(1,), (1,), (2,), (2,)],
 mask=[(False,), (False,), (False,), (False,)],
filled_value=(999999,),
 dtype=[('a', '<i8')]), array([0, 1, 3, 4]))
```

NumPy.lib.recfunctions.flatten_descr(ndtype)
Flatten a structured data-type description.

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])])
>>> rfn.flatten_descr(ndtype)
(('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32')))
```

NumPy.lib.recfunctions.get_fieldstructure(adtype, lastname=None, parents=None)
Returns a dictionary with fields indexing lists of their parent fields.
This function is used to simplify access to fields nested in other fields.

Parameters

- adtype [np.dtype] Input datatype
- lastname [optional] Last processed field name (used internally during recursion).
- parents [dictionary] Dictionary of parent fields (used internally during recursion).

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> ndtype = np.dtype([('A', int),
... ('B', [('BA', int), ('BB', [('BBA', int), ('BBB', int)])])])
>>> rfn.get_fieldstructure(ndtype)
... # XXX: possible regression, order of BBA and BBB is swapped
... {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B', 'BB'], 'BBA': ['B', 'BB', 'BBA'], 'BBB': ['B', 'BB', 'BBB']}
```

NumPy.lib.recfunctions.get_names(adtype)
Returns the field names of the input datatype as a tuple.

Parameters
adtype

[dtype] Input datatype

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> rfn.get_names(np.empty((1,), dtype=int))
Traceback (most recent call last):
 ...
AttributeError: 'numpy.ndarray' object has no attribute 'names'
```

```python
>>> rfn.get_names(np.empty((1,), dtype=[('A', int), ('B', float)]))
Traceback (most recent call last):
 ...
AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> adtype = np.dtype([('a', int), ('b', [(['ba', int], ('bb', int)])])
>>> rfn.get_names(adtype)
('a', ('b', (['ba', 'bb'])))
```

numpy.lib.recfunctions.get_names_flat(adtype)

Returns the field names of the input datatype as a tuple. Nested structure are flattened beforehand.

Parameters

adtype

[dtype] Input datatype

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None
Traceback (most recent call last):
 ...
AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> rfn.get_names_flat(np.empty((1,), dtype=[('A', int), ('B', float)]))
Traceback (most recent call last):
 ...
AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
>>> rfn.get_names_flat(adtype)
('a', 'b', 'ba', 'bb')
```

numpy.lib.recfunctions.join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None, usemask=True, asrecarray=False)

Join arrays r1 and r2 on key key.

The key should be either a string or a sequence of string corresponding to the fields used to join the array. An exception is raised if the key field cannot be found in the two input arrays. Neither r1 nor r2 should have any duplicates along key: the presence of duplicates will make the output quite unreliable. Note that duplicates are not looked for by the algorithm.

Parameters

key
[string, sequence] A string or a sequence of strings corresponding to the fields used for comparison.

r1, r2
[arrays] Structured arrays.

jointype
[{'inner', 'outer', 'leftouter'}, optional] If ‘inner’, returns the elements common to both r1 and r2. If ‘outer’, returns the common elements as well as the elements of r1 not in r2 and the elements of not in r2. If ‘leftouter’, returns the common elements and the elements of r1 not in r2.

r1postfix
[string, optional] String appended to the names of the fields of r1 that are present in r2 but absent of the key.

r2postfix
[string, optional] String appended to the names of the fields of r2 that are present in r1 but absent of the key.

defaults
[{dictionary}, optional] Dictionary mapping field names to the corresponding default values.

usemask
[{'True', False}, optional] Whether to return a MaskedArray (or MaskedRecords is asrecarray==True) or a ndarray.

asrecarray
[{False, True}, optional] Whether to return a recarray (or MaskedRecords if usemask==True) or just a flexible-type ndarray.

Notes

• The output is sorted along the key.
• A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the result. This array is then sorted, and the common entries selected. The output is constructed by filling the fields with the selected entries. Matching is not preserved if there are some duplicates…

numpy.lib.recfunctions.merge_arrays (seqarrays, fill_value=-1, flatten=False, usemask=False, asrecarray=False)

Merge arrays field by field.

Parameters

seqarrays
[sequence of ndarrays] Sequence of arrays

fill_value
[{'float}, optional] Filling value used to pad missing data on the shorter arrays.

flatten
[{'False, True}, optional] Whether to collapse nested fields.
usemask

[(False, True), optional] Whether to return a masked array or not.

asrecarray

[(False, True), optional] Whether to return a recarray (MaskedRecords) or not.

Notes

• Without a mask, the missing value will be filled with something, depending on what its corresponding type:
  – -1 for integers
  – -1.0 for floating point numbers
  – ’-’ for characters
  – ’-1’ for strings
  – True for boolean values
• XXX: I just obtained these values empirically

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> rfn.merge_arrays((np.array([[1, 2]]), np.array([[10., 20., 30.]])))
array([[1, 10.],
 [2, 20.],
 [-1, 30.]],
 dtype=[('f0', '<i8'), ('f1', '<f8')])
```

```python
>>> rfn.merge_arrays((np.array([[1, 2]], dtype=np.int64),
 ... np.array([[10., 20., 30.]]), usemask=False),
 ... array([[1, 10.0],
 [2, 20.0],
 [-1, 30.0]],
 ... dtype=[('f0', '<i8'), ('f1', '<f8')])
>>> rfn.merge_arrays((np.array([[1, 2]]).view([('a', np.int64)]),
 ... np.array([[10., 20., 30.]]),
 ... usemask=False, asrecarray=True),
rec.array([[1, 10.],
 [2, 20.],
 [-1, 30.]],
 dtype=[('a', '<i8'), ('f1', '<f8')])
```

`numpy.lib.recfunctions.rec_append_fields(base, names, data, dtypes=None)`

Add new fields to an existing array.

The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values.

**Parameters**

- `base`
  - [array] Input array to extend.
- `names`
  - [string, sequence] String or sequence of strings corresponding to the names of the new fields.
- `data`
  - [array or sequence of arrays] Array or sequence of arrays storing the fields to add to the base.
dtypes

[sequence of datatypes, optional] Datatype or sequence of datatypes. If None, the datatypes are estimated from the data.

Returns

appended_array

[np.recarray]

See also:

append_fields

numpy.lib.recfunctions.rec_drop_fields (base, drop_names)

Returns a new numpy.recarray with fields in drop_names dropped.

cpynumpy.lib.recfunctions.rec_join (key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None)

Join arrays r1 and r2 on keys. Alternative to join_by, that always returns a np.recarray.

See also:

join_by
equivalent function

numpy.lib.recfunctions.recursive_fill_fields (input, output)

Fills fields from output with fields from input, with support for nested structures.

Parameters

input

[ndarray] Input array.

output

[ndarray] Output array.

Notes

- output should be at least the same size as input

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)])
>>> b = np.zeros([3,], dtype=a.dtype)
>>> rfn.recursive_fill_fields(a, b)
array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')])
```

numpy.lib.recfunctions.rename_fields (base, namemapper)

Rename the fields from a flexible-datatype ndarray or recarray.

Nested fields are supported.
Parameters

base

[ndarray] Input array whose fields must be modified.

namemapper

[dict] Dictionary mapping old field names to their new version.

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> a = np.array([(1, (2, [3.0, 30.0])), (4, (5, [6.0, 60.0]))],
 dtype=[('a', int), ('b', [('ba', float), ('bb', (float, 2))])])
>>> rfn.rename_fields(a, {'a': 'A', 'bb': 'BB'})
array([(1, (2., [3., 30.]))],
 dtype=[('A', '<i8'), ('b', [('ba', '<f8'), ('BB', '<f8', (2,))])])
```

numpy.lib.recfunctions.repack_fields (a, align=False, recurse=False)

Re-pack the fields of a structured array or dtype in memory.

The memory layout of structured datatypes allows fields at arbitrary byte offsets. This means the fields can be
separated by padding bytes, their offsets can be non-monotonically increasing, and they can overlap.

This method removes any overlaps and reorders the fields in memory so they have increasing byte offsets, and adds
or removes padding bytes depending on the align option, which behaves like the align option to np.dtype.

If align=False, this method produces a “packed” memory layout in which each field starts at the byte the previous
field ended, and any padding bytes are removed.

If align=True, this method produces an “aligned” memory layout in which each field’s offset is a multiple of its
alignment, and the total itemsize is a multiple of the largest alignment, by adding padding bytes as needed.

Parameters

a

[ndarray or dtype] array or dtype for which to repack the fields.

align

[bool] If true, use an “aligned” memory layout, otherwise use a “packed” layout.

recurse

[bool] If True, also repack nested structures.

Returns

repacked

[ndarray or dtype] Copy of a with fields repacked, or a itself if no repacking was needed.
Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> def print_offsets(d):
... print("offsets: ", [d.fields[name][1] for name in d.names])
... print("itemsize:", d.itemsize)
... print("itemsize:", d.itemsize)
... print("itemsize:", d.itemsize)
>>> dt = np.dtype(’u1, <i8, <f8’, align=True)
>>> dt
ndarray([0, 8, 16], dtype=’d’, align=True)
```

```
numpy.lib.recfunctions.require_fields(array, required_dtype)
Casts a structured array to a new dtype using assignment by field-name.
This function assigns from the old to the new array by name, so the value of a field in the output array is the value of the field with the same name in the source array. This has the effect of creating a new ndarray containing only the fields “required” by the required_dtype.
```

If a field name in the required_dtype does not exist in the input array, that field is created and set to 0 in the output array.

**Parameters**

- `a`
  [ndarray] array to cast

- `required_dtype`
  [dtype] datatype for output array

**Returns**

- `out`
  [ndarray] array with the new dtype, with field values copied from the fields in the input array with the same name

**Examples**

```python
>>> from numpy.lib import recfunctions as rfn
>>> a = np.ones(4, dtype=[(’a’, ’i4’), (’b’, ’f8’), (’c’, ’u1’)])
>>> rfn.require_fields(a, [(’b’, ’f4’), (’c’, ”u1’)])
array([[1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 dtype=[(’b’, ’<f4’), (’c’, ’u1’)])
>>> rfn.require_fields(a, [(’b’, ’f4’), (’newf’, ”u1’)])
array([[1., 1., 1., 1.],
 [1., 1., 1., 1.]],
 dtype=[(’b’, ’<f4’), (’newf’, ”u1’)])
```
Superposes arrays fields by fields

Parameters

arrays
[array or sequence] Sequence of input arrays.

defaults
[ dictionary, optional] Dictionary mapping field names to the corresponding default values.

usemask
[[True, False], optional] Whether to return a MaskedArray (or MaskedRecords if asrecarray==True) or a ndarray.

asrecarray
[[False, True], optional] Whether to return a recarray (or MaskedRecords if usemask==True) or just a flexible-type ndarray.

autoconvert
[[False, True], optional] Whether automatically cast the type of the field to the maximum.

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> x = np.array([['A', 1], ['B', 2]])
>>> rfn.stack_arrays(x) is x
True
>>> z = np.array([(('A', 1), ('B', 2))], dtype=[('A', '|S3'), ('B', float)])
>>> zz = np.array([(('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.),
... dtype=[('A', '|S3'), ('B', np.double), ('C', np.double)])
>>> test = rfn.stack_arrays((z, zz))
>>> test
masked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0),
 (b'b', 20.0, 200.0), (b'c', 30.0, 300.0)],
 mask=[[False, False, True], [False, False, True],
 (False, False, False), [False, False, False],
 (False, False, False)],
 fill_value=(b'N/A', 1.e+20, 1.e+20),
 dtype=[('A', '|S3'), ('B', '<f8'), ('C', '<f8')])
```
**dtype**

[optional, dtype] The dtype of the output unstructured array.

**copy**

[bool, optional] See copy argument to `ndarray.astype`. If true, always return a copy. If false, and `dtype` requirements are satisfied, a view is returned.

**casting**

[{'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional] See casting argument of `ndarray`. Controls what kind of data casting may occur.

**Returns**

**unstructured**

[ndarray] Unstructured array with one more dimension.

### Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> a = np.zeros(4, dtype=[('a', '<i4'), ('b', '<f4'), ('c', '<f4', (2,))])
>>> rfn.structured_to_unstructured(a)
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])
```

```python
>>> b = np.array([(1, 2, 5), (4, 5, 7), (10, 11, 12)],
 dtype=[('x', '<i4'), ('y', '<f4'), ('z', '<f8'))
>>> np.mean(rfn.structured_to_unstructured(b[['x', 'z']]), axis=-1)
array([3.5, 5.5, 9. , 11.])
```

NumPy's `unstructured_to_structured` function:

```
numpy.lib.recfunctions.unstructured_to_structured(arr, dtype=None, names=None,
 align=False, copy=False, casting=None)
```

Converts an n-D unstructured array into an (n-1)-D structured array.

The last dimension of the input array is converted into a structure, with number of field-elements equal to the size of the last dimension of the input array. By default all output fields have the input array’s dtype, but an output structured dtype with an equal number of fields-elements can be supplied instead.

Nested fields, as well as each element of any subarray fields, all count towards the number of field-elements.

**Parameters**

**arr**

[ndarray] Unstructured array or dtype to convert.

**dtype**

[optional, dtype] The structured dtype of the output array.
names
[list of strings, optional] If dtype is not supplied, this specifies the field names for the output dtype, in order. The field dtypes will be the same as the input array.

align
[boolean, optional] Whether to create an aligned memory layout.

copy
[bool, optional] See copy argument to ndarray.astype. If true, always return a copy. If false, and dtype requirements are satisfied, a view is returned.

casting
[{'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional] See casting argument of ndarray. astype. Controls what kind of data casting may occur.

Returns

structured
[ndarray] Structured array with fewer dimensions.

Examples

```python
>>> from numpy.lib import recfunctions as rfn
>>> dt = np.dtype([('a', 'i4'), ('b', 'f4, u2'), ('c', 'f4', 2)])
>>> a = np.arange(20).reshape((4, 5))
>>> a
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14],
 [15, 16, 17, 18, 19]])
>>> rfn.unstructured_to_structured(a, dt)
array([(0, (1., 2), [3., 4.]), (5, (6., 7), [8., 9.]),
 (10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])],
dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])
```

4.8 Writing custom array containers

Numpy’s dispatch mechanism, introduced in numpy version v1.16 is the recommended approach for writing custom N-dimensional array containers that are compatible with the numpy API and provide custom implementations of numpy functionality. Applications include dask arrays, an N-dimensional array distributed across multiple nodes, and cupy arrays, an N-dimensional array on a GPU.

To get a feel for writing custom array containers, we’ll begin with a simple example that has rather narrow utility but illustrates the concepts involved.

```python
>>> import numpy as np
>>> class DiagonalArray:
... def __init__(self, N, value):
... self._N = N
... self._i = value
(... continues on next page)
```
Our custom array can be instantiated like:

```python
>>> arr = DiagonalArray(5, 1)
>>> arr
DiagonalArray(N=5, value=1)
```

We can convert to a numpy array using `numpy.array` or `numpy.asarray`, which will call its `__array__` method to obtain a standard `numpy.ndarray`.

```python
>>> np.asarray(arr)
array([[1., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1.]])
```

If we operate on `arr` with a numpy function, numpy will again use the `__array__` interface to convert it to an array and then apply the function in the usual way.

```python
>>> np.multiply(arr, 2)
array([[2., 0., 0., 0., 0.],
 [0., 2., 0., 0., 0.],
 [0., 0., 2., 0., 0.],
 [0., 0., 0., 2., 0.],
 [0., 0., 0., 0., 2.]])
```

Notice that the return type is a standard `numpy.ndarray`.

```python
>>> type(arr)
numpy.ndarray
```

How can we pass our custom array type through this function? Numpy allows a class to indicate that it would like to handle computations in a custom-defined way through the interfaces `__array_ufunc__` and `__array_function__`. Let's take one at a time, starting with `__array_ufunc__`. This method covers ufuncs, a class of functions that includes, for example, `numpy.multiply` and `numpy.sin`.

The `__array_ufunc__` receives:

- `ufunc`, a function like `numpy.multiply`
- `method`, a string, differentiating between `numpy.multiply(...)` and variants like `numpy.multiply.outer`, `numpy.multiply.accumulate`, and so on. For the common case, `numpy.multiply(...), method == '__call__'.
- `inputs`, which could be a mixture of different types
- `kwargs`, keyword arguments passed to the function

For this example we will only handle the method `__call__`

```python
>>> from numbers import Number
>>> class DiagonalArray:
... def __init__(self, N, value):
```
Now our custom array type passes through numpy functions.

```python
>>> arr = DiagonalArray(5, 1)
>>> np.multiply(arr, 3)
DiagonalArray(N=5, value=3)
>>> np.add(arr, 3)
DiagonalArray(N=5, value=4)
>>> np.sin(arr)
DiagonalArray(N=5, value=0.8414709848078965)
```

At this point `arr + 3` does not work.

```python
>>> arr + 3
TypeError: unsupported operand type(s) for +: 'DiagonalArray' and 'int'
```

To support it, we need to define the Python interfaces `__add__`, `__lt__`, and so on to dispatch to the corresponding ufunc. We can achieve this conveniently by inheriting from the mixin `NDArrayOperatorsMixin`.

```python
>>> import numpy.lib.mixins
>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin):
... def __init__(self, N, value):
... self._N = N
... self._i = value
... def __repr__(self):
... return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
... def __array__(self):
... return self._i * np.eye(self._N)
... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
... if method == '__call__':
... N = None
... scalars = []
... for input in inputs:
... if isinstance(input, Number):
... scalars.append(input)
... elif isinstance(input, self.__class__):
... scalars.append(input._i)
... if N is not None:
... if N != self._N:
... raise TypeError("inconsistent sizes")
... else:
... N = self._N
... else:
... return NotImplemented
... return self.__class__(N, ufunc(*scalars, **kwargs))
... else:
... return NotImplemented
```

(continues on next page)
... scalars = []
... for input in inputs:
...     if isinstance(input, Number):
...         scalars.append(input)
...     elif isinstance(input, self.__class__):
...         scalars.append(input._i)
...     if N is not None:
...         if N != self._N:
...             raise TypeError("inconsistent sizes")
...     else:
...         N = self._N
...     else:
...         return NotImplemented
...     return self.__class__(N, ufunc(*scalars, **kwargs))
... else:
...     return NotImplemented

>>> arr = DiagonalArray(5, 1)
>>> arr + 3
DiagonalArray(N=5, value=4)
>>> arr > 0
DiagonalArray(N=5, value=True)

Now let's tackle __array_function__. We'll create dict that maps numpy functions to our custom variants.

>>> HANDLED_FUNCTIONS = {}
>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin):
...     def __init__(self, N, value):
...         self._N = N
...         self._i = value
...     def __repr__(self):
...         return f"{self.__class__.__name__}(N={self._N}, value={self._i})"
...     def __array__(self):
...         return self._i * np.eye(self._N)
...     def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
...         if method == '__call__':
...             N = None
...             scalars = []
...             for input in inputs:
...                 # In this case we accept only scalar numbers or DiagonalArrays.
...                 if isinstance(input, Number):
...                     scalars.append(input)
...                 elif isinstance(input, self.__class__):
...                     scalars.append(input._i)
...                 if N is not None:
...                     if N != self._N:
...                         raise TypeError("inconsistent sizes")
...                 else:
...                     N = self._N
...             else:
...                 return NotImplemented
...             return self.__class__(N, ufunc(*scalars, **kwargs))
...         else:
...             return NotImplemented
...     def __array_function__(self, func, types, args, kwags):
...         if func not in HANDLED_FUNCTIONS:
A convenient pattern is to define a decorator `implements` that can be used to add functions to `HANDLED_FUNCTIONS`.

```python
>>> def implements(np_function):
... "Register an __array_function__ implementation for DiagonalArray objects."
... def decorator(func):
... HANDLED_FUNCTIONS[np_function] = func
... return func
... return decorator
... >>> @implements(np.sum)
... def sum(arr):
... "Implementation of np.sum for DiagonalArray objects"
... return arr._i * arr._N
... >>> @implements(np.mean)
... def mean(arr):
... "Implementation of np.mean for DiagonalArray objects"
... return arr._i / arr._N
... >>> arr = DiagonalArray(5, 1)
... >>> np.sum(arr)
5
... >>> np.mean(arr)
0.2
```

If the user tries to use any numpy functions not included in `HANDLED_FUNCTIONS`, a `TypeError` will be raised by numpy, indicating that this operation is not supported. For example, concatenating two `DiagonalArray` objects does not produce another diagonal array, so it is not supported.

```python
>>> np.concatenate([arr, arr])
TypeError: no implementation found for 'numpy.concatenate' on types that implement __array_function__: [<class '__main__.DiagonalArray'>]
```

Additionally, our implementations of `sum` and `mean` do not accept the optional arguments that numpy’s implementation does.

```python
>>> np.sum(arr, axis=0)
TypeError: sum() got an unexpected keyword argument 'axis'
```

The user always has the option of converting to a normal `numpy.ndarray` with `numpy.asarray` and using standard numpy from there.

---

4.8. Writing custom array containers 113
4.9 Subclassing ndarray

4.9.1 Introduction

Subclassing ndarray is relatively simple, but it has some complications compared to other Python objects. On this page we explain the machinery that allows you to subclass ndarray, and the implications for implementing a subclass.

ndarrays and object creation

Subclassing ndarray is complicated by the fact that new instances of ndarray classes can come about in three different ways. These are:

1. Explicit constructor call - as in `MySubClass(params)`. This is the usual route to Python instance creation.
2. View casting - casting an existing ndarray as a given subclass
3. New from template - creating a new instance from a template instance. Examples include returning slices from a subclassed array, creating return types from ufuncs, and copying arrays. See `Creating new from template` for more details

The last two are characteristics of ndarrays - in order to support things like array slicing. The complications of subclassing ndarray are due to the mechanisms numpy has to support these latter two routes of instance creation.

4.9.2 View casting

View casting is the standard ndarray mechanism by which you take an ndarray of any subclass, and return a view of the array as another (specified) subclass:

```python
>>> import numpy as np
>>> # create a completely useless ndarray subclass
class C(np.ndarray): pass
>>> # create a standard ndarray
arr = np.zeros((3,))
>>> # take a view of it, as our useless subclass
c_arr = arr.view(C)
>>> type(c_arr)
<class 'C'>
```
4.9.3 Creating new from template

New instances of an ndarray subclass can also come about by a very similar mechanism to View casting, when numpy finds it needs to create a new instance from a template instance. The most obvious place this has to happen is when you are taking slices of subclassed arrays. For example:

```python
>>> v = c_arr[1:]
>>> type(v) # the view is of type 'C'
<class 'C'>
>>> v is c_arr # but it's a new instance
False
```

The slice is a view onto the original c_arr data. So, when we take a view from the ndarray, we return a new ndarray, of the same class, that points to the data in the original.

There are other points in the use of ndarrays where we need such views, such as copying arrays (c_arr.copy()), creating ufunc output arrays (see also __array_wrap__ for ufuncs and other functions), and reducing methods (like c_arr.mean()).

4.9.4 Relationship of view casting and new-from-template

These paths both use the same machinery. We make the distinction here, because they result in different input to your methods. Specifically, View casting means you have created a new instance of your array type from any potential subclass of ndarray. Creating new from template means you have created a new instance of your class from a pre-existing instance, allowing you - for example - to copy across attributes that are particular to your subclass.

4.9.5 Implications for subclassing

If we subclass ndarray, we need to deal not only with explicit construction of our array type, but also View casting or Creating new from template. NumPy has the machinery to do this, and it is this machinery that makes subclassing slightly non-standard.

There are two aspects to the machinery that ndarray uses to support views and new-from-template in subclasses.

The first is the use of the ndarray.__new__ method for the main work of object initialization, rather than the more usual __init__ method. The second is the use of the __array_finalize__ method to allow subclasses to clean up after the creation of views and new instances from templates.

A brief Python primer on __new__ and __init__

__new__ is a standard Python method, and, if present, is called before __init__ when we create a class instance. See the python __new__ documentation for more detail.

For example, consider the following Python code:

```python
class C:
 def __new__(cls, *args):
 print('Cls in __new__: ', cls)
 print('Args in __new__: ', args)
 # The `object` type __new__ method takes a single argument.
 return object.__new__(cls)

 def __init__(self, *args):
 print('type(self) in __init__: ', type(self))
 print('Args in __init__: ', args)
```

4.9. Subclassing ndarray
meaning that we get:

```python
>>> c = C('hello')
Cls in __new__: <class 'C'>
Args in __new__: ('hello',)
type(self) in __init__: <class 'C'>
Args in __init__: ('hello',)
```

When we call `C('hello')`, the `__new__` method gets its own class as first argument, and the passed argument, which is the string 'hello'. After python calls `__new__`, it usually (see below) calls our `__init__` method, with the output of `__new__` as the first argument (now a class instance), and the passed arguments following.

As you can see, the object can be initialized in the `__new__` method or the `__init__` method, or both, and in fact `ndarray` does not have an `__init__` method, because all the initialization is done in the `__new__` method.

Why use `__new__` rather than just the usual `__init__`? Because in some cases, as for `ndarray`, we want to be able to return an object of some other class. Consider the following:

```python
class D(C):
 def __new__(cls, *args):
 print('D cls is:', cls)
 print('D args in __new__: ', args)
 return C.__new__(cls, *args)
 def __init__(self, *args):
 # we never get here
 print('In D __init__')
```

meaning that:

```python
>>> obj = D('hello')
D cls is: <class 'D'>
D args in __new__: ('hello',)
Cls in __new__: <class 'C'>
Args in __new__: ('hello',)
```

The definition of `C` is the same as before, but for `D`, the `__new__` method returns an instance of class `C` rather than `D`. Note that the `__init__` method of `D` does not get called. In general, when the `__new__` method returns an object of class other than the class in which it is defined, the `__init__` method of that class is not called.

This is how subclasses of the `ndarray` class are able to return views that preserve the class type. When taking a view, the standard `ndarray` machinery creates the new `ndarray` object with something like:

```python
obj = ndarray.__new__(subtype, shape, ...)
```

where `subtype` is the subclass. Thus the returned view is of the same class as the subclass, rather than being of class `ndarray`.

That solves the problem of returning views of the same type, but now we have a new problem. The machinery of `ndarray` can set the class this way, in its standard methods for taking views, but the `ndarray __new__` method knows nothing of what we have done in our own `__new__` method in order to set attributes, and so on. (Aside - why not call `obj = subtype.__new__(... then? Because we may not have a `__new__` method with the same call signature).
The role of __array_finalize__

__array_finalize__ is the mechanism that numpy provides to allow subclasses to handle the various ways that new instances get created.

Remember that subclass instances can come about in these three ways:

1. **explicit constructor call** (obj = MySubClass(params)). This will call the usual sequence of MySubClass.__new__ then (if it exists) MySubClass.__init__.
2. **View casting**
3. **Creating new from template**

Our MySubClass.__new__ method only gets called in the case of the explicit constructor call, so we can’t rely on MySubClass.__new__ or MySubClass.__init__ to deal with the view casting and new-from-template. It turns out that MySubClass.__array_finalize__ does get called for all three methods of object creation, so this is where our object creation housekeeping usually goes.

- For the explicit constructor call, our subclass will need to create a new ndarray instance of its own class. In practice this means that we, the authors of the code, will need to make a call to ndarray.__new__(MySubClass,...), a class-hierarchy prepared call to super(MySubClass, cls).__new__(cls,...), or do view casting of an existing array (see below)
- For view casting and new-from-template, the equivalent of ndarray.__new__(MySubClass,...) is called, at the C level.

The arguments that __array_finalize__ receives differ for the three methods of instance creation above.

The following code allows us to look at the call sequences and arguments:

```python
import numpy as np

class C(np.ndarray):
 def __new__(cls, *args, **kwvars):
 print('In __new__ with class %s' % cls)
 return super(C, cls).__new__(cls, *args, **kwvars)

 def __init__(self, *args, **kwvars):
 # in practice you probably will not need or want an __init__
 # method for your subclass
 print('In __init__ with class %s' % self.__class__)

 def __array_finalize__(self, obj):
 print('In array_finalize:]
 print(' self type is %s' % type(self))
 print(' obj type is %s' % type(obj))
```

Now:

```python
>>> # Explicit constructor
>>> c = C((10,))
In __new__ with class <class 'C'>
In array_finalize:
 self type is <class 'C'>
 obj type is <type 'NoneType'>
In __init__ with class <class 'C'>
>>> # View casting
>>> a = np.arange(10)
>>> cast_a = a.view(C)
```

(continues on next page)
In array_finalize:
    self type is <class 'C'>
    obj type is <type 'numpy.ndarray'>

```python
>>> # Slicing (example of new-from-template)
>>> cv = c[:,1]
```

In array_finalize:
    self type is <class 'C'>
    obj type is <class 'C'>

The signature of `__array_finalize__` is:

```python
def __array_finalize__(self, obj):
```

One sees that the `super` call, which goes to `ndarray.__new__`, passes `__array_finalize__` the new object, of our own class (`self`) as well as the object from which the view has been taken (`obj`). As you can see from the output above, the `self` is always a newly created instance of our subclass, and the type of `obj` differs for the three instance creation methods:

- When called from the explicit constructor, `obj` is `None`.
- When called from view casting, `obj` can be an instance of any subclass of `ndarray`, including our own.
- When called in new-from-template, `obj` is another instance of our own subclass, that we might use to update the new `self` instance.

Because `__array_finalize__` is the only method that always sees new instances being created, it is the sensible place to fill in instance defaults for new object attributes, among other tasks.

This may be clearer with an example.

### 4.9.6 Simple example - adding an extra attribute to `ndarray`

```python
import numpy as np

class InfoArray(np.ndarray):
 def __new__(subtype, shape, dtype=float, buffer=None, offset=0,
 strides=None, order=None, info=None):
 # Create the ndarray instance of our type, given the usual
 # ndarray input arguments. This will call the standard
 # ndarray constructor, but return an object of our type.
 # It also triggers a call to InfoArray.__array_finalize__
 obj = super(InfoArray, subtype).__new__(subtype, shape, dtype,
 buffer, offset, strides,
 order)

 # set the new 'info' attribute to the value passed
 obj.info = info

 # Finally, we must return the newly created object:
 return obj

 def __array_finalize__(self, obj):
 # `self` is a new object resulting from
 # ndarray.__new__(InfoArray, ...), therefore it only has
 # attributes that the ndarray.__new__ constructor gave it -
 # i.e. those of a standard ndarray.
 #
 # (continues on next page)
```
# We could have got to the ndarray.__new__ call in 3 ways:
# From an explicit constructor - e.g. InfoArray():
#   obj is None
#   (we're in the middle of the InfoArray.__new__
#    constructor, and self.info will be set when we return to
#    InfoArray.__new__)
# if obj is None: return
# From view casting - e.g arr.view(InfoArray):
#   obj is arr
#   (type(obj) can be InfoArray)
# From new-from-template - e.g infoarr[:3]
#   type(obj) is InfoArray
#   
# Note that it is here, rather than in the __new__ method,
# that we set the default value for 'info', because this
# method sees all creation of default objects - with the
# InfoArray.__new__ constructor, but also with
# arr.view(InfoArray).
# self.info = getattr(obj, 'info', None)
# We do not need to return anything

Using the object looks like this:

```python
>>> obj = InfoArray(shape=(3,)) # explicit constructor
>>> type(obj)
<class 'InfoArray'>
>>> obj.info is None
True
>>> obj = InfoArray(shape=(3,), info='information')
>>> obj.info
'information'
>>> v = obj[1:] # new-from-template - here - slicing
>>> type(v)
<class 'InfoArray'>
>>> v.info
'information'
>>> arr = np.arange(10)
>>> cast_arr = arr.view(InfoArray) # view casting
>>> type(cast_arr)
<class 'InfoArray'>
>>> cast_arr.info is None
True
```

This class isn't very useful, because it has the same constructor as the bare ndarray object, including passing in buffers and shapes and so on. We would probably prefer the constructor to be able to take an already formed ndarray from the usual numpy calls to np.array and return an object.
4.9.7 Slightly more realistic example - attribute added to existing array

Here is a class that takes a standard ndarray that already exists, casts as our type, and adds an extra attribute.

```python
import numpy as np

class RealisticInfoArray(np.ndarray):
 def __new__(cls, input_array, info=None):
 # Input array is an already formed ndarray instance
 # We first cast to be our class type
 obj = np.asarray(input_array).view(cls)
 # add the new attribute to the created instance
 obj.info = info
 # Finally, we must return the newly created object:
 return obj

 def __array_finalize__(self, obj):
 # see InfoArray.__array_finalize__ for comments
 if obj is None: return
 self.info = getattr(obj, 'info', None)
```

So:

```python
>>> arr = np.arange(5)
>>> obj = RealisticInfoArray(arr, info='information')
>>> type(obj)
<class 'RealisticInfoArray'>
>>> obj.info
'information'
>>> v = obj[1:]
>>> type(v)
<class 'RealisticInfoArray'>
>>> v.info
'information'
```

4.9.8 __array_ufunc__ for ufuncs

New in version 1.13.

A subclass can override what happens when executing numpy ufuncs on it by overriding the default `ndarray.__array_ufunc__` method. This method is executed instead of the ufunc and should return either the result of the operation, or `NotImplemented` if the operation requested is not implemented.

The signature of `__array_ufunc__` is:

```python
def __array_ufunc__(ufunc, method, *inputs, **kwargs):
 # *ufunc* is the ufunc object that was called.
 # *method* is a string indicating how the Ufunc was called, either
 # '__call__' to indicate it was called directly, or one of its
 # :ref:`methods<ufuncs.methods>`: ``'reduce'``, ``'accumulate'``,
 # ``'reduceat'``, ``'outer'``, or ``'at'``.
 # *inputs* is a tuple of the input arguments to the `ufunc`
 # *kwargs* contains any optional or keyword arguments passed to the
 # function. This includes any `out` arguments, which are always
 # contained in a tuple.
```
A typical implementation would convert any inputs or outputs that are instances of one’s own class, pass everything on to a superclass using super(), and finally return the results after possible back-conversion. An example, taken from the test case test_ufunc_override_with_super in core/tests/test_umath.py, is the following.

```python
input numpy as np

class A(np.ndarray):
 def __array_ufunc__(self, ufunc, method, *inputs, out=None, **kwargs):
 args = []
 in_no = []
 for i, input_ in enumerate(inputs):
 if isinstance(input_, A):
 in_no.append(i)
 args.append(input_.view(np.ndarray))
 else:
 args.append(input_)

 outputs = out
 out_no = []
 if outputs:
 out_args = []
 for j, output in enumerate(outputs):
 if isinstance(output, A):
 out_no.append(j)
 out_args.append(output.view(np.ndarray))
 else:
 out_args.append(output)

 kwargs['out'] = tuple(out_args)
 else:
 outputs = (None,) * ufunc.nout

 info = {}
 if in_no:
 info['inputs'] = in_no
 if out_no:
 info['outputs'] = out_no

 results = super(A, self).__array_ufunc__(ufunc, method, *args, **kwargs)

 if results is NotImplemented:
 return NotImplemented

 if method == 'at':
 if isinstance(inputs[0], A):
 inputs[0].info = info
 return

 if ufunc.nout == 1:
 results = (results,)

 results = tuple((np.asarray(result).view(A)
 if output is None else output)
 for result, output in zip(results, outputs))

 if results and isinstance(results[0], A):
 results[0].info = info

 return results[0] if len(results) == 1 else results
```

So, this class does not actually do anything interesting: it just converts any instances of its own to regular ndarray (other-
wise, we’d get infinite recursion!), and adds an info dictionary that tells which inputs and outputs it converted. Hence, e.g.,

```python
>>> a = np.arange(5.).view(A)
>>> b = np.sin(a)
>>> b.info
{'inputs': [0]}
>>> b = np.sin(np.arange(5.), out=(a,))
>>> b.info
{'outputs': [0]}
```

Note that another approach would be to use `getattr(ufunc, method)(*inputs, **kwargs)` instead of the `super` call. For this example, the result would be identical, but there is a difference if another operand also defines `__array_ufunc__`. E.g., let's assume that we evaluate `np.add(a, b)`, where `b` is an instance of another class `B` that has an override. If you use `super` as in the example, `ndarray.__array_ufunc__` will notice that `b` has an override, which means it cannot evaluate the result itself. Thus, it will return `NotImplemented` and so will our class `A`. Then, control will be passed over to `b`, which either knows how to deal with us and produces a result, or does not and returns `NotImplemented`, raising a `TypeError`.

If instead, we replace our `super` call with `getattr(ufunc, method)`, we effectively do `np.add(a.view(np.ndarray), b)`. Again, `B.__array_ufunc__` will be called, but now it sees an `ndarray` as the other argument. Likely, it will know how to handle this, and return a new instance of the `B` class to us. Our example class is not set up to handle this, but it might well be the best approach if, e.g., one were to re-implement `MaskedArray` using `__array_ufunc__`.

As a final note: if the `super` route is suited to a given class, an advantage of using it is that it helps in constructing class hierarchies. E.g., suppose that our other class `B` also used the `super` in its `__array_ufunc__` implementation, and we created a class `C` that depended on both, i.e., `class C(A, B)` (with, for simplicity, not another `__array_ufunc__` override). Then any ufunc on an instance of `C` would pass on to `A.__array_ufunc__`, the `super` call in `A` would go to `B.__array_ufunc__`, and the `super` call in `B` would go to `ndarray.__array_ufunc__`, thus allowing `A` and `B` to collaborate.

### 4.9.9 __array_wrap__ for ufuncs and other functions

Prior to numpy 1.13, the behaviour of ufuncs could only be tuned using `__array_wrap__` and `__array_prepare__`. These two allowed one to change the output type of a ufunc, but, in contrast to `__array_ufunc__`, did not allow one to make any changes to the inputs. It is hoped to eventually deprecate these, but `__array_wrap__` is also used by other numpy functions and methods, such as `squeeze`, so at the present time is still needed for full functionality.

Conceptually, `__array_wrap__` “wraps up the action” in the sense of allowing a subclass to set the type of the return value and update attributes and metadata. Let’s show how this works with an example. First we return to the simpler example subclass, but with a different name and some print statements:

```python
import numpy as np

class MySubClass(np.ndarray):
```

(continues on next page)
def __new__(cls, input_array, info=None):
    obj = np.asarray(input_array).view(cls)
    obj.info = info
    return obj

def __array_finalize__(self, obj):
    print('In __array_finalize__:
self is
obj is ')
    if obj is None: return
    self.info = getattr(obj, 'info', None)

def __array_wrap__(self, out_arr, context=None):
    print('In __array_wrap__:
self is
arr is ')
    # then just call the parent
    return super(MySubClass, self).__array_wrap__(self, out_arr, context)

We run a ufunc on an instance of our new array:

>>> obj = MySubClass(np.arange(5), info='spam')
In __array_finalize__:
    self is MySubClass([0, 1, 2, 3, 4])
    obj is array([0, 1, 2, 3, 4])
>>> arr2 = np.arange(5)+1
>>> ret = np.add(arr2, obj)
In __array_wrap__:
    self is MySubClass([0, 1, 2, 3, 4])
    arr is array([1, 3, 5, 7, 9])
In __array_finalize__:
    self is MySubClass([1, 3, 5, 7, 9])
    obj is MySubClass([0, 1, 2, 3, 4])
>>> ret
MySubClass([1, 3, 5, 7, 9])
>>> ret.info
'spam'

Note that the ufunc (np.add) has called the __array_wrap__ method with arguments self as obj, and out_arr as the (ndarray) result of the addition. In turn, the default __array_wrap__(ndarray.__array_wrap__) has cast the result to class MySubClass, and called __array_finalize__ - hence the copying of the info attribute. This has all happened at the C level.

But, we could do anything we wanted:

class SillySubClass(np.ndarray):

    def __array_wrap__(self, arr, context=None):
        return 'I lost your data'

>>> arr1 = np.arange(5)
>>> obj = arr1.view(SillySubClass)
>>> arr2 = np.arange(5)
>>> ret = np.multiply(obj, arr2)
>>> ret
'I lost your data'

4.9. Subclassing ndarray 123
So, by defining a specific \_\_array\_wrap\_ method for our subclass, we can tweak the output from ufuncs. The \_\_array\_wrap\_ method requires self, then an argument - which is the result of the ufunc - and an optional parameter context. This parameter is returned by ufuncs as a 3-element tuple: (name of the ufunc, arguments of the ufunc, domain of the ufunc), but is not set by other numpy functions. Though, as seen above, it is possible to do otherwise, \_\_array\_wrap\_ should return an instance of its containing class. See the masked array subclass for an implementation.

In addition to \_\_array\_wrap\_, which is called on the way out of the ufunc, there is also an \_\_array\_prepare\_ method which is called on the way into the ufunc, after the output arrays are created but before any computation has been performed. The default implementation does nothing but pass through the array. \_\_array\_prepare\_ should not attempt to access the array data or resize the array, it is intended for setting the output array type, updating attributes and metadata, and performing any checks based on the input that may be desired before computation begins. Like \_\_array\_wrap\_, \_\_array\_prepare\_ must return an ndarray or subclass thereof or raise an error.

### 4.9.10 Extra gotchas - custom \_\_del\_\_ methods and ndarray.base

One of the problems that ndarray solves is keeping track of memory ownership of ndarrays and their views. Consider the case where we have created an ndarray, arr and have taken a slice with v = arr[1:]. The two objects are looking at the same memory. NumPy keeps track of where the data came from for a particular array or view, with the base attribute:

```python
>>> # A normal ndarray, that owns its own data
>>> arr = np.zeros((4,))
>>> # In this case, base is None
>>> arr.base is None
True
>>> # We take a view
>>> v1 = arr[1:]
>>> # base now points to the array that it derived from
>>> v1.base is arr
True
>>> # Take a view of a view
>>> v2 = v1[1:]
>>> # base points to the original array that it was derived from
>>> v2.base is arr
True
```

In general, if the array owns its own memory, as for arr in this case, then arr.base will be None - there are some exceptions to this - see the numpy book for more details.

The base attribute is useful in being able to tell whether we have a view or the original array. This in turn can be useful if we need to know whether or not to do some specific cleanup when the subclassed array is deleted. For example, we may only want to do the cleanup if the original array is deleted, but not the views. For an example of how this can work, have a look at the memmap class in numpy.core.
4.9.11 Subclassing and Downstream Compatibility

When sub-classing `ndarray` or creating duck-types that mimic the `ndarray` interface, it is your responsibility to decide how aligned your APIs will be with those of numpy. For convenience, many numpy functions that have a corresponding `ndarray` method (e.g., `sum`, `mean`, `take`, `reshape`) work by checking if the first argument to a function has a method of the same name. If it exists, the method is called instead of coercing the arguments to a numpy array.

For example, if you want your sub-class or duck-type to be compatible with numpy's `sum` function, the method signature for this object's `sum` method should be the following:

```python
def sum(self, axis=None, dtype=None, out=None, keepdims=False):
 ...
```

This is the exact same method signature for `np.sum`, so now if a user calls `np.sum` on this object, numpy will call the object's own `sum` method and pass in these arguments enumerated above in the signature, and no errors will be raised because the signatures are completely compatible with each other.

If, however, you decide to deviate from this signature and do something like this:

```python
def sum(self, axis=None, dtype=None):
 ...
```

This object is no longer compatible with `np.sum` because if you call `np.sum`, it will pass in unexpected arguments `out` and `keepdims`, causing a `TypeError` to be raised.

If you wish to maintain compatibility with numpy and its subsequent versions (which might add new keyword arguments) but do not want to surface all of numpy's arguments, your function's signature should accept `**kwargs`. For example:

```python
def sum(self, axis=None, dtype=None, **unused_kwargs):
 ...
```

This object is now compatible with `np.sum` again because any extraneous arguments (i.e. keywords that are not `axis` or `dtype`) will be hidden away in the `**unused_kwargs` parameter.
5.1 IEEE 754 Floating Point Special Values

Special values defined in numpy: nan, inf,

NaNs can be used as a poor-man’s mask (if you don’t care what the original value was)

Note: cannot use equality to test NaNs. E.g.:

```python
>>> myarr = np.array([1., 0., np.nan, 3.])
>>> np.nonzero(myarr == np.nan)
(array([], dtype=int64),)
>>> np.nan == np.nan # is always False! Use special numpy functions instead.
False
>>> myarr[myarr == np.nan] = 0. # doesn’t work
>>> myarr
array([1., 0., 0., 3.])
>>> myarr[np.isnan(myarr)] = 0. # use this instead find
>>> myarr
array([1., 0., 0., 3.])
```

Other related special value functions:

- `isinf()`: True if value is inf
- `isfinite()`: True if not nan or inf
- `nan_to_num()`: Map nan to 0, inf to max float, -inf to min float

The following corresponds to the usual functions except that nans are excluded from the results:

```python
nansum()
nanmax()
nanmin()
nanargmax()
nanargmin()
```

```bash
>>> x = np.arange(10.)
>>> x[3] = np.nan
>>> x.sum()
nan
>>> np.nansum(x)
42.0
```
5.2 How numpy handles numerical exceptions

The default is to 'warn' for invalid, divide, and overflow and 'ignore' for underflow. But this can be changed, and it can be set individually for different kinds of exceptions. The different behaviors are:

- `ignore`: Take no action when the exception occurs.
- `warn`: Print a `RuntimeWarning` (via the Python `warnings` module).
- `raise`: Raise a `FloatingPointError`.
- `call`: Call a function specified using the `seterrcall` function.
- `print`: Print a warning directly to `stdout`.
- `log`: Record error in a Log object specified by `seterrcall`.

These behaviors can be set for all kinds of errors or specific ones:

- `all`: apply to all numeric exceptions
- `invalid`: when NaNs are generated
- `divide`: divide by zero (for integers as well!)
- `overflow`: floating point overflows
- `underflow`: floating point underflows

Note that integer divide-by-zero is handled by the same machinery. These behaviors are set on a per-thread basis.

5.3 Examples

```python
>>> oldsettings = np.seterr(all='warn')
>>> np.zeros(5, dtype=np.float32)/0.
invalid value encountered in divide
>>> j = np.seterr(under='ignore')
>>> np.array([1.e-100])**10
>>> j = np.seterr(invalid='raise')
>>> np.sqrt(np.array([-1.]))
FloatingPointError: invalid value encountered in sqrt
>>> def errorhandler(errstr, errflag):
... print("saw stupid error!")
... >>> np.seterrcall(errorhandler)
... <function err_handler at 0x...>
>>> j = np.seterr(all='call')
>>> np.zeros(5, dtype=np.int32)/0
FloatingPointError: invalid value encountered in divide
saw stupid error!
>>> j = np.seterr(**oldsettings) # restore previous
... # error-handling settings
```
5.4 Interfacing to C

Only a survey of the choices. Little detail on how each works.

1) Bare metal, wrap your own C-code manually.
   - **Plusses:**
     - Efficient
     - No dependencies on other tools
   - **Minuses:**
     - Lots of learning overhead:
       - need to learn basics of Python C API
       - need to learn basics of numpy C API
       - need to learn how to handle reference counting and love it.
     - Reference counting often difficult to get right.
       - getting it wrong leads to memory leaks, and worse, segfaults
     - API will change for Python 3.0!

2) Cython
   - **Plusses:**
     - avoid learning C API's
     - no dealing with reference counting
     - can code in pseudo python and generate C code
     - can also interface to existing C code
     - should shield you from changes to Python C api
     - has become the de-facto standard within the scientific Python community
     - fast indexing support for arrays
   - **Minuses:**
     - Can write code in non-standard form which may become obsolete
     - Not as flexible as manual wrapping

3) ctypes
   - **Plusses:**
     - part of Python standard library
     - good for interfacing to existing sharable libraries, particularly Windows DLLs
     - avoids API/reference counting issues
     - good numpy support: arrays have all these in their ctypes attribute:

<table>
<thead>
<tr>
<th>ctypes.data</th>
<th>ctypes.get_strides</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctypes.data_as</td>
<td>ctypes.shape</td>
</tr>
<tr>
<td>ctypes.get_as_parameter</td>
<td>ctypes.shape_as</td>
</tr>
</tbody>
</table>

(continues on next page)
• Minuses:
  – can’t use for writing code to be turned into C extensions, only a wrapper tool.

4) SWIG (automatic wrapper generator)

• Plusses:
  – around a long time
  – multiple scripting language support
  – C++ support
  – Good for wrapping large (many functions) existing C libraries

• Minuses:
  – generates lots of code between Python and the C code
  – can cause performance problems that are nearly impossible to optimize out
  – interface files can be hard to write
  – doesn’t necessarily avoid reference counting issues or needing to know API’s

5) scipy.weave

• Plusses:
  – can turn many numpy expressions into C code
  – dynamic compiling and loading of generated C code
  – can embed pure C code in Python module and have weave extract, generate interfaces and compile, etc.

• Minuses:
  – Future very uncertain: it’s the only part of Scipy not ported to Python 3 and is effectively deprecated in favor of Cython.

6) Psyco

• Plusses:
  – Turns pure python into efficient machine code through jit-like optimizations
  – very fast when it optimizes well

• Minuses:
  – Only on intel (windows?)
  – Doesn’t do much for numpy?
5.5 Interfacing to Fortran:

The clear choice to wrap Fortran code is f2py. Pyfort is an older alternative, but not supported any longer. Fwrap is a newer project that looked promising but isn’t being developed any longer.

5.6 Interfacing to C++:

1) Cython
2) CXX
3) Boost.python
4) SWIG
5) SIP (used mainly in PyQT)
CHAPTER SIX

NUMPY FOR MATLAB USERS

6.1 Introduction

MATLAB® and NumPy have a lot in common, but NumPy was created to work with Python, not to be a MATLAB clone. This guide will help MATLAB users get started with NumPy.

6.2 Some key differences

<table>
<thead>
<tr>
<th>In MATLAB, the basic type, even for scalars, is a multidimensional array. Array assignments in MATLAB are stored as 2D arrays of double precision floating point numbers, unless you specify the number of dimensions and type. Operations on the 2D instances of these arrays are modeled on matrix operations in linear algebra.</th>
<th>In NumPy, the basic type is a multidimensional array. Array assignments in NumPy are usually stored as n-dimensional arrays with the minimum type required to hold the objects in sequence, unless you specify the number of dimensions and type. NumPy performs operations element-by-element, so multiplying 2D arrays with * is not a matrix multiplication – it’s an element-by-element multiplication. (The @ operator, available since Python 3.5, can be used for conventional matrix multiplication.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATLAB numbers indices from 1; a (1) is the first element. See note INDEXING.</td>
<td>NumPy, like Python, numbers indices from 0; a [0] is the first element.</td>
</tr>
<tr>
<td>MATLAB’s scripting language was created for linear algebra so the syntax for some array manipulations is more compact than NumPy’s. On the other hand, the API for adding GUIs and creating full-fledged applications is more or less an afterthought.</td>
<td>NumPy is based on Python, a general-purpose language. The advantage to NumPy is access to Python libraries including: SciPy, Matplotlib, Pandas, OpenCV, and more. In addition, Python is often embedded as a scripting language in other software, allowing NumPy to be used there too.</td>
</tr>
<tr>
<td>MATLAB array slicing uses pass-by-value semantics, with a lazy copy-on-write scheme to prevent creating copies until they are needed. Slicing operations copy parts of the array.</td>
<td>NumPy array slicing uses pass-by-reference, that does not copy the arguments. Slicing operations are views into an array.</td>
</tr>
</tbody>
</table>
6.3 Rough equivalents

The table below gives rough equivalents for some common MATLAB expressions. These are similar expressions, not equivalents. For details, see the documentation.

In the table below, it is assumed that you have executed the following commands in Python:

```python
import numpy as np
from scipy import io, integrate, linalg, signal
from scipy.sparse.linalg import eigs
```

Also assume below that if the Notes talk about “matrix” that the arguments are two-dimensional entities.
### 6.3.1 General purpose equivalents

<table>
<thead>
<tr>
<th>MATLAB</th>
<th>NumPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>help func</code></td>
<td><code>info(func)</code> or <code>help(func)</code></td>
<td>get help on the function <code>func</code></td>
</tr>
<tr>
<td><code>which func</code></td>
<td><code>see note HELP</code></td>
<td>find out where <code>func</code> is defined</td>
</tr>
<tr>
<td><code>type func</code></td>
<td><code>np.source(func)</code> or <code>func??</code></td>
<td>print source for <code>func</code> (if not a native function)</td>
</tr>
<tr>
<td><code>% comment</code></td>
<td><code># comment</code></td>
<td>comment a line of code with the text comment</td>
</tr>
<tr>
<td><code>for i=1:3</code></td>
<td><code>for i in range(1, 4):</code></td>
<td>use a for-loop to print the numbers 1, 2, and 3 using <code>range</code></td>
</tr>
<tr>
<td><code>fprintf('i\n',i)</code></td>
<td><code>print(i)</code></td>
<td></td>
</tr>
<tr>
<td><code>a &amp;&amp; b</code></td>
<td><code>a and b</code></td>
<td>short-circuiting logical AND operator (Python native operator); scalar arguments only</td>
</tr>
<tr>
<td>`a</td>
<td></td>
<td>b`</td>
</tr>
<tr>
<td><code>&gt;&gt; 4 == 4</code></td>
<td><code>&gt;&gt;&gt; 4 == 4</code></td>
<td>The boolean objects in Python are True and False, as opposed to MATLAB logical types of 1 and 0.</td>
</tr>
<tr>
<td><code>ans = 1</code></td>
<td><code>True</code></td>
<td></td>
</tr>
<tr>
<td><code>&gt;&gt; 4 == 5</code></td>
<td><code>&gt;&gt;&gt; 4 == 5</code></td>
<td></td>
</tr>
<tr>
<td><code>ans = 0</code></td>
<td><code>False</code></td>
<td></td>
</tr>
<tr>
<td><code>a=4</code></td>
<td><code>a = 4</code></td>
<td>create an if-else statement to check if <code>a</code> is 4 or 5 and print result</td>
</tr>
<tr>
<td><code>if a==4</code></td>
<td><code>if a == 4:</code></td>
<td></td>
</tr>
<tr>
<td><code>fprintf('a = 4\n')</code></td>
<td><code>print('a = 4')</code></td>
<td></td>
</tr>
<tr>
<td><code>elseif a==5</code></td>
<td><code>elif a == 5:</code></td>
<td></td>
</tr>
<tr>
<td><code>fprintf('a = 5\n')</code></td>
<td><code>print('a = 5')</code></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>1*i,1*j,1i,1j</code></td>
<td><code>1j</code></td>
<td>complex numbers</td>
</tr>
<tr>
<td><code>eps</code></td>
<td><code>np.finfo(float).eps</code> or <code>np.spacing(1)</code></td>
<td>Upper bound to relative error due to rounding in 64-bit floating point arithmetic.</td>
</tr>
<tr>
<td><code>load data.mat</code></td>
<td><code>io.loadmat('data.mat')</code></td>
<td>Load MATLAB variables saved to the file <code>data.mat</code>. (Note: When saving arrays to <code>data.mat</code> in MATLAB/Octave, use a recent binary format. <code>scipy.io.loadmat</code> will create a dictionary with the saved arrays and further information.)</td>
</tr>
<tr>
<td><code>ode45</code></td>
<td><code>integrate.solve_ivp(f)</code></td>
<td>integrate an ODE with Runge-Kutta 4,5</td>
</tr>
<tr>
<td><code>ode15s</code></td>
<td><code>integrate.solve_ivp(f, method='BDF')</code></td>
<td>integrate an ODE with BDF method</td>
</tr>
</tbody>
</table>
## 6.3.2 Linear algebra equivalents

<table>
<thead>
<tr>
<th>MATLAB</th>
<th>NumPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ndims(a)</td>
<td>np.ndim(a) or a.ndim</td>
<td>number of dimensions of array a</td>
</tr>
<tr>
<td>numel(a)</td>
<td>np.size(a) or a.size</td>
<td>number of elements of array a</td>
</tr>
<tr>
<td>size(a)</td>
<td>np.shape(a) or a.shape</td>
<td>“size” of array a</td>
</tr>
<tr>
<td>size(a,n)</td>
<td>a.shape[n-1]</td>
<td>get the number of elements of the n-th dimension of array a. (Note that MATLAB uses 1 based indexing while Python uses 0 based indexing, See note INDEXING)</td>
</tr>
<tr>
<td>[ 1 2 3; 4 5 6 ]</td>
<td>np.array([[1. ,2. ,3.], [4. ,5. ,6.]])</td>
<td>define a 2x3 2D array</td>
</tr>
<tr>
<td>[ a b; c d ]</td>
<td>np.block([[a, b], [c, d]])</td>
<td>construct a matrix from blocks a, b, c, and d</td>
</tr>
<tr>
<td>a(end)</td>
<td>a[-1]</td>
<td>access last element in MATLAB vector (1xn or nx1) or 1D NumPy array a (length n)</td>
</tr>
<tr>
<td>a(2,5)</td>
<td>a[1, 4]</td>
<td>access element in second row, fifth column in 2D array a</td>
</tr>
<tr>
<td>a(2,:)</td>
<td>a[1] or a[1, :)</td>
<td>entire second row of 2D array a</td>
</tr>
<tr>
<td>a(1:5,:)</td>
<td>a[0:5] or a[5:0] or a[0:5,:]</td>
<td>first 5 rows of 2D array a</td>
</tr>
<tr>
<td>a(end-4:end,:)</td>
<td>a[-5:]</td>
<td>last 5 rows of 2D array a</td>
</tr>
<tr>
<td>a(1:3;5;9)</td>
<td>a[0:3, 4:9]</td>
<td>The first through third rows and fifth through ninth columns of a 2D array, a.</td>
</tr>
<tr>
<td>a([2,4,5],[1,3])</td>
<td>a[np.ix_([1, 3, 4], [0, 2])]</td>
<td>rows 2,4 and 5 and columns 1 and 3. This allows the matrix to be modified, and doesn’t require a regular slice.</td>
</tr>
<tr>
<td>a(3:2:21,:)</td>
<td>a[2:21:2,:]</td>
<td>every other row of a, starting with the third and going to the twenty-first</td>
</tr>
<tr>
<td>a(1:2:end,:)</td>
<td>a[1::2,:]</td>
<td>every other row of a, starting with the first</td>
</tr>
<tr>
<td>a(end-1:1,:)</td>
<td>a[::-1,:]</td>
<td>a with rows in reverse order</td>
</tr>
<tr>
<td>flipud(a)</td>
<td>a[::-1,:]</td>
<td>a with copy of the first row appended to the end</td>
</tr>
<tr>
<td>a,'</td>
<td>a.transpose() or a.T</td>
<td>transpose of a</td>
</tr>
<tr>
<td>a'</td>
<td>a.conj().transpose() or a.conj().T</td>
<td>conjugate transpose of a</td>
</tr>
<tr>
<td>a * b</td>
<td>a @ b</td>
<td>matrix multiply</td>
</tr>
<tr>
<td>a .* b</td>
<td>a * b</td>
<td>element-wise multiply</td>
</tr>
<tr>
<td>a./b</td>
<td>a/b</td>
<td>element-wise division</td>
</tr>
<tr>
<td>a.^3</td>
<td>a**3</td>
<td>element-wise exponentiation</td>
</tr>
<tr>
<td>(a &gt; 0.5)</td>
<td>(a &gt; 0.5)</td>
<td>matrix whose i,jth element is (a_ij &gt; 0.5). The MATLAB result is an array of logical values 0 and 1. The NumPy result is an array of the boolean values False and True.</td>
</tr>
<tr>
<td>find(a &gt; 0.5)</td>
<td>np.nonzero(a &gt; 0.5)</td>
<td>find the indices where (a &gt; 0.5)</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>MATLAB</th>
<th>NumPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a(:, find(v &gt; 0.5))</code></td>
<td><code>a[:, np.nonzero(v &gt; 0.5)[0]]</code></td>
<td>extract the columns of a where vector v &gt; 0.5</td>
</tr>
<tr>
<td><code>a(:, find(v &gt; 0.5))</code></td>
<td><code>a[:, v.T &gt; 0.5]</code></td>
<td>extract the columns of a where column vector v &gt; 0.5</td>
</tr>
<tr>
<td><code>a(a &lt; 0.5) = 0</code></td>
<td><code>a[a &lt; 0.5] = 0</code></td>
<td>a with elements less than 0.5 zeroed out</td>
</tr>
<tr>
<td><code>a .* (a &gt; 0.5)</code></td>
<td><code>a * (a &gt; 0.5)</code></td>
<td>a with elements less than 0.5 zeroed out</td>
</tr>
<tr>
<td><code>a(a &lt; 0.5) = 0</code></td>
<td><code>a[a &lt; 0.5] = 0</code></td>
<td>a with elements less than 0.5 zeroed out</td>
</tr>
<tr>
<td><code>a(:) = 3</code></td>
<td><code>a[:] = 3</code></td>
<td>set all values to the same scalar value</td>
</tr>
<tr>
<td><code>y = x</code></td>
<td><code>y = x.copy()</code></td>
<td>NumPy assigns by reference</td>
</tr>
<tr>
<td><code>y = x(2,:)</code></td>
<td><code>y = x[1, :].copy()</code></td>
<td>NumPy slices are by reference</td>
</tr>
<tr>
<td><code>y = x(:)</code></td>
<td><code>y = x.flatten()</code></td>
<td>turn array into vector (note that this forces a copy). To obtain the same data ordering as in MATLAB, use x . flatten('F').</td>
</tr>
</tbody>
</table>

- **1:10**
- **0:9**
- **[1:10]’**
- **zeros(3,4)**
- **zeros(3,4,5)**
- **ones(3,4)**
- **eye(3)**
- **diag(a)**
- **diag(v,0)**
- **rng(42,'twister')**
- **rand(3,4)**
- **linspace(1,3,4)**
- **[x,y]=meshgrid(0:8,0:5)**
- **ogrid[0:9.,0:6.] or np. ix_(np.r_[0:9.],np. r_[0:6.])**

---

**6.3. Rough equivalents**

Continued on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>MATLAB</th>
<th>NumPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[x,y]=meshgrid([1,2,4],[2,4,5])</code></td>
<td>np.meshgrid([1,2,4],[2,4,5])</td>
<td></td>
</tr>
<tr>
<td>ix_([1,2,4],[2,4,5])</td>
<td></td>
<td>the best way to eval functions on a grid</td>
</tr>
<tr>
<td><code>repmat(a,m,n)</code></td>
<td>np.tile(a, (m, n))</td>
<td>create m by n copies of a</td>
</tr>
<tr>
<td><code>[a b]</code></td>
<td>np.concatenate((a,b), 1) or np.hstack((a,b)) or np.column_stack((a,b)) or np.c_[a,b]</td>
<td>concatenate columns of a and b</td>
</tr>
<tr>
<td><code>[a; b]</code></td>
<td>np.concatenate((a,b)) or np.vstack((a,b)) or np.r_[a,b]</td>
<td>concatenate rows of a and b</td>
</tr>
<tr>
<td><code>max(max(a))</code></td>
<td>a.max() or np.nanmax(a)</td>
<td>maximum element of a (with ndims(a)==2 for MATLAB, if there are NaN's, nanmax will ignore these and return largest value)</td>
</tr>
<tr>
<td><code>max(a)</code></td>
<td>a.max(0)</td>
<td>maximum element of each column of array a</td>
</tr>
<tr>
<td><code>max(a,[],2)</code></td>
<td>a.max(1)</td>
<td>maximum element of each row of array a</td>
</tr>
<tr>
<td><code>max(a,b)</code></td>
<td>np.maximum(a, b)</td>
<td>compares a and b element-wise, and returns the maximum value from each pair</td>
</tr>
<tr>
<td><code>norm(v)</code></td>
<td>np.sqrt(v @ v) or np.linalg.norm(v)</td>
<td>L2 norm of vector v</td>
</tr>
<tr>
<td><code>a &amp; b</code></td>
<td>logical_and(a,b)</td>
<td>element-by-element AND operator (NumPy ufunc) See note LOGICOPS</td>
</tr>
<tr>
<td>`a</td>
<td>b`</td>
<td>np.logical_or(a,b)</td>
</tr>
<tr>
<td><code>bitand(a,b)</code></td>
<td>a &amp; b</td>
<td>bitwise AND operator (Python native and NumPy ufunc)</td>
</tr>
<tr>
<td><code>bitor(a,b)</code></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td><code>inv(a)</code></td>
<td>linalg.inv(a)</td>
<td>inverse of square 2D array a</td>
</tr>
<tr>
<td><code>pinv(a)</code></td>
<td>linalg.pinv(a)</td>
<td>pseudo-inverse of 2D array a</td>
</tr>
<tr>
<td><code>rank(a)</code></td>
<td>linalg.matrix_rank(a)</td>
<td>matrix rank of a 2D array a</td>
</tr>
<tr>
<td><code>a\b</code></td>
<td>linalg.solve(a, b) if a is square; linalg.lstsq(a, b) otherwise</td>
<td>solution of a x = b for x</td>
</tr>
<tr>
<td><code>b/a</code></td>
<td>Solve a.T x.T = b.T instead</td>
<td>solution of x a = b for x</td>
</tr>
<tr>
<td><code>[U,S,V]=svd(a)</code></td>
<td>U, S, Vh = linalg.svd(a), V = Vh.T</td>
<td>singular value decomposition of a</td>
</tr>
<tr>
<td><code>c=chol(a)</code> where <code>a==c'*c</code></td>
<td>c = linalg.cholesky(a) where a == <a href="mailto:c@c.T">c@c.T</a></td>
<td>Cholesky factorization of a 2D array (chol(a) in MATLAB returns an upper triangular 2D array, but cholesky returns a lower triangular 2D array)</td>
</tr>
<tr>
<td><code>[V,D]=eig(a)</code></td>
<td>D,V = linalg.eig(a)</td>
<td>eigenvalues λ and eigenvectors v of a, where λv = av</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>MATLAB</th>
<th>NumPy</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[V,D]=eig(a,b)</code></td>
<td><code>D,V = linalg.eig(a, b)</code></td>
<td>eigenvalues $\lambda$ and eigenvectors $\vec{v}$ of $a$, $b$ where $A\vec{v} = \lambda \vec{v}$</td>
</tr>
<tr>
<td><code>[V,D]=eigs(a,3)</code></td>
<td><code>D,V = eigs(a, k = 3)</code></td>
<td>find the $k=3$ largest eigenvalues and eigenvectors of 2D array, $a$</td>
</tr>
<tr>
<td><code>[Q,R,P]=qr(a,0)</code></td>
<td><code>Q,R = linalg.qr(a)</code></td>
<td>QR decomposition</td>
</tr>
<tr>
<td><code>[L,U,P]=lu(a)</code> where $a==P'<em>L</em>U$</td>
<td><code>P,L,U = linalg.lu(a)</code></td>
<td>LU decomposition (note: $P(MATLAB) == \text{transpose}(P(NumPy))$)</td>
</tr>
<tr>
<td><code>conjgrad</code></td>
<td><code>cg</code></td>
<td>Conjugate gradients solver</td>
</tr>
<tr>
<td><code>fft(a)</code></td>
<td><code>np.fft(a)</code></td>
<td>Fourier transform of $a$</td>
</tr>
<tr>
<td><code>ifft(a)</code></td>
<td><code>np.ifft(a)</code></td>
<td>inverse Fourier transform of $a$</td>
</tr>
<tr>
<td><code>sort(a)</code></td>
<td><code>np.sort(a)</code> or <code>a.sort(axis=0)</code></td>
<td>sort each column of a 2D array, $a$</td>
</tr>
<tr>
<td><code>sort(a, 2)</code></td>
<td><code>np.sort(a, axis = 1)</code> ora. <code>sort(axis=1)</code></td>
<td>sort the each row of 2D array, $a$</td>
</tr>
<tr>
<td><code>[b,I]=sortrows(a,1)</code></td>
<td><code>I = np.argsort(a[:, 0]); b = a[I,:];</code></td>
<td>save the array $a$ as array $b$ with rows sorted by the first column</td>
</tr>
<tr>
<td><code>x = Z\y</code></td>
<td><code>x = linalg.lstsq(Z, y)</code></td>
<td>perform a linear regression of the form $Zx = y$</td>
</tr>
<tr>
<td><code>decimate(x, q)</code></td>
<td><code>signal.resample(x, np.ceil(len(x)/q))</code></td>
<td>downsample with low-pass filtering</td>
</tr>
<tr>
<td><code>unique(a)</code></td>
<td><code>np.unique(a)</code></td>
<td>a vector of unique values in array $a$</td>
</tr>
<tr>
<td><code>squeeze(a)</code></td>
<td><code>a.squeeze()</code></td>
<td>remove singleton dimensions of array $a$. Note that MATLAB will always return arrays of 2D or higher while NumPy will return arrays of 0D or higher</td>
</tr>
</tbody>
</table>

6.4 Notes

Submatrix: Assignment to a submatrix can be done with lists of indices using the `ix_` command. E.g., for 2D array $a$, one might do: `ind=[1, 3]; a[np.ix_(ind, ind)] += 100.`

HELP: There is no direct equivalent of MATLAB’s `which` command, but the commands `help` and `numpy.source` will usually list the filename where the function is located. Python also has an `inspect` module (do `import inspect`) which provides a `getfile` that often works.

INDEXING: MATLAB uses one based indexing, so the initial element of a sequence has index 1. Python uses zero based indexing, so the initial element of a sequence has index 0. Confusion and flamewars arise because each has advantages and disadvantages. One based indexing is consistent with common human language usage, where the “first” element of a sequence has index 1. Zero based indexing simplifies indexing. See also a text by prof.dr. Edsger W. Dijkstra.

RANGES: In MATLAB, `0:5` can be used as both a range literal and a ‘slice’ index (inside parentheses); however, in Python, constructs like `0:5` can only be used as a slice index (inside square brackets). Thus the somewhat quirky $r_-$ object was created to allow NumPy to have a similarly terse range construction mechanism. Note that $r_-$ is not called like a function or a constructor, but rather indexed using square brackets, which allows the use of Python’s slice syntax in the arguments.

LOGICOPS: $\&$ or $|$ in NumPy is bitwise AND/OR, while in MATLAB $\&$ and $|$ are logical AND/OR. The two can appear to work the same, but there are important differences. If you would have used MATLAB’s $\&$ or $|$ operators, you should use the NumPy ufuncs `logical_and/logical_or`. The notable differences between MATLAB’s and
NumPy's `&` and `|` operators are:

- Non-logical \(0,1\) inputs: NumPy's output is the bitwise AND of the inputs. MATLAB treats any non-zero value as 1 and returns the logical AND. For example \((3 \ & \ 4)\) in NumPy is 0, while in MATLAB both 3 and 4 are considered logical true and \((3 \ & \ 4)\) returns 1.

- Precedence: NumPy's `&` operator is higher precedence than logical operators like `<` and `>`; MATLAB's is the reverse.

If you know you have boolean arguments, you can get away with using NumPy's bitwise operators, but be careful with parentheses, like this: \(z = (x > 1) \ & \ (x < 2)\). The absence of NumPy operator forms of `logical_and` and `logical_or` is an unfortunate consequence of Python's design.

**RESHAPE and LINEAR INDEXING**: MATLAB always allows multi-dimensional arrays to be accessed using scalar or linear indices, NumPy does not. Linear indices are common in MATLAB programs, e.g. `find()` on a matrix returns them, whereas NumPy's `find` behaves differently. When converting MATLAB code it might be necessary to first reshape a matrix to a linear sequence, perform some indexing operations and then reshape back. As reshape (usually) produces views onto the same storage, it should be possible to do this fairly efficiently. Note that the scan order used by reshape in NumPy defaults to the 'C' order, whereas MATLAB uses the Fortran order. If you are simply converting to a linear sequence and back this doesn't matter. But if you are converting reshapes from MATLAB code which relies on the scan order, then this MATLAB code: \(z = \text{reshape}(x,3,4)\) should become \(z = x.\text{reshape}(3,4,\text{order}='F').\text{copy()}\) in NumPy.

### 6.5 ‘array’ or ‘matrix’? Which should I use?

Historically, NumPy has provided a special matrix type, `np.matrix`, which is a subclass of `ndarray` which makes binary operations linear algebra operations. You may see it used in some existing code instead of `np.array`. So, which one to use?

#### 6.5.1 Short answer

Use arrays.

- They support multidimensional array algebra that is supported in MATLAB
- They are the standard vector/matrix/tensor type of NumPy. Many NumPy functions return arrays, not matrices.
- There is a clear distinction between element-wise operations and linear algebra operations.
- You can have standard vectors or row/column vectors if you like.

Until Python 3.5 the only disadvantage of using the array type was that you had to use `dot` instead of `*` to multiply (reduce) two tensors (scalar product, matrix vector multiplication etc.). Since Python 3.5 you can use the matrix multiplication `@` operator.

Given the above, we intend to deprecate `matrix` eventually.
6.5.2 Long answer

NumPy contains both an array class and a matrix class. The array class is intended to be a general-purpose n-dimensional array for many kinds of numerical computing, while matrix is intended to facilitate linear algebra computations specifically. In practice there are only a handful of key differences between the two.

- Operators * and @, functions dot(), and multiply():
  - For array, "*" means element-wise multiplication, while "@" means matrix multiplication; they have associated functions multiply() and dot(). (Before Python 3.5, @ did not exist and one had to use dot() for matrix multiplication).
  - For matrix, "*" means matrix multiplication, and for element-wise multiplication one has to use the multiply() function.

- Handling of vectors (one-dimensional arrays)
  - For array, the vector shapes 1xN, Nx1, and N are all different things. Operations like A[:,1] return a one-dimensional array of shape N, not a two-dimensional array of shape Nx1. Transpose on a one-dimensional array does nothing.
  - For matrix, one-dimensional arrays are always upconverted to 1xN or Nx1 matrices (row or column vectors). A[:,1] returns a two-dimensional matrix of shape Nx1.

- Handling of higher-dimensional arrays (ndim > 2)
  - array objects can have number of dimensions > 2;
  - matrix objects always have exactly two dimensions.

- Convenience attributes
  - array has a .T attribute, which returns the transpose of the data.
  - matrix also has .H, .I, and .A attributes, which return the conjugate transpose, inverse, and asarray() of the matrix, respectively.

- Convenience constructor
  - The array constructor takes (nested) Python sequences as initializers. As in, array([[1, 2, 3], [4, 5, 6]]).
  - The matrix constructor additionally takes a convenient string initializer. As in matrix("[1 2 3; 4 5 6]").

There are pros and cons to using both:

- array
  - :) Element-wise multiplication is easy: A*B.
  - : ( You have to remember that matrix multiplication has its own operator, @.
  - :) You can treat one-dimensional arrays as either row or column vectors. A @ v treats v as a column vector, while v @ A treats v as a row vector. This can save you having to type a lot of transposes.
  - :) array is the “default” NumPy type, so it gets the most testing, and is the type most likely to be returned by 3rd party code that uses NumPy.
  - :) Is quite at home handling data of any number of dimensions.
  - :) Closer in semantics to tensor algebra, if you are familiar with that.
  - :) All operations (*, /, +, etc.) are element-wise.
  - :( Sparse matrices from scipy.sparse do not interact as well with arrays.
• matrix
  – :\ Behavior is more like that of MATLAB matrices.
  – <: ( Maximum of two-dimensional. To hold three-dimensional data you need array or perhaps a Python list of matrix.
  – <: ( Minimum of two-dimensional. You cannot have vectors. They must be cast as single-column or single-row matrices.
  – <: ( Since array is the default in NumPy, some functions may return an array even if you give them a matrix as an argument. This shouldn’t happen with NumPy functions (if it does it’s a bug), but 3rd party code based on NumPy may not honor type preservation like NumPy does.
  – :) A*B is matrix multiplication, so it looks just like you write it in linear algebra (For Python >= 3.5 plain arrays have the same convenience with the @ operator).
  – <: ( Element-wise multiplication requires calling a function, multiply(A,B).
  – <: ( The use of operator overloading is a bit illogical: * does not work element-wise but / does.
  – Interaction with scipy.sparse is a bit cleaner.

The array is thus much more advisable to use. Indeed, we intend to deprecate matrix eventually.

### 6.6 Customizing your environment

In MATLAB the main tool available to you for customizing the environment is to modify the search path with the locations of your favorite functions. You can put such customizations into a startup script that MATLAB will run on startup.

NumPy, or rather Python, has similar facilities.

• To modify your Python search path to include the locations of your own modules, define the PYTHONPATH environment variable.

• To have a particular script file executed when the interactive Python interpreter is started, define the PYTHONSTARTUP environment variable to contain the name of your startup script.

Unlike MATLAB, where anything on your path can be called immediately, with Python you need to first do an ‘import’ statement to make functions in a particular file accessible.

For example you might make a startup script that looks like this (Note: this is just an example, not a statement of “best practices”):

```python
Make all numpy available via shorter 'np' prefix
import numpy as np
#
Make the SciPy linear algebra functions available as linalg.func()
e.g. linalg.lu, linalg.eig (for general l*B@u==A@u solution)
from scipy import linalg
#
Define a Hermitian function
def hermitian(A, **kwargs):
 return np.conj(A,**kwargs).T
Make a shortcut for hermitian:
hermitian(A) --> H(A)
H = hermitian
```

To use the deprecated matrix and other matlib functions:
# Make all matlib functions accessible at the top level via M.func()
import numpy.matlib as M
# Make some matlib functions accessible directly at the top level via, e.g. rand(3,3)
from numpy.matlib import matrix, rand, zeros, ones, empty, eye

## 6.7 Links

Another somewhat outdated MATLAB/NumPy cross-reference can be found at http://mathesaurus.sf.net/

An extensive list of tools for scientific work with Python can be found in the topical software page.

See List of Python software: scripting for a list of softwares that use Python as a scripting language

MATLAB® and SimuLink® are registered trademarks of The MathWorks, Inc.
A general overview of building NumPy from source is given here, with detailed instructions for specific platforms given separately.

### 7.1 Prerequisites

Building NumPy requires the following software installed:

1) Python 3.6.x or newer

   Please note that the Python development headers also need to be installed, e.g., on Debian/Ubuntu one needs to install both `python3` and `python3-dev`. On Windows and macOS this is normally not an issue.

2) Compilers

   To build any extension modules for Python, you'll need a C compiler. Various NumPy modules use FORTRAN 77 libraries, so you'll also need a FORTRAN 77 compiler installed.

   Note that NumPy is developed mainly using GNU compilers and tested on MSVC and Clang compilers. Compilers from other vendors such as Intel, Absoft, Sun, NAG, Compaq, Vast, Portland, Lahey, HP, IBM are only supported in the form of community feedback, and may not work out of the box. GCC 4.x (and later) compilers are recommended. On ARM64 (aarch64) GCC 8.x (and later) are recommended.

3) Linear Algebra libraries

   NumPy does not require any external linear algebra libraries to be installed. However, if these are available, NumPy's setup script can detect them and use them for building. A number of different LAPACK library setups can be used, including optimized LAPACK libraries such as OpenBLAS or MKL. The choice and location of these libraries as well as include paths and other such build options can be specified in a `site.cfg` file located in the NumPy root repository or a `.numpy-site.cfg` file in your home directory. See the `site.cfg.example` example file included in the NumPy repository or sdist for documentation, and below for specifying search priority from environmental variables.

4) Cython

   For building NumPy, you'll need a recent version of Cython.
7.2 Basic Installation

To install NumPy, run:

```bash
pip install .
```

To perform an in-place build that can be run from the source folder run:

```bash
python setup.py build_ext --inplace
```

*Note: for build instructions to do development work on NumPy itself, see development-environment.*

7.3 Testing

Make sure to test your builds. To ensure everything stays in shape, see if all tests pass:

```bash
$ python runtests.py -v -m full
```

For detailed info on testing, see testing-builds.

7.3.1 Parallel builds

It's possible to do a parallel build with:

```bash
python setup.py build -j 4 install --prefix $HOME/.local
```

This will compile numpy on 4 CPUs and install it into the specified prefix. to perform a parallel in-place build, run:

```bash
python setup.py build_ext --inplace -j 4
```

The number of build jobs can also be specified via the environment variable `NPY_NUM_BUILD_JOBS`.

7.3.2 Choosing the fortran compiler

Compilers are auto-detected; building with a particular compiler can be done with `--fcompiler`. E.g. to select gfortran:

```bash
python setup.py build --fcompiler=gnu95
```

For more information see:

```bash
python setup.py build --help-fcompiler
```
7.3.3 How to check the ABI of BLAS/LAPACK libraries

One relatively simple and reliable way to check for the compiler used to build a library is to use ldd on the library. If libg2c.so is a dependency, this means that g77 has been used (note: g77 is no longer supported for building NumPy). If libgfortran.so is a dependency, gfortran has been used. If both are dependencies, this means both have been used, which is almost always a very bad idea.

7.4 Accelerated BLAS/LAPACK libraries

NumPy searches for optimized linear algebra libraries such as BLAS and LAPACK. There are specific orders for searching these libraries, as described below and in the site.cfg.example file.

7.4.1 BLAS

The default order for the libraries are:

1. MKL
2. BLIS
3. OpenBLAS
4. ATLAS
5. BLAS (NetLIB)

If you wish to build against OpenBLAS but you also have BLIS available one may predefine the order of searching via the environment variable NPY_BLAS_ORDER which is a comma-separated list of the above names which is used to determine what to search for, for instance:

```
NPY_BLAS_ORDER=ATLAS,blis,openblas,MKL python setup.py build
```

will prefer to use ATLAS, then BLIS, then OpenBLAS and as a last resort MKL. If neither of these exists the build will fail (names are compared lower case).

Alternatively one may use ! or ^ to negate all items:

```
NPY_BLAS_ORDER='^blas,atlas' python setup.py build
```

will allow using anything but NetLIB BLAS and ATLAS libraries, the order of the above list is retained.

One cannot mix negation and positives, nor have multiple negations, such cases will raise an error.

7.4.2 LAPACK

The default order for the libraries are:

1. MKL
2. OpenBLAS
3. libFLAME
4. ATLAS
5. LAPACK (NetLIB)
If you wish to build against OpenBLAS but you also have MKL available one may redefine the order of searching via the environment variable `NPY_LAPACK_ORDER` which is a comma-separated list of the above names, for instance:

```
NPY_LAPACK_ORDER=ATLAS,openblas,MKL python setup.py build
```

will prefer to use ATLAS, then OpenBLAS and as a last resort MKL. If neither of these exists the build will fail (names are compared lower case).

Alternatively one may use ! or ^ to negate all items:

```
NPY_LAPACK_ORDER=\'^lapack\' python setup.py build
```

will allow using anything but the NetLIB LAPACK library, the order of the above list is retained.

One cannot mix negation and positives, nor have multiple negations, such cases will raise an error.

Deprecated since version 1.20: The native libraries on macOS, provided by Accelerate, are not fit for use in NumPy since they have bugs that cause wrong output under easily reproducible conditions. If the vendor fixes those bugs, the library could be reinstated, but until then users compiling for themselves should use another linear algebra library or use the built-in (but slower) default, see the next section.

### 7.4.3 Disabling ATLAS and other accelerated libraries

Usage of ATLAS and other accelerated libraries in NumPy can be disabled via:

```
NPY_BLAS_ORDER= NPY_LAPACK_ORDER= python setup.py build
```

or:

```
BLAS=\^None LAPACK=\^None ATLAS=\^None python setup.py build
```

### 7.4.4 64-bit BLAS and LAPACK

You can tell Numpy to use 64-bit BLAS/LAPACK libraries by setting the environment variable:

```
NPY_USE_BLAS_ILP64=1
```

when building Numpy. The following 64-bit BLAS/LAPACK libraries are supported:

1. OpenBLAS ILP64 with 64_ symbol suffix (openblas64_)
2. OpenBLAS ILP64 without symbol suffix (openblas_ilp64)

The order in which they are preferred is determined by `NPY_BLAS_ILP64_ORDER` and `NPY_LAPACK_ILP64_ORDER` environment variables. The default value is `openblas64_,openblas_ilp64`.

**Note:** Using non-symbol-suffixed 64-bit BLAS/LAPACK in a program that also uses 32-bit BLAS/LAPACK can cause crashes under certain conditions (e.g. with embedded Python interpreters on Linux).

The 64-bit OpenBLAS with 64_ symbol suffix is obtained by compiling OpenBLAS with settings:

```
make INTERFACE64=1 SYMBOLSUFFIX=64_
```

The symbol suffix avoids the symbol name clashes between 32-bit and 64-bit BLAS/LAPACK libraries.
7.5 Supplying additional compiler flags

Additional compiler flags can be supplied by setting the OPT, FOPT (for Fortran), and CC environment variables. When providing options that should improve the performance of the code ensure that you also set -DNDEBUG so that debugging code is not executed.
8.1 How to extend NumPy

That which is static and repetitive is boring. That which is dynamic and random is confusing. In between lies art.
— John A. Locke

Science is a differential equation. Religion is a boundary condition.
— Alan Turing

8.1.1 Writing an extension module

While the ndarray object is designed to allow rapid computation in Python, it is also designed to be general-purpose and satisfy a wide-variety of computational needs. As a result, if absolute speed is essential, there is no replacement for a well-crafted, compiled loop specific to your application and hardware. This is one of the reasons that numpy includes f2py so that an easy-to-use mechanisms for linking (simple) C/C++ and (arbitrary) Fortran code directly into Python are available. You are encouraged to use and improve this mechanism. The purpose of this section is not to document this tool but to document the more basic steps to writing an extension module that this tool depends on.

When an extension module is written, compiled, and installed to somewhere in the Python path (sys.path), the code can then be imported into Python as if it were a standard python file. It will contain objects and methods that have been defined and compiled in C code. The basic steps for doing this in Python are well-documented and you can find more information in the documentation for Python itself available online at www.python.org.

In addition to the Python C-API, there is a full and rich C-API for NumPy allowing sophisticated manipulations on a C-level. However, for most applications, only a few API calls will typically be used. For example, if you need to just extract a pointer to memory along with some shape information to pass to another calculation routine, then you will use very different calls than if you are trying to create a new array-like type or add a new data type for ndarrays. This chapter documents the API calls and macros that are most commonly used.
8.1.2 Required subroutine

There is exactly one function that must be defined in your C-code in order for Python to use it as an extension module. The function must be called init{\texttt{name}} where \{\texttt{name}\} is the name of the module from Python. This function must be declared so that it is visible to code outside of the routine. Besides adding the methods and constants you desire, this subroutine must also contain calls like import_array() and/or import_ufunc() depending on which C-API is needed. Forgetting to place these commands will show itself as an ugly segmentation fault (crash) as soon as any C-API subroutine is actually called. It is actually possible to have multiple init\{\texttt{name}\} functions in a single file in which case multiple modules will be defined by that file. However, there are some tricks to get that to work correctly and it is not covered here.

A minimal init{\texttt{name}} method looks like:

```c
PyMODINIT_FUNC
init{name}(void)
{
 (void)Py_InitModule({name}, mymethods);
 import_array();
}
```

The mymethods must be an array (usually statically declared) of PyMethodDef structures which contain method names, actual C-functions, a variable indicating whether the method uses keyword arguments or not, and docstrings. These are explained in the next section. If you want to add constants to the module, then you store the returned value from Py_InitModule which is a module object. The most general way to add items to the module is to get the module dictionary using PyModule_GetDict(module). With the module dictionary, you can add whatever you like to the module manually. An easier way to add objects to the module is to use one of three additional Python C-API calls that do not require a separate extraction of the module dictionary. These are documented in the Python documentation, but repeated here for convenience:

```c
int PyModule_AddObject (PyObject* module, char* name, PyObject* value)
int PyModule_AddIntConstant (PyObject* module, char* name, long value)
int PyModule_AddStringConstant (PyObject* module, char* name, char* value)
```

All three of these functions require the module object (the return value of Py_InitModule). The name is a string that labels the value in the module. Depending on which function is called, the value argument is either a general object (PyModule_AddObject steals a reference to it), an integer constant, or a string constant.

8.1.3 Defining functions

The second argument passed in to the Py_InitModule function is a structure that makes it easy to to define functions in the module. In the example given above, the mymethods structure would have been defined earlier in the file (usually right before the init{\texttt{name}} subroutine) to:

```c
static PyMethodDef mymethods[] = {
 { nokeywordfunc, nokeyword_cfunc, METH_VARARGS, Doc string},
 { keywordfunc, keyword_cfunc, METH_VARARGS|METH_KEYWORDS, Doc string},
 {NULL, NULL, 0, NULL} /* Sentinel */
}
```

Each entry in the mymethods array is a PyMethodDef structure containing 1) the Python name, 2) the C-function that implements the function, 3) flags indicating whether or not keywords are accepted for this function, and 4) The docstring for the function. Any number of functions may be defined for a single module by adding more entries to this table. The
last entry must be all NULL as shown to act as a sentinel. Python looks for this entry to know that all of the functions for the module have been defined.

The last thing that must be done to finish the extension module is to actually write the code that performs the desired functions. There are two kinds of functions: those that don’t accept keyword arguments, and those that do.

**Functions without keyword arguments**

Functions that don’t accept keyword arguments should be written as:

```c
static PyObject*
nokeyword_cfunc (PyObject *dummy, PyObject *args)
{
 /* convert Python arguments */
 /* do function */
 /* return something */
}
```

The dummy argument is not used in this context and can be safely ignored. The *args* argument contains all of the arguments passed in to the function as a tuple. You can do anything you want at this point, but usually the easiest way to manage the input arguments is to call `PyArg_ParseTuple` (args, format_string, addresses_to_C_variables…) or `PyArg_UnpackTuple` (tuple, “name”, min, max, …). A good description of how to use the first function is contained in the Python C-API reference manual under section 5.5 (Parsing arguments and building values). You should pay particular attention to the “O&” format which uses converter functions to go between the Python object and the C object. All of the other format functions can be (mostly) thought of as special cases of this general rule. There are several converter functions defined in the NumPy C-API that may be of use. In particular, the `PyArray_DescrConverter` function is very useful to support arbitrary data-type specification. This function transforms any valid data-type Python object into a `PyArray_Descr *` object. Remember to pass in the address of the C-variables that should be filled in.

There are lots of examples of how to use `PyArg_ParseTuple` throughout the NumPy source code. The standard usage is like this:

```c
PyObject *input;
PyArray_Descr *dtype;
if (!PyArg_ParseTuple(args, "OO&", &input,
 PyArray_DescrConverter,
 &dtype)) return NULL;
```

It is important to keep in mind that you get a borrowed reference to the object when using the “O” format string. However, the converter functions usually require some form of memory handling. In this example, if the conversion is successful, `dtype` will hold a new reference to a `PyArray_Descr *` object, while `input` will hold a borrowed reference. Therefore, if this conversion were mixed with another conversion (say to an integer) and the data-type conversion was successful but the integer conversion failed, then you would need to release the reference count to the data-type object before returning. A typical way to do this is to set `dtype` to NULL before calling `PyArg_ParseTuple` and then use `Py_XDECREF` on `dtype` before returning.

After the input arguments are processed, the code that actually does the work is written (likely calling other functions as needed). The final step of the C-function is to return something. If an error is encountered then NULL should be returned (making sure an error has actually been set). If nothing should be returned then increment `Py_None` and return it. If a single object should be returned then it is returned (ensuring that you own a reference to it first). If multiple objects should be returned then you need to return a tuple. The `Py_BuildValue` (format_string, c_variables…) function makes it easy to build tuples of Python objects from C variables. Pay special attention to the difference between ‘N’ and ‘O’ in the format string or you can easily create memory leaks. The ‘O’ format string increments the reference count of the `PyObject *` C-variable it corresponds to, while the ‘N’ format string steals a reference to the corresponding `PyObject *` C-variable. You should use ‘N’ if you have already created a reference for the object and just want to give that reference to the tuple. You should use ‘O’ if you only have a borrowed reference to an object and need to create one to provide for the tuple.

---

**8.1. How to extend NumPy**

153
Functions with keyword arguments

These functions are very similar to functions without keyword arguments. The only difference is that the function signature is:

```c
static PyObject*
keyword_cfunc (PyObject *dummy, PyObject *args, PyObject *kwds)
{
...
}
```

The kwds argument holds a Python dictionary whose keys are the names of the keyword arguments and whose values are the corresponding keyword-argument values. This dictionary can be processed however you see fit. The easiest way to handle it, however, is to replace the `PyArg_ParseTuple` (args, format_string, addresses…) function with a call to `PyArg_ParseTupleAndKeywords` (args, kwds, format_string, char*kwlist[], addresses…). The kwlist parameter to this function is a NULL -terminated array of strings providing the expected keyword arguments. There should be one string for each entry in the format_string. Using this function will raise a TypeError if invalid keyword arguments are passed in.

For more help on this function please see section 1.8 (Keyword Parameters for Extension Functions) of the Extending and Embedding tutorial in the Python documentation.

Reference counting

The biggest difficulty when writing extension modules is reference counting. It is an important reason for the popularity of f2py, weave, Cython, ctypes, etc…. If you mis-handle reference counts you can get problems from memory-leaks to segmentation faults. The only strategy I know of to handle reference counts correctly is blood, sweat, and tears. First, you force it into your head that every Python variable has a reference count. Then, you understand exactly what each function does to the reference count of your objects, so that you can properly use DECREF and INCREF when you need them. Reference counting can really test the amount of patience and diligence you have towards your programming craft. Despite the grim depiction, most cases of reference counting are quite straightforward with the most common difficulty being not using DECREF on objects before exiting early from a routine due to some error. In second place, is the common error of not owning the reference on an object that is passed to a function or macro that is going to steal the reference (e.g. PyTuple_SET_ITEM, and most functions that take PyArray_Descr objects).

Typically you get a new reference to a variable when it is created or is the return value of some function (there are some prominent exceptions, however — such as getting an item out of a tuple or a dictionary). When you own the reference, you are responsible to make sure that Py_DECREF (var) is called when the variable is no longer necessary (and no other function has “stolen” its reference). Also, if you are passing a Python object to a function that will “steal” the reference, then you need to make sure you own it (or use Py_INCREF to get your own reference). You will also encounter the notion of borrowing a reference. A function that borrows a reference does not alter the reference count of the object and does not expect to “hold on” to the reference. It's just going to use the object temporarily. When you use PyArg_ParseTuple or PyArg_UnpackTuple you receive a borrowed reference to the objects in the tuple and should not alter their reference count inside your function. With practice, you can learn to get reference counting right, but it can be frustrating at first.

One common source of reference-count errors is the `Py_BuildValue` function. Pay careful attention to the difference between the ‘N’ format character and the ‘O’ format character. If you create a new object in your subroutine (such as an output array), and you are passing it back in a tuple of return values, then you should most-likely use the ‘N’ format character in `Py_BuildValue`. The ‘O’ character will increase the reference count by one. This will leave the caller with two reference counts for a brand-new array. When the variable is deleted and the reference count decremented by one, there will still be that extra reference count, and the array will never be deallocated. You will have a reference-counting induced memory leak. Using the ‘N’ character will avoid this situation as it will return to the caller an object (inside the tuple) with a single reference count.
8.1.4 Dealing with array objects

Most extension modules for NumPy will need to access the memory for an ndarray object (or one of it's sub-classes). The easiest way to do this doesn't require you to know much about the internals of NumPy. The method is to

1. Ensure you are dealing with a well-behaved array (aligned, in machine byte-order and single-segment) of the correct type and number of dimensions.
   
   1. By converting it from some Python object using `PyArray_FromAny` or a macro built on it.
   
   2. By constructing a new ndarray of your desired shape and type using `PyArray_NewFromDescr` or a simpler macro or function based on it.

2. Get the shape of the array and a pointer to its actual data.

3. Pass the data and shape information on to a subroutine or other section of code that actually performs the computation.

4. If you are writing the algorithm, then I recommend that you use the stride information contained in the array to access the elements of the array (the `PyArray_GetPtr` macros make this painless). Then, you can relax your requirements so as not to force a single-segment array and the data-copying that might result.

Each of these sub-topics is covered in the following sub-sections.

Converting an arbitrary sequence object

The main routine for obtaining an array from any Python object that can be converted to an array is `PyArray_FromAny`. This function is very flexible with many input arguments. Several macros make it easier to use the basic function. `PyArray_FROM_OTF` is arguably the most useful of these macros for the most common uses. It allows you to convert an arbitrary Python object to an array of a specific builtin data-type (e.g. float), while specifying a particular set of requirements (e.g. contiguous, aligned, and writeable). The syntax is

```
PyArray_FROM_OTF
```

Return an ndarray from any Python object, `obj`, that can be converted to an array. The number of dimensions in the returned array is determined by the object. The desired data-type of the returned array is provided in `typenum` which should be one of the enumerated types. The `requirements` for the returned array can be any combination of standard array flags. Each of these arguments is explained in more detail below. You receive a new reference to the array on success. On failure, NULL is returned and an exception is set.

`obj`

The object can be any Python object convertible to an ndarray. If the object is already (a subclass of) the ndarray that satisfies the requirements then a new reference is returned. Otherwise, a new array is constructed. The contents of `obj` are copied to the new array unless the array interface is used so that data does not have to be copied. Objects that can be converted to an array include: 1) any nested sequence object, 2) any object exposing the array interface, 3) any object with an `__array__` method (which should return an ndarray), and 4) any scalar object (becomes a zero-dimensional array). Sub-classes of the ndarray that otherwise fit the requirements will be passed through. If you want to ensure a base-class ndarray, then use `NPY_ARRAY_ENSUREARRAY` in the requirements flag. A copy is made only if necessary. If you want to guarantee a copy, then pass in `NPY_ARRAY_ENSURECOPY` to the requirements flag.

`typenum`

One of the enumerated types or `NPY_NOTYPE` if the data-type should be determined from the object itself. The C-based names can be used:

```
NPY_BOOL, NPY_BYTE, NPY_ubyte, NPY_SHORT, NPY_ushort, NPY_INT, NPY_UINT, NPY_LONG, NPY_ulong, NPY_LONGLONG, NPY_ULONGLONG, NPY_DOUBLE, NPY_LONGDOUBLE, NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONDDOUBLE, NPY_OBJECT.
```
Alternatively, the bit-width names can be used as supported on the platform. For example:

```
NPY_INT8, NPY_INT16, NPY_INT32, NPY_INT64, NPY_UINT8, NPY_UINT16,
NPY_UINT32, NPY_UINT64, NPY_FLOAT32, NPY_FLOAT64, NPY_COMPLEX64,
NPY_COMPLEX128.
```

The object will be converted to the desired type only if it can be done without losing precision. Otherwise NULL will be returned and an error raised. Use `NPY_ARRAY_FORCECAST` in the requirements flag to override this behavior.

**requirements**

The memory model for an ndarray admits arbitrary strides in each dimension to advance to the next element of the array. Often, however, you need to interface with code that expects a C-contiguous or a Fortran-contiguous memory layout. In addition, an ndarray can be misaligned (the address of an element is not at an integral multiple of the size of the element) which can cause your program to crash (or at least work more slowly) if you try and dereference a pointer into the array data. Both of these problems can be solved by converting the Python object into an array that is more “well-behaved” for your specific usage.

The requirements flag allows specification of what kind of array is acceptable. If the object passed in does not satisfy this requirements then a copy is made so that the returned object will satisfy the requirements. these ndarrays can use a very generic pointer to memory. This flag allows specification of the desired properties of the returned array object. All of the flags are explained in the detailed API chapter. The flags most commonly needed are `NPY_ARRAY_IN_ARRAY`, `NPY_OUT_ARRAY`, and `NPY_ARRAY_INOUT_ARRAY`:

**NPY_ARRAY_IN_ARRAY**

This flag is useful for arrays that must be in C-contiguous order and aligned. These kinds of arrays are usually input arrays for some algorithm.

**NPY_ARRAY_OUT_ARRAY**

This flag is useful to specify an array that is in C-contiguous order, is aligned, and can be written to as well. Such an array is usually returned as output (although normally such output arrays are created from scratch).

**NPY_ARRAY_INOUT_ARRAY**

This flag is useful to specify an array that will be used for both input and output. `PyArray_ResolveWritebackIfCopy` must be called before `Py_DECREF` at the end of the interface routine to write back the temporary data into the original array passed in. Use of the `NPY_ARRAY_WRITEBACKIFCOPY` or `NPY_ARRAY_UPDATEIFCOPY` flags requires that the input object is already an array (because other objects cannot be automatically updated in this fashion). If an error occurs use `PyArray_DiscardWritebackIfCopy` on an array with these flags set. This will set the underlying base array writable without causing the contents to be copied back into the original array.

Other useful flags that can be OR’d as additional requirements are:

**NPY_ARRAY_FORCECAST**

Cast to the desired type, even if it can’t be done without losing information.

**NPY_ARRAY_ENSURECOPY**

Make sure the resulting array is a copy of the original.

**NPY_ARRAY_ENSUREARRAY**

Make sure the resulting object is an actual ndarray and not a sub-class.
**Note:** Whether or not an array is byte-swapped is determined by the data-type of the array. Native byte-order arrays are always requested by `PyArray_FROM_OTF` and so there is no need for a `NPY_ARRAY_NOTSWAPPED` flag in the requirements argument. There is also no way to get a byte-swapped array from this routine.

### Creating a brand-new ndarray

Quite often, new arrays must be created from within extension-module code. Perhaps an output array is needed and you don't want the caller to have to supply it. Perhaps only a temporary array is needed to hold an intermediate calculation. Whatever the need there are simple ways to get an ndarray object of whatever data-type is needed. The most general function for doing this is `PyArray_NewFromDescr`. All array creation functions go through this heavily re-used code. Because of its flexibility, it can be somewhat confusing to use. As a result, simpler forms exist that are easier to use. These forms are part of the `PyArray_SimpleNew` family of functions, which simplify the interface by providing default values for common use cases.

### Getting at ndarray memory and accessing elements of the ndarray

If `obj` is an ndarray (`PyArrayObject *`), then the data-area of the ndarray is pointed to by the void* pointer `PyArray_DATA (obj)` or the char* pointer `PyArray_BYTES (obj)`. Remember that (in general) this data-area may not be aligned according to the data-type, it may represent byte-swapped data, and/or it may not be writeable. If the data area is aligned and in native byte-order, then how to get at a specific element of the array is determined only by the array of `npy_intp` variables, `PyArray_STRIDES (obj)`. In particular, this c-array of integers shows how many bytes must be added to the current element pointer to get to the next element in each dimension. For arrays less than 4-dimensions there are `PyArray_GETPTR(k)` (obj, ...) macros where `{k}` is the integer 1, 2, 3, or 4 that make using the array strides easier. The arguments ... represent `{k}` non-negative integer indices into the array. For example, suppose `E` is a 3-dimensional ndarray. A (void*) pointer to the element `E[i, j, k]` is obtained as `PyArray_GETPTR3 (E, i, j, k).

As explained previously, C-style contiguous arrays and Fortran-style contiguous arrays have particular striding patterns. Two array flags (`NPY_ARRAY_C_CONTIGUOUS` and `NPY_ARRAY_F_CONTIGUOUS`) indicate whether or not the striding pattern of a particular array matches the C-style contiguous or Fortran-style contiguous or neither. Whether or not the striding pattern matches a standard C or Fortran one can be tested using `PyArray_IS_C_CONTIGUOUS (obj)` and `PyArray_ISFORTRAN (obj)` respectively. Most third-party libraries expect contiguous arrays. But, often it is not difficult to support general-purpose striding. I encourage you to use the striding information in your own code whenever possible, and reserve single-segment requirements for wrapping third-party code. Using the striding information provided with the ndarray rather than requiring a contiguous striding reduces copying that otherwise must be made.

### 8.1.5 Example

The following example shows how you might write a wrapper that accepts two input arguments (that will be converted to an array) and an output argument (that must be an array). The function returns None and updates the output array. Note the updated use of WRITEBACKIFCOPY semantics for NumPy v1.14 and above.

```c
static PyObject *
example_wrapper(PyObject *dummy, PyObject *args)
{
 PyObject *arg1=NULL, *arg2=NULL, *out=NULL;
 PyArray *arr1=NULL, *arr2=NULL, *oarr=NULL;

 if (!PyArg_ParseTuple(args, "OOO!", &arg1, &arg2, &PyArray_Type, &out)) return NULL;

 // Your code here...

 return out;
}
```

(continues on next page)
arr1 = PyArray_FROM_OTF(arg1, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY);
if (arr1 == NULL) return NULL;
arr2 = PyArray_FROM_OTF(arg2, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY);
if (arr2 == NULL) goto fail;
#if NPY_API_VERSION >= 0x0000000c
  oarr = PyArray_FROM_OTF(out, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY2);
#else
  oarr = PyArray_FROM_OTF(out, NPY_DOUBLE, NPY_ARRAY_INOUT_ARRAY);
#endif
if (oarr == NULL) goto fail;
/* code that makes use of arguments */
/* You will probably need at least
   nd = PyArray_NDIM(<..>) -- number of dimensions
   dims = PyArray_DIMS(<..>) -- npy_intp array of length nd
          showing length in each dim.
   dptr = (double *)PyArray_DATA(<..>) -- pointer to data.

     If an error occurs goto fail.
   */
Py_DECREF(arr1);
Py_DECREF(arr2);
#if NPY_API_VERSION >= 0x0000000c
  PyArray_ResolveWritebackIfCopy(oarr);
#else
  Py_DECREF(oarr);
  Py_INCREF(Py_None);
  return Py_None;
#endif
fail:
  Py_XDECREF(arr1);
  Py_XDECREF(arr2);
#if NPY_API_VERSION >= 0x0000000c
  PyArray_DiscardWritebackIfCopy(oarr);
#else
  Py_DECREF(oarr);
  return NULL;
#endif

8.2 Using Python as glue

There is no conversation more boring than the one where everybody agrees.
— Michel de Montaigne

Duct tape is like the force. It has a light side, and a dark side, and it holds the universe together.
— Carl Zwanzig

Many people like to say that Python is a fantastic glue language. Hopefully, this Chapter will convince you that this is
true. The first adopters of Python for science were typically people who used it to glue together large application codes running on super-computers. Not only was it much nicer to code in Python than in a shell script or Perl, in addition, the ability to easily extend Python made it relatively easy to create new classes and types specifically adapted to the problems being solved. From the interactions of these early contributors, Numeric emerged as an array-like object that could be used to pass data between these applications.

As Numeric has matured and developed into NumPy, people have been able to write more code directly in NumPy. Often this code is fast-enough for production use, but there are still times that there is a need to access compiled code. Either to get that last bit of efficiency out of the algorithm or to make it easier to access widely-available codes written in C/C++ or Fortran.

This chapter will review many of the tools that are available for the purpose of accessing code written in other compiled languages. There are many resources available for learning to call other compiled libraries from Python and the purpose of this Chapter is not to make you an expert. The main goal is to make you aware of some of the possibilities so that you will know what to “Google” in order to learn more.

### 8.2.1 Calling other compiled libraries from Python

While Python is a great language and a pleasure to code in, its dynamic nature results in overhead that can cause some code (i.e. raw computations inside of for loops) to be up 10-100 times slower than equivalent code written in a static compiled language. In addition, it can cause memory usage to be larger than necessary as temporary arrays are created and destroyed during computation. For many types of computing needs, the extra slow-down and memory consumption can often not be spared (at least for time- or memory- critical portions of your code). Therefore one of the most common needs is to call out from Python code to a fast, machine-code routine (e.g. compiled using C/C++ or Fortran). The fact that this is relatively easy to do is a big reason why Python is such an excellent high-level language for scientific and engineering programming.

There are two basic approaches to calling compiled code: writing an extension module that is then imported to Python using the import command, or calling a shared-library subroutine directly from Python using the ctypes module. Writing an extension module is the most common method.

---

**Warning:** Calling C-code from Python can result in Python crashes if you are not careful. None of the approaches in this chapter are immune. You have to know something about the way data is handled by both NumPy and by the third-party library being used.

### 8.2.2 Hand-generated wrappers

Extension modules were discussed in [Writing an extension module](#). The most basic way to interface with compiled code is to write an extension module and construct a module method that calls the compiled code. For improved readability, your method should take advantage of the `PyArg_ParseTuple` call to convert between Python objects and C data-types. For standard C data-types there is probably already a built-in converter. For others you may need to write your own converter and use the "O&" format string which allows you to specify a function that will be used to perform the conversion from the Python object to whatever C-structures are needed.

Once the conversions to the appropriate C-structures and C data-types have been performed, the next step in the wrapper is to call the underlying function. This is straightforward if the underlying function is in C or C++. However, in order to call Fortran code you must be familiar with how Fortran subroutines are called from C/C++ using your compiler and platform. This can vary somewhat platforms and compilers (which is another reason f2py makes life much simpler for interfacing Fortran code) but generally involves underscore mangling of the name and the fact that all variables are passed by reference (i.e. all arguments are pointers).

The advantage of the hand-generated wrapper is that you have complete control over how the C-library gets used and called which can lead to a lean and tight interface with minimal over-head. The disadvantage is that you have to write,
debug, and maintain C-code, although most of it can be adapted using the time-honored technique of “cutting-pasting-and-modifying” from other extension modules. Because, the procedure of calling out to additional C-code is fairly regimented, code-generation procedures have been developed to make this process easier. One of these code-generation techniques is distributed with NumPy and allows easy integration with Fortran and (simple) C code. This package, f2py, will be covered briefly in the next section.

### 8.2.3 f2py

f2py allows you to automatically construct an extension module that interfaces to routines in Fortran 77/90/95 code. It has the ability to parse Fortran 77/90/95 code and automatically generate Python signatures for the subroutines it encounters, or you can guide how the subroutine interfaces with Python by constructing an interface-definition-file (or modifying the f2py-produced one).

#### Creating source for a basic extension module

Probably the easiest way to introduce f2py is to offer a simple example. Here is one of the subroutines contained in a file named add.f:

```c
C SUBROUTINE ZADD(A,B,C,N)
C
DOUBLE COMPLEX A(*)
DOUBLE COMPLEX B(*)
DOUBLE COMPLEX C(*)
INTEGER N
DO 20 J = 1, N
 C(J) = A(J)+B(J)
20 CONTINUE
END
```

This routine simply adds the elements in two contiguous arrays and places the result in a third. The memory for all three arrays must be provided by the calling routine. A very basic interface to this routine can be automatically generated by f2py:

```bash
f2py -m add add.f
```

You should be able to run this command assuming your search-path is set-up properly. This command will produce an extension module named addmodule.c in the current directory. This extension module can now be compiled and used from Python just like any other extension module.

#### Creating a compiled extension module

You can also get f2py to compile add.f and also compile its produced extension module leaving only a shared-library extension file that can be imported from Python:

```bash
f2py -c -m add add.f
```

This command leaves a file named add.{ext} in the current directory (where `{ext}` is the appropriate extension for a Python extension module on your platform — so, .pyd, etc. ). This module may then be imported from Python. It will contain a method for each subroutine in add (zadd, cadd, dadd, sadd). The docstring of each method contains information about how the module method may be called:
>>> import add
>>> print(add.zadd.__doc__)
zadd(a, b, c, n)

Wrapper for `zadd`.

Parameters
----------
a : input rank-1 array('D') with bounds (*)
b : input rank-1 array('D') with bounds (*)
c : input rank-1 array('D') with bounds (*)
n : input int

Improving the basic interface

The default interface is a very literal translation of the Fortran code into Python. The Fortran array arguments must now be NumPy arrays and the integer argument should be an integer. The interface will attempt to convert all arguments to their required types (and shapes) and issue an error if unsuccessful. However, because it knows nothing about the semantics of the arguments (such that C is an output and n should really match the array sizes), it is possible to abuse this function in ways that can cause Python to crash. For example:

```python
>>> add.zadd([1, 2, 3], [1, 2], [3, 4], 1000)
```

will cause a program crash on most systems. Under the covers, the lists are being converted to proper arrays but then the underlying add loop is told to cycle way beyond the borders of the allocated memory.

In order to improve the interface, directives should be provided. This is accomplished by constructing an interface definition file. It is usually best to start from the interface file that f2py can produce (where it gets its default behavior from). To get f2py to generate the interface file use the -h option:

```
f2py -h add.pyf -m add add.f
```

This command leaves the file add.pyf in the current directory. The section of this file corresponding to zadd is:

```
subroutine zadd(a,b,c,n) ! in :add:add.f
 double complex dimension(*) :: a
 double complex dimension(*) :: b
 double complex dimension(*) :: c
 integer :: n
end subroutine zadd
```

By placing intent directives and checking code, the interface can be cleaned up quite a bit until the Python module method is both easier to use and more robust.

```
subroutine zadd(a,b,c,n) ! in :add:add.f
 double complex dimension(n) :: a
 double complex dimension(n) :: b
 double complex intent(out),dimension(n) :: c
 integer intent(hide),depend(a) :: n=len(a)
end subroutine zadd
```

The intent directive, intent(out) is used to tell f2py that c is an output variable and should be created by the interface before being passed to the underlying code. The intent(hide) directive tells f2py to not allow the user to specify the variable, n, but instead to get it from the size of a. The depend(a) directive is necessary to tell f2py that the value of n depends on the input a (so that it won’t try to create the variable n until the variable a is created).

---

8.2. Using Python as glue

161
After modifying add.pyf, the new Python module file can be generated by compiling both add.f and add.pyf:

```
f2py -c add.pyf add.f
```

The new interface has docstring:

```
>>> import add
>>> print(add.zadd.__doc__)
c = zadd(a,b)
Wrapper for `zadd`.
Parameters

a : input rank-1 array('D') with bounds (n)
b : input rank-1 array('D') with bounds (n)
Returns

c : rank-1 array('D') with bounds (n)
```

Now, the function can be called in a much more robust way:

```
>>> add.zadd([[1, 2, 3], [4, 5, 6]])
array([[5.+0.j, 7.+0.j, 9.+0.j]])
```

Notice the automatic conversion to the correct format that occurred.

**Inserting directives in Fortran source**

The nice interface can also be generated automatically by placing the variable directives as special comments in the original Fortran code. Thus, if I modify the source code to contain:

```
C
SUBROUTINE ZADD(A,B,C,N)
C
CF2PY INTENT(OUT) :: C
CF2PY INTENT(HIDE) :: N
CF2PY DOUBLE COMPLEX :: A(N)
CF2PY DOUBLE COMPLEX :: B(N)
CF2PY DOUBLE COMPLEX :: C(N)
DO 20 J = 1, N
 C(J) = A(J) + B(J)
20 CONTINUE
END
```

Then, I can compile the extension module using:

```
f2py -c -m add add.f
```

The resulting signature for the function add.zadd is exactly the same one that was created previously. If the original source code had contained A(N) instead of A(*) and so forth with B and C, then I could obtain (nearly) the same interface
simply by placing the `INTENT(OUT) :: C` comment line in the source code. The only difference is that `N` would be an optional input that would default to the length of `A`.

### A filtering example

For comparison with the other methods to be discussed. Here is another example of a function that filters a two-dimensional array of double precision floating-point numbers using a fixed averaging filter. The advantage of using Fortran to index into multi-dimensional arrays should be clear from this example.

```fortran
SUBROUTINE DFILTER2D(A,B,M,N)
C
DOUBLE PRECISION A(M,N)
DOUBLE PRECISION B(M,N)
INTEGER N, M
CF2PY INTENT(OUT) :: B
CF2PY INTENT(HIDE) :: N
CF2PY INTENT(HIDE) :: M
DO 20 I = 2,M-1
 DO 40 J=2,N-1
 B(I,J) = A(I,J) + $ (A(I-1,J)+A(I+1,J) + $ A(I,J-1)+A(I,J+1))*0.5D0 + $ (A(I-1,J-1) + A(I-1,J+1) + $ A(I+1,J-1) + A(I+1,J+1))*0.25D0
40 CONTINUE
20 CONTINUE
END
```

This code can be compiled and linked into an extension module named filter using:

```
f2py -c -m filter filter.f
```

This will produce an extension module named filter.so in the current directory with a method named dfilter2d that returns a filtered version of the input.

### Calling f2py from Python

The `f2py` program is written in Python and can be run from inside your code to compile Fortran code at runtime, as follows:

```python
from numpy import f2py
with open("add.f") as sourcefile:
 sourcecode = sourcefile.read()
f2py.compile(sourcecode, modulename='add')
import add
```

The source string can be any valid Fortran code. If you want to save the extension-module source code then a suitable file-name can be provided by the `source_fn` keyword to the compile function.
Automatic extension module generation

If you want to distribute your f2py extension module, then you only need to include the .pyf file and the Fortran code. The distutils extensions in NumPy allow you to define an extension module entirely in terms of this interface file. A valid setup.py file allowing distribution of the add.f module (as part of the package f2py_examples so that it would be loaded as f2py_examples.add) is:

```python
def configuration(parent_package='', top_path=None):
 from numpy.distutils.misc_util import Configuration
 config = Configuration('f2py_examples', parent_package, top_path)
 config.add_extension('add', sources=['add.pyf', 'add.f'])
 return config

if __name__ == '__main__':
 from numpy.distutils.core import setup
 setup(**configuration(top_path='').todict())
```

Installation of the new package is easy using:

```
$ pip install .
```

assuming you have the proper permissions to write to the main site-packages directory for the version of Python you are using. For the resulting package to work, you need to create a file named __init__.py (in the same directory as add.pyf). Notice the extension module is defined entirely in terms of the add.pyf and add.f files. The conversion of the .pyf file to a .c file is handled by numpy.distutils.

Conclusion

The interface definition file (.pyf) is how you can fine-tune the interface between Python and Fortran. There is decent documentation for f2py found in the numpy/f2py/docs directory where-ever NumPy is installed on your system (usually under site-packages). There is also more information on using f2py (including how to use it to wrap C codes) at https://scipy-cookbook.readthedocs.io under the “Interfacing With Other Languages” heading.

The f2py method of linking compiled code is currently the most sophisticated and integrated approach. It allows clean separation of Python with compiled code while still allowing for separate distribution of the extension module. The only draw-back is that it requires the existence of a Fortran compiler in order for a user to install the code. However, with the existence of the free-compilers g77, gfortran, and g95, as well as high-quality commercial compilers, this restriction is not particularly onerous. In my opinion, Fortran is still the easiest way to write fast and clear code for scientific computing. It handles complex numbers, and multi-dimensional indexing in the most straightforward way. Be aware, however, that some Fortran compilers will not be able to optimize code as well as good hand-written C-code.

8.2.4 Cython

Cython is a compiler for a Python dialect that adds (optional) static typing for speed, and allows mixing C or C++ code into your modules. It produces C or C++ extensions that can be compiled and imported in Python code.

If you are writing an extension module that will include quite a bit of your own algorithmic code as well, then Cython is a good match. Among its features is the ability to easily and quickly work with multidimensional arrays.

Notice that Cython is an extension-module generator only. Unlike f2py, it includes no automatic facility for compiling and linking the extension module (which must be done in the usual fashion). It does provide a modified distutils class called build_ext which lets you build an extension module from a .pyx source. Thus, you could write in a setup.py file:
from Cython.Distutils import build_ext
from distutils.extension import Extension
from distutils.core import setup
import numpy

setup(name='mine', description='Nothing',
      ext_modules=[Extension('filter', ['filter.pyx'],
                               include_dirs=[numpy.get_include()]),
                   cmdclass={'build_ext': build_ext})

Adding the NumPy includedirectory is, of course, only necessary if you are using NumPy arrays in the extension module (which is what we assume you are using Cython for). The distutils extensions in NumPy also include support for automatically producing the extension-module and linking it from a .pyx file. It works so that if the user does not have Cython installed, then it looks for a file with the same file-name but a .c extension which it then uses instead of trying to produce the .c file again.

If you just use Cython to compile a standard Python module, then you will get a C extension module that typically runs a bit faster than the equivalent Python module. Further speed increases can be gained by using the cdef keyword to statically define C variables.

Let's look at two examples we've seen before to see how they might be implemented using Cython. These examples were compiled into extension modules using Cython 0.21.1.

**Complex addition in Cython**

Here is part of a Cython module named add.pyx which implements the complex addition functions we previously implemented using f2py:

```cython
cimport cython
cimport numpy as np
import numpy as np

We need to initialize NumPy.
np.import_array()

@cython.boundscheck(False)
def zadd(in1, in2):
 cdef double complex[:,:] a = in1.ravel()
 cdef double complex[:,:] b = in2.ravel()

 out = np.empty(a.shape[0], np.complex64)
 cdef double complex[:,:] c = out.ravel()

 for i in range(c.shape[0]):
 c[i].real = a[i].real + b[i].real
 c[i].imag = a[i].imag + b[i].imag

 return out
```

This module shows use of the cimport statement to load the definitions from the numpy.pxd header that ships with Cython. It looks like NumPy is imported twice; cimport only makes the NumPy C-API available, while the regular import causes a Python-style import at runtime and makes it possible to call into the familiar NumPy Python API.

The example also demonstrates Cython's "typed memoryviews", which are like NumPy arrays at the C level, in the sense that they are shaped and strided arrays that know their own extent (unlike a C array addressed through a bare pointer). The syntax double complex[:,:] denotes a one-dimensional array (vector) of doubles, with arbitrary strides. A contiguous array of ints would be int[:,:,:], while a matrix of floats would be float[:,:].
Shown commented is the `cython.boundscheck` decorator, which turns bounds-checking for memory view accesses on or off on a per-function basis. We can use this to further speed up our code, at the expense of safety (or a manual check prior to entering the loop).

Other than the view syntax, the function is immediately readable to a Python programmer. Static typing of the variable \( i \) is implicit. Instead of the view syntax, we could also have used Cython’s special NumPy array syntax, but the view syntax is preferred.

**Image filter in Cython**

The two-dimensional example we created using Fortran is just as easy to write in Cython:

```python
cimport numpy as np
import numpy as np
np.import_array()

def filter(img):
 cdef double[:, :] a = np.asarray(img, dtype=np.double)
 out = np.zeros(img.shape, dtype=np.double)
 cdef double[:, ::1] b = out

 cdef np.npy_intp i, j
 for i in range(1, a.shape[0] - 1):
 for j in range(1, a.shape[1] - 1):
 b[i, j] = (a[i, j] + .5 * (a[i-1, j] + a[i+1, j] + a[i, j-1] + a[i, j+1])
 + .25 * (a[i-1, j-1] + a[i-1, j+1] + a[i+1, j-1] + a[i+1, j+1]))
 return out
```

This 2-d averaging filter runs quickly because the loop is in C and the pointer computations are done only as needed. If the code above is compiled as a module `image`, then a 2-d image, `img`, can be filtered using this code very quickly using:

```python
import image
out = image.filter(img)
```

Regarding the code, two things are of note: firstly, it is impossible to return a memory view to Python. Instead, a NumPy array `out` is first created, and then a view `b` onto this array is used for the computation. Secondly, the view `b` is typed `double[:, ::1]`. This means 2-d array with contiguous rows, i.e., C matrix order. Specifying the order explicitly can speed up some algorithms since they can skip stride computations.

**Conclusion**

Cython is the extension mechanism of choice for several scientific Python libraries, including Scipy, Pandas, SAGE, scikit-image and scikit-learn, as well as the XML processing library LXML. The language and compiler are well-maintained.

There are several disadvantages of using Cython:

1. When coding custom algorithms, and sometimes when wrapping existing C libraries, some familiarity with C is required. In particular, when using C memory management (`malloc` and friends), it’s easy to introduce memory leaks. However, just compiling a Python module renamed to `.pyx` can already speed it up, and adding a few type declarations can give dramatic speedups in some code.
2. It is easy to lose a clean separation between Python and C which makes re-using your C-code for other non-Python-related projects more difficult.

3. The C-code generated by Cython is hard to read and modify (and typically compiles with annoying but harmless warnings).

One big advantage of Cython-generated extension modules is that they are easy to distribute. In summary, Cython is a very capable tool for either gluing C code or generating an extension module quickly and should not be over-looked. It is especially useful for people that can’t or won’t write C or Fortran code.

8.2.5 ctypes

Ctypes is a Python extension module, included in the stdlib, that allows you to call an arbitrary function in a shared library directly from Python. This approach allows you to interface with C-code directly from Python. This opens up an enormous number of libraries for use from Python. The drawback, however, is that coding mistakes can lead to ugly program crashes very easily (just as can happen in C) because there is little type or bounds checking done on the parameters. This is especially true when array data is passed in as a pointer to a raw memory location. The responsibility is then on you that the subroutine will not access memory outside the actual array area. But, if you don’t mind living a little dangerously ctypes can be an effective tool for quickly taking advantage of a large shared library (or writing extended functionality in your own shared library).

Because the ctypes approach exposes a raw interface to the compiled code it is not always tolerant of user mistakes. Robust use of the ctypes module typically involves an additional layer of Python code in order to check the data types and array bounds of objects passed to the underlying subroutine. This additional layer of checking (not to mention the conversion from ctypes objects to C-data-types that ctypes itself performs), will make the interface slower than a hand-written extension-module interface. However, this overhead should be negligible if the C-routine being called is doing any significant amount of work. If you are a great Python programmer with weak C skills, ctypes is an easy way to write a useful interface to a (shared) library of compiled code.

To use ctypes you must

1. Have a shared library.
2. Load the shared library.
3. Convert the Python objects to ctypes-understood arguments.
4. Call the function from the library with the ctypes arguments.

Having a shared library

There are several requirements for a shared library that can be used with ctypes that are platform specific. This guide assumes you have some familiarity with making a shared library on your system (or simply have a shared library available to you). Items to remember are:

- A shared library must be compiled in a special way (e.g. using the -shared flag with gcc).
- On some platforms (e.g. Windows), a shared library requires a .def file that specifies the functions to be exported. For example a mylib.def file might contain:

```
LIBRARY mylib.dll
EXPORTS
 cool_function1
 cool_function2
```

Alternatively, you may be able to use the storage-class specifier __declspec(dllexport) in the C-definition of the function to avoid the need for this .def file.
There is no standard way in Python distutils to create a standard shared library (an extension module is a “special” shared library Python understands) in a cross-platform manner. Thus, a big disadvantage of ctypes at the time of writing this book is that it is difficult to distribute in a cross-platform manner a Python extension that uses ctypes and includes your own code which should be compiled as a shared library on the users system.

### Loading the shared library

A simple, but robust way to load the shared library is to get the absolute path name and load it using the cdll object of ctypes:

```python
lib = ctypes.cdll[<full_path_name>]
```

However, on Windows accessing an attribute of the cdll method will load the first DLL by that name found in the current directory or on the PATH. Loading the absolute path name requires a little finesse for cross-platform work since the extension of shared libraries varies. There is a ctypes.util.find_library utility available that can simplify the process of finding the library to load but it is not foolproof. Complicating matters, different platforms have different default extensions used by shared libraries (e.g. .dll – Windows, .so – Linux, .dylib – Mac OS X). This must also be taken into account if you are using ctypes to wrap code that needs to work on several platforms.

NumPy provides a convenience function called ctypeslib.load_library (name, path). This function takes the name of the shared library (including any prefix like ‘lib’ but excluding the extension) and a path where the shared library can be located. It returns a ctypes library object or raises an OSError if the library cannot be found or raises an ImportError if the ctypes module is not available. (Windows users: the ctypes library object loaded using load_library is always loaded assuming cdecl calling convention. See the ctypes documentation under ctypes.windll and/or ctypes.oledll for ways to load libraries under other calling conventions).

The functions in the shared library are available as attributes of the ctypes library object (returned from ctypeslib.load_library) or as items using lib['func_name'] syntax. The latter method for retrieving a function name is particularly useful if the function name contains characters that are not allowable in Python variable names.

### Converting arguments

Python ints/longs, strings, and unicode objects are automatically converted as needed to equivalent ctypes arguments. The None object is also converted automatically to a NULL pointer. All other Python objects must be converted to ctypes-specific types. There are two ways around this restriction that allow ctypes to integrate with other objects.

1. Don’t set the argtypes attribute of the function object and define an _as_parameter_ method for the object you want to pass in. The _as_parameter_ method must return a Python int which will be passed directly to the function.

2. Set the argtypes attribute to a list whose entries contain objects with a classmethod named from_param that knows how to convert your object to an object that ctypes can understand (an int/long, string, unicode, or object with the _as_parameter_ attribute).

NumPy uses both methods with a preference for the second method because it can be safer. The ctypes attribute of the ndarray returns an object that has an _as_parameter_ attribute which returns an integer representing the address of the ndarray to which it is associated. As a result, one can pass this ctypes attribute object directly to a function expecting a pointer to the data in your ndarray. The caller must be sure that the ndarray object is of the correct type, shape, and has the correct flags set or risk nasty crashes if the data-pointer to inappropriate arrays are passed in.

To implement the second method, NumPy provides the class-factory function ndpointer in the numpy.ctypeslib module. This class-factory function produces an appropriate class that can be placed in an argtypes attribute entry of a ctypes function. The class will contain a from_param method which ctypes will use to convert any ndarray passed in to the function to a ctypes-recognized object. In the process, the conversion will perform checking on any properties of the ndarray that were specified by the user in the call to ndpointer. Aspects of the ndarray that can be checked include the data-type, the number-of-dimensions, the shape, and/or the state of the flags on any array passed. The return value of
the from_param method is the ctypes attribute of the array which (because it contains the _as_parameter_ attribute pointing to the array data area) can be used by ctypes directly.

The ctypes attribute of an ndarray is also endowed with additional attributes that may be convenient when passing additional information about the array into a ctypes function. The attributes data, shape, and strides can provide ctypes compatible types corresponding to the data-area, the shape, and the strides of the array. The data attribute returns a c_void_p representing a pointer to the data area. The shape and strides attributes each return an array of ctypes integers (or None representing a NULL pointer, if a 0-d array). The base ctype of the array is a ctype integer of the same size as a pointer on the platform. There are also methods data_as({ctype}), shape_as({base ctype}), and strides_as({base ctype}). These return the data as a ctypes object of your choice and the shape/strides arrays using an underlying base type of your choice. For convenience, the ctypeslib module also contains c_intp as a ctypes integer data-type whose size is the same as the size of c_void_p on the platform (its value is None if ctypes is not installed).

**Calling the function**

The function is accessed as an attribute of or an item from the loaded shared-library. Thus, if ./mylib.so has a function named cool_function1, I could access this function either as:

```python
lib = numpy.ctypeslib.load_library('mylib', '.')
func1 = lib.cool_function1 # or equivalently
func1 = lib['cool_function1']
```

In ctypes, the return-value of a function is set to be 'int' by default. This behavior can be changed by setting the restype attribute of the function. Use None for the restype if the function has no return value ('void'):

```python
func1.restype = None
```

As previously discussed, you can also set the argtypes attribute of the function in order to have ctypes check the types of the input arguments when the function is called. Use the ndpointer factory function to generate a ready-made class for data-type, shape, and flags checking on your new function. The ndpointer function has the signature

```python
ndpointer (dtype=None, ndim=None, shape=None, flags=None)
```

Keyword arguments with the value None are not checked. Specifying a keyword enforces checking of that aspect of the ndarray on conversion to a ctypes-compatible object. The dtype keyword can be any object understood as a data-type object. The ndim keyword should be an integer, and the shape keyword should be an integer or a sequence of integers. The flags keyword specifies the minimal flags that are required on any array passed in. This can be specified as a string of comma separated requirements, an integer indicating the requirement bits OR’d together, or a flags object returned from the flags attribute of an array with the necessary requirements.

Using an ndpointer class in the argtypes method can make it significantly safer to call a C function using ctypes and the data-area of an ndarray. You may still want to wrap the function in an additional Python wrapper to make it user-friendly (hiding some obvious arguments and making some arguments output arguments). In this process, the requires function in NumPy may be useful to return the right kind of array from a given input.
Complete example

In this example, I will show how the addition function and the filter function implemented previously using the other approaches can be implemented using ctypes. First, the C code which implements the algorithms contains the functions zadd, dadd, sadd, cadd, and dfilter2d. The zadd function is:

```c
/* Add arrays of contiguous data */
typedef struct { double real; double imag; } cdouble;
typedef struct { float real; float imag; } cfloat;
void zadd(cdouble *a, cdouble *b, cdouble *c, long n) {
 while (n--) {
 c->real = a->real + b->real;
 c->imag = a->imag + b->imag;
 a++; b++; c++;
 }
}
```

with similar code for cadd, dadd, and sadd that handles complex float, double, and float data-types, respectively:

```c
void cadd(cfloat *a, cfloat *b, cfloat *c, long n) {
 while (n--) {
 c->real = a->real + b->real;
 c->imag = a->imag + b->imag;
 a++; b++; c++;
 }
}
```

```c
void dadd(double *a, double *b, double *c, long n) {
 while (n--) {
 *c++ = *a++ + *b++;
 }
}
```

```c
void sadd(float *a, float *b, float *c, long n) {
 while (n--) {
 *c++ = *a++ + *b++;
 }
}
```

The code.c file also contains the function dfilter2d:

```c
/*
 * Assumes b is contiguous and has strides that are multiples of
 * sizeof(double)
 */
void dfilter2d(double *a, double *b, ssize_t *astrides, ssize_t *dims) {
 ssize_t i, j, M, N, S0, S1;
 ssize_t r, c, rml, rpl, cpl, cm1;

 M = dims[0]; N = dims[1];
 S0 = astrides[0]/sizeof(double);
 S1 = astrides[1]/sizeof(double);
 for (i = 1; i < M - 1; i++) {
 r = i*S0;
```
\[
\begin{align*}
\text{rp1} &= r + S0; \\
\text{rm1} &= r - S0; \\
\text{for} (j = 1; j < N - 1; j++) \\
&\quad \text{c} = j*S1; \\
&\quad \text{cp1} = j + S1; \\
&\quad \text{cm1} = j - S1; \\
&\quad b[i*N + j] = a[r + c] + \\
&\quad \quad (a[\text{rp1} + c] + a[\text{rm1} + c] + \\
&\quad \quad \quad a[r + \text{cp1}] + a[r + \text{cm1}]) \times 0.5 + \\
&\quad \quad (a[\text{rp1} + \text{cp1}] + a[\text{rp1} + \text{cm1}] + \\
&\quad \quad \quad a[\text{rm1} + \text{cp1}] + a[\text{rm1} + \text{cp1}]) \times 0.25;
\end{align*}
\]

A possible advantage this code has over the Fortran-equivalent code is that it takes arbitrarily strided (i.e. non-contiguous arrays) and may also run faster depending on the optimization capability of your compiler. But, it is an obviously more complicated than the simple code in filter.f. This code must be compiled into a shared library. On my Linux system this is accomplished using:

```
gcc -o code.so -shared code.c
```

Which creates a shared library named code.so in the current directory. On Windows don’t forget to either add `__declspec(dllexport)` in front of void on the line preceding each function definition, or write a code.def file that lists the names of the functions to be exported.

A suitable Python interface to this shared library should be constructed. To do this create a file named interface.py with the following lines at the top:

```
__all__ = ['add', 'filter2d']

import numpy as np
import os

_path = os.path.dirname('__file__')
lib = np.ctypeslib.load_library('code', _path)
_type = {\'zadd\': complex, \'sadd\': np.single, \
 \'cadd\': np.csingle, \'dadd\': float}

for name in _type.keys():
 val = getattr(lib, name)
 val.restype = None
 val.argtypes = [np.ctypeslib.ndpointer(_type,
 flags='aligned, contiguous'),
 np.ctypeslib.ndpointer(_type,
 flags='aligned, contiguous'),
 np.ctypeslib.ndpointer(_type,
 flags='aligned, contiguous', \
 writeable'),
 np.ctypeslib.c_intp]
```

This code loads the shared library named code.{ext} located in the same path as this file. It then adds a return type of void to the functions contained in the library. It also adds argument checking to the functions in the library so that ndarrays can be passed as the first three arguments along with an integer (large enough to hold a pointer on the platform) as the fourth argument.

Setting up the filtering function is similar and allows the filtering function to be called with ndarray arguments as the first
two arguments and with pointers to integers (large enough to handle the strides and shape of an ndarray) as the last two arguments:

```python
lib.dfilter2d.restype = None
lib.dfilter2d.argtypes = [np.ctypeslib.ndpointer(float, ndim=2,
 flags='aligned'),
 np.ctypeslib.ndpointer(float, ndim=2,
 flags='aligned, contiguous, 'writeable'),
 ctypes.POINTER(np.ctypeslib.c_intp),
 ctypes.POINTER(np.ctypeslib.c_intp)]
```

Next, define a simple selection function that chooses which addition function to call in the shared library based on the data-type:

```python
def select(dtype):
 if dtype.char in ['?bBhHf']:
 return lib.sadd, single
 elif dtype.char in ['F']:
 return lib.cadd, csingle
 elif dtype.char in ['DG']:
 return lib.zadd, complex
 else:
 return lib.dadd, float
 return func, ntype
```

Finally, the two functions to be exported by the interface can be written simply as:

```python
def add(a, b):
 requires = ['CONTIGUOUS', 'ALIGNED']
 a = np.asanyarray(a)
 func, dtype = select(a.dtype)
 a = np.require(a, dtype, requires)
 b = np.require(b, dtype, requires)
 c = np.empty_like(a)
 func(a,b,c,a.size)
 return c
```

and:

```python
def filter2d(a):
 a = np.require(a, float, ['ALIGNED'])
 b = np.zeros_like(a)
 lib.dfilter2d(a, b, a.ctypes.strides, a.ctypes.shape)
 return b
```

Conclusion

Using ctypes is a powerful way to connect Python with arbitrary C-code. Its advantages for extending Python include

- clean separation of C code from Python code
  - no need to learn a new syntax except Python and C
  - allows re-use of C code
  - functionality in shared libraries written for other purposes can be obtained with a simple Python wrapper and search for the library.
• easy integration with NumPy through the ctypes attribute
• full argument checking with the ndarrayer class factory

Its disadvantages include

• It is difficult to distribute an extension module made using ctypes because of a lack of support for building shared libraries in distutils (but I suspect this will change in time).
• You must have shared-libraries of your code (no static libraries).
• Very little support for C++ code and its different library-calling conventions. You will probably need a C wrapper around C++ code to use with ctypes (or just use Boost.Python instead).

Because of the difficulty in distributing an extension module made using ctypes, f2py and Cython are still the easiest ways to extend Python for package creation. However, ctypes is in some cases a useful alternative. This should bring more features to ctypes that should eliminate the difficulty in extending Python and distributing the extension using ctypes.

8.2.6 Additional tools you may find useful

These tools have been found useful by others using Python and so are included here. They are discussed separately because they are either older ways to do things now handled by f2py, Cython, or ctypes (SWIG, PyFort) or because I don’t know much about them (SIP, Boost). I have not added links to these methods because my experience is that you can find the most relevant link faster using Google or some other search engine, and any links provided here would be quickly dated. Do not assume that just because it is included in this list, I don’t think the package deserves your attention. I’m including information about these packages because many people have found them useful and I’d like to give you as many options as possible for tackling the problem of easily integrating your code.

SWIG

Simplified Wrapper and Interface Generator (SWIG) is an old and fairly stable method for wrapping C/C++-libraries to a large variety of other languages. It does not specifically understand NumPy arrays but can be made useable with NumPy through the use of typemaps. There are some sample typemaps in the numpy/tools/swig directory under numpy.i together with an example module that makes use of them. SWIG excels at wrapping large C/C++ libraries because it can (almost) parse their headers and auto-produce an interface. Technically, you need to generate a .i file that defines the interface. Often, however, this .i file can be parts of the header itself. The interface usually needs a bit of tweaking to be very useful. This ability to parse C/C++ headers and auto-generate the interface still makes SWIG a useful approach to adding functionality from C/C++ into Python, despite the other methods that have emerged that are more targeted to Python. SWIG can actually target extensions for several languages, but the typemaps usually have to be language-specific. Nonetheless, with modifications to the Python-specific typemaps, SWIG can be used to interface a library with other languages such as Perl, Tcl, and Ruby.

My experience with SWIG has been generally positive in that it is relatively easy to use and quite powerful. I used to use it quite often before becoming more proficient at writing C-extensions. However, I struggled writing custom interfaces with SWIG because it must be done using the concept of typemaps which are not Python specific and are written in a C-like syntax. Therefore, I tend to prefer other gluing strategies and would only attempt to use SWIG to wrap a very-large C/C++ library. Nonetheless, there are others who use SWIG quite happily.
SIP

SIP is another tool for wrapping C/C++ libraries that is Python specific and appears to have very good support for C++. Riverbank Computing developed SIP in order to create Python bindings to the QT library. An interface file must be written to generate the binding, but the interface file looks a lot like a C/C++ header file. While SIP is not a full C++ parser, it understands quite a bit of C++ syntax as well as its own special directives that allow modification of how the Python binding is accomplished. It also allows the user to define mappings between Python types and C/C++ structures and classes.

Boost Python

Boost is a repository of C++ libraries and Boost.Python is one of those libraries which provides a concise interface for binding C++ classes and functions to Python. The amazing part of the Boost.Python approach is that it works entirely in pure C++ without introducing a new syntax. Many users of C++ report that Boost.Python makes it possible to combine the best of both worlds in a seamless fashion. I have not used Boost.Python because I am not a big user of C++ and using Boost to wrap simple C-subroutines is usually over-kill. It's primary purpose is to make C++ classes available in Python. So, if you have a set of C++ classes that need to be integrated cleanly into Python, consider learning about and using Boost.Python.

PyFort

PyFort is a nice tool for wrapping Fortran and Fortran-like C-code into Python with support for Numeric arrays. It was written by Paul Dubois, a distinguished computer scientist and the very first maintainer of Numeric (now retired). It is worth mentioning in the hopes that somebody will update PyFort to work with NumPy arrays as well which now support either Fortran or C-style contiguous arrays.

8.3 Writing your own ufunc

I have the Power!
— He-Man

8.3.1 Creating a new universal function

Before reading this, it may help to familiarize yourself with the basics of C extensions for Python by reading/skimming the tutorials in Section 1 of Extending and Embedding the Python Interpreter and in How to extend NumPy

The umath module is a computer-generated C-module that creates many ufuncs. It provides a great many examples of how to create a universal function. Creating your own ufunc that will make use of the ufunc machinery is not difficult either. Suppose you have a function that you want to operate element-by-element over its inputs. By creating a new ufunc you will obtain a function that handles

- broadcasting
- N-dimensional looping
- automatic type-conversions with minimal memory usage
- optional output arrays

It is not difficult to create your own ufunc. All that is required is a 1-d loop for each data-type you want to support. Each 1-d loop must have a specific signature, and only ufuncs for fixed-size data-types can be used. The function call used to
create a new ufunc to work on built-in data-types is given below. A different mechanism is used to register ufuncs for
user-defined data-types.

In the next several sections we give example code that can be easily modified to create your own ufuncs. The examples
are successively more complete or complicated versions of the logit function, a common function in statistical modeling.
Logit is also interesting because, due to the magic of IEEE standards (specifically IEEE 754), all of the logit functions
created below automatically have the following behavior.

```python
>>> logit(0)
-inf
>>> logit(1)
inf
>>> logit(2)
nan
>>> logit(-2)
nan
```

This is wonderful because the function writer doesn’t have to manually propagate infs or nans.

**8.3.2 Example Non-ufunc extension**

For comparison and general edification of the reader we provide a simple implementation of a C extension of logit that
uses no numpy.

To do this we need two files. The first is the C file which contains the actual code, and the second is the setup.py file used
to create the module.

```c
#include <Python.h>
#include <math.h>

/*
 * spammodule.c
 * This is the C code for a non-numpy Python extension to
 * define the logit function, where logit(p) = log(p/(1-p)).
 * This function will not work on numpy arrays automatically.
 * numpy.vectorize must be called in python to generate
 * a numpy-friendly function.
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org.
 */

/* This declares the logit function */
static PyObject* spam_logit(PyObject *self, PyObject *args);

/*
 * This tells Python what methods this module has.
 * See the Python-C API for more information.
 */
static PyMethodDef SpamMethods[] = {
 {"logit",
 spam_logit,
 METH_VARARGS, "compute logit"},
 {NULL, NULL, 0, NULL}
};
```

(continues on next page)
static PyObject* spam_logit(PyObject *self, PyObject *args)
{
    double p;
    /* This parses the Python argument into a double */
    if(!PyArg_ParseTuple(args, "d", &p)) {
        return NULL;
    }

    /* THE ACTUAL LOGIT FUNCTION */
    p = p/(1-p);
    p = log(p);

    /* This builds the answer back into a python object */
    return Py_BuildValue("d", p);
}

/* This initiates the module using the above definitions. */
static struct PyModuleDef moduledef = {
    PyModuleDef_HEAD_INIT,
    "spam",
    NULL,
    -1,
    SpamMethods,
    NULL,
    NULL,
    NULL
};

PyMODINIT_FUNC PyInit_spam(void)
{
    PyObject *m;
    m = PyModule_Create(&moduledef);
    if (!m) {
        return NULL;
    }
    return m;
}

To use the setup.py file, place setup.py and spammodule.c in the same folder. Then python setup.py build will build the module to import, or setup.py install will install the module to your site-packages directory.

```bash
... setup.py file for spammodule.c
Calling
```
$python setup.py build_ext --inplace
will build the extension library in the current file.

Calling
$python setup.py build
will build a file that looks like ./build/lib*, where
lib* is a file that begins with lib. The library will
be in this file and end with a C library extension,
such as .so

Calling
$python setup.py install
will install the module in your site-packages file.

See the distutils section of
'Extending and Embedding the Python Interpreter' at docs.python.org for more information.

```python
from distutils.core import setup, Extension

module1 = Extension('spam', sources=['spammodule.c'],
 include_dirs=['/usr/local/lib'])

setup(name='spam',
 version='1.0',
 description='This is my spam package',
 ext_modules=[module1])
```

Once the spam module is imported into python, you can call logit via spam.logit. Note that the function used above cannot
be applied as-is to numpy arrays. To do so we must call numpy.vectorize on it. For example, if a python interpreter is
opened in the file containing the spam library or spam has been installed, one can perform the following commands:

```python
>>> import numpy as np
>>> import spam
>>> spam.logit(0)
-inf
>>> spam.logit(1)
inf
>>> spam.logit(0.5)
0.0
>>> x = np.linspace(0,1,10)
>>> spam.logit(x)
TypeError: only length-1 arrays can be converted to Python scalars
>>> f = np.vectorize(spam.logit)
>>> f(x)
array([-inf, -2.07944154, -1.25276297, -0.69314718, -0.22314355,
 0.22314355, 0.69314718, 1.25276297, 2.07944154, inf])
```

THE RESULTING LOGIT FUNCTION IS NOT FAST! numpy.vectorize simply loops over spam.logit. The loop is
done at the C level, but the numpy array is constantly being parsed and build back up. This is expensive. When the author
compared numpy.vectorize(spam.logit) against the logit ufuncs constructed below, the logit ufuncs were almost exactly 4
times faster. Larger or smaller speedups are, of course, possible depending on the nature of the function.

8.3. Writing your own ufunc
8.3.3 Example NumPy ufunc for one dtype

For simplicity we give a ufunc for a single dtype, the 'f8' double. As in the previous section, we first give the .c file and then the setup.py file used to create the module containing the ufunc.

The place in the code corresponding to the actual computations for the ufunc are marked with /*BEGIN main ufunc computation*/ and /*END main ufunc computation*/. The code in between those lines is the primary thing that must be changed to create your own ufunc.

```c
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/npy_3kcompat.h"

/* single_type_logit.c
 * This is the C code for creating your own
 * NumPy ufunc for a logit function.
 * In this code we only define the ufunc for
 * a single dtype. The computations that must
 * be replaced to create a ufunc for
 * a different function are marked with BEGIN
 * and END.
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org.
 */

static PyMethodDef LogitMethods[] = {
 {NULL, NULL, 0, NULL}
};

/* The loop definition must precede the PyMODINIT_FUNC. */

static void double_logit(char **args, npy_intp *dimensions,
 npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp n = dimensions[0];
 char *in = args[0], *out = args[1];
 npy_intp in_step = steps[0], out_step = steps[1];
 double tmp;

 for (i = 0; i < n; i++) {
 /*BEGIN main ufunc computation*/
 tmp = *(double *)in;
 tmp /= 1-tmp;
 *((double *)out) = log(tmp);
 /*END main ufunc computation*/
 in += in_step;
 out += out_step;
 }
}
```

(continues on next page)
/* This a pointer to the above function */
PyUFuncGenericFunction funcs[1] = {&double_logit};

/* These are the input and return dtypes of logit */
static char types[2] = {NPY_DOUBLE, NPY_DOUBLE};
static void *data[1] = {NULL};

static struct PyModuleDef moduledef = {
    PyModuleDef_HEAD_INIT,
    "npufunc",
    NULL,
    -1,
    LogitMethods,
    NULL,
    NULL,
    NULL,
    NULL
};

PyMODINIT_FUNC PyInit_npufunc( void )
{
    PyObject *m, *logit, *d;
    m = PyModule_Create(&moduledef);
    if (!m) {
        return NULL;
    }
    import_array();
    import_umath();

    logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 1, 1,
                                    PyUFunc_None, "logit",
                                    "logit_docstring", 0);

    d = PyModule_GetDict(m);
    PyDict_SetItemString(d, "logit", logit);
    Py_DECREF(logit);
    return m;
}

This is a setup.py file for the above code. As before, the module can be build via calling python setup.py build at the
command prompt, or installed to site-packages via python setup.py install.

''' setup.py file for logit.c
Note that since this is a numpy extension
we use numpy.distutils instead of
distutils from the python standard library.

Calling
$python setup.py build_ext --inplace
will build the extension library in the current file.
(continues on next page)
Calling
```
$python setup.py build
```
will build a file that looks like ./build/lib*, where
lib* is a file that begins with lib. The library will
be in this file and end with a C library extension,
such as .so

Calling
```
$python setup.py install
```
will install the module in your site-packages file.

See the distutils section of
'Extending and Embedding the Python Interpreter'
at docs.python.org and the documentation
on numpy.distutils for more information.

```python
def configuration(parent_package='', top_path=None):
 import numpy
 from numpy.distutils.misc_util import Configuration

 config = Configuration('npufunc_directory',
 parent_package, top_path)
 config.add_extension('npufunc', ['single_type_logit.c'])

 return config
```

After the above has been installed, it can be imported and used as follows.

```python
>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([-inf, -1.09861229, 0., 1.09861229, inf])
```

### 8.3.4 Example NumPy ufunc with multiple dtypes

We finally give an example of a full ufunc, with inner loops for half-floats, floats, doubles, and long doubles. As in the
previous sections we first give the .c file and then the corresponding setup.py file.

The places in the code corresponding to the actual computations for the ufunc are marked with /*BEGIN main ufunc computation*/ and /*END main ufunc computation*/. The code in between those lines is the primary thing that must be changed to create your own ufunc.

```c
#include "Python.h"
#include "math.h"
```
# multi_type_logit.c
* This is the C code for creating your own NumPy ufunc for a logit function.
* Each function of the form type_logit defines the logit function for a different numpy dtype. Each of these functions must be modified when you create your own ufunc. The computations that must be replaced to create a ufunc for a different function are marked with BEGIN and END.
* Details explaining the Python-C API can be found under 'Extending and Embedding' and 'Python/C API' at docs.python.org.
*/

static PyMethodDef LogitMethods[] = {
    {NULL, NULL, 0, NULL}
};

/* The loop definitions must precede the PyMODINIT_FUNC. */

static void long_double_logit(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
    npy_intp i;
    npy_intp n = dimensions[0];
    char *in = args[0], *out = args[1];
    npy_intp in_step = steps[0], out_step = steps[1];
    long double tmp;
    for (i = 0; i < n; i++) {
        /*BEGIN main ufunc computation*/
        tmp = *(long double *)in;
        tmp /= 1-tmp;
        *(long double *)out = logl(tmp);
        /*END main ufunc computation*/
        in += in_step;
        out += out_step;
    }
}

static void double_logit(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
    npy_intp i;
    npy_intp n = dimensions[0];
    (continues on next page)
char *in = args[0], *out = args[1];
npy_intp in_step = steps[0], out_step = steps[1];

double tmp;

for (i = 0; i < n; i++) {
    /*BEGIN main ufunc computation*/
    tmp = *(double *)in;
    tmp /= 1-tmp;
    *((double *)out) = log(tmp);
    /*END main ufunc computation*/

    in += in_step;
    out += out_step;
}

static void float_logit(char **args, npy_intp *dimensions,
                         npy_intp* steps, void* data)
{
    npy_intp i;
    npy_intp n = dimensions[0];
    char *in = args[0], *out = args[1];
    npy_intp in_step = steps[0], out_step = steps[1];

    float tmp;

    for (i = 0; i < n; i++) {
        /*BEGIN main ufunc computation*/
        tmp = *(float *)in;
        tmp = npy_half_to_float(tmp);
        tmp /= 1-tmp;
        *((float *)out) = logf(tmp);
        /*END main ufunc computation*/

        in += in_step;
        out += out_step;
    }
}

static void half_float_logit(char **args, npy_intp *dimensions,
                              npy_intp* steps, void* data)
{
    npy_intp i;
    npy_intp n = dimensions[0];
    char *in = args[0], *out = args[1];
    npy_intp in_step = steps[0], out_step = steps[1];

    float tmp;

    for (i = 0; i < n; i++) {
        /*BEGIN main ufunc computation*/
        tmp = *(npy_half *)in;
        tmp = npy_half_to_float(tmp);
        tmp /= 1-tmp;
        tmp = logf(tmp);
        /*END main ufunc computation*/

        in += in_step;
        out += out_step;
    }
}
*\((\text{npy\_half } \ast)\text{out}) = \text{npy\_float\_to\_half}(\text{tmp});\)
/*END main ufunc computation*/

\text{in } += \text{in\_step};
\text{out } += \text{out\_step};
\}
\}

/*This gives pointers to the above functions*/
\text{PyUFuncGenericFunction }\text{funcs}[4] = \{\&\text{half\_float\_logit},
\&\text{float\_logit},
\&\text{double\_logit},
\&\text{long\_double\_logit};

\text{static char} \text{types}[8] = \{\text{NPY\_HALF, NPY\_HALF},
\text{NPY\_FLOAT, NPY\_FLOAT},
\text{NPY\_DOUBLE, NPY\_DOUBLE},
\text{NPY\_LONGDUBBLE, NPY\_LONGDUBBLE};

\text{static void }\ast\text{data}[4] = \{\text{NULL, NULL, NULL, NULL};

\text{static struct} \text{PyModuleDef }\text{moduledef} = \{
\text{PyModuleDef\_HEAD\_INIT},
"\text{npufunc},"
\text{NULL},
-1,
\text{LogitMethods},
\text{NULL},
\text{NULL},
\text{NULL},
\text{NULL};
\};

\text{PyMODINIT\_FUNC PyInit\_npufunc}(\text{void})
\{
\text{PyObject }\ast\text{m}, \ast\text{logit}, \ast\text{d};
\text{m} = \text{PyModule\_Create}(\&\text{moduledef});
\text{if } (!\text{m}) \{
\text{return NULL;}
\}
\text{import\_array();}
\text{import\_umath();}

\text{logit} = \text{PyUFunc\_FromFuncAndData}(\text{funcs}, \text{data}, \text{types}, 4, 1, 1,
\text{PyUFunc\_None, }"\text{logit},"
\text{"logit\_docstring", }0);\n
\text{d} = \text{PyModule\_GetDict}(\text{m});
\text{PyObject\_SetItemString}(\text{d}, \"\text{logit}, \text{logit});
\text{Py\_DECREP}(\text{logit});
\text{return }\text{m};
\}

This is a setup.py file for the above code. As before, the module can be build via calling python setup.py build at the
command prompt, or installed to site-packages via python setup.py install.

```python

def configuration(parent_package='', top_path=None):
 import numpy
 from numpy.distutils.misc_util import Configuration
 from numpy.distutils.misc_util import get_info

 # Necessary for the half-float d-type.
 info = get_info('npymath')

 config = Configuration('npufunc_directory',
 parent_package, top_path)
 config.add_extension('npufunc',
 ['multi_type_logit.c'],
 extra_info=info)

 return config

if __name__ == '__main__':
 from numpy.distutils.core import setup
 setup(configuration=configuration)
```

After the above has been installed, it can be imported and used as follows.

```python
>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
```

(continues on next page)
8.3.5 Example NumPy ufunc with multiple arguments/return values

Our final example is a ufunc with multiple arguments. It is a modification of the code for a logit ufunc for data with a single dtype. We compute \((A*B, \text{logit}(A*B))\).

We only give the C code as the setup.py file is exactly the same as the setup.py file in Example NumPy ufunc for one dtype, except that the line

```python
config.add_extension('npufunc', ['single_type_logit.c'])
```

is replaced with

```python
config.add_extension('npufunc', ['multi_arg_logit.c'])
```

The C file is given below. The ufunc generated takes two arguments \(A\) and \(B\). It returns a tuple whose first element is \(A*B\) and whose second element is \(\text{logit}(A*B)\). Note that it automatically supports broadcasting, as well as all other properties of a ufunc.

```c
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"

/*
 * multi_arg_logit.c
 * This is the C code for creating your own
 * NumPy ufunc for a multiple argument, multiple
 * return value ufunc. The places where the
 * ufunc computation is carried out are marked
 * with comments.
 *
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org .
 *
 */

static PyMethodDef LogitMethods[] = {
 {NULL, NULL, 0, NULL}
};

/* The loop definition must precede the PYMODINIT_FUNC. */
static void double_logitprod(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
 npy_intp i;
 npy_intp n = dimensions[0];
 char *in1 = args[0], *in2 = args[1];
 char *out1 = args[2], *out2 = args[3];

 /* the code for computing the ufunc goes here */
}
```

(continues on next page)
npy_intp in1_step = steps[0], in2_step = steps[1];
    npy_intp out1_step = steps[2], out2_step = steps[3];

double tmp;

    for (i = 0; i < n; i++) {
        /*BEGIN main ufunc computation*/
        tmp = *(double *)in1;
        tmp *= *(double *)in2;
        *((double *)out1) = tmp;
        *((double *)out2) = log(tmp/(1-tmp));
        /*END main ufunc computation*/

        in1 += in1_step;
        in2 += in2_step;
        out1 += out1_step;
        out2 += out2_step;
    }

    /*This a pointer to the above function*/
    PyUFuncGenericFunction funcs[1] = {double_logitprod};

    /* These are the input and return dtypes of logit.*/
    static char types[4] = {NPY_DOUBLE, NPY_DOUBLE,
                NPY_DOUBLE, NPY_DOUBLE};

    static void *data[1] = {NULL};

    static struct PyModuleDef moduledef = {
        PyModuleDef_HEAD_INIT,
        "npufunc",
        NULL,
        -1,
        LogitMethods,
        NULL,
        NULL,
        NULL,
        NULL
    };

    PyMODINIT_FUNC PyInit_npufunc(void)
    {
        PyObject *m, *logit, *d;
        m = PyModule_Create(&moduledef);
        if (!m) {
            return NULL;
        }

        import_array();
        import_umath();

        logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 2, 2,
                PyUFunc_None, "logit",
                (continues on next page)
8.3.6 Example NumPy ufunc with structured array dtype arguments

This example shows how to create a ufunc for a structured array dtype. For the example we show a trivial ufunc for adding two arrays with dtype ‘u8,u8,u8’. The process is a bit different from the other examples since a call to PyUFunc_FromFuncAndData doesn’t fully register ufuncs for custom dtypes and structured array dtypes. We need to also call PyUFunc_RegisterLoopForDescr to finish setting up the ufunc.

We only give the C code as the setup.py file is exactly the same as the setup.py file in Example NumPy ufunc for one dtype, except that the line

```python
config.add_extension('npufunc', ['single_type_logit.c'])
```

is replaced with

```python
config.add_extension('npufunc', ['add_triplet.c'])
```

The C file is given below.

```c
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/npy_3kcompat.h"

/*
 * add_triplet.c
 * This is the C code for creating your own
 * NumPy ufunc for a structured array dtype.
 * Details explaining the Python-C API can be found under
 * 'Extending and Embedding' and 'Python/C API' at
 * docs.python.org .
 */

static PyMethodDef StructUfuncTestMethods[] = {
 {NULL, NULL, 0, NULL}
};

/* The loop definition must precede the PyMODINIT_FUNC. */
static void add_uint64_triplet(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
 npy_intp i;
}
```

(continues on next page)
npy_intp is1 = steps[0];
npy_intp is2 = steps[1];
npy_intp os = steps[2];
npy_intp n = dimensions[0];

uint64_t *x, *y, *z;

char *i1 = args[0];
char *i2 = args[1];
char *op = args[2];

for (i = 0; i < n; i++) {
    x = (uint64_t *)i1;
    y = (uint64_t *)i2;
    z = (uint64_t *)op;

    z[0] = x[0] + y[0];
    z[1] = x[1] + y[1];

    i1 += is1;
    i2 += is2;
    op += os;
}

PyUFuncGenericFunction funcs[1] = {add_uint64_triplet};

/* These are the input and return dtypes of add_uint64_triplet. */
static char types[3] = {NPY_UINT64, NPY_UINT64, NPY_UINT64};
static void *data[1] = {NULL};

static struct PyModuleDef moduledef = {
    PyModuleDef_HEAD_INIT,
    "struct_ufunc_test",
    NULL,
    -1,
    StructUfuncTestMethods,
    NULL,
    NULL,
    NULL
};

PyMODINIT_FUNC PyInit_struct_ufunc_test(void)
{
    PyObject *m, *add_triplet, *d;
    PyObject *dtype_dict;
    PyArray_Descr *dtype;
    PyArray_Descr *dtypes[3];

    m = PyModule_Create(&moduledef);

    if (m == NULL) {
        return NULL;
    }
import_array();
import_umath();

/* Create a new ufunc object */
add_triplet = PyUFunc_FromFuncAndData(NULL, NULL, NULL, 0, 2, 1,
PyUFunc_None, "add_triplet",
"add_triplet_docstring", 0);

dtype_dict = Py_BuildValue("[{s, s}, {s, s}, {s, s}]",
"f0", "u8", "f1", "u8", "f2", "u8");
PyArray_DescrConverter(dtype_dict, &dtype);
Py_DECREF(dtype_dict);
dtypes[0] = dtype;
dtypes[1] = dtype;
dtypes[2] = dtype;

/* Register ufunc for structured dtype */
PyUFunc_RegisterLoopForDescr(add_triplet,
dtype,
&add_uint64_triplet,
dtypes,
NULL);

d = PyModule_GetDict(m);
PyDict_SetItemString(d, "add_triplet", add_triplet);
Py_DECREF(add_triplet);
return m;

}

The returned ufunc object is a callable Python object. It should be placed in a (module) dictionary under the same name as was used in the name argument to the ufunc-creation routine. The following example is adapted from the umath module

```c
static PyUFuncGenericFunction atan2_functions[] = {
 PyUFunc_ff_f, PyUFunc_dd_d,
 PyUFunc_gg_g, PyUFunc ОО ОО_method);
static void* atan2_data[] = {
 {void *}atan2f, {void *} atan2,
 {void *}atan2l, {void *}"arctan2");
static char atan2_signatures[] = {
 NPY_FLOAT, NPY_FLOAT, NPY_FLOAT,
 NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE,
 NPY_LONGDOUBLE, NPY_LONGDOUBLE, NPY_LONGDOUBLE
 NPY_OBJECT, NPY_OBJECT, NPY_OBJECT};
...
/* in the module initialization code */
PyObject *f, *dict, *module;
...
dict = PyModule_GetDict(module);
...
f = PyUFunc_FromFuncAndData(atan2_functions,
 atan2_data, atan2_signatures, 4, 2, 1,
 PyUFunc_None, "arctan2",
```
8.4 Beyond the Basics

The voyage of discovery is not in seeking new landscapes but in having new eyes.
— Marcel Proust

Discovery is seeing what everyone else has seen and thinking what no one else has thought.
— Albert Szent-Gyorgi

8.4.1 Iterating over elements in the array

Basic Iteration

One common algorithmic requirement is to be able to walk over all elements in a multidimensional array. The array iterator object makes this easy to do in a generic way that works for arrays of any dimension. Naturally, if you know the number of dimensions you will be using, then you can always write nested for loops to accomplish the iteration. If, however, you want to write code that works with any number of dimensions, then you can make use of the array iterator. An array iterator object is returned when accessing the .flat attribute of an array.

Basic usage is to call PyArray_IterNew (array) where array is an ndarray object (or one of its sub-classes). The returned object is an array-iterator object (the same object returned by the .flat attribute of the ndarray). This object is usually cast to PyArrayIterObject* so that its members can be accessed. The only members that are needed are iter->size which contains the total size of the array, iter->index, which contains the current 1-d index into the array, and iter->dataptr which is a pointer to the data for the current element of the array. Sometimes it is also useful to access iter->ao which is a pointer to the underlying ndarray object.

After processing data at the current element of the array, the next element of the array can be obtained using the macro PyArray_ITER_NEXT (iter). The iteration always proceeds in a C-style contiguous fashion (last index varying the fastest). The PyArray_ITER_GOTO (iter, destination) can be used to jump to a particular point in the array, where destination is an array of npy_intp data-type with space to handle at least the number of dimensions in the underlying array. Occasionally it is useful to use PyArray_ITER_GOTO1D (iter, index) which will jump to the 1-d index given by the value of index. The most common usage, however, is given in the following example.

```
PyObject *obj; /* assumed to be some ndarray object */
PyArrayIterObject *iter;
...
iter = (PyArrayIterObject *)PyArray_IterNew(obj);
if (iter == NULL) goto fail; /* Assume fail has clean-up code */
while (iter->index < iter->size) {
 /* do something with the data at it->dataptr */
 PyArray_ITER_NEXT(it);
}
...
```
You can also use `PyArrayIter_Check(obj)` to ensure you have an iterator object and `PyArray_ITER_RESET(iter)` to reset an iterator object back to the beginning of the array.

It should be emphasized at this point that you may not need the array iterator if your array is already contiguous (using an array iterator will work but will be slower than the fastest code you could write). The major purpose of array iterators is to encapsulate iteration over N-dimensional arrays with arbitrary strides. They are used in many, many places in the NumPy source code itself. If you already know your array is contiguous (Fortran or C), then simply adding the element-size to a running pointer variable will step you through the array very efficiently. In other words, code like this will probably be faster for you in the contiguous case (assuming doubles).

```python
npy_intp size;
double *dptr; /* could make this any variable type */
size = PyArray_SIZE(obj);
dptr = PyArray_DATA(obj);
while(size--) {
 /* do something with the data at dptr */
 dptr++;
}
```

### Iterating over all but one axis

A common algorithm is to loop over all elements of an array and perform some function with each element by issuing a function call. As function calls can be time consuming, one way to speed up this kind of algorithm is to write the function so it takes a vector of data and then write the iteration so the function call is performed for an entire dimension of data at a time. This increases the amount of work done per function call, thereby reducing the function-call overhead to a small(er) fraction of the total time. Even if the interior of the loop is performed without a function call it can be advantageous to perform the inner loop over the dimension with the highest number of elements to take advantage of speed enhancements available on micro-processors that use pipelining to enhance fundamental operations.

The `PyArray_IterAllButAxis(array, &dim)` constructs an iterator object that is modified so that it will not iterate over the dimension indicated by `dim`. The only restriction on this iterator object, is that the `PyArray_ITER_GOTO1D(it, ind)` macro cannot be used (thus flat indexing won't work either if you pass this object back to Python — so you shouldn't do this). Note that the returned object from this routine is still usually cast to `PyArrayIterObject *`. All that's been done is to modify the strides and dimensions of the returned iterator to simulate iterating over array[...,0,...] where 0 is placed on the dim<sup>th</sup> dimension. If `dim` is negative, then the dimension with the largest axis is found and used.

### Iterating over multiple arrays

Very often, it is desirable to iterate over several arrays at the same time. The universal functions are an example of this kind of behavior. If all you want to do is iterate over arrays with the same shape, then simply creating several iterator objects is the standard procedure. For example, the following code iterates over two arrays assumed to be the same shape and size (actually obj1 just has to have at least as many total elements as does obj2):

```python
/* It is already assumed that obj1 and obj2 are ndarrays of the same shape and size. */
iter1 = (PyArrayIterObject *)PyArray_IterNew(obj1);
if (iter1 == NULL) goto fail;
iter2 = (PyArrayIterObject *)PyArray_IterNew(obj2);
if (iter2 == NULL) goto fail; /* assume iter1 is DECREF'd at fail */
while (iter2->index < iter2->size) {
 /* process with iter1->dataptr and iter2->dataptr */
 PyArray_ITER_NEXT(iter1);
 /* process with iter2->dataptr */
 PyArray_ITER_NEXT(iter2);
}
```
Broadcasting over multiple arrays

When multiple arrays are involved in an operation, you may want to use the same broadcasting rules that the math operations (i.e. the ufuncs) use. This can be done easily using the PyArrayMultiIterObject. This is the object returned from the Python command numpy.broadcast and it is almost as easy to use from C. The function PyArray_MultiIterNew(n, ...) is used (with n input objects in place of ...). The input objects can be arrays or anything that can be converted into an array. A pointer to a PyArrayMultiIterObject is returned. Broadcasting has already been accomplished which adjusts the iterators so that all that needs to be done to advance to the next element in each array is for PyArray_ITER_NEXT to be called for each of the inputs. This incrementing is automatically performed by PyArray_MultiIter_NEXT(obj) macro (which can handle a multiterator obj as either a PyArrayMultiObject * or a PyObject *). The data from input number i is available using PyArray_MultiIter_DATA(obj, i) and the total (broadcasted) size as PyArray_MultiIter_SIZE(obj).

An example of using this feature follows.

```c
mobj = PyArray_MultiIterNew(2, obj1, obj2);
size = PyArray_MultiIter_SIZE(obj);
while (size--) {
 ptr1 = PyArray_MultiIter_DATA(mobj, 0);
 ptr2 = PyArray_MultiIter_DATA(mobj, 1);
 /* code using contents of ptr1 and ptr2 */
 PyArray_MultiIter_NEXT(mobj);
}
```

The function PyArray_RemoveSmallest(multi) can be used to take a multi-iterator object and adjust all the iterators so that iteration does not take place over the largest dimension (it makes that dimension of size 1). The code being looped over that makes use of the pointers will very-likely also need the strides data for each of the iterators. This information is stored in multi->iters[i]->strides.

There are several examples of using the multi-iterator in the NumPy source code as it makes N-dimensional broadcasting code very simple to write. Browse the source for more examples.

8.4.2 User-defined data-types

NumPy comes with 24 built-in data-types. While this covers a large majority of possible use cases, it is conceivable that a user may have a need for an additional data-type. There is some support for adding an additional data-type into the NumPy system. This additional data-type will behave much like a regular data-type except ufuncs must have 1-d loops registered to handle it separately. Also checking for whether or not other data-types can be cast “safely” to and from this new type or not will always return “can cast” unless you also register which types your new data-type can be cast to and from.

The NumPy source code includes an example of a custom data-type as part of its test suite. The file _rational_tests.c.src in the source code directory numpy/numpy/core/src/umath/ contains an implementation of a data-type that represents a rational number as the ratio of two 32 bit integers.
Adding the new data-type

To begin to make use of the new data-type, you need to first define a new Python type to hold the scalars of your new data-type. It should be acceptable to inherit from one of the array scalars if your new type has a binary compatible layout. This will allow your new data type to have the methods and attributes of array scalars. New data-types must have a fixed memory size (if you want to define a data-type that needs a flexible representation, like a variable-precision number, then use a pointer to the object as the data-type). The memory layout of the object structure for the new Python type must be PyObject_HEAD followed by the fixed-size memory needed for the data-type. For example, a suitable structure for the new Python type is:

```c
typedef struct {
 PyObject_HEAD;
 some_data_type obval;
 /* the name can be whatever you want */
} PySomeDataTypeObject;
```

After you have defined a new Python type object, you must then define a new PyArray_Descr structure whose type-object member will contain a pointer to the data-type you’ve just defined. In addition, the required functions in the “.f” member must be defined: nonzero, copyswap, copyswapn, setitem, getitem, and cast. The more functions in the “.f” member you define, however, the more useful the new data-type will be. It is very important to initialize unused functions to NULL. This can be achieved using PyArray_InitArrFuncs (f).

Once a new PyArray_Descr structure is created and filled with the needed information and useful functions you call PyArray_RegisterDataType (new_descr). The return value from this call is an integer providing you with a unique type_number that specifies your data-type. This type number should be stored and made available by your module so that other modules can use it to recognize your data-type (the other mechanism for finding a user-defined data-type number is to search based on the name of the type-object associated with the data-type using PyArray_TypeNumFromName ).

Registering a casting function

You may want to allow built-in (and other user-defined) data-types to be cast automatically to your data-type. In order to make this possible, you must register a casting function with the data-type you want to be able to cast from. This requires writing low-level casting functions for each conversion you want to support and then registering these functions with the data-type descriptor. A low-level casting function has the signature.

```c
void castfunc (void* from, void* to, npy_intp n, void* fromarr, void* toarr)
```

Cast n elements from one type to another. The data to cast from is in a contiguous, correctly-swapped and aligned chunk of memory pointed to by from. The buffer to cast to is also contiguous, correctly-swapped and aligned. The fromarr and toarr arguments should only be used for flexible-element-sized arrays (string, unicode, void).

An example castfunc is:

```c
static void
double_to_float (double *from, float* to, npy_intp n,
 void* ignore1, void* ignore2) {
 while (n--) {
 (*to++) = (double) *(from++);
 }
}
```

This could then be registered to convert doubles to floats using the code:

```c
doub = PyArray_DescrFromType(NPY_DOUBLE);
PyArray_RegisterCastFunc(doub, NPY_FLOAT,
```

(continues on next page)
Registering coercion rules

By default, all user-defined data-types are not presumed to be safely castable to any builtin data-types. In addition builtin data-types are not presumed to be safely castable to user-defined data-types. This situation limits the ability of user-defined data-types to participate in the coercion system used by ufuncs and other times when automatic coercion takes place in NumPy. This can be changed by registering data-types as safely castable from a particular data-type object. The function `PyArray_RegisterCanCast(from_descr, totype_number, scalarkind)` should be used to specify that the data-type object from_descr can be cast to the data-type with type number totype_number. If you are not trying to alter scalar coercion rules, then use `NPY_NOSCALAR` for the scalarkind argument.

If you want to allow your new data-type to also be able to share in the scalar coercion rules, then you need to specify the scalarkind function in the data-type object’s “.f” member to return the kind of scalar the new data-type should be seen as (the value of the scalar is available to that function). Then, you can register data-types that can be cast to separately for each scalar kind that may be returned from your user-defined data-type. If you don’t register scalar coercion handling, then all of your user-defined data-types will be seen as `NPY_NOSCALAR`.

Registering a ufunc loop

You may also want to register low-level ufunc loops for your data-type so that an ndarray of your data-type can have math applied to it seamlessly. Registering a new loop with exactly the same arg_types signature, silently replaces any previously registered loops for that data-type.

Before you can register a 1-d loop for a ufunc, the ufunc must be previously created. Then you call `PyUFunc_RegisterLoopForType(„)` with the information needed for the loop. The return value of this function is 0 if the process was successful and -1 with an error condition set if it was not successful.

8.4.3 Subtyping the ndarray in C

One of the lesser-used features that has been lurking in Python since 2.2 is the ability to sub-class types in C. This facility is one of the important reasons for basing NumPy off of the Numeric code-base which was already in C. A sub-type in C allows much more flexibility with regards to memory management. Sub-typing in C is not difficult even if you have only a rudimentary understanding of how to create new types for Python. While it is easiest to sub-type from a single parent type, sub-typing from multiple parent types is also possible. Multiple inheritance in C is generally less useful than it is in Python because a restriction on Python sub-types is that they have a binary compatible memory layout. Perhaps for this reason, it is somewhat easier to sub-type from a single parent type.

All C-structures corresponding to Python objects must begin with `PyObject_HEAD` (or `PyObject_VAR_HEAD`). In the same way, any sub-type must have a C-structure that begins with exactly the same memory layout as the parent type (or all of the parent types in the case of multiple-inheritance). The reason for this is that Python may attempt to access a member of the sub-type structure as if it had the parent structure (i.e. it will cast a given pointer to a pointer to the parent structure and then dereference one of it's members). If the memory layouts are not compatible, then this attempt will cause unpredictable behavior (eventually leading to a memory violation and program crash).

One of the elements in `PyObject_HEAD` is a pointer to a type-object structure. A new Python type is created by creating a new type-object structure and populating it with functions and pointers to describe the desired behavior of the type. Typically, a new C-structure is also created to contain the instance-specific information needed for each object of the type as well. For example, `&PyArray_Type` is a pointer to the type-object table for the ndarray while `a PyArrayObject *` variable is a pointer to a particular instance of an ndarray (one of the members of the ndarray structure is, in turn,
a pointer to the type- object table &PyArray_Type). Finally PyType_READY (<pointer_to_type_object>) must be called for every new Python type.

Creating sub-types

To create a sub-type, a similar procedure must be followed except only behaviors that are different require new entries in the type- object structure. All other entries can be NULL and will be filled in by PyType_Ready with appropriate functions from the parent type(s). In particular, to create a sub-type in C follow these steps:

1. If needed create a new C-structure to handle each instance of your type. A typical C-structure would be:

   ```c
 typedef _new_struct {
 PyArrayObject base;
 /* new things here */
 } NewArrayObject;
   ```

   Notice that the full PyArrayObject is used as the first entry in order to ensure that the binary layout of instances of the new type is identical to the PyArrayObject.

2. Fill in a new Python type-object structure with pointers to new functions that will over-ride the default behavior while leaving any function that should remain the same unfilled (or NULL). The tp_name element should be different.

3. Fill in the tp_base member of the new type-object structure with a pointer to the (main) parent type object. For multiple-inheritance, also fill in the tp_bases member with a tuple containing all of the parent objects in the order they should be used to define inheritance. Remember, all parent-types must have the same C-structure for multiple inheritance to work properly.

4. Call PyType_Ready (<pointer_to_new_type>). If this function returns a negative number, a failure occurred and the type is not initialized. Otherwise, the type is ready to be used. It is generally important to place a reference to the new type into the module dictionary so it can be accessed from Python.

More information on creating sub-types in C can be learned by reading PEP 253 (available at https://www.python.org/dev/peps/pep-0253).

Specific features of ndarray sub-typing

Some special methods and attributes are used by arrays in order to facilitate the interoperation of sub-types with the base ndarray type.

The __array_finalize__ method

```
ndarray.__array_finalize__
```

Several array-creation functions of the ndarray allow specification of a particular sub-type to be created. This allows sub-types to be handled seamlessly in many routines. When a sub-type is created in such a fashion, however, neither the __new__ method nor the __init__ method gets called. Instead, the sub-type is allocated and the appropriate instance-structure members are filled in. Finally, the __array_finalize__ attribute is looked-up in the object dictionary. If it is present and not None, then it can be either a CObject containing a pointer to a PyArray_FinalizeFunc or it can be a method taking a single argument (which could be None).

If the __array_finalize__ attribute is a CObject, then the pointer must be a pointer to a function with the signature:

```
{int} (PyArrayObject *, Pyobject *)
```

The first argument is the newly created sub-type. The second argument (if not NULL) is the “parent” array (if the array was created using slicing or some other operation where a clearly-distinguishable parent is present). This routine can do anything it wants to. It should return a -1 on error and 0 otherwise.
If the \_\_array\_finalize\_ attribute is not None nor a CObject, then it must be a Python method that takes the parent array as an argument (which could be None if there is no parent), and returns nothing. Errors in this method will be caught and handled.

### The \_\_array\_priority\_ attribute

\_\_array\_priority\_

This attribute allows simple but flexible determination of which sub-type should be considered “primary” when an operation involving two or more sub-types arises. In operations where different sub-types are being used, the sub-type with the largest \_\_array\_priority\_ attribute will determine the sub-type of the output(s). If two sub-types have the same \_\_array\_priority\_ then the sub-type of the first argument determines the output. The default \_\_array\_priority\_ attribute returns a value of 0.0 for the base ndarray type and 1.0 for a sub-type. This attribute can also be defined by objects that are not sub-types of the ndarray and can be used to determine which \_\_array\_wrap\_ method should be called for the return output.

### The \_\_array\_wrap\_ method

\_\_array\_wrap\_

Any class or type can define this method which should take an ndarray argument and return an instance of the type. It can be seen as the opposite of the \_\_array\_ method. This method is used by the ufuncs (and other NumPy functions) to allow other objects to pass through. For Python >2.4, it can also be used to write a decorator that converts a function that works only with ndarrays to one that works with any type with \_\_array\_ and \_\_array\_wrap\_ methods.
These documents are intended as an introductory overview of NumPy and its features. For detailed reference documentation of the functions and classes contained in the package, see the API reference.

9.1 Tutorial: Linear algebra on n-dimensional arrays

9.1.1 Prerequisites

Before reading this tutorial, you should know a bit of Python. If you would like to refresh your memory, take a look at the Python tutorial.

If you want to be able to run the examples in this tutorial, you should also have matplotlib and SciPy installed on your computer.

9.1.2 Learner profile

This tutorial is for people who have a basic understanding of linear algebra and arrays in NumPy and want to understand how n-dimensional \( (n \geq 2) \) arrays are represented and can be manipulated. In particular, if you don’t know how to apply common functions to n-dimensional arrays (without using for-loops), or if you want to understand axis and shape properties for n-dimensional arrays, this tutorial might be of help.

9.1.3 Learning Objectives

After this tutorial, you should be able to:

- Understand the difference between one-, two- and n-dimensional arrays in NumPy;
- Understand how to apply some linear algebra operations to n-dimensional arrays without using for-loops;
- Understand axis and shape properties for n-dimensional arrays.
9.1.4 Content

In this tutorial, we will use a matrix decomposition from linear algebra, the Singular Value Decomposition, to generate a compressed approximation of an image. We'll use the face image from the scipy.misc module:

```python
>>> from scipy import misc
>>> img = misc.face()
```

**Note:** If you prefer, you can use your own image as you work through this tutorial. In order to transform your image into a NumPy array that can be manipulated, you can use the imread function from the matplotlib.pyplot submodule. Alternatively, you can use the imageio.imread function from the imageio library. Be aware that if you use your own image, you'll likely need to adapt the steps below. For more information on how images are treated when converted to NumPy arrays, see A crash course on NumPy for images from the scikit-image documentation.

Now, `img` is a NumPy array, as we can see when using the `type` function:

```python
>>> type(img)
<class 'numpy.ndarray'>
```

We can see the image using the `matplotlib.pyplot.imshow` function:

```python
>>> import matplotlib.pyplot as plt
>>> plt.imshow(img)
```

**Note:** If you are executing the commands above in the IPython shell, it might be necessary to use the command `plt.show()` to show the image window.
9.1.5 Shape, axis and array properties

Note that, in linear algebra, the dimension of a vector refers to the number of entries in an array. In NumPy, it instead defines the number of axes. For example, a 1D array is a vector such as [1, 2, 3], a 2D array is a matrix, and so forth.

First, let's check for the shape of the data in our array. Since this image is two-dimensional (the pixels in the image form a rectangle), we might expect a two-dimensional array to represent it (a matrix). However, using the shape property of this NumPy array gives us a different result:

```python
>>> img.shape
(768, 1024, 3)
```

The output is a tuple with three elements, which means that this is a three-dimensional array. In fact, since this is a color image, and we have used the `imread` function to read it, the data is organized in three 2D arrays, representing color channels (in this case, red, green and blue - RGB). You can see this by looking at the shape above: it indicates that we have an array of 3 matrices, each having shape 768x1024.

Furthermore, using the `ndim` property of this array, we can see that

```python
>>> img.ndim
3
```

NumPy refers to each dimension as an axis. Because of how `imread` works, the first index in the 3rd axis is the red pixel data for our image. We can access this by using the syntax

```python
>>> img[:,:,0]
array([[121, 138, 153, ..., 119, 131, 139],
 [89, 110, 130, ..., 118, 134, 146],
 [73, 94, 115, ..., 117, 133, 144],
 ...,
 [87, 94, 107, ..., 120, 119, 119],
 [85, 95, 112, ..., 121, 120, 120],
 [85, 97, 111, ..., 120, 119, 118]], dtype=uint8)
```

From the output above, we can see that every value in `img[:,:,0]` is an integer value between 0 and 255, representing the level of red in each corresponding image pixel (keep in mind that this might be different if you use your own image instead of `scipy.misc.face`).

As expected, this is a 768x1024 matrix:

```python
>>> img[:,:,0].shape
(768, 1024)
```

Since we are going to perform linear algebra operations on this data, it might be more interesting to have real numbers between 0 and 1 in each entry of the matrices to represent the RGB values. We can do that by setting

```python
>>> img_array = img / 255
```

This operation, dividing an array by a scalar, works because of NumPy's broadcasting rules). (Note that in real-world applications, it would be better to use, for example, the `img_as_float` utility function from scikit-image).

You can check that the above works by doing some tests; for example, inquiring about maximum and minimum values for this array:

```python
>>> img_array.max(), img_array.min()
(1.0, 0.0)
```

or checking the type of data in the array:
Note that we can assign each color channel to a separate matrix using the slice syntax:

```python
>>> red_array = img_array[:, :, 0]
>>> green_array = img_array[:, :, 1]
>>> blue_array = img_array[:, :, 2]
```

### 9.1.6 Operations on an axis

It is possible to use methods from linear algebra to approximate an existing set of data. Here, we will use the SVD (Singular Value Decomposition) to try to rebuild an image that uses less singular value information than the original one, while still retaining some of its features.

**Note:** We will use NumPy’s linear algebra module, `numpy.linalg`, to perform the operations in this tutorial. Most of the linear algebra functions in this module can also be found in `scipy.linalg`, and users are encouraged to use the `scipy` module for real-world applications. However, it is currently not possible to apply linear algebra operations to n-dimensional arrays using the `scipy.linalg` module. For more information on this, check the `scipy.linalg` Reference.

To proceed, import the linear algebra submodule from NumPy:

```python
>>> from numpy import linalg
```

In order to extract information from a given matrix, we can use the SVD to obtain 3 arrays which can be multiplied to obtain the original matrix. From the theory of linear algebra, given a matrix $A$, the following product can be computed:

$$U \Sigma V^T = A$$

where $U$ and $V^T$ are square and $\Sigma$ is the same size as $A$. $\Sigma$ is a diagonal matrix and contains the singular values of $A$, organized from largest to smallest. These values are always non-negative and can be used as an indicator of the “importance” of some features represented by the matrix $A$.

Let’s see how this works in practice with just one matrix first. Note that according to colorimetry, it is possible to obtain a fairly reasonable grayscale version of our color image if we apply the formula

$$Y = 0.2126R + 0.7152G + 0.0722B$$

where $Y$ is the array representing the grayscale image, and $R$, $G$ and $B$ are the red, green and blue channel arrays we had originally. Notice we can use the @ operator (the matrix multiplication operator for NumPy arrays, see `numpy.matmul`) for this:

```python
>>> img_gray = img_array @ [0.2126, 0.7152, 0.0722]
```

Now, `img_gray` has shape

```python
>>> img_gray.shape
(768, 1024)
```

To see if this makes sense in our image, we should use a colormap from `matplotlib` corresponding to the color we wish to see in our image (otherwise, `matplotlib` will default to a colormap that does not correspond to the real data).

In our case, we are approximating the grayscale portion of the image, so we will use the colormap `gray`:
Now, applying the linalg.svd function to this matrix, we obtain the following decomposition:

```python
>>> U, s, Vt = linalg.svd(img_gray)
```

**Note:** If you are using your own image, this command might take a while to run, depending on the size of your image and your hardware. Don't worry, this is normal! The SVD can be a pretty intensive computation.

Let's check that this is what we expected:

```python
>>> U.shape, s.shape, Vt.shape
((768, 768), (768,), (1024, 1024))
```

Note that \( s \) has a particular shape: it has only one dimension. This means that some linear algebra functions that expect 2d arrays might not work. For example, from the theory, one might expect \( s \) and \( Vt \) to be compatible for multiplication. However, this is not true as \( s \) does not have a second axis. Executing

```python
>>> s @ Vt
Traceback (most recent call last):
...
ValueError: matmul: Input operand 1 has a mismatch in its core dimension 0,
with gufunc signature (n?,k),(k,m?)->(n?,m?) (size 1024 is different from
768)
```

results in a `ValueError`. This happens because having a one-dimensional array for \( s \), in this case, is much more economic in practice than building a diagonal matrix with the same data. To reconstruct the original matrix, we can rebuild the diagonal matrix \( \Sigma \) with the elements of \( s \) in its diagonal and with the appropriate dimensions for multiplying: in our case, \( \Sigma \) should be 768x1024 since \( U \) is 768x768 and \( Vt \) is 1024x1024.

```python
>>> import numpy as np
>>> Sigma = np.zeros((768, 1024))
>>> for i in range(768):
... Sigma[i, i] = s[i]
...```
Now, we want to check if the reconstructed $U @ Sigma @ Vt$ is close to the original img_gray matrix.

9.1.7 Approximation

The `linalg` module includes a `norm` function, which computes the norm of a vector or matrix represented in a NumPy array. For example, from the SVD explanation above, we would expect the norm of the difference between img_gray and the reconstructed SVD product to be small. As expected, you should see something like

```python
>>> linalg.norm(img_gray - U @ Sigma @ Vt)
1.3926466851808837e-12
```

(The actual result of this operation might be different depending on your architecture and linear algebra setup. Regardless, you should see a small number.)

We could also have used the `numpy.allclose` function to make sure the reconstructed product is, in fact, close to our original matrix (the difference between the two arrays is small):

```python
>>> np.allclose(img_gray, U @ Sigma @ Vt)
True
```

To see if an approximation is reasonable, we can check the values in s:

```python
>>> plt.plot(s)
```

![Graph showing singular values](image)

In the graph, we can see that although we have 768 singular values in s, most of those (after the 150th entry or so) are pretty small. So it might make sense to use only the information related to the first (say, 50) singular values to build a more economical approximation to our image.

The idea is to consider all but the first k singular values in $Sigma$ (which are the same as in s) as zeros, keeping U and Vt intact, and computing the product of these matrices as the approximation.

For example, if we choose

```python
>>> k = 10
```

we can build the approximation by doing
>>> approx = U @ Sigma[:, :k] @ Vt[:, :]

Note that we had to use only the first k rows of Vt, since all other rows would be multiplied by the zeros corresponding to the singular values we eliminated from this approximation.

>>> plt.imshow(approx, cmap="gray")

Now, you can go ahead and repeat this experiment with other values of k, and each of your experiments should give you a slightly better (or worse) image depending on the value you choose.

9.1.8 Applying to all colors

Now we want to do the same kind of operation, but to all three colors. Our first instinct might be to repeat the same operation we did above to each color matrix individually. However, NumPy's broadcasting takes care of this for us.

If our array has more than two dimensions, then the SVD can be applied to all axes at once. However, the linear algebra functions in NumPy expect to see an array of the form (N, M, M), where the first axis represents the number of matrices.

In our case,

```python
>>> img_array.shape
(768, 1024, 3)
```

so we need to permute the axis on this array to get a shape like $(3, 768, 1024)$. Fortunately, the `numpy.transpose` function can do that for us:

```python
np.transpose(x, axes=(i, j, k))
```

indicates that the axis will be reordered such that the final shape of the transposed array will be reordered according to the indices (i, j, k).

Let's see how this goes for our array:
```python
>>> img_array_transposed = np.transpose(img_array, (2, 0, 1))
>>> img_array_transposed.shape
(3, 768, 1024)
```

Now we are ready to apply the SVD:

```python
>>> U, s, Vt = linalg.svd(img_array_transposed)
```

Finally, to obtain the full approximated image, we need to reassemble these matrices into the approximation. Now, note that

```python
>>> U.shape, s.shape, Vt.shape
((3, 768, 768), (3, 768), (3, 1024, 1024))
```

To build the final approximation matrix, we must understand how multiplication across different axes works.

9.1.9 Products with n-dimensional arrays

If you have worked before with only one- or two-dimensional arrays in NumPy, you might use `numpy.dot` and `numpy.matmul` (or the `@` operator) interchangeably. However, for n-dimensional arrays, they work in very different ways. For more details, check the documentation `numpy.matmul`.

Now, to build our approximation, we first need to make sure that our singular values are ready for multiplication, so we build our `Sigma` matrix similarly to what we did before. The `Sigma` array must have dimensions `(3, 768, 1024)`. In order to add the singular values to the diagonal of `Sigma`, we will use the `fill_diagonal` function from NumPy, using each of the 3 rows in `s` as the diagonal for each of the 3 matrices in `Sigma`:

```python
>>> Sigma = np.zeros((3, 768, 1024))
>>> for j in range(3):
...     np.fill_diagonal(Sigma[j, :, :], s[j, :])
```

Now, if we wish to rebuild the full SVD (with no approximation), we can do

```python
>>> reconstructed = U @ Sigma @ Vt
```

Note that

```python
>>> reconstructed.shape
(3, 768, 1024)
```

and

```python
>>> plt.imshow(np.transpose(reconstructed, (1, 2, 0)))
```

should give you an image indistinguishable from the original one (although we may introduce floating point errors for this reconstruction). In fact, you might see a warning message saying “Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).” This is expected from the manipulation we just did on the original image.

Now, to do the approximation, we must choose only the first k singular values for each color channel. This can be done using the following syntax:

```python
>>> approx_img = U @ Sigma[...,:k] @ Vt[...,:k,:]
```

You can see that we have selected only the first k components of the last axis for `Sigma` (this means that we have used only the first k columns of each of the three matrices in the stack), and that we have selected only the first k components...
in the second-to-last axis of Vt (this means we have selected only the first k rows from every matrix in the stack Vt and all columns). If you are unfamiliar with the ellipsis syntax, it is a placeholder for other axes. For more details, see the documentation on \texttt{Indexing}.

Now,

\begin{verbatim}
>>> approx_img.shape
(3, 768, 1024)
\end{verbatim}

which is not the right shape for showing the image. Finally, reordering the axes back to our original shape of $(768, 1024, 3)$, we can see our approximation:

\begin{verbatim}
>>> plt.imshow(np.transpose(approx_img, (1, 2, 0)))
\end{verbatim}

Even though the image is not as sharp, using a small number of k singular values (compared to the original set of 768 values), we can recover many of the distinguishing features from this image.
9.1.10 Final words

Of course, this is not the best method to approximate an image. However, there is, in fact, a result in linear algebra that says that the approximation we built above is the best we can get to the original matrix in terms of the norm of the difference. For more information, see G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985.

9.1.11 Further reading

- Python tutorial
- reference
- SciPy Tutorial
- SciPy Lecture Notes
- A matlab, R, IDL, NumPy/SciPy dictionary

9.2 Tutorial: Masked Arrays

9.2.1 Prerequisites

Before reading this tutorial, you should know a bit of Python. If you would like to refresh your memory, take a look at the Python tutorial.

If you want to be able to run the examples in this tutorial, you should also have matplotlib installed on your computer.

9.2.2 Learner profile

This tutorial is for people who have a basic understanding of NumPy and want to understand how masked arrays and the numpy.ma module can be used in practice.

9.2.3 Learning Objectives

After this tutorial, you should be able to:

- Understand what are masked arrays and how they can be created
- Understand how to access and modify data for masked arrays
- Decide when the use of masked arrays is appropriate in some of your applications
9.2.4 What are masked arrays?

Consider the following problem. You have a dataset with missing or invalid entries. If you're doing any kind of processing on this data, and want to skip or flag these unwanted entries without just deleting them, you may have to use conditionals or filter your data somehow. The numpy.ma module provides some of the same functionality of NumPy ndarrays with added structure to ensure invalid entries are not used in computation. From the Reference Guide:

A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not. When an element of the mask is False, the corresponding element of the associated array is valid and is said to be unmasked. When an element of the mask is True, the corresponding element of the associated array is said to be masked (invalid).

We can think of a MaskedArray as a combination of:

• Data, as a regular numpy.ndarray of any shape or datatype;
• A boolean mask with the same shape as the data;
• A fill_value, a value that may be used to replace the invalid entries in order to return a standard numpy.ndarray.

9.2.5 When can they be useful?

There are a few situations where masked arrays can be more useful than just eliminating the invalid entries of an array:

• When you want to preserve the values you masked for later processing, without copying the array;
• When you have to handle many arrays, each with their own mask. If the mask is part of the array, you avoid bugs and the code is possibly more compact;
• When you have different flags for missing or invalid values, and wish to preserve these flags without replacing them in the original dataset, but exclude them from computations;
• If you can't avoid or eliminate missing values, but don't want to deal with NaN (Not A Number) values in your operations.

Masked arrays are also a good idea since the numpy.ma module also comes with a specific implementation of most NumPy universal functions (ufuncs), which means that you can still apply fast vectorized functions and operations on masked data. The output is then a masked array. We'll see some examples of how this works in practice below.

9.2.6 Using masked arrays to see COVID-19 data

From Kaggle it is possible to download a dataset with initial data about the COVID-19 outbreak in the beginning of 2020. We are going to look at a small subset of this data, contained in the file who_covid_19_sit_rep_time_series.csv.

```python
In [1]: import numpy as np
In [2]: import os

# The os.getcwd() function returns the current folder; you can change
# the filepath variable to point to the folder where you saved the .csv file
In [3]: filepath = os.getcwd()

In [4]: filename = os.path.join(filepath, "who_covid_19_sit_rep_time_series.csv")
```
The data file contains data of different types and is organized as follows:

- The first row is a header line that (mostly) describes the data in each column that follow in the rows below, and beginning in the fourth column, the header is the date of the observation.
- The second through seventh row contain summary data that is of a different type than that which we are going to examine, so we will need to exclude that from the data with which we will work.
- The numerical data we wish to work with begins at column 4, row 8, and extends from there to the rightmost column and the lowermost row.

Let's explore the data inside this file for the first 14 days of records. To gather data from the .csv file, we will use the `numpy.genfromtxt` function, making sure we select only the columns with actual numbers instead of the first three columns which contain location data. We also skip the first 7 rows of this file, since they contain other data we are not interested in. Separately, we will extract the information about dates and location for this data.

```python
# Note we are using skip_header and usecols to read only portions of the 
# data file into each variable.
# Read just the dates for columns 3-7 from the first row
In [5]: dates = np.genfromtxt(filename, dtype=np.unicode_, delimiter=",", 
                      max_rows=1, usecols=range(3, 17), 
                      encoding="utf-8-sig")

# Read the names of the geographic locations from the first two 
# columns, skipping the first seven rows
In [6]: locations = np.genfromtxt(filename, dtype=np.unicode_, delimiter=",", 
                           skip_header=7, usecols=(0, 1), 
                           encoding="utf-8-sig")

# Read the numeric data from just the first 14 days
In [7]: nbcases = np.genfromtxt(filename, dtype=np.int_, delimiter=",", 
                           skip_header=7, usecols=range(3, 17), 
                           encoding="utf-8-sig")
```

Included in the `numpy.genfromtxt` function call, we have selected the `numpy.dtype` for each subset of the data (either an integer - `numpy.int_` - or a string of characters - `numpy.unicode_`). We have also used the `encoding` argument to select `utf-8-sig` as the encoding for the file (read more about encoding in the official Python documentation). You can read more about the `numpy.genfromtxt` function from the Reference Documentation or from the Basic IO tutorial.

9.2.7 Exploring the data

First of all, we can plot the whole set of data we have and see what it looks like. In order to get a readable plot, we select only a few of the dates to show in our x-axis ticks. Note also that in our plot command, we use `nbcases.T` (the transpose of the `nbcases` array) since this means we will plot each row of the file as a separate line. We choose to plot a dashed line (using the '--' line style). See the matplotlib documentation for more info on this.

```python
In [8]: import matplotlib.pyplot as plt

In [9]: selected_dates = [0, 3, 11, 13]

In [10]: plt.plot(dates, nbcases.T, '--');

In [11]: plt.xticks(selected_dates, dates[selected_dates]);
```
In [12]: plt.title("COVID-19 cumulative cases from Jan 21 to Feb 3 2020");

Note: If you are executing the commands above in the IPython shell, it might be necessary to use the command `plt.show()` to show the image window. Note also that we use a semicolon at the end of a line to suppress its output, but this is optional.

The graph has a strange shape from January 24th to February 1st. It would be interesting to know where this data comes from. If we look at the `locations` array we extracted from the `.csv` file, we can see that we have two columns, where the first would contain regions and the second would contain the name of the country. However, only the first few rows contain data for the first column (province names in China). Following that, we only have country names. So it would make sense to group all the data from China into a single row. For this, we'll select from the `nbcases` array only the rows for which the second entry of the `locations` array corresponds to China. Next, we'll use the `numpy.sum` function to sum all the selected rows (axis=0):

In [13]: china_total = nbcases[locations[:, 1] == 'China'].sum(axis=0)

In [14]: china_total
Out[14]:
array([247, 288, 556, 817, -22, -22, -15, -10, -9, -7, -4, 11820, 14410, 17237])

Something's wrong with this data - we are not supposed to have negative values in a cumulative data set. What's going on?
9.2.8 Missing data

Looking at the data, here’s what we find: there is a period with missing data:

```
In [15]: nbcases
Out[15]:
array([[ 258,  270,  375, ...,  7153,  9074, 11177],
       [  14,   17,   26, ...,   520,   604,   683],
       [-1,   1,   1, ...,   422,   493,   566],
       ...,
       [-1, -1, -1, ..., -1, -1, -1],
       [-1, -1, -1, ..., -1, -1, -1],
       [-1, -1, -1, ..., -1, -1, -1]],
      mask=[[False, False, False, ..., False, False, False],
       [False, False, False, ..., False, False, False],
       [ True, False, False, ..., False, False, False],
       ...,
       [ True, True, True, ..., True, True, True],
       [ True, True, True, ..., True, True, True],
       [ True, True, True, ..., True, True, True]],
      fill_value=-1])
```

All the -1 values we are seeing come from `numpy.genfromtxt` attempting to read missing data from the original .csv file. Obviously, we don’t want to compute missing data as -1 - we just want to skip this value so it doesn’t interfere in our analysis. After importing the `numpy.ma` module, we’ll create a new array, this time masking the invalid values:

```
In [16]: from numpy import ma
In [17]: nbcases_ma = ma.masked_values(nbcases, -1)
```

If we look at the `nbcases_ma` masked array, this is what we have:

```
In [18]: nbcases_ma
Out[18]:
masked_array(
    data=[[258, 270, 375, ..., 7153, 9074, 11177],
          [14, 17, 26, ..., 520, 604, 683],
          [-1, 1, 1, ..., 422, 493, 566],
          ...,
          [-1, -1, -1, ..., -1, -1, -1],
          [-1, -1, -1, ..., -1, -1, -1],
          [-1, -1, -1, ..., -1, -1, -1]],
    mask=[[False, False, False, ..., False, False, False],
          [False, False, False, ..., False, False, False],
          [ True, False, False, ..., False, False, False],
          ...,
          [ True, True, True, ..., True, True, True],
          [ True, True, True, ..., True, True, True],
          [ True, True, True, ..., True, True, True]],
    fill_value=-1)
```

We can see that this is a different kind of array. As mentioned in the introduction, it has three attributes (`data`, `mask` and `fill_value`). Keep in mind that the `mask` attribute has a `True` value for elements corresponding to invalid data (represented by two dashes in the `data` attribute).

Note: Adding -1 to missing data is not a problem with `numpy.genfromtxt`; in this particular case, substituting the missing value with 0 might have been fine, but we’ll see later that this is far from a general solution. Also, it is possible to call the `numpy.genfromtxt` function using the `usemask` parameter. If `usemask=True`, `numpy.genfromtxt` automatically returns a masked array.

Let’s try and see what the data looks like excluding the first row (data from the Hubei province in China) so we can look at the missing data more closely:
In [19]: `plt.plot(dates, nbcases_ma[:,1].T, '--');`
In [20]: `plt.xticks(selected_dates, dates[selected_dates]);`
In [21]: `plt.title("COVID-19 cumulative cases from Jan 21 to Feb 3 2020");`

Now that our data has been masked, let's try summing up all the cases in China:

In [22]: `china_masked = nbcases_ma[locations[:, 1] == 'China'].sum(axis=0)`
In [23]: `china_masked`
Out[23]:

```
masked_array(data=[278, 309, 574, 835, 10, 10, 17, 22, 23, 25, 28, 11821, 14411, 17238],
             mask=[False, False, False],
             fill_value=999999)
```

Note that `china_masked` is a masked array, so it has a different data structure than a regular NumPy array. Now, we can access its data directly by using the `.data` attribute:

In [24]: `china_total = china_masked.data`
In [25]: `china_total`
Out[25]:

```
array([ 278, 309, 574, 835, 10, 10, 17, 22, 23, 25, 28, 11821, 14411, 17238])
```

That is better: no more negative values. However, we can still see that for some days, the cumulative number of cases seems to go down (from 835 to 10, for example), which does not agree with the definition of “cumulative data”. If we look more closely at the data, we can see that in the period where there was missing data in mainland China, there was valid data for Hong Kong, Taiwan, Macau and “Unspecified” regions of China. Maybe we can remove those from the total sum of cases in China, to get a better understanding of the data.

First, we'll identify the indices of locations in mainland China:
In [26]: china_mask = (locations[:, 1] == 'China') &
.....: (locations[:, 0] != 'Hong Kong') &
.....: (locations[:, 0] != 'Taiwan') &
.....: (locations[:, 0] != 'Macau') &
.....: (locations[:, 0] != 'Unspecified'))

Now, china_mask is an array of boolean values (True or False); we can check that the indices are what we wanted with the `ma.nonzero` method for masked arrays:

In [27]: china_mask.nonzero()
Out[27]:
(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33]),)

Now we can correctly sum entries for mainland China:

In [28]: china_total = nbcases_ma[china_mask].sum(axis=0)

In [29]: china_total
Out[29]:
masked_array(data=[278, 308, 440, 446, --, --, --, --, --, --, --, 11791,
 14380, 17205],
 mask=[False, False, False, False, True, True, True, True, True, True, True, False],
 fill_value=999999)

We can replace the data with this information and plot a new graph, focusing on Mainland China:

In [30]: plt.plot(dates, china_total.T, '--');

In [31]: plt.xticks(selected_dates, dates[selected_dates]);

In [32]: plt.title("COVID-19 cumulative cases from Jan 21 to Feb 3 2020 - Mainland China");

It's clear that masked arrays are the right solution here. We cannot represent the missing data without mischaracterizing the evolution of the curve.
9.2.9 Fitting Data

One possibility we can think of is to interpolate the missing data to estimate the number of cases in late January. Observe that we can select the masked elements using the `.mask` attribute:

```python
In [33]: china_total.mask
Out[33]:
array([False, False, False, False,  True,  True,  True,  True,
      True,  True, False, False], dtype=bool)
```

```python
In [34]: invalid = china_total[china_total.mask]
```

```python
In [35]: valid
Out[35]:
masked_array(data=[278, 308, 440, 446, 11791, 14380, 17205],
             mask=[False, False, False, False, False, False, False],
            fill_value=999999)
```

Now, if we want to create a very simple approximation for this data, we should take into account the valid entries around the invalid ones. So first let’s select the dates for which the data is valid. Note that we can use the mask from the `china_total` masked array to index the dates array:

```python
In [38]: dates[~china_total.mask]
Out[38]:
array(['1/21/20', '1/22/20', '1/23/20', '1/24/20', '2/1/20', '2/2/20',
      '2/3/20'], dtype='<U7')
```

Finally, we can use the `numpy.polyfit` and `numpy.polyval` functions to create a cubic polynomial that fits the data as best as possible:

```python
In [39]: t = np.arange(len(china_total))

In [40]: params = np.polyfit(t[~china_total.mask], valid, 3)

In [41]: cubic_fit = np.polyval(params, t)

In [42]: plt.plot(t, china_total);

In [43]: plt.plot(t, cubic_fit, '--');
```
This plot is not so readable since the lines seem to be over each other, so let’s summarize in a more elaborate plot. We’ll plot the real data when available, and show the cubic fit for unavailable data, using this fit to compute an estimate to the observed number of cases on January 28th 2020, 7 days after the beginning of the records:

```python
In [44]: plt.plot(t, china_total);

In [45]: plt.plot(t[china_total.mask], cubic_fit[china_total.mask], '--', color='orange');

In [46]: plt.plot(7, np.polyval(params, 7), 'r*');

In [47]: plt.xticks([0, 7, 13], dates[[0, 7, 13]]);

In [48]: plt.yticks([0, np.polyval(params, 7), 10000, 17500]);

In [49]: plt.legend(['Mainland China', 'Cubic estimate', '7 days after start']);

In [50]: plt.title("COVID-19 cumulative cases from Jan 21 to Feb 3 2020 - Mainland China
    Cubic estimate for 7 days after start");
```
9.2.10 More reading

Topics not covered in this tutorial can be found in the documentation:

- Hardmasks vs. softmasks
- The numpy.ma module
10.1 How to write a NumPy how-to

How-tos get straight to the point – they
• answer a focused question, or
• narrow a broad question into focused questions that the user can choose among.

10.1.1 A stranger has asked for directions...

“I need to refuel my car.”

10.1.2 Give a brief but explicit answer

• “Three kilometers/miles, take a right at Hayseed Road, it’s on your left.”

Add helpful details for newcomers (“Hayseed Road”, even though it’s the only turnoff at three km/mi). But not irrelevant ones:
• Don’t also give directions from Route 7.
• Don’t explain why the town has only one filling station.

If there’s related background (tutorial, explanation, reference, alternative approach), bring it to the user’s attention with a link (“Directions from Route 7,” “Why so few filling stations?”).

10.1.3 Delegate

• “Three km/mi, take a right at Hayseed Road, follow the signs.”

If the information is already documented and succinct enough for a how-to, just link to it, possibly after an introduction (“Three km/mi, take a right”).
10.1.4 If the question is broad, narrow and redirect it

“I want to see the sights.”
The *See the sights* how-to should link to a set of narrower how-tos:

- Find historic buildings
- Find scenic lookouts
- Find the town center

and these might in turn link to still narrower how-tos – so the town center page might link to

- Find the court house
- Find city hall

By organizing how-tos this way, you not only display the options for people who need to narrow their question, you also have provided answers for users who start with narrower questions (“I want to see historic buildings,” “Which way to city hall?”).

10.1.5 If there are many steps, break them up

If a how-to has many steps:

- Consider breaking a step out into an individual how-to and linking to it.
- Include subheadings. They help readers grasp what’s coming and return where they left off.

10.1.6 Why write how-tos when there’s Stack Overflow, Reddit, Gitter…?

- We have authoritative answers.
- How-tos make the site less forbidding to non-experts.
- How-tos bring people into the site and help them discover other information that’s here.
- Creating how-tos helps us see NumPy usability through new eyes.

10.1.7 Aren’t how-tos and tutorials the same thing?

People use the terms “how-to” and “tutorial” interchangeably, but we draw a distinction, following Daniele Procida’s taxonomy of documentation.

Documentation needs to meet users where they are. *How-tos* offer get-it-done information: the user wants steps to copy and doesn’t necessarily want to understand NumPy. *Tutorials* are warm-fuzzy information; the user wants a feel for some aspect of NumPy (and again, may or may not care about deeper knowledge).

We distinguish both tutorials and how-tos from *Explanations*, which are deep dives intended to give understanding rather than immediate assistance, and *References*, which give complete, authoritative data on some concrete part of NumPy (like its API) but aren’t obligated to paint a broader picture.

For more on tutorials, see the tutorial how-to.
10.1.8 Is this page an example of a how-to?

Yes – until the sections with question-mark headings; they explain rather than giving directions. In a how-to, those would be links.

10.2 Reading and writing files

This page tackles common applications; for the full collection of I/O routines, see routines.io.

10.2.1 Reading text and CSV files

With no missing values

Use `numpy.loadtxt`.

With missing values

Use `numpy.genfromtxt`.

`numpy.genfromtxt` will either

- return a masked array **masking out missing values** (if `usemask=True`), or
- fill in the **missing value** with the value specified in `filling_values` (default is `np.nan` for float, -1 for int).

With non-whitespace delimiters

```python
>>> print(open("csv.txt").read())
1, 2, 3
4,, 6
7, 8, 9
```

Masked-array output

```python
>>> np.genfromtxt("csv.txt", delimiter=",", usemask=True)
masked_array(
    data=[[1.0, 2.0, 3.0],
        [4.0, --, 6.0],
        [7.0, 8.0, 9.0]],
    mask=[[False, False, False],
        [False, True, False],
        [False, False, False]],
    fill_value=1e+20)
```
Array output

```python
>>> np.genfromtxt("csv.txt", delimiter=",")
array([[ 1.,  2.,  3.],
       [ 4., nan,  6.],
       [ 7.,  8.,  9.]]
```

Array output, specified fill-in value

```python
>>> np.genfromtxt("csv.txt", delimiter=",", dtype=np.int8, filling_values=99)
array([[ 1,  2,  3],
       [ 4, 99,  6],
       [ 7,  8,  9]], dtype=int8)
```

Whitespace-delimited

`numpy.genfromtxt` can also parse whitespace-delimited data files that have missing values if

- Each field has a fixed width: Use the width as the `delimiter` argument.

```python
# File with width=4. The data does not have to be justified (for example, 
# the 2 in row 1, the last column can be less than width (for example, the 6 
# in row 2), and no delimiting character is required (for instance 8888 and 9 
# in row 3)

>>> f = open("fixedwidth.txt").read()  # doctest: +SKIP
>>> print(f)  # doctest: +SKIP
1  2  3
44  6
7  88889

# Showing spaces as ^

>>> print(f.replace(" ", "^"))  # doctest: +SKIP
1^^^^2^^^^3
44^^^^6
7^^^^88889

>>> np.genfromtxt("fixedwidth.txt", delimiter=4)  # doctest: +SKIP
array([[1.000e+00, 2.000e+00, 3.000e+00],
       [4.400e+01, nan, 6.000e+00],
       [7.000e+00, 8.888e+03, 9.000e+00]])
```

- A special value (e.g. “x”) indicates a missing field: Use it as the `missing_values` argument.

```python
>>> print(open("nan.txt").read())
1 2 3
44 x 6
7 8888 9

>>> np.genfromtxt("nan.txt", missing_values="x")
array([[1.000e+00, 2.000e+00, 3.000e+00],
       [4.400e+01, nan, 6.000e+00],
       [7.000e+00, 8.888e+03, 9.000e+00]])
```

- You want to skip the rows with missing values: Set `invalid_raise=False`.
• The delimiter whitespace character is different from the whitespace that indicates missing data. For instance, if columns are delimited by \t, then missing data will be recognized if it consists of one or more spaces.

```
>>> f = open("tabs.txt").read()
>>> print(f.read())
1 2 3
44 6
7 888 9

# Tabs vs. spaces
>>> print(f.replace("\t","\n"))
1\n2\n3
44\n6
7\n888\n9
```

10.2.2 Read a file in .npy or .npz format

Choices:

• Use `numpy.load`. It can read files generated by any of `numpy.save`, `numpy.savez`, or `numpy.savez_compressed`.

• Use memory mapping. See `numpy.lib.format.open_memmap`.

10.2.3 Write to a file to be read back by NumPy

Binary

Use `numpy.save`, or to store multiple arrays `numpy.savez` or `numpy.savez_compressed`.

For security and portability, set `allow_pickle=False` unless the dtype contains Python objects, which requires pickling.

Masked arrays can’t currently be saved, nor can other arbitrary array subclasses.
Human-readable

numpy.save and numpy.savez create binary files. To write a human-readable file, use numpy.savetxt. The array can only be 1- or 2-dimensional, and there’s no ‘savetx’ for multiple files.

Large arrays

See Write or read large arrays.

10.2.4 Read an arbitrarily formatted binary file (“binary blob”)

Use a structured array.

Example:

The .wav file header is a 44-byte block preceding data_size bytes of the actual sound data:

```
chunk_id     "RIFF"
chunk_size   4-byte unsigned little-endian integer
format       "WAVE"
fmt_id       "fmt 
fmt_size     4-byte unsigned little-endian integer
audio_fmt    2-byte unsigned little-endian integer
num_channels 2-byte unsigned little-endian integer
sample_rate  4-byte unsigned little-endian integer
byte_rate    4-byte unsigned little-endian integer
block_align  2-byte unsigned little-endian integer
bits_per_sample 2-byte unsigned little-endian integer
data_id      "data"
data_size    4-byte unsigned little-endian integer
```

The .wav file header as a NumPy structured dtype:

```
wav_header_dtype = np.dtype([
    ("chunk_id", (bytes, 4)),     # flexible-sized scalar type, item size 4
    ("chunk_size", "<u4"),      # little-endian unsigned 32-bit integer
    ("format", "S4"),           # 4-byte string, alternate spelling of (bytes, 4)
    ("fmt_id", "S4"),
    ("fmt_size", "<u4"),
    ("audio_fmt", "<u2"),      # .. more of the same ...
    ("num_channels", "<u2"),
    ("sample_rate", "<u4"),
    ("byte_rate", "<u4"),
    ("block_align", "<u2"),
    ("bits_per_sample", "<u2"),
    ("data_id", "S4"),
    ("data_size", "<u4"),
    
    # the sound data itself cannot be represented here:
    # it does not have a fixed size
])
```

header = np.fromfile(f, dtype=wav_header_dtype, count=1)[0]
```

This .wav example is for illustration; to read a .wav file in real life, use Python’s built-in module wave.

(Adapted from Pauli Virtanen, Advanced NumPy, licensed under CC BY 4.0.)
10.2.5 Write or read large arrays

Arrays too large to fit in memory can be treated like ordinary in-memory arrays using memory mapping.

- Raw array data written with `numpy.ndarray.tofile` or `numpy.ndarray.tobytes` can be read with `numpy.memmap`:

  ```python
 array = numpy.memmap("mydata/myarray.arr", mode="r", dtype=np.int16, shape=(1024,...)
  ```

- Files output by `numpy.save` (that is, using the numpy format) can be read using `numpy.load` with the `mmap_mode` keyword argument:

  ```python
 large_array[some_slice] = np.load("path/to/small_array", mmap_mode="r")
  ```

Memory mapping lacks features like data chunking and compression; more full-featured formats and libraries usable with NumPy include:

- **HDF5**: h5py or PyTables.
- **Zarr**: here.
- **NetCDF**: `scipy.io.netcdf_file`.

For tradeoffs among memmap, Zarr, and HDF5, see pythonspeed.com.

10.2.6 Write files for reading by other (non-NumPy) tools

Formats for exchanging data with other tools include HDF5, Zarr, and NetCDF (see Write or read large arrays).

10.2.7 Write or read a JSON file

NumPy arrays are not directly JSON serializable.

10.2.8 Save/restore using a pickle file

Avoid when possible; pickles are not secure against erroneous or maliciously constructed data.

Use `numpy.save` and `numpy.load`. Set `allow_pickle=False`, unless the array dtype includes Python objects, in which case pickling is required.

10.2.9 Convert from a pandas DataFrame to a NumPy array

See `pandas.DataFrame.to_numpy`.
10.2.10 Save/restore using tofile and fromfile

In general, prefer `numpy.save` and `numpy.load`.

`numpy.ndarray.tofile` and `numpy.fromfile` lose information on endianness and precision and so are unsuitable for anything but scratch storage.
These documents are intended to explain in detail the concepts and techniques used in NumPy. For the reference documentation of the functions and classes contained in the package, see the API reference.
The purpose of the F2PY – *Fortran to Python interface generator* – is to provide a connection between Python and Fortran languages. F2PY is a part of NumPy (numpy.f2py) and also available as a standalone command line tool f2py when numpy is installed that facilitates creating/building Python C/API extension modules that make it possible:

- to call Fortran 77/90/95 external subroutines and Fortran 90/95 module subroutines as well as C functions;
- to access Fortran 77 COMMON blocks and Fortran 90/95 module data, including allocatable arrays from Python.

12.1 **Three ways to wrap - getting started**

Wrapping Fortran or C functions to Python using F2PY consists of the following steps:

- Creating the so-called signature file that contains descriptions of wrappers to Fortran or C functions, also called as signatures of the functions. In the case of Fortran routines, F2PY can create initial signature file by scanning Fortran source codes and catching all relevant information needed to create wrapper functions.
- Optionally, F2PY created signature files can be edited to optimize wrappers functions, make them “smarter” and more “Pythonic”.
- F2PY reads a signature file and writes a Python C/API module containing Fortran/C/Python bindings.
- F2PY compiles all sources and builds an extension module containing the wrappers. In building extension modules, F2PY uses numpy_distutils that supports a number of Fortran 77/90/95 compilers, including Gnu, Intel, Sun Fortre, SGI MIPSpro, Absoft, NAG, Compaq etc. compilers.

Depending on a particular situation, these steps can be carried out either by just in one command or step-by-step, some steps can be omitted or combined with others.

Below I’ll describe three typical approaches of using F2PY. The following example Fortran 77 code will be used for illustration, save it as fib1.f:

```fortran
C FILE: FIB1.F

SUBROUTINE FIB(A,N)

C CALCULATE FIRST N FIBONACCI NUMBERS

INTEGER N
REAL*8 A(N)
DO I=1,N
 IF (I.EQ.1) THEN
 A(I) = 0.0D0
 ELSEIF (I.EQ.2) THEN
 A(I) = 1.0D0
 ELSE
 A(I) = A(I-1) + A(I-2)
 END IF

END
```

(continues on next page)
A(I) = 1.0D0
ELSE
   A(I) = A(I-1) + A(I-2)
ENDIF
ENDDO
END
C END FILE FIB1.F

12.1.1 The quick way

The quickest way to wrap the Fortran subroutine \texttt{FIB} to Python is to run

```
python -m numpy.f2py -c fib1.f -m fib1
```

This command builds (see \texttt{--c} flag, execute \texttt{python -m numpy.f2py} without arguments to see the explanation of command line options) an extension module \texttt{fib1.so} (see \texttt{--m} flag) to the current directory. Now, in Python the Fortran subroutine \texttt{FIB} is accessible via \texttt{fib1.fib}:

```python
>>> import numpy
>>> import fib1
>>> print(fib1.fib.__doc__)

Wrapper for `fib`.

Parameters

a : input rank-1 array(`d`) with bounds (n)

Other Parameters

n : input int, optional
 Default: len(a)

>>> a = numpy.zeros(8, 'd')
>>> fib1.fib(a)
>>> print(a)
[0. 1. 1. 2. 3. 5. 8. 13.]
```

Note:

- Note that F2PY found that the second argument \texttt{n} is the dimension of the first array argument \texttt{a}. Since by default all arguments are input-only arguments, F2PY concludes that \texttt{n} can be optional with the default value \texttt{len(a)}.
- One can use different values for optional \texttt{n}:

```
>>> a1 = numpy.zeros(8, 'd')
>>> fib1.fib(a1, 6)
>>> print(a1)
[0. 1. 1. 2. 3. 5. 0. 0.]
```

but an exception is raised when it is incompatible with the input array \texttt{a}:
F2PY implements basic compatibility checks between related arguments in order to avoid any unexpected crashes.

- When a NumPy array, that is Fortran contiguous and has a dtype corresponding to presumed Fortran type, is used as an input array argument, then its C pointer is directly passed to Fortran.

Otherwise F2PY makes a contiguous copy (with a proper dtype) of the input array and passes C pointer of the copy to Fortran subroutine. As a result, any possible changes to the (copy of) input array have no effect to the original argument, as demonstrated below:

```python
global fib1
fib1 = numpy.load_library("fib1.so")
glob.fib = fib1.fib

>>> a = numpy.arange(8)
>>> fib1.fib(a)
```

Clearly, this is not an expected behaviour. The fact that the above example worked with dtype=float is considered accidental.

F2PY provides `intent(inplace)` attribute that would modify the attributes of an input array so that any changes made by Fortran routine will be effective also in input argument. For example, if one specifies `intent(inplace)` a (see below, how), then the example above would read:

```python
global fib1
fib1 = numpy.load_library("fib1.so")
glob.fib = fib1.fib

>>> a = numpy.arange(8)
>>> fib1.fib(a)
```

However, the recommended way to get changes made by Fortran subroutine back to Python is to use `intent(out)` attribute. It is more efficient and a cleaner solution.

- The usage of `fib1.fib` in Python is very similar to using `FIB` in Fortran. However, using `in situ` output arguments in Python indicates a poor style as there is no safety mechanism in Python with respect to wrong argument types. When using Fortran or C, compilers naturally discover any type mismatches during compile time but in Python the types must be checked in runtime. So, using `in situ` output arguments in Python may cause difficult to find bugs, not to mention that the codes will be less readable when all required type checks are implemented.

Though the demonstrated way of wrapping Fortran routines to Python is very straightforward, it has several drawbacks (see the comments above). These drawbacks are due to the fact that there is no way that F2PY can determine what is the actual intention of one or the other argument, is it input or output argument, or both, or something else. So, F2PY conservatively assumes that all arguments are input arguments by default.

However, there are ways (see below) how to “teach” F2PY about the true intentions (among other things) of function arguments; and then F2PY is able to generate more Pythonic (more explicit, easier to use, and less error prone) wrappers to Fortran functions.
12.1.2 The smart way

Let's apply the steps of wrapping Fortran functions to Python one by one.

- First, we create a signature file from `fib1.f` by running

  ```
 python -m numpy.f2py fib1.f -m fib2 -h fib1.pyf
  ```

  The signature file is saved to `fib1.pyf` (see -h flag) and its contents is shown below.

  ```
 ! -*- f90 -*-
 python module fib2 ! in
 interface ! in :fib2
 subroutine fib(a,n) ! in :fib2:fib1.f
 real*8 dimension(n) :: a
 integer optional,check(len(a)>=n),depend(a) :: n=len(a)
 end subroutine fib
 end interface
end python module fib2

! This file was auto-generated with f2py (version:2.28.198-1366).
! See http://cens.ioc.ee/projects/f2py2e/
  ```

- Next, we'll teach F2PY that the argument `n` is an input argument (use intent(in) attribute) and that the result, i.e. the contents of `a` after calling Fortran function `FIB`, should be returned to Python (use intent(out) attribute). In addition, an array `a` should be created dynamically using the size given by the input argument `n` (use depend(n) attribute to indicate dependence relation).

  The content of a modified version of `fib1.pyf` (saved as `fib2.pyf`) is as follows:

  ```
 ! -*- f90 -*-
 python module fib2
 interface
 subroutine fib(a,n)
 real*8 dimension(n),intent(out),depend(n) :: a
 integer intent(in) :: n
 end subroutine fib
 end interface
end python module fib2
  ```

- And finally, we build the extension module by running

  ```
 python -m numpy.f2py -c fib2.pyf fib1.f
  ```

In Python:

```python
>>> import fib2
>>> print(fib2.fib.__doc__)
a = fib(n)

Wrapper for `fib`.

Parameters

n : input int

Returns

(continues on next page)
```
a : rank-1 array('d') with bounds (n)

```python
>>> print(fib2.fib(8))
[0. 1. 1. 2. 3. 5. 8. 13.]
```

Note:

- Clearly, the signature of `fib2.fib` now corresponds to the intention of Fortran subroutine `FIB` more closely: given the number `n`, `fib2.fib` returns the first `n` Fibonacci numbers as a NumPy array. Also, the new Python signature `fib2.fib` rules out any surprises that we experienced with `fib1.fib`.

- Note that by default using single `intent(out)` also implies `intent(hide)`. Arguments that have the `intent(hide)` attribute specified will not be listed in the argument list of a wrapper function.

### 12.1.3 The quick and smart way

The “smart way” of wrapping Fortran functions, as explained above, is suitable for wrapping (e.g. third party) Fortran codes for which modifications to their source codes are not desirable nor even possible.

However, if editing Fortran codes is acceptable, then the generation of an intermediate signature file can be skipped in most cases. Namely, F2PY specific attributes can be inserted directly to Fortran source codes using the so-called F2PY directive. A F2PY directive defines special comment lines (starting with `Cf2py`, for example) which are ignored by Fortran compilers but F2PY interprets them as normal lines.

Here is shown a modified version of the previous Fortran code, save it as `fib3.f`:

```fortran
C FILE: FIB3.F
 SUBROUTINE FIB(A,N)
C
C CALCULATE FIRST N FIBONACCI NUMBERS
C
C INTEGER N
C REAL*8 A(N)
Cf2py intent(in) n
Cf2py intent(out) a
Cf2py depend(n) a
DO I=1,N
 IF (I.EQ.1) THEN
 A(I) = 0.0D0
 ELSEIF (I.EQ.2) THEN
 A(I) = 1.0D0
 ELSE
 A(I) = A(I-1) + A(I-2)
 ENDIF
ENDDO
C END FILE FIB3.F
```

Building the extension module can be now carried out in one command:

```
python -m numpy.f2py -c -m fib3 fib3.f
```

Notice that the resulting wrapper to `FIB` is as “smart” as in previous case:
>>> import fib3
>>> print(fib3.fib.__doc__)
a = fib(n)

Wrapper for ``fib``.

Parameters
---------
n : input int

Returns
-------
a : rank-1 array('d') with bounds (n)

>>> print(fib3.fib(8))
[ 0. 1. 1. 2. 3. 5. 8. 13.]

12.2 Signature file

The syntax specification for signature files (.pyf files) is borrowed from the Fortran 90/95 language specification. Almost all Fortran 90/95 standard constructs are understood, both in free and fixed format (recall that Fortran 77 is a subset of Fortran 90/95). F2PY introduces also some extensions to Fortran 90/95 language specification that help designing Fortran to Python interface, make it more “Pythonic”.

Signature files may contain arbitrary Fortran code (so that Fortran codes can be considered as signature files). F2PY silently ignores Fortran constructs that are irrelevant for creating the interface. However, this includes also syntax errors. So, be careful not making ones ;-).

In general, the contents of signature files is case-sensitive. When scanning Fortran codes and writing a signature file, F2PY lowers all cases automatically except in multiline blocks or when --no-lower option is used.

The syntax of signature files is presented below.

12.2.1 Python module block

A signature file may contain one (recommended) or more python module blocks. python module block describes the contents of a Python/C extension module <modulename>module.c that F2PY generates.

Exception: if <modulename> contains a substring __user__, then the corresponding python module block describes the signatures of so-called call-back functions (see Call-back arguments).

A python module block has the following structure:

```python
python module <modulename>
[<usercode statement>]...
[interface
 <usercode statement>
 <Fortran block data signatures>
 <Fortran/C routine signatures>
end [interface]
]...
[interface
```
Here brackets [ ] indicate an optional part, dots ... indicate one or more of a previous part. So, [...]... reads zero or more of a previous part.

12.2.2 Fortran/C routine signatures

The signature of a Fortran routine has the following structure:

```
<typespec> function | subroutine <routine name> \
[([[arguments]])] [result (<entityname>)]
[argument/variable type declarations]
[argument/variable attribute statements]
[use statements]
[common block statements]
[other statements]
end [function | subroutine [<routine name>]]
```

From a Fortran routine signature F2PY generates a Python/C extension function that has the following signature:

```
def <routine name>({required arguments}[,<optional arguments]>):
 ...
 return <return variables>
```

The signature of a Fortran block data has the following structure:

```
block data [<block data name>]
[variable type declarations]
[variable attribute statements]
[use statements]
[common block statements]
[include statements]
end [block data [<block data name>]]
```

**Type declarations**

The definition of the <argument/variable type declaration> part is

```
<typespec> [[<attrspec>] ::] <entitydecl>
```

where

```
<typespec> := byte | character [<charselector>]
 | complex [<kindselector>] | real [<kindselector>]
 | double complex | double precision
 | integer [<kindselector>] | logical [<kindselector>]
```

(continues on next page)
and

- `<attrspec>` is a comma separated list of attributes;
- `<arrayspec>` is a comma separated list of dimension bounds;
- `<init_expr>` is a C expression.
- `<intlen>` may be negative integer for integer type specifications. In such cases `integer*<negintlen>` represents unsigned C integers.

If an argument has no `<argument type declaration>`, its type is determined by applying implicit rules to its name.

**Statements**

**Attribute statements:**

The `<argument/variable attribute statement>` is `<argument/variable type declaration>` without `<typespec>`. In addition, in an attribute statement one cannot use other attributes, also `<entitydecl>` can be only a list of names.

**Use statements:**

The definition of the `<use statement>` part is

```plaintext
use <modulename> [, <rename_list> | , ONLY : <only_list>]
```

where

```plaintext
<rename_list> := <local_name> => <use_name> [, <rename_list>]
```

Currently F2PY uses use statement only for linking call-back modules and external arguments (call-back functions), see Call-back arguments.

**Common block statements:**

The definition of the `<common block statement>` part is

```plaintext
common / <common name> / <shortentitydecl>
```

where

```plaintext
<shortentitydecl> := <name> [(<arrayspec>)] [, <shortentitydecl>]
```

If a python module block contains two or more common blocks with the same name, the variables from the additional declarations are appended. The types of variables in `<shortentitydecl>` are defined using `<argument type declarations>`. Note that the corresponding `<argument`
type declarations> may contain array specifications; then you don’t need to specify these in
<shortentitydecl>.

Other statements:

The <other statement> part refers to any other Fortran language constructs that are not described above.
F2PY ignores most of them except

• **call statements and function calls of external arguments** (*more details*?);
• **include statements**

```fortran
include '<filename>'
include "<filename>"
```

If a file <filename> does not exist, the include statement is ignored. Otherwise, the file
<filename> is included to a signature file. include statements can be used in any part of a signature
file, also outside the Fortran/C routine signature blocks.

• **implicit statements**

```fortran
implicit none
implicit <list of implicit maps>
```

where

<implicit map> := <typespec> ( <list of letters or range of letters> )

Implicit rules are used to determine the type specification of a variable (from the first-letter of its name) if
the variable is not defined using <variable type declaration>. Default implicit rule is given
by

```fortran
implicit real (a-h,o-z,$_), integer (i-m)
```

• **entry statements**

```fortran
entry <entry name> [[{[<arguments>]}]]
```

F2PY generates wrappers to all entry names using the signature of the routine block.

Tip: entry statement can be used to describe the signature of an arbitrary routine allowing F2PY to
generate a number of wrappers from only one routine block signature. There are few restrictions while
doing this: fortranname cannot be used, callstatement and callprotoargument can be
used only if they are valid for all entry routines, etc.

In addition, F2PY introduces the following statements:

• **threadsafe**

Use Py_BEGIN_ALLOW_THREADS .. Py_END_ALLOW_THREADS block around the call to For-
tran/C function.

• **callstatement <C-expr|multi-line block>**

Replace F2PY generated call statement to Fortran/C function with <C-expr|multi-line
block>. The wrapped Fortran/C function is available as (*f2py_func). To raise an exception,
set f2py_success = 0 in <C-expr|multi-line block>.

• **callprotoargument <C-typespecs>**

When callstatement statement is used then F2PY may not generate proper prototypes for For-
tran/C functions (because <C-expr> may contain any function calls and F2PY has no way to determine
what should be the proper prototype). With this statement you can explicitly specify the arguments of
the corresponding prototype:

```c
extern <return type> FUNC_F(<routine name>,<ROUTINE NAME>)(
 ←<callprotoargument>);
```

• fortranname [<actual Fortran/C routine name>]

You can use arbitrary <routine name> for a given Fortran/C function. Then you have to specify
<actual Fortran/C routine name> with this statement.

If fortranname statement is used without <actual Fortran/C routine name> then a
dummy wrapper is generated.

• usercode <multi-line block>

When used inside python module block, then given C code will be inserted to generated C/API
source just before wrapper function definitions. Here you can define arbitrary C functions to be used in
initialization of optional arguments, for example. If usercode is used twice inside python module
block then the second multilinie block is inserted after the definition of external routines.

When used inside <routine signature>, then given C code will be inserted to the corresponding
wrapper function just after declaring variables but before any C statements. So, usercode follow-up
can contain both declarations and C statements.

When used inside the first interface block, then given C code will be inserted at the end of the
initialization function of the extension module. Here you can modify extension modules dictionary. For
example, for defining additional variables etc.

• pymethoddef <multiline block>

Multilinie block will be inserted to the definition of module methods PyMethodDef-array. It must be
a comma-separated list of C arrays (see Extending and Embedding Python documentation for details).
pymethoddef statement can be used only inside python module block.

Attributes

The following attributes are used by F2PY:

optional

The corresponding argument is moved to the end of <optional arguments> list. A default value for an
optional argument can be specified <init_expr>, see entitydecl definition. Note that the default value
must be given as a valid C expression.

Note that whenever <init_expr> is used, optional attribute is set automatically by F2PY.

For an optional array argument, all its dimensions must be bounded.

required

The corresponding argument is considered as a required one. This is default. You need to specify required only
if there is a need to disable automatic optional setting when <init_expr> is used.

If Python None object is used as a required argument, the argument is treated as optional. That is, in the case
of array argument, the memory is allocated. And if <init_expr> is given, the corresponding initialization is
carried out.

dimension(<arrayspec>)

The corresponding variable is considered as an array with given dimensions in <arrayspec>.
intent(<intentspec>)

This specifies the “intention” of the corresponding argument. <intentspec> is a comma separated list of the following keys:

• **in**
  
The argument is considered as an input-only argument. It means that the value of the argument is passed to Fortran/C function and that function is expected not to change the value of an argument.

• **inout**
  
The argument is considered as an input/output or *in situ* output argument. intent(inout) arguments can be only “contiguous” NumPy arrays with proper type and size. Here “contiguous” can be either in Fortran or C sense. The latter one coincides with the contiguous concept used in NumPy and is effective only if intent(c) is used. Fortran contiguity is assumed by default.

  Using intent(inout) is generally not recommended, use intent(in,out) instead. See also intent(inplace) attribute.

• **inplace**
  
The argument is considered as an input/output or *in situ* output argument. intent(inplace) arguments must be NumPy arrays with proper size. If the type of an array is not “proper” or the array is non-contiguous then the array will be changed in-place to fix the type and make it contiguous.

  Using intent(inplace) is generally not recommended either. For example, when slices have been taken from an intent(inplace) argument then after in-place changes, slices data pointers may point to unallocated memory area.

• **out**
  
The argument is considered as a return variable. It is appended to the <returned variables> list. Using intent(out) sets intent(hide) automatically, unless also intent(in) or intent(inout) were used.

  By default, returned multidimensional arrays are Fortran-contiguous. If intent(c) is used, then returned multidimensional arrays are C-contiguous.

• **hide**
  
The argument is removed from the list of required or optional arguments. Typically intent(hide) is used with intent(out) or when <init_expr> completely determines the value of the argument like in the following example:

```python
integer intent(hide),depend(a) :: n = len(a)
real intent(in),dimension(n) :: a
```

• **c**
  
The argument is treated as a C scalar or C array argument. In the case of a scalar argument, its value is passed to C function as a C scalar argument (recall that Fortran scalar arguments are actually C pointer arguments). In the case of an array argument, the wrapper function is assumed to treat multidimensional arrays as C-contiguous arrays.

  There is no need to use intent(c) for one-dimensional arrays, no matter if the wrapped function is either a Fortran or a C function. This is because the concepts of Fortran- and C contiguity overlap in one-dimensional cases.

  If intent(c) is used as a statement but without an entity declaration list, then F2PY adds the intent(c) attribute to all arguments.
Also, when wrapping C functions, one must use `intent(c)` attribute for `<routine name>` in order to disable Fortran specific `F_FUNC(...,...)` macros.

- **cache**
  The argument is treated as a junk of memory. No Fortran nor C contiguity checks are carried out. Using `intent(cache)` makes sense only for array arguments, also in connection with `intent(hide)` or optional attributes.

- **copy**
  Ensure that the original contents of `intent(in)` argument is preserved. Typically used in connection with `intent(in,out)` attribute. F2PY creates an optional argument `overwrite_<argument name>` with the default value 0.

- **overwrite**
  The original contents of the `intent(in)` argument may be altered by the Fortran/C function. F2PY creates an optional argument `overwrite_<argument name>` with the default value 1.

- **out=<new name>**
  Replace the return name with `<new name>` in the `__doc__` string of a wrapper function.

- **callback**
  Construct an external function suitable for calling Python function from Fortran. `intent(callback)` must be specified before the corresponding external statement. If ‘argument’ is not in argument list then it will be added to Python wrapper but only initializing external function.

  Use `intent(callback)` in situations where a Fortran/C code assumes that a user implements a function with given prototype and links it to an executable. Don’t use `intent(callback)` if function appears in the argument list of a Fortran routine.

  With `intent(hide)` or optional attributes specified and using a wrapper function without specifying the callback argument in argument list then call-back function is looked in the namespace of F2PY generated extension module where it can be set as a module attribute by a user.

- **aux**
  Define auxiliary C variable in F2PY generated wrapper function. Useful to save parameter values so that they can be accessed in initialization expression of other variables. Note that `intent(aux)` silently implies `intent(c)`.

The following rules apply:

- **If no** `intent(in | inout | out | hide)` is specified, `intent(in)` is assumed.
- `intent(in,inout)` is `intent(in)`.  
- `intent(in,hide)` or `intent(inout,hide)` is `intent(hide)`.  
- `intent(out)` is `intent(out,hide)` unless `intent(in)` or `intent(inout)` is specified.  
- **If** `intent(copy)` or `intent(overwrite)` is used, then an additional optional argument is introduced with a name `overwrite_<argument name>` and a default value 0 or 1, respectively.  
- `intent(inout,inplace)` is `intent(inplace)`.  
- `intent(in,inplace)` is `intent(inplace)`.  
- `intent(hide)` disables optional and required.
check([<C-booleanexpr>])

Perform consistency check of arguments by evaluating <C-booleanexpr>; if <C-booleanexpr> returns 0, an exception is raised.

If check(..) is not used then F2PY generates few standard checks (e.g. in a case of an array argument, check for the proper shape and size) automatically. Use check() to disable checks generated by F2PY.

depend([<names>])

This declares that the corresponding argument depends on the values of variables in the list <names>. For example, <init_expr> may use the values of other arguments. Using information given by depend(…) attributes, F2PY ensures that arguments are initialized in a proper order. If depend(…) attribute is not used then F2PY determines dependence relations automatically. Use depend() to disable dependence relations generated by F2PY.

When you edit dependence relations that were initially generated by F2PY, be careful not to break the dependence relations of other relevant variables. Another thing to watch out is cyclic dependencies. F2PY is able to detect cyclic dependencies when constructing wrappers and it complains if any are found.

allocatable

The corresponding variable is Fortran 90 allocatable array defined as Fortran 90 module data.

external

The corresponding argument is a function provided by user. The signature of this so-called call-back function can be defined

- in __user__ module block,
- or by demonstrative (or real, if the signature file is a real Fortran code) call in the <other statements> block.

For example, F2PY generates from

```fortran
external cb_sub, cb_fun
integer n
real a(n), r
call cb_sub(a,n)
r = cb_fun(4)
```

the following call-back signatures:

```fortran
subroutine cb_sub(a,n)
 real dimension(n) :: a
 integer optional, check(len(a) >= n), depend(a) :: n=len(a)
end subroutine cb_sub
function cb_fun(e_4_e) result (r)
 integer :: e_4_e
 real :: r
end function cb_fun
```

The corresponding user-provided Python function are then:

```python
def cb_sub(a, [n]):
 ...
 return
def cb_fun(e_4_e):
 ...
 return r
```
See also `intent(callback)` attribute.

**parameter**

The corresponding variable is a parameter and it must have a fixed value. F2PY replaces all parameter occurrences by their corresponding values.

### 12.2.3 Extensions

**F2PY directives**

The so-called F2PY directives allow using F2PY signature file constructs also in Fortran 77/90 source codes. With this feature you can skip (almost) completely intermediate signature file generations and apply F2PY directly to Fortran source codes.

F2PY directive has the following form:

```fortran
<comment char>f2py ...
```

where allowed comment characters for fixed and free format Fortran codes are `cC*!#` and `!`, respectively. Everything that follows `<comment char>f2py` is ignored by a compiler but read by F2PY as a normal Fortran, non-comment line:

When F2PY finds a line with F2PY directive, the directive is first replaced by 5 spaces and then the line is reread.

For fixed format Fortran codes, `<comment char>` must be at the first column of a file, of course. For free format Fortran codes, F2PY directives can appear anywhere in a file.

**C expressions**

C expressions are used in the following parts of signature files:

- `<init_expr>` of variable initialization;
- `<C-booleanexpr>` of the `check` attribute;
- `<arrayspec>` of the `dimension` attribute;
- `callstatement` statement, here also a C multiline block can be used.

A C expression may contain:

- standard C constructs;
- functions from `math.h` and `Python.h`;
- variables from the argument list, presumably initialized before according to given dependence relations;
- the following CPP macros:
  ```c
 rank(<name>)
 Returns the rank of an array `<name>`.

 shape(<name>,<n>)
 Returns the `<n>`-th dimension of an array `<name>`.

 len(<name>)
 Returns the length of an array `<name>`.
  ```
size(<name>)

Returns the size of an array <name>.

slen(<name>)

Returns the length of a string <name>.

For initializing an array <array name>, F2PY generates a loop over all indices and dimensions that executes the following pseudo-statement:

```python
<array name>[_i[0],_i[1],...] = <init_expr>;
```

where _i[<i>] refers to the <i>-th index value and that runs from 0 to shape(<array name>,<i>)-1.

For example, a function myrange(n) generated from the following signature

```fortran
subroutine myrange(a,n)
 fortranname ! myrange is a dummy wrapper
 integer intent(in) :: n
 real*8 intent(c,out),dimension(n),depend(n) :: a = _i[0]
end subroutine myrange
```

is equivalent to numpy.arange(n,dtype=float).

**Warning:** F2PY may lower cases also in C expressions when scanning Fortran codes (see --[no]-lower option).

### Multiline blocks

A multiline block starts with `' '` (triple single-quotes) and ends with `' '` in some strictly subsequent line. Multiline blocks can be used only within .pyf files. The contents of a multiline block can be arbitrary (except that it cannot contain `' '` ) and no transformations (e.g. lowering cases) are applied to it.

Currently, multiline blocks can be used in the following constructs:

- as a C expression of the `callstatement` statement;
- as a C type specification of the `callprotoargument` statement;
- as a C code block of the `usercode` statement;
- as a list of C arrays of the `pymethoddef` statement;
- as documentation string.

### 12.3 Using F2PY bindings in Python

All wrappers for Fortran/C routines, common blocks, or for Fortran 90 module data generated by F2PY are exposed to Python as fortran type objects. Routine wrappers are callable fortran type objects while wrappers to Fortran data have attributes referring to data objects.

All fortran type objects have attribute `_cpointer` that contains CObject referring to the C pointer of the corresponding Fortran/C function or variable in C level. Such CObjects can be used as a callback argument of F2PY generated functions to bypass Python C/API layer of calling Python functions from Fortran or C when the computational part of such functions is implemented in C or Fortran and wrapped with F2PY (or any other tool capable of providing CObject of a function).
Consider a Fortran 77 file `ftype.f`:

```fortran
C FILE: FTYPE.
SUBROUTINE FOO(N)
INTEGER N
Cf2py integer optional,intent(in) :: n = 13
REAL A,X
COMMON /DATA/ A,X(3)
PRINT*, "IN FOO: N"=n,"A"=A,"X"=[X(1),X(2),X(3)]
END
C END OF FTYPE.F
```

and build a wrapper using `f2py -c ftype.f -m ftype`.

In Python:

```python
>>> import ftype
>>> print(ftype.__doc__)
This module 'ftype' is auto-generated with f2py (version:2).
Functions:
 foo(n=13)
COMMON blocks:
 /data/ a,x(3)
>>> type(ftype.foo), type(ftype.data)
(<class 'fortran'>, <class 'fortran'>)
>>> ftype.foo()
IN FOO: N = 13 A = 0.0, X = [0. 0. 0.]
>>> ftype.data.a = 3
>>> ftype.data.x = [1,2,3]
>>> ftype.foo()
IN FOO: N = 13 A = 3.0, X = [1. 2. 3.]
>>> ftype.data.x[1] = 45
>>> ftype.foo(24)
IN FOO: N = 24 A = 3.0, X = [1. 45. 3.]
>>> ftype.data.x
array([1., 45., 3.], dtype=float32)
```

### 12.3.1 Scalar arguments

In general, a scalar argument of a F2PY generated wrapper function can be an ordinary Python scalar (integer, float, complex number) as well as an arbitrary sequence object (list, tuple, array, string) of scalars. In the latter case, the first element of the sequence object is passed to Fortran routine as a scalar argument.

Note that when type-casting is required and there is possible loss of information (e.g. when type-casting float to integer or complex to float), F2PY does not raise any exception. In complex to real type-casting only the real part of a complex number is used.

`intent(inout)` scalar arguments are assumed to be array objects in order to have *in situ* changes be effective. It is recommended to use arrays with proper type but also other types work.

Consider the following Fortran 77 code:

```fortran
C FILE: SCALAR.F
SUBROUTINE FOO(A,B)
REAL*8 A, B
Cf2py intent(in) a
```
and wrap it using `f2py -c -m scalar scalar.f`.

In Python:

```python
>>> import scalar
>>> print(scalar.foo.__doc__)
foo(a,b)
Wrapper for ``foo``.
Parameters

a : input float
b : in/output rank-0 array(float,'d')

>>> scalar.foo(2, 3)
A= 2. B= 3.
INCREMENT A AND B
>>> import numpy
>>> a = numpy.array(2) # these are integer rank-0 arrays
>>> b = numpy.array(3)
>>> scalar.foo(a, b)
A= 2. B= 3.
INCREMENT A AND B
>>> print(a, b) # note that only b is changed in situ
2 4
```

### 12.3.2 String arguments

F2PY generated wrapper functions accept (almost) any Python object as a string argument, `str` is applied for non-string objects. Exceptions are NumPy arrays that must have type code 'c' or '1' when used as string arguments.

A string can have arbitrary length when using it as a string argument to F2PY generated wrapper function. If the length is greater than expected, the string is truncated. If the length is smaller than expected, additional memory is allocated and filled with \0.

Because Python strings are immutable, an `intent(inout)` argument expects an array version of a string in order to have *in situ* changes be effective.

Consider the following Fortran 77 code:

```fortran
C FILE: STRING.F
SUBROUTINE FOO(A,B,C,D)
 CHARACTER*5 A, B
 CHARACTER*(*) C,D
```
Cf2py intent(in) a,c
Cf2py intent(inout) b,d
PRINT*, "A='",A
PRINT*, "B='",B
PRINT*, "C='",C
PRINT*, "D='",D
PRINT*, "CHANGE A,B,C,D"
A(1:1) = 'A'
B(1:1) = 'B'
C(1:1) = 'C'
D(1:1) = 'D'
PRINT*, "A='",A
PRINT*, "B='",B
PRINT*, "C='",C
PRINT*, "D='",D
END
C END OF FILE STRING.F

and wrap it using f2py -c -m mystring string.f.

Python session:

```python
>>> import mystring
>>> print(mystring.foo.__doc__)
Wrapper for '``foo``'.

Parameters

a : input string(len=5)
b : in/output rank-0 array(string(len=5),'c')
c : input string(len=-1)
d : in/output rank-0 array(string(len=-1),'c')

>>> from numpy import array
>>> a = array(b'123\0\0')
>>> b = array(b'123\0\0')
>>> c = array(b'123')
>>> d = array(b'123')
>>> mystring.foo(a, b, c, d)
A=123
B=123
C=123
D=123
CHANGE A,B,C,D
A=A23
B=B23
C=C23
D=D23
>>> a[()], b[()], c[()], d[()]
(b'123', b'B23', b'123', b'D2')```
12.3.3 Array arguments

In general, array arguments of F2PY generated wrapper functions accept arbitrary sequences that can be transformed to NumPy array objects. An exception is intent(inout) array arguments that always must be proper-contiguous and have proper type, otherwise an exception is raised. Another exception is intent(inplace) array arguments that attributes will be changed in situ if the argument has different type than expected (see intent(inplace) attribute for more information).

In general, if a NumPy array is proper-contiguous and has a proper type then it is directly passed to wrapped Fortran/C function. Otherwise, an element-wise copy of an input array is made and the copy, being proper-contiguous and with proper type, is used as an array argument.

There are two types of proper-contiguous NumPy arrays:

- Fortran-contiguous arrays when data is stored column-wise, i.e. indexing of data as stored in memory starts from the lowest dimension;
- C-contiguous or simply contiguous arrays when data is stored row-wise, i.e. indexing of data as stored in memory starts from the highest dimension.

For one-dimensional arrays these notions coincide.

For example, a 2x2 array A is Fortran-contiguous if its elements are stored in memory in the following order:

$A[0,0] \ A[1,0] \ A[0,1] \ A[1,1]$

and C-contiguous if the order is as follows:

$A[0,0] \ A[0,1] \ A[1,0] \ A[1,1]$

To test whether an array is C-contiguous, use the .flags.c_contiguous attribute of NumPy arrays. To test for Fortran contiguity, use the .flags.f_contiguous attribute.

Usually there is no need to worry about how the arrays are stored in memory and whether the wrapped functions, being either Fortran or C functions, assume one or another storage order. F2PY automatically ensures that wrapped functions get arguments with proper storage order; the corresponding algorithm is designed to make copies of arrays only when absolutely necessary. However, when dealing with very large multidimensional input arrays with sizes close to the size of the physical memory in your computer, then a care must be taken to use always proper-contiguous and proper type arguments.

To transform input arrays to column major storage order before passing them to Fortran routines, use the function numpy.asfortranarray(<array>).

Consider the following Fortran 77 code:

```fortran
C FILE: ARRAY.F
SUBROUTINE FOO(A,N,M)
C INCENT THE FIRST ROW AND DECREMENT THE FIRST COLUMN OF A
C INTEGER N,M,I,J
REAL*8 A(N,M)
Cf2py intent(in,out,copy) a
Cf2py integer intent(hide),depend(a) :: n=shape(a,0), m=shape(a,1)
DO J=1,M
   A(I,J) = A(I,J) + 1D0
ENDDO
DO I=1,N
   A(I,1) = A(I,1) - 1D0
ENDDO
```

(continues on next page)
and wrap it using `f2py -c -m arr array.f -DF2PY_REPORT_ON_ARRAY_COPY=1`.

In Python:

```python
>>> import arr
>>> from numpy import asfortranarray
>>> print(arr.foo.__doc__)
Wrapper for `foo`.

Parameters
----------
a : input rank-2 array('d') with bounds (n,m)

Other Parameters
----------------
overwrite_a : input int, optional
    Default: 0

Returns
------
a : rank-2 array('d') with bounds (n,m)

>>> a = arr.foo([[1, 2, 3],
    ...           [4, 5, 6]])
created an array from object
>>> print(a)
[[ 1.  3.  4.]
 [ 3.  5.  6.]]
>>> a.flags.c_contiguous
False
>>> a.flags.f_contiguous
True
# even if a is proper-contiguous and has proper type,
# a copy is made forced by intent(copy) attribute
# to preserve its original contents
>>> b = arr.foo(a)
copied an array: size=6, elsize=8
>>> print(a)
[[ 1.  3.  4.]
 [ 3.  5.  6.]]
>>> print(b)
[[ 1.  4.  5.]
 [ 2.  5.  6.]]
>>> b = arr.foo(a, overwrite_a = 1)  # a is passed directly to Fortran
...  # routine and its contents is discarded
...  
>>> print(a)
[[ 1.  4.  5.]
 [ 2.  5.  6.]]
```

(continues on next page)
>>> a is b # a and b are actually the same objects
True
>>> print(arr.foo([1, 2, 3])) # different rank arrays are allowed
created an array from object
[1. 1. 2.]
>>> print(arr.foo(((1, 2), (3,))))
created an array from object
[(1.000000, 2.000000)
 [1.000000]]
>>> # Creating arrays with column major data storage order:
...
>>> s = asfortranarray([[1, 2, 3], [4, 5, 6]])
>>> s.flags.f_contiguous
True
>>> print(s)
[[1 2 3]
 [4 5 6]]
>>> print(arr.foo(s))
created an array from object
[[1.00000000e+00
 2.00000000e+00
 3.00000000e+00]
 [4.00000000e+00
 5.00000000e+00
 6.00000000e+00]]
>>> s2 = asfortranarray(s)
>>> s2 is s # an array with column major storage order
is returned immediately
True
>>> # Note that arr.foo returns a column major data storage order array:
...
>>> s3 = ascontiguousarray(s)
>>> s3.flags.f_contiguous
False
>>> s3.flags.c_contiguous
True
>>> s3 = arr.foo(s3)
copied an array: size=6, elsize=8
>>> s3.flags.f_contiguous
True
>>> s3.flags.c_contiguous
False

12.3.4 Call-back arguments

F2PY supports calling Python functions from Fortran or C codes.
Consider the following Fortran 77 code:

```fortran
C FILE: CALLBACK.F
SUBROUTINE FOO(FUN,R)
EXTERNAL FUN
INTEGER I
REAL*8 R, FUN
Cf2py intent(out) r
R = 0D0
DO I=-5,5
   R = R + FUN(I)
ENDDO
END
C END OF FILE CALLBACK.F
```

12.3. Using F2PY bindings in Python
and wrap it using `f2py -c -m callback callback.f`.

In Python:

```python
>>> import callback
>>> print(callback.foo.__doc__)
Wrapper for `'foo'`.

Parameters
----------
fun : call-back function

Other Parameters
----------------
fun_extra_args : input tuple, optional
    Default: ()

Returns
-------
r : float

Notes
-----
Call-back functions:

    def fun(i): return r
    Required arguments:
        i : input int
    Return objects:
        r : float

>>> def f(i): return i*i
... >>> print(callback.foo(f))
110.0
>>> print(callback.foo(lambda i:1))
11.0
```

In the above example F2PY was able to guess accurately the signature of a call-back function. However, sometimes F2PY cannot establish the signature as one would wish and then the signature of a call-back function must be modified in the signature file manually. Namely, signature files may contain special modules (the names of such modules contain a substring `__user__`) that collect various signatures of call-back functions. Callback arguments in routine signatures have attribute `external` (see also `intent(callback)` attribute). To relate a callback argument and its signature in `__user__` module block, use `use` statement as illustrated below. The same signature of a callback argument can be referred in different routine signatures.

We use the same Fortran 77 code as in previous example but now we’ll pretend that F2PY was not able to guess the signatures of call-back arguments correctly. First, we create an initial signature file `callback2.pyf` using F2PY:

```
f2py -m callback2 -h callback2.pyf callback.f
```

Then modify it as follows

```fortran
! -*- f90 -*-
python module __user__routines
    interface
{continues on next page}
```
function fun(i) result (r)
 integer :: i
 real*8 :: r
end function fun
end interface
end python module __user__routines

python module callback2
interface
 subroutine foo(f,r)
 use __user__routines, f=>fun
 external f
 real*8 intent(out) :: r
 end subroutine foo
end interface
end python module callback2

Finally, build the extension module using f2py -c callback2.pyf callback.f.

An example Python session would be identical to the previous example except that argument names would differ.

Sometimes a Fortran package may require that users provide routines that the package will use. F2PY can construct an interface to such routines so that Python functions could be called from Fortran.

Consider the following Fortran 77 subroutine that takes an array and applies a function func to its elements.

```fortran
subroutine calculate(x,n)
    cf2py intent(callback) func
    external func
    c The following lines define the signature of func for F2PY:
    cf2py real*8 y
    cf2py y = func(y)
c   cf2py intent(in,out,copy) x
    integer n,i
    real*8 x(n), func
    do i=1,n
        x(i) = func(x(i))
    end do
end
```

It is expected that function func has been defined externally. In order to use a Python function as func, it must have an attribute intent(callback) (it must be specified before the external statement).

Finally, build an extension module using f2py -c -m foo calculate.f

In Python:

```python
>>> import foo
>>> foo.calculate(range(5), lambda x: x*x)
array([ 0., 1., 4., 9., 16.])
>>> import math
>>> foo.calculate(range(5), math.exp)
array([ 1. , 2.71828183, 7.3890561, 20.08553692, 54.59815003])
```

The function is included as an argument to the python function call to the Fortran subroutine even though it was not in the Fortran subroutine argument list. The “external” refers to the C function generated by f2py, not the python function itself. The python function must be supplied to the C function.
The callback function may also be explicitly set in the module. Then it is not necessary to pass the function in the argument list to the Fortran function. This may be desired if the Fortran function calling the python callback function is itself called by another Fortran function.

Consider the following Fortran 77 subroutine:

```fortran
subroutine f1()
    print *, "in f1, calling f2 twice.."
    call f2()
    call f2()
    return
end

subroutine f2()
    cf2py intent(callback, hide) fpy
    external fpy
    print *, "in f2, calling f2py.."
    call fpy()
    return
end
```

and wrap it using `f2py -c -m pfromf extcallback.f`.

In Python:

```python
>>> import pfromf
>>> pfromf.f2()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
pfromf.error: Callback fpy not defined (as an argument or module pfromf_.
→attribute).

>>> def f(): print("python f")
... >>> pfrom.fpy = f
>>> pfrom.f2()
  in f2, calling f2py..
  python f
>>> pfrom.f1()
  in f1, calling f2 twice..
  in f2, calling f2py..
  python f
>>> pfrom.f2()
  in f2, calling f2py..
  python f
```

Resolving arguments to call-back functions

F2PY generated interface is very flexible with respect to call-back arguments. For each call-back argument an additional optional argument `<name>_extra_args` is introduced by F2PY. This argument can be used to pass extra arguments to user provided call-back arguments.

If a F2PY generated wrapper function expects the following call-back argument:

```python
def fun(a_1, ..., a_n):
    ...
    return x_1, ..., x_k
```
but the following Python function

```python
def gun(b_1, ..., b_m):
    ...
    return y_1, ..., y_l
```

is provided by a user, and in addition,

```python
fun_extra_args = {e_1, ..., e_p}
```

is used, then the following rules are applied when a Fortran or C function calls the call-back argument `gun`:

- If \(p = 0 \) then `gun(a_1, ..., a_q)` is called, here \(q = \min(m, n) \).
- If \(n + p \leq m \) then `gun(a_1, ..., a_n, e_1, ..., e_p)` is called.
- If \(p \leq m < n + p \) then `gun(a_1, ..., a_q, e_1, ..., e_p)` is called, here \(q = m - p \).
- If \(p > m \) then `gun(e_1, ..., e_m)` is called.
- If \(n + p \) is less than the number of required arguments to `gun` then an exception is raised.

The function `gun` may return any number of objects as a tuple. Then following rules are applied:

- If \(k < l \), then \(y_{k + 1}, ..., y_l \) are ignored.
- If \(k > l \), then only \(x_1, ..., x_l \) are set.

12.3.5 Common blocks

F2PY generates wrappers to `common` blocks defined in a routine signature block. Common blocks are visible by all Fortran codes linked with the current extension module, but not to other extension modules (this restriction is due to how Python imports shared libraries). In Python, the F2PY wrappers to `common` blocks are `fortran` type objects that have (dynamic) attributes related to data members of common blocks. When accessed, these attributes return as NumPy array objects (multidimensional arrays are Fortran-contiguous) that directly link to data members in common blocks. Data members can be changed by direct assignment or by in-place changes to the corresponding array objects.

Consider the following Fortran 77 code:

```fortran
C FILE: COMMON.F
SUBROUTINE FOO
INTEGER I,X
REAL A
COMMON /DATA/ I,X(4),A(2,3)
PRINT*, "I=",I
PRINT*, "X=['",X,"']"
PRINT*, "A=['
PRINT*, ["","A(1,1),","","A(1,2),","","A(1,3),"]"
PRINT*, ["","A(2,1),","","A(2,2),","","A(2,3),"]"
PRINT*, "']"
END
C END OF COMMON.F
```

and wrap it using `f2py -c -m common common.f`.

In Python:

```python
>>> import common
>>> print(common.data.__doc__)
i : 'i'-scalar
```

(continues on next page)

12.3. Using F2PY bindings in Python 251
12.3.6 Fortran 90 module data

The F2PY interface to Fortran 90 module data is similar to Fortran 77 common blocks.

Consider the following Fortran 90 code:

```fortran
module mod
    integer i
    integer :: x(4)
    real, dimension(2,3) :: a
    real, allocatable, dimension(:,:) :: b
contains
    subroutine foo
        integer k
        print*, "i=", i
        print*, "x=[",x,"]"
        print*, "a=["
        print*, ",a(1,1),",",a(1,2),",",a(1,3),"]"
        print*, ",a(2,1),",",a(2,2),",",a(2,3),"]"
        print*, "]"
        print*, "Setting a(1,2)=a(1,2)+3"
        a(1,2) = a(1,2)+3
    end subroutine foo
end module mod
```

and wrap it using `f2py -c -m moddata moddata.f90`.

In Python:

```python
x : 'i'-array(4)
a : 'f'-array(2,3)
```
```python
>>> import moddata
>>> print(moddata.mod.__doc__)
i : 'i'-scalar
x : 'i'-array(4)
a : 'f'-array(2,3)
b : 'f'-array(-1,-1), not allocated
foo()

Wrapper for ``foo``.

>>> moddata.mod.i = 5
>>> moddata.mod.x[:2] = [1, 2]
>>> moddata.mod.a = [[1, 2, 3], [4, 5, 6]]
>>> moddata.mod.foo()
i = 5
x = [1 2 0 0]
a =
[ 1.000000 , 2.000000 , 3.000000 ]
[ 4.000000 , 5.000000 , 6.000000 ]
Setting a(1,2)=a(1,2)+3
>>> moddata.mod.a # a is Fortran-contiguous
array([1., 5., 3.],
      [4., 5., 6.], dtype=float32)
>>> moddata.mod.a.flags.f_contiguous
True
```

Allocatable arrays

F2PY has basic support for Fortran 90 module allocatable arrays.

Consider the following Fortran 90 code:

```fortran
module mod
   real, allocatable, dimension(:, :) :: b
contains
   subroutine foo
      integer k
      if (allocated(b)) then
         print*, "b="
         do k = 1, size(b, 1)
            print*, b(k, 1: size(b, 2))
         enddo
      else
         print*, "b is not allocated"
      endif
   end subroutine foo
end module mod
```

and wrap it using `f2py --c -m allocarr allocarr.f90`.

In Python:
```python
>>> import allocarr
>>> print(allocarr.mod.__doc__)
b : 'f'-array(-1,-1), not allocated
  foo()
Wrapper for `foo`.

>>> allocarr.mod.foo()
  b is not allocated
>>> allocarr.mod.b = [[1, 2, 3], [4, 5, 6]] # allocate/
  →initialize b
>>> allocarr.mod.foo()
  b=[[ 1.000000, 2.000000, 3.000000],
    [ 4.000000, 5.000000, 6.000000]]
>>> allocarr.mod.b
  →contiguous
  array([[ 1.,  2.,  3.],
         [ 4.,  5.,  6.]], dtype=float32)
>>> allocarr.mod.b.flags.f_contiguous
  True
>>> allocarr.mod.b = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # reallocate/
  →initialize b
>>> allocarr.mod.foo()
  b=[[ 1.000000, 2.000000, 3.000000],
    [ 4.000000, 5.000000, 6.000000],
    [ 7.000000, 8.000000, 9.000000]]
>>> allocarr.mod.b = None # deallocate array
>>> allocarr.mod.foo()
  b is not allocated
```

12.4 Using F2PY

F2PY can be used either as a command line tool `f2py` or as a Python module `numpy.f2py`. While we try to install the command line tool as part of the numpy setup, some platforms like Windows make it difficult to reliably put the executable on the `PATH`. We will refer to `f2py` in this document but you may have to run it as a module:

```
python -m numpy.f2py
```

If you run `f2py` with no arguments, and the line `numpy Version` at the end matches the NumPy version printed from `python -m numpy.f2py`, then you can use the shorter version. If not, or if you cannot run `f2py`, you should replace all calls to `f2py` here with the longer version.
12.4.1 Command `f2py`

When used as a command line tool, `f2py` has three major modes, distinguished by the usage of `-c` and `-h` switches:

1. To scan Fortran sources and generate a signature file, use

   ```
   f2py -h <filename>.pyf <options> <fortran files> \
   [[ only: <fortran functions> : ] \n   [ skip: <fortran functions> : ]]... \n   [<fortran files> ...]
   ```

 Note that a Fortran source file can contain many routines, and not necessarily all routines are needed to be used from Python. So, you can either specify which routines should be wrapped (in `only: .. :` part) or which routines F2PY should ignored (in `skip: .. :` part).

 If `<filename>.pyf` is specified as `stdout` then signatures are send to standard output instead of a file.

 Among other options (see below), the following options can be used in this mode:

 --overwrite-signature

 Overwrite existing signature file.

2. To construct an extension module, use

   ```
   f2py -m <modulename> <options> <fortran files> \
   [[ only: <fortran functions> : ] \n   [ skip: <fortran functions> : ]]... \n   [<fortran files> ...]
   ```

 The constructed extension module is saved as `<modulename>.module.c` to the current directory.

 Here `<fortran files>` may also contain signature files. Among other options (see below), the following options can be used in this mode:

 --debug-capi

 Add debugging hooks to the extension module. When using this extension module, various information about the wrapper is printed to standard output, for example, the values of variables, the steps taken, etc.

 --include'<includefile>'

 Add a CPP #include statement to the extension module source. `<includefile>` should be given in one of the following forms:

   ```
   "filename.ext"
   <filename.ext>
   ```

 The include statement is inserted just before the wrapper functions. This feature enables using arbitrary C functions (defined in `<includefile>`) in F2PY generated wrappers.

 Note: This option is deprecated. Use `usercode` statement to specify C code snippets directly in signature files.

 --[no-]wrap-functions

 Create Fortran subroutine wrappers to Fortran functions. `--wrap-functions` is default because it ensures maximum portability and compiler independence.
--include-paths <path1>:<path2>:...

Search include files from given directories.

--help-link [<list of resources names>]

List system resources found by numpy_distutils/system_info.py. For example, try f2py
--help-link lapack_opt.

3. To build an extension module, use

```
f2py -c <options> <fortran files> \n  [[ only: <fortran functions> : ] \n    [ skip: <fortran functions> : ]\n  [ <fortran/c source files> ] [ <.o, .a, .so files> ]
```

If `<fortran files>` contains a signature file, then a source for an extension module is constructed, all
Fortran and C sources are compiled, and finally all object and library files are linked to the extension module
`<modulename>.so` which is saved into the current directory.

If `<fortran files>` does not contain a signature file, then an extension module is constructed by scanning all
Fortran source codes for routine signatures.

Among other options (see below) and options described in previous mode, the following options can be used in this
mode:

--help-fcompiler

List available Fortran compilers.

--help-compiler [deprecated]

List available Fortran compilers.

--fcompiler=<Vendor>

Specify Fortran compiler type by vendor.

--f77exec=<path>

Specify the path to F77 compiler

--f77flags=<string>

Specify F77 compiler flags

--f77exec=<path> [deprecated]

Specify the path to F77 compiler

--f77flags=<string>

Specify F77 compiler flags

--f90exec=<path>

Specify the path to F90 compiler

--f90compiler-exec=<path> [deprecated]

Specify the path to F90 compiler

--f90flags=<string>

Specify F90 compiler flags

--opt=<string>

Specify optimization flags
--arch=<string>
 Specify architecture specific optimization flags

--noopt
 Compile without optimization

--noarch
 Compile without arch-dependent optimization

--debug
 Compile with debugging information

-l<libname>
 Use the library <libname> when linking.

-D<macro>[=<defn=1>]
 Define macro <macro> as <defn>.

-U<macro>
 Define macro <macro>

-I<dir>
 Append directory <dir> to the list of directories searched for include files.

-L<dir>
 Add directory <dir> to the list of directories to be searched for -l.

link-<resource>
 Link extension module with <resource> as defined by numpy_distutils/system_info.py.
 E.g. to link with optimized LAPACK libraries (vecLib on MacOSX, ATLAS elsewhere), use
 --link-lapack_opt. See also --help-link switch.

Note: The f2py -c option must be applied either to an existing .pyf file (plus the source/object/library files) or
one must specify the -m <modulename> option (plus the sources/object/library files). Use one of the following
options:

f2py -c -m fib1 fib1.f

or

f2py -m fib1 fib1.f -h fib1.pyf
f2py -c fib1.pyf fib1.f

For more information, see Building C and C++ Extensions Python documentation for details.

When building an extension module, a combination of the following macros may be required for non-gcc Fortran
compilers:

-DPREPEND_FORTRAN
-DNO_APPEND_FORTRAN
-DUPPERCASE_FORTRAN
To test the performance of F2PY generated interfaces, use `-DF2PY_REPORT_ATEXIT`. Then a report of various timings is printed out at the exit of Python. This feature may not work on all platforms, currently only Linux platform is supported.

To see whether F2PY generated interface performs copies of array arguments, use `-DF2PY_REPORT_ON_ARRAY_COPY=<int>`: When the size of an array argument is larger than `<int>`, a message about the coping is sent to stderr.

Other options:

- `m <modulename>`

 Name of an extension module. Default is `untitled`. Don’t use this option if a signature file (*.pyf) is used.

- `--[no-]lower`

 Do [not] lower the cases in `<fortran files>`. By default, `--lower` is assumed with `-h` switch, and `--no-lower` without the `-h` switch.

- `--build-dir <dirname>`

 All F2PY generated files are created in `<dirname>`. Default is `tempfile.mkdtemp()`.

- `--quiet`

 Run quietly.

- `--verbose`

 Run with extra verbosity.

- `-v`

 Print f2py version ID and exit.

Execute `f2py` without any options to get an up-to-date list of available options.

12.4.2 Python module `numpy.f2py`

Warning: The current Python interface to the `f2py` module is not mature and may change in the future.

Fortran to Python Interface Generator.

`numpy.f2py.run_main(comline_list)`

Equivalent to running:

```python
f2py <args>
```

where `<args>=string.join(<list>, ' ')`, but in Python. Unless `-h` is used, this function returns a dictionary containing information on generated modules and their dependencies on source files. For example, the command `f2py -m scalar scalar.f` can be executed from Python as follows

You cannot build extension modules with this function, that is, using `-c` is not allowed. Use `compile` command instead
Examples

```python
>>> import numpy.f2py
>>> r = numpy.f2py.run_main(['-m', 'scalar', 'doc/source/f2py/scalar.f'])
Reading fortran codes...
   Reading file 'doc/source/f2py/scalar.f' (format:fix, strict)
Post-processing...
   Block: scalar
   Block: FOO
Building modules...
   Building module "scalar"...
   Wrote C/API module "scalar" to file ".//scalarmodule.c"
>>> print(r)
{'scalar': {'h': ['./home/users/pearu/src_cvs/f2py/src/fortranobject.h'],
'csrc': ['./scalarmodule.c',
'./home/users/pearu/src_cvs/f2py/src/fortranobject.c']})
```

`numpy.f2py.compile(source, modulename='untitled', extra_args='', verbose=True, source_fn=None, extension='.f', full_output=False)`

Build extension module from a Fortran 77 source string with f2py.

Parameters

- `source` ([str or bytes]) Fortran source of module / subroutine to compile

 Changed in version 1.16.0: Accept str as well as bytes

- `modulename` ([str, optional]) The name of the compiled python module

- `extra_args` ([str or list, optional]) Additional parameters passed to f2py

 Changed in version 1.16.0: A list of args may also be provided.

- `verbose` ([bool, optional]) Print f2py output to screen

- `source_fn` ([str, optional]) Name of the file where the fortran source is written. The default is to use a temporary file with the extension provided by the *extension* parameter

- `extension` ([`.f`, `.f90`], optional) Filename extension if *source_fn* is not provided. The extension tells which fortran standard is used. The default is *f*, which implies F77 standard.

 New in version 1.11.0.

- `full_output` ([bool, optional]) If True, return a `subprocess.CompletedProcess` containing the stdout and stderr of the compile process, instead of just the status code.

 New in version 1.20.0.
Returns

result

[int or subprocess.CompletedProcess] 0 on success, or a subprocess. CompletedProcess if full_output=True

Examples

```python
>>> import numpy.f2py
>>> fsource = '''
... subroutine foo
... print", "Hello world!"
... end
... ''',
>>> numpy.f2py.compile(fsource, modulename='hello', verbose=0)
0
>>> import hello
>>> hello.foo()
Hello world!
```

12.5 Using via numpy.distutils

`numpy.distutils` is part of NumPy extending standard Python `distutils` to deal with Fortran sources and F2PY signature files, e.g. compile Fortran sources, call F2PY to construct extension modules, etc.

Example

Consider the following setup file:

```python
from numpy.distutils.core import Extension

ext1 = Extension(name = 'scalar',
    sources = ['scalar.f'])

text2 = Extension(name = 'fib2',
    sources = ['fib2.pyf', 'fib1.f'])

if __name__ == '__main__':
    from numpy.distutils.core import setup
    setup(name = 'f2py_example',
        description = "F2PY Users Guide examples",
        author = "Pearu Peterson",
        author_email = "pearu@cens.ioc.ee",
        ext_modules = [ext1, ext2])
```

End of setup_example.py

Running

```bash
python setup_example.py build
```

will build two extension modules `scalar` and `fib2` to the build directory.

`numpy.distutils` extends `distutils` with the following features:
• Extension class argument sources may contain Fortran source files. In addition, the list sources may contain at most one F2PY signature file, and then the name of an Extension module must match with the <modulename> used in signature file. It is assumed that an F2PY signature file contains exactly one python module block.

If sources does not contain a signature files, then F2PY is used to scan Fortran source files for routine signatures to construct the wrappers to Fortran codes.

Additional options to F2PY process can be given using Extension class argument f2py_options.

• The following new distutils commands are defined:

build_src
to construct Fortran wrapper extension modules, among many other things.

config_fc
to change Fortran compiler options

as well as build_ext and build_clib commands are enhanced to support Fortran sources.

Run

```python
python <setup.py file> config_fc build_src build_ext --help
```

to see available options for these commands.

• When building Python packages containing Fortran sources, then one can choose different Fortran compilers by using build_ext command option --fcompiler=<Vendor>. Here <Vendor> can be one of the following names:

```text
absoft sun mips intel intele intelev nag compaq compaqv gnu vast pg hpux
```

See numpy_distutils/fcompiler.py for up-to-date list of supported compilers or run

```bash
f2py -c --help-fcompiler
```

12.6 Advanced F2PY usages

12.6.1 Adding self-written functions to F2PY generated modules

Self-written Python C/API functions can be defined inside signature files using usercode and pymethoddef statements (they must be used inside the python module block). For example, the following signature file spam.pyf

```fortran
! -*- f90 -*-
python module spam
    usercode '''
    static char doc_spamp_system[] = "Execute a shell command.");
    static PyObject *spam_system(PyObject *self, PyObject *args)
    {
        char *command;
        int sts;

        if (!PyArg_ParseTuple(args, "s", &command))
            return NULL;
        sts = system(command);
        return Py_BuildValue("i", sts);
```
wraps the C library function \texttt{system()}:

\begin{verbatim}
f2py -c spam.pyf
\end{verbatim}

In Python:

\begin{verbatim}
>>> import spam
>>> status = spam.system('whoami')
pearu
>>> status = spam.system('blah')
sh: line 1: blah: command not found
\end{verbatim}

12.6.2 Modifying the dictionary of a F2PY generated module

The following example illustrates how to add user-defined variables to a F2PY generated extension module. Given the following signature file

\begin{verbatim}
! -*- f90 -*-
python module var
 userdata ' '
 int BAR = 5;
 ' '
 interface
 userdata ' '
 PyDict_SetItemString(d,"BAR",PyInt_FromLong(BAR));
 ' '
end interface
end python module
\end{verbatim}

compile it as \texttt{f2py -c var.pyf}.

Notice that the second \texttt{userdata} statement must be defined inside an \texttt{interface} block and where the module dictionary is available through the variable \texttt{d} (see \texttt{f2py var.pyf-generated varmodule.c} for additional details).

In Python:

\begin{verbatim}
>>> import var
>>> var.BAR
5
\end{verbatim}
12.6.3 Dealing with KIND specifiers

Currently, F2PY can handle only `type spec(kind=kindselector)` declarations where `kindselector` is a numeric integer (e.g. 1, 2, 4,...), but not a function call `KIND(..)` or any other expression. F2PY needs to know what would be the corresponding C type and a general solution for that would be too complicated to implement.

However, F2PY provides a hook to overcome this difficulty, namely, users can define their own `Fortran type` to `C type` maps. For example, if Fortran 90 code contains:

```fortran
REAL(kind=KIND(0.0D0)) ...
```

then create a mapping file containing a Python dictionary:

```python
{'real': {'KIND(0.0D0)': 'double'}}
```

for instance.

Use the `--f2cmap` command-line option to pass the file name to F2PY. By default, F2PY assumes file name is `.f2py_f2cmap` in the current working directory.

Or more generally, the f2cmap file must contain a dictionary with items:

```python
<Fortran typespec> : {<selector_expr>:<C type>}
```

that defines mapping between Fortran type:

```fortran
<Fortran typespec>({kind=}<selector_expr>)
```

and the corresponding `C type`. `C type` can be one of the following:

```
char
signed_char
short
int
long_long
float
double
long_double
complex_float
complex_double
complex_long_double
string
```

For more information, see F2Py source code `numpy/f2py/capi_maps.py`.
A parenthesized number followed by a comma denotes a tuple with one element. The trailing comma distinguishes a one-element tuple from a parenthesized n.

-1

- In a dimension entry, instructs NumPy to choose the length that will keep the total number of array elements the same.

```python
>>> np.arange(12).reshape(4, -1).shape
(4, 3)
```

- In an index, any negative value denotes indexing from the right.

... An Ellipsis.

- When indexing an array, shorthand that the missing axes, if they exist, are full slices.

```python
>>> a = np.arange(24).reshape(2, 3, 4)
```

```python
>>> a[...,].shape
(2, 3, 4)
```

```python
>>> a[...].shape
(2, 3)
```

```python
>>> a[0,...].shape
(3, 4)
```

```python
>>> a[0,...].shape
(3,)
```

It can be used at most once; a[...,0,...] raises an IndexError.

- In printouts, NumPy substitutes ... for the middle elements of large arrays. To see the entire array, use numpy.printoptions

The Python slice operator. In ndarrays, slicing can be applied to every axis:
>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> a[1:,-2:,:-1]
array([[[16, 17, 18],
 [20, 21, 22]]])

Trailing slices can be omitted:

>>> a[1] == a[1,:,::]
array([[True, True, True, True],
 [True, True, True, True],
 [True, True, True, True]])

In contrast to Python, where slicing creates a copy, in NumPy slicing creates a view.
For details, see combining-advanced-and-basic-indexing.

<

In a dtype declaration, indicates that the data is little-endian (the bracket is big on the right).

>>> dt = np.dtype('<f') # little-endian single-precision float

>

In a dtype declaration, indicates that the data is big-endian (the bracket is big on the left).

>>> dt = np.dtype('>H') # big-endian unsigned short

advanced indexing

Rather than using a scalar or slice as an index, an axis can be indexed with an array, providing fine-grained selection.
This is known as advanced indexing or “fancy indexing”.

along an axis

An operation along axis n of array a behaves as if its argument were an array of slices of a where each slice has a successive index of axis n.

For example, if a is a 3 x N array, an operation along axis 0 behaves as if its argument were an array containing slices of each row:

>>> np.array((a[0,:,:], a[1,:,:], a[2,:,:]))

To make it concrete, we can pick the operation to be the array-reversal function numpy.fliplr, which accepts an axis argument. We construct a 3 x 4 array a:

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
Reversing along axis 0 (the row axis) yields

```python
>>> np.flip(a, axis=0)
array([[ 8,  9, 10, 11],
       [ 4,  5,  6,  7],
       [ 0,  1,  2,  3]])
```

Recalling the definition of *along an axis*, flip along axis 0 is treating its argument as if it were

```python
>>> np.array((a[0, :], a[1, :], a[2, :]))
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
```

and the result of `np.flip(a, axis=0)` is to reverse the slices:

```python
>>> np.array((a[2, :], a[1, :], a[0, :]))
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
```

array

Used synonymously in the NumPy docs with *ndarray*.

array_like

Any scalar or *sequence* that can be interpreted as an ndarray. In addition to ndarrays and scalars this category includes lists (possibly nested and with different element types) and tuples. Any argument accepted by `numpy.array` is array_like.

```python
>>> a = np.array([[1, 2.0], [0, 0], (1+1j, 3.)])
```

```python
>>> a
array([[1.+0.j, 2.+0.j],
       [0.+0.j, 0.+0.j],
       [1.+1.j, 3.+0.j]])
```

array scalar

For uniformity in handling operands, NumPy treats a scalar as an array of zero dimension.

axis

Another term for an array dimension. Axes are numbered left to right; axis 0 is the first element in the shape tuple. In a two-dimensional vector, the elements of axis 0 are rows and the elements of axis 1 are columns.

In higher dimensions, the picture changes. NumPy prints higher-dimensional vectors as replications of row-by-column building blocks, as in this three-dimensional vector:

```python
>>> a = np.arange(12).reshape(2, 2, 3)
```

```python
>>> a
array([[[ 0,  1,  2],
       [ 3,  4,  5]],
       [[ 6,  7,  8],
       [ 9, 10, 11]]])
```

a is depicted as a two-element array whose elements are 2x3 vectors. From this point of view, rows and columns are the final two axes, respectively, in any shape.
This rule helps you anticipate how a vector will be printed, and conversely how to find the index of any of the printed elements. For instance, in the example, the last two values of 8’s index must be 0 and 2. Since 8 appears in the second of the two 2x3’s, the first index must be 1:

```python
>>> a[1,0,2]
8
```

A convenient way to count dimensions in a printed vector is to count `[` symbols after the open-parenthesis. This is useful in distinguishing, say, a (1,2,3) shape from a (2,3) shape:

```python
>>> a = np.arange(6).reshape(2,3)
>>> a.ndim
2
>>> a
array([[0, 1, 2],
       [3, 4, 5]])

>>> a = np.arange(6).reshape(1,2,3)
>>> a.ndim
3
>>> a
array([[[0, 1, 2],
       [3, 4, 5]]])
```

.base

If an array does not own its memory, then its base attribute returns the object whose memory the array is referencing. That object may be referencing the memory from still another object, so the owning object may be a.base.

base.base.... Some writers erroneously claim that testing base determines if arrays are views. For the correct way, see numpy.shares_memory.

.big-endian

See Endianness.

.BLAS

Basic Linear Algebra Subprograms

.broadcast

broadcasting is NumPy’s ability to process ndarrays of different sizes as if all were the same size.

It permits an elegant do-what-I-mean behavior where, for instance, adding a scalar to a vector adds the scalar value to every element.

```python
>>> a = np.arange(3)
>>> a
array([0, 1, 2])

>>> a + [3, 3, 3]
array([3, 4, 5])

>>> a + 3
array([3, 4, 5])
```

Ordinarily, vector operands must all be the same size, because NumPy works element by element – for instance, `c = a * b` is
But in certain useful cases, NumPy can duplicate data along “missing” axes or “too-short” dimensions so shapes will match. The duplication costs no memory or time. For details, see *Broadcasting*.

C order

Same as *row-major*.

column-major

See *Row- and column-major order*.

contiguous

An array is contiguous if

* it occupies an unbroken block of memory, and
* array elements with higher indexes occupy higher addresses (that is, no *stride* is negative).

copy

See *view*.

dimension

See *axis*.

dtype

The datatype describing the (identically typed) elements in an ndarray. It can be changed to reinterpret the array contents. For details, see Data type objects (dtype).

fancy indexing

Another term for *advanced indexing*.

field

In a *structured data type*, each subtype is called a *field*. The *field* has a name (a string), a type (any valid dtype), and an optional *title*. See arrays.dtypes.

Fortran order

Same as *column-major*.

flattened

See *ravel*.

homogeneous

All elements of a homogeneous array have the same type. ndarrays, in contrast to Python lists, are homogeneous. The type can be complicated, as in a *structured array*, but all elements have that type.

NumPy *object arrays*, which contain references to Python objects, fill the role of heterogeneous arrays.

itemsize

The size of the dtype element in bytes.

little-endian

See *Endianness*.
mask

A boolean array used to select only certain elements for an operation:

```python
>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])
```

```python
>>> mask = (x > 2)
>>> mask
array([False, False, False, True, True])
```

```python
>>> x[mask] = -1
>>> x
array([ 0, 1, 2, -1, -1])
```

masked array

Bad or missing data can be cleanly ignored by putting it in a masked array, which has an internal boolean array indicating invalid entries. Operations with masked arrays ignore these entries.

```python
>>> a = np.ma.masked_array([np.nan, 2, np.nan], [True, False, True])
>>> a
masked_array(data=[--, 2.0, --], mask=[ True, False, True],
             fill_value=1e+20)
```

```python
>>> a + [1, 2, 3]
masked_array(data=[--, 4.0, --], mask=[ True, False, True],
             fill_value=1e+20)
```

For details, see Masked arrays.

matrix

NumPy’s two-dimensional matrix class should no longer be used; use regular ndarrays.

ndarray

NumPy’s basic structure.

object array

An array whose dtype is object; that is, it contains references to Python objects. Indexing the array dereferences the Python objects, so unlike other ndarrays, an object array has the ability to hold heterogeneous objects.

ravel

numpy.ravel and numpy.flatten both flatten an ndarray. ravel will return a view if possible; flatten always returns a copy.

Flattening collapses a multidimensional array to a single dimension; details of how this is done (for instance, whether a[n+1] should be the next row or next column) are parameters.

record array

A structured array with allowing access in an attribute style (a.field) in addition to a['field']. For details, see numpy.recarray.

row-major

See Row- and column-major order. NumPy creates arrays in row-major order by default.
scalar

In NumPy, usually a synonym for *array scalar*.

shape

A tuple showing the length of each dimension of an ndarray. The length of the tuple itself is the number of dimensions (numpy.ndim). The product of the tuple elements is the number of elements in the array. For details, see numpy.ndarray.shape.

stride

Physical memory is one-dimensional; strides provide a mechanism to map a given index to an address in memory. For an N-dimensional array, its strides attribute is an N-element tuple; advancing from index i to index i+1 on axis n means adding strides[n] bytes to the address.

Strides are computed automatically from an array’s dtype and shape, but can be directly specified using as_strided. For details, see numpy.ndarray.strides.

To see how striding underlies the power of NumPy views, see The NumPy array: a structure for efficient numerical computation.

structured array

Array whose dtype is a *structured data type*.

structured data type

Users can create arbitrarily complex dtypes that can include other arrays and dtypes. These composite dtypes are called *structured data types*.

subarray

An array nested in a *structured data type*, as b is here:

```python
>>> dt = np.dtype([('a', np.int32), ('b', np.float32, (3,))])
>>> np.zeros(3, dtype=dt)
array([(0, [0., 0., 0.]), (0, [0., 0., 0.]), (0, [0., 0., 0.])],
     dtype=[('a', '<i4'), ('b', '<f4', (3,))])
```

subarray data type

An element of a structured datatype that behaves like an ndarray.

title

An alias for a field name in a structured datatype.

type

In NumPy, usually a synonym for dtype. For the more general Python meaning, see here.

ufunc

NumPy’s fast element-by-element computation (vectorization) gives a choice which function gets applied. The general term for the function is ufunc, short for universal function. NumPy routines have built-in ufuns, but users can also write their own.

vectorization

NumPy hands off array processing to C, where looping and computation are much faster than in Python. To exploit this, programmers using NumPy eliminate Python loops in favor of array-to-array operations. vectorization can refer both to the C offloading and to structuring NumPy code to leverage it.
view

Without touching underlying data, NumPy can make one array appear to change its datatype and shape.

An array created this way is a view, and NumPy often exploits the performance gain of using a view versus making a new array.

A potential drawback is that writing to a view can alter the original as well. If this is a problem, NumPy instead needs to create a physically distinct array—a copy.

Some NumPy routines always return views, some always return copies, some may return one or the other, and for some the choice can be specified. Responsibility for managing views and copies falls to the programmer. numpy.shares_memory will check whether b is a view of a, but an exact answer isn’t always feasible, as the documentation page explains.

```python
>>> x = np.arange(5)
>>> x
array([0, 1, 2, 3, 4])

>>> y = x[::2]
>>> y
array([0, 2, 4])

>>> x[0] = 3 # changing x changes y as well, since y is a view on x
>>> y
array([3, 2, 4])
```
CHAPTER
FOURTEEN

UNDER-THE-HOOD DOCUMENTATION FOR DEVELOPERS

To be completed.
15.1 A Guide to NumPy Documentation

15.1.1 User documentation

- In general, we follow the Google developer documentation style guide.
- NumPy style governs cases where:
 - Google has no guidance, or
 - We prefer not to use the Google style

Our current rules:
- We pluralize index as indices rather than indexes, following the precedent of numpy.indices.
- For consistency we also pluralize matrix as matrices.
- Grammatical issues inadequately addressed by the NumPy or Google rules are decided by the section on “Grammar and Usage” in the most recent edition of the Chicago Manual of Style.
- We welcome being alerted to cases we should add to the NumPy style rules.

15.1.2 Docstrings

When using Sphinx in combination with the numpy conventions, you should use the numpydoc extension so that your docstrings will be handled correctly. For example, Sphinx will extract the Parameters section from your docstring and convert it into a field list. Using numpydoc will also avoid the reStructuredText errors produced by plain Sphinx when it encounters numpy docstring conventions like section headers (e.g. ------------) that sphinx does not expect to find in docstrings.

Some features described in this document require a recent version of numpydoc. For example, the Yields section was added in numpydoc 0.6.

It is available from:
- numpydoc on PyPI
- numpydoc on GitHub

Note that for documentation within numpy, it is not necessary to do import numpy as np at the beginning of an example. However, some sub-modules, such as fft, are not imported by default, and you have to include them explicitly:

```python
import numpy.fft
```

after which you may use it:
NumPy User Guide, Release 1.20.0

np.fft.fft2(...)

Please use the numpydoc formatting standard as shown in their example

15.2 Building the NumPy API and reference docs

We currently use Sphinx for generating the API and reference documentation for NumPy. You will need Sphinx >= 2.2.0. If you only want to get the documentation, note that pre-built versions can be found at https://numpy.org/doc/ in several different formats.

15.2.1 Instructions

If you obtained NumPy via git, get also the git submodules that contain additional parts required for building the documentation:

```
git submodule update --init
```

In addition, building the documentation requires the Sphinx extension `plot_directive`, which is shipped with Matplotlib. This Sphinx extension can be installed by installing Matplotlib. You will also need Python>=3.6.

Since large parts of the main documentation are obtained from numpy via `import numpy` and examining the docstrings, you will need to first build NumPy, and install it so that the correct version is imported.

After NumPy is installed, install SciPy since some of the plots in the random module require `scipy.special` to display properly.

Note that you can eg. install NumPy to a temporary location and set the PYTHONPATH environment variable appropriately. Alternatively, if using Python virtual environments (via e.g. conda, virtualenv or the venv module), installing numpy into a new virtual environment is recommended. All of the necessary dependencies for building the NumPy docs can be installed with:

```
pip install -r doc_requirements.txt
```

Now you are ready to generate the docs, so write:

```
make html
```

in the doc/ directory. If all goes well, this will generate a build/html subdirectory containing the built documentation. If you get a message about `installed numpy != current repo git version`, you must either override the check by setting GITVER or re-install NumPy.

Note that building the documentation on Windows is currently not actively supported, though it should be possible. (See Sphinx documentation for more information.)

To build the PDF documentation, do instead:

```
make latex
make -C build/latex all-pdf
```

You will need to have Latex installed for this, inclusive of support for Greek letters. For example, on Ubuntu xenial `texlive-lang-greek` and `cm-super` are needed. Also `latexmk` is needed on non-Windows systems.

Instead of the above, you can also do:
which will rebuild NumPy, install it to a temporary location, and build the documentation in all formats. This will most likely again only work on Unix platforms.

The documentation for NumPy distributed at https://numpy.org/doc in html and pdf format is also built with `make dist`. See HOWTO RELEASE for details on how to update https://numpy.org/doc.

15.2.2 Sphinx extensions

NumPy's documentation uses several custom extensions to Sphinx. These are shipped in the `sphinxext/` directory (as git submodules, as discussed above), and are automatically enabled when building NumPy's documentation.

If you want to make use of these extensions in third-party projects, they are available on PyPi as the `numpydoc` package.
REPORTING BUGS

File bug reports or feature requests, and make contributions (e.g. code patches), by opening a “new issue” on GitHub:

- NumPy Issues: https://github.com/numpy/numpy/issues

Please give as much information as you can in the ticket. It is extremely useful if you can supply a small self-contained code snippet that reproduces the problem. Also specify the component, the version you are referring to and the milestone.

Report bugs to the appropriate GitHub project (there is one for NumPy and a different one for SciPy).

More information can be found on the https://www.scipy.org/scipylib/dev-zone.html website.
17.1 NumPy 1.20.0 Release Notes

This NumPy release is the largest so made to date, some 684 PRs contributed by 184 people have been merged. See the list of highlights below for more details. The Python versions supported for this release are 3.7-3.9, support for Python 3.6 has been dropped. Highlights are

- Annotations for NumPy functions. This work is ongoing and improvements can be expected pending feedback from users.
- Wider use of SIMD to increase execution speed of ufuncs. Much work has been done in introducing universal functions that will ease use of modern features across different hardware platforms. This work is ongoing.
- Preliminary work in changing the dtype and casting implementations in order to provide an easier path to extending dtypes. This work is ongoing but enough has been done to allow experimentation and feedback.
- Extensive documentation improvements comprising some 185 PR merges. This work is ongoing and part of the larger project to improve NumPy’s online presence and usefulness to new users.
- Further cleanups related to removing Python 2.7. This improves code readability and removes technical debt.
- Preliminary support for the upcoming Cython 3.0.

17.1.1 New functions

The random.Generator class has a new permuted function.

The new function differs from shuffle and permutation in that the subarrays indexed by an axis are permuted rather than the axis being treated as a separate 1-D array for every combination of the other indexes. For example, it is now possible to permute the rows or columns of a 2-D array.

(gh-15121)
sliding_window_view provides a sliding window view for numpy arrays

numpy.lib.stride_tricks.sliding_window_view constructs views on numpy arrays that offer a sliding or moving window access to the array. This allows for the simple implementation of certain algorithms, such as running means.

(gh-17394)

numpy.broadcast_shapes is a new user-facing function

broadcast_shapes gets the resulting shape from broadcasting the given shape tuples against each other.

```python
>>> np.broadcast_shapes((1, 2), (3, 1))
(3, 2)
>>> np.broadcast_shapes(2, (3, 1))
(3, 2)
>>> np.broadcast_shapes((6, 7), (5, 6, 1), (7,), (5, 1, 7))
(5, 6, 7)
```

(gh-17535)

17.1.2 Deprecations

Using the aliases of builtin types like np.int is deprecated

For a long time, np.int has been an alias of the builtin int. This is repeatedly a cause of confusion for newcomers, and existed mainly for historic reasons.

These aliases have been deprecated. The table below shows the full list of deprecated aliases, along with their exact meaning. Replacing uses of items in the first column with the contents of the second column will work identically and silence the deprecation warning.

The third column lists alternative NumPy names which may occasionally be preferential. See also Data types for additional details.

<table>
<thead>
<tr>
<th>Deprecated name</th>
<th>Identical to</th>
<th>NumPy scalar type names</th>
</tr>
</thead>
<tbody>
<tr>
<td>numpy.bool</td>
<td>bool</td>
<td>numpy.bool_</td>
</tr>
<tr>
<td>numpy.int</td>
<td>int</td>
<td>numpy.int_ (default), numpy.int64, or numpy.int32</td>
</tr>
<tr>
<td>numpy.float</td>
<td>float</td>
<td>numpy.float64, numpy.float_, numpy.double (equivalent)</td>
</tr>
<tr>
<td>numpy.complex</td>
<td>complex</td>
<td>numpy.complex128, numpy.complex_, numpy.cdouble (equivalent)</td>
</tr>
<tr>
<td>numpy.object</td>
<td>object</td>
<td>numpy.object_</td>
</tr>
<tr>
<td>numpy.str</td>
<td>str</td>
<td>numpy.str_</td>
</tr>
<tr>
<td>numpy.long</td>
<td>int</td>
<td>numpy.int_ (C long), numpy.longlong (largest integer type)</td>
</tr>
<tr>
<td>numpy.unicode</td>
<td>str</td>
<td>numpy.unicode_</td>
</tr>
</tbody>
</table>

To give a clear guideline for the vast majority of cases, for the types bool, object, str (and unicode) using the plain version is shorter and clear, and generally a good replacement. For float and complex you can use float64 and complex128 if you wish to be more explicit about the precision.
For `np.int` a direct replacement with `np.int_` or `int` is also good and will not change behavior, but the precision will continue to depend on the computer and operating system. If you want to be more explicit and review the current use, you have the following alternatives:

- `np.int64` or `np.int32` to specify the precision exactly. This ensures that results cannot depend on the computer or operating system.
- `np.int_` or `int` (the default), but be aware that it depends on the computer and operating system.
- The C types: `np.cint(int), np.int_(long), np.longlong`.
- `np.intp` which is 32bit on 32bit machines 64bit on 64bit machines. This can be the best type to use for indexing.

When used with `np.dtype(...)` or `dtype=`... changing it to the NumPy name as mentioned above will have no effect on the output. If used as a scalar with:

```python
np.float(123)
```

changing it can subtly change the result. In this case, the Python version `float(123)` or `int(12.)` is normally preferable, although the NumPy version may be useful for consistency with NumPy arrays (for example, NumPy behaves differently for things like division by zero).

(gh-14882)

Passing shape=None to functions with a non-optional shape argument is deprecated

Previously, this was an alias for passing `shape=()`. This deprecation is emitted by `PyArray_IntpConverter` in the C API. If your API is intended to support passing `None`, then you should check for `None` prior to invoking the converter, so as to be able to distinguish `None` and `()`.

(gh-15886)

Indexing errors will be reported even when index result is empty

In the future, NumPy will raise an `IndexError` when an integer array index contains out of bound values even if a non-indexed dimension is of length 0. This will now emit a `DeprecationWarning`. This can happen when the array is previously empty, or an empty slice is involved:

```python
arr1 = np.zeros((5, 0))
arr1[[20]]
arr2 = np.zeros((5, 5))
arr2[[20], :0]
```

Previously the non-empty index `[20]` was not checked for correctness. It will now be checked causing a deprecation warning which will be turned into an error. This also applies to assignments.

(gh-15900)
Inexact matches for mode and searchside are deprecated

Inexact and case insensitive matches for mode and searchside were valid inputs earlier and will give a DeprecationWarning now. For example, below are some example usages which are now deprecated and will give a DeprecationWarning:

```python
import numpy as np
arr = np.array([[3, 6, 6], [4, 5, 1]])
# mode: inexact match
np.ravel_multi_index(arr, (7, 6), mode="clap")  # should be "clip"
# searchside: inexact match
np.searchsorted(arr[0], 4, side='random')  # should be "right"
```

(gh-16056)

Deprecation of numpy.dual

The module numpy.dual is deprecated. Instead of importing functions from numpy.dual, the functions should be imported directly from NumPy or SciPy.

(gh-16156)

outer and ufunc.outer deprecated for matrix

np.matrix use with outer or generic ufunc outer calls such as numpy.add.outer. Previously, matrix was converted to an array here. This will not be done in the future requiring a manual conversion to arrays.

(gh-16232)

Further Numeric Style types Deprecated

The remaining numeric-style type codes Bytes0, Str0, Uint32, Uint64, and Datetime64 have been deprecated. The lower-case variants should be used instead. For bytes and string "S" and "U" are further alternatives.

(gh-16554)

The ndincr method of ndindex is deprecated

The documentation has warned against using this function since NumPy 1.8. Use next(it) instead of it.ndincr().

(gh-17233)

ArrayLike objects which do not define __len__ and __getitem__

Objects which define one of the protocols __array__, __array_interface__, or __array_struct__ but are not sequences (usually defined by having a __len__ and __getitem__) will behave differently during array-coercion in the future.

When nested inside sequences, such as np.array([array_like]), these were handled as a single Python object rather than an array. In the future they will behave identically to:

```python
np.array([np.array(array_like)])
```
This change should only have an effect if `np.array(array_like)` is not 0-D. The solution to this warning may depend on the object:

- Some array-likes may expect the new behaviour, and users can ignore the warning. The object can choose to expose the sequence protocol to opt-in to the new behaviour.
- For example, `shapely` will allow conversion to an array-like using `line.coords` rather than `np.asarray(line)`. Users may work around the warning, or use the new convention when it becomes available.

Unfortunately, using the new behaviour can only be achieved by calling `np.array(array_like)`.

If you wish to ensure that the old behaviour remains unchanged, please create an object array and then fill it explicitly, for example:

```python
arr = np.empty(3, dtype=object)
arr[:] = [array_like1, array_like2, array_like3]
```

This will ensure NumPy knows to not enter the array-like and use it as a `object` instead.

(gh-17973)

17.1.3 Future Changes

Arrays cannot be using subarray dtypes

Array creation and casting using `np.array(arr, dtype)` and `arr.astype(dtype)` will use different logic when `dtype` is a subarray dtype such as `np.dtype("(2)i,"`).

For such a `dtype` the following behaviour is true:

```python
res = np.array(arr, dtype)
res.dtype is not dtype
res.dtype is dtype.base
res.shape == arr.shape + dtype.shape
```

But `res` is filled using the logic:

```python
res = np.empty(arr.shape + dtype.shape, dtype=dtype.base)
res[...] = arr
```

which uses incorrect broadcasting (and often leads to an error). In the future, this will instead cast each element individually, leading to the same result as:

```python
res = np.array(arr, dtype=np.dtype(["f", dtype]))["f"]
```

Which can normally be used to opt-in to the new behaviour.

This change does not affect `np.array(list, dtype="(2)i,"`) unless the `list` itself includes at least one array. In particular, the behaviour is unchanged for a list of tuples.

(gh-17596)
17.1.4 Expired deprecations

- The deprecation of numeric style type-codes `np.dtype("Complex64")` (with upper case spelling), is expired. "Complex64" corresponded to "complex128" and "Complex32" corresponded to "complex64".

- The deprecation of `np.sctypeNA` and `np.typeNA` is expired. Both have been removed from the public API. Use `np.typeDict` instead.

 (gh-16554)

- The 14-year deprecation of `np.ctypeslib.ctypes_load_library` is expired. Use `load_library` instead, which is identical.

 (gh-17116)

Financial functions removed

In accordance with NEP 32, the financial functions are removed from NumPy 1.20. The functions that have been removed are `fv`, `ipmt`, `irr`, `mirr`, `nper`, `npv`, `pmt`, `ppmt`, `pv`, and `rate`. These functions are available in the `numpy_financial` library.

(gh-17067)

17.1.5 Compatibility notes

`isinstance(dtype, np.dtype)` and `not type(dtype) is not np.dtype`

NumPy dtypes are not direct instances of `np.dtype` anymore. Code that may have used `type(dtype) is np.dtype` will always return `False` and must be updated to use the correct version `isinstance(dtype, np.dtype)`.

This change also affects the C-side macro `PyArray_DescrCheck` if compiled against a NumPy older than 1.16.6. If code uses this macro and wishes to compile against an older version of NumPy, it must replace the macro (see also C API changes section).

Same kind casting in concatenate with `axis=None`

When `concatenate` is called with `axis=None`, the flattened arrays were cast with `unsafe`. Any other axis choice uses “same kind”. That different default has been deprecated and “same kind” casting will be used instead. The new `casting` keyword argument can be used to retain the old behaviour.

(gh-16134)

NumPy Scalars are cast when assigned to arrays

When creating or assigning to arrays, in all relevant cases NumPy scalars will now be cast identically to NumPy arrays. In particular this changes the behaviour in some cases which previously raised an error:

```python
np.array([np.float64(np.nan)], dtype=np.int64)
```

will succeed and return an undefined result (usually the smallest possible integer). This also affects assignments:

```python
arr[0] = np.float64(np.nan)
```
At this time, NumPy retains the behaviour for:

```
np.array(np.float64(np.nan), dtype=np.int64)
```

The above changes do not affect Python scalars:

```
np.array([float("NaN")], dtype=np.int64)
```

remains unaffected (np.nan is a Python float, not a NumPy one). Unlike signed integers, unsigned integers do not retain this special case, since they always behaved more like casting. The following code stops raising an error:

```
np.array([np.float64(np.nan)], dtype=np.uint64)
```

To avoid backward compatibility issues, at this time assignment from datetime64 scalar to strings of too short length remains supported. This means that `np.asarray(np.datetime64("2020-10-10"), dtype="S5")` succeeds now, when it failed before. In the long term this may be deprecated or the unsafe cast may be allowed generally to make assignment of arrays and scalars behave consistently.

Array coercion changes when Strings and other types are mixed

When strings and other types are mixed, such as:

```
np.array(["string", np.float64(3.)], dtype="S")
```

The results will change, which may lead to string dtypes with longer strings in some cases. In particularly, if `dtype="S"` is not provided any numerical value will lead to a string results long enough to hold all possible numerical values. (e.g. “S32” for floats). Note that you should always provide `dtype="S"` when converting non-strings to strings.

If `dtype="S"` is provided the results will be largely identical to before, but NumPy scalars (not a Python float like 1.0), will still enforce a uniform string length:

```
np.array([np.float64(3.)], dtype="S")  # gives "S32"
np.array([3.0], dtype="S")  # gives "S3"
```

Previously the first version gave the same result as the second.

Array coercion restructure

Array coercion has been restructured. In general, this should not affect users. In extremely rare corner cases where array-likes are nested:

```
np.array([array_like1])
```

Things will now be more consistent with:

```
np.array([np.array(array_like1)])
```

This can subtly change output for some badly defined array-likes. One example for this are array-like objects which are not also sequences of matching shape. In NumPy 1.20, a warning will be given when an array-like is not also a sequence (but behaviour remains identical, see deprecations). If an array like is also a sequence (defines `__getitem__` and `__len__`) NumPy will now only use the result given by `__array__, __array_interface__, or __array_struct__`. This will result in differences when the (nested) sequence describes a different shape.

(gh-16200)
Writing to the result of `numpy.broadcast_arrays` will export readonly buffers

In NumPy 1.17 `numpy.broadcast_arrays` started warning when the resulting array was written to. This warning was skipped when the array was used through the buffer interface (e.g. `memoryview(arr)`). The same thing will now occur for the two protocols `__array_interface__`, and `__array_struct__` returning read-only buffers instead of giving a warning.

(gh-16350)

Numeric-style type names have been removed from type dictionaries

To stay in sync with the deprecation for `np.dtype("Complex64")` and other numeric-style (capital case) types. These were removed from `np.sctypedefDict` and `np.typeDict`. You should use the lower case versions instead. Note that "Complex64" corresponds to "complex128" and "Complex32" corresponds to "complex64". The numpy style (new) versions, denote the full size and not the size of the real/imaginary part.

(gh-16554)

The `operator.concat` function now raises TypeError for array arguments

The previous behavior was to fall back to addition and add the two arrays, which was thought to be unexpected behavior for a concatenation function.

(gh-16570)

nickname attribute removed from ABCPolyBase

An abstract property `nickname` has been removed from ABCPolyBase as it was no longer used in the derived convenience classes. This may affect users who have derived classes from ABCPolyBase and overridden the methods for representation and display, e.g. `__str__`, `__repr__`, `_repr_latex_`, etc.

(gh-16589)

`float->timedelta` and `uint64->timedelta` promotion will raise a TypeError

Float and timedelta promotion consistently raises a TypeError. `np.promote_types("float32", "m8")` aligns with `np.promote_types("m8", "float32")` now and both raise a TypeError. Previously, `np.promote_types("float32", "m8")` returned "m8" which was considered a bug.

Uint64 and timedelta promotion consistently raises a TypeError. `np.promote_types("uint64", "m8")` aligns with `np.promote_types("m8", "uint64")` now and both raise a TypeError. Previously, `np.promote_types("uint64", "m8")` returned "m8" which was considered a bug.

(gh-16592)
numpy.genfromtxt now correctly unpacks structured arrays

Previously, `numpy.genfromtxt` failed to unpack if it was called with `unpack=True` and a structured datatype was passed to the `dtype` argument (or `dtype=None` was passed and a structured datatype was inferred). For example:

```python
>>> data = StringIO("21 58.0\n35 72.0")
>>> np.genfromtxt(data, dtype=None, unpack=True)
array([(21, 58.), (35, 72.)], dtype=[('f0', '<i8'), ('f1', '<f8')])
```

Structured arrays will now correctly unpack into a list of arrays, one for each column:

```python
>>> np.genfromtxt(data, dtype=None, unpack=True)
[array([21, 35]), array([58., 72.])]
```

(gh-16650)

mgrid, r_ etc. consistently return correct outputs for non-default precision input

Previously, `np.mgrid[np.float32(0.1):np.float32(0.35):np.float32(0.1),]` and `np.r_[0:10:np.complex64(3j)]` failed to return meaningful output. This bug potentially affects `mgrid, ogrid, r_`, and `c_` when an input with dtype other than the default `float64` and `complex128` and equivalent Python types were used. The methods have been fixed to handle varying precision correctly.

(gh-16815)

Boolean array indices with mismatching shapes now properly give IndexError

Previously, if a boolean array index matched the size of the indexed array but not the shape, it was incorrectly allowed in some cases. In other cases, it gave an error, but the error was incorrectly a `ValueError` with a message about broadcasting instead of the correct `IndexError`.

For example, the following used to incorrectly give `ValueError: operands could not be broadcast together with shapes (2,2) (1,4):`

```python
np.empty((2, 2))[np.array([[True, False, False, False]])]
```

And the following used to incorrectly return `array([], dtype=float64):`

```python
np.empty((2, 2))[np.array([[False, False, False, False]])]
```

Both now correctly give `IndexError: boolean index did not match indexed array along dimension 0; dimension is 2 but corresponding boolean dimension is 1.`

(gh-17010)
Casting errors interrupt iteration

When iterating while casting values, an error may stop the iteration earlier than before. In any case, a failed casting operation always returned undefined, partial results. Those may now be even more undefined and partial. For users of the NpyIter C-API such cast errors will now cause the `iternext()` function to return 0 and thus abort iteration. Currently, there is no API to detect such an error directly. It is necessary to check `PyErr_Occurred()`, which may be problematic in combination with `NpyIter_Reset`. These issues always existed, but new API could be added if required by users.

(gh-17029)

f2py generated code may return unicode instead of byte strings

Some byte strings previously returned by f2py generated code may now be unicode strings. This results from the ongoing Python2 -> Python3 cleanup.

(gh-17068)

The first element of the __array_interface__["data"] tuple must be an integer

This has been the documented interface for many years, but there was still code that would accept a byte string representation of the pointer address. That code has been removed, passing the address as a byte string will now raise an error.

(gh-17241)

poly1d respects the dtype of all-zero argument

Previously, constructing an instance of `poly1d` with all-zero coefficients would cast the coefficients to `np.float64`. This affected the output dtype of methods which construct `poly1d` instances internally, such as `np.polymul`.

(gh-17577)

The numpy.i file for swig is Python 3 only.

Uses of Python 2.7 C-API functions have been updated to Python 3 only. Users who need the old version should take it from an older version of NumPy.

(gh-17580)

Void dtype discovery in np.array

In calls using `np.array(..., dtype="V"), arr.astype("V")`, and similar a TypeError will now be correctly raised unless all elements have the identical void length. An example for this is:

```python	np.array([b"1", b"12"], dtype="V")
```

Which previously returned an array with dtype "V2" which cannot represent b"1" faithfully.

(gh-17706)
17.1.6 C API changes

The PyArray_DescrCheck macro is modified

The PyArray_DescrCheck macro has been updated since NumPy 1.16.6 to be:

```c
#define PyArray_DescrCheck(op) PyObject_TypeCheck(op, &PyArrayDescr_Type)
```

Starting with NumPy 1.20 code that is compiled against an earlier version will be API incompatible with NumPy 1.20. The fix is to either compile against 1.16.6 (if the NumPy 1.16 release is the oldest release you wish to support), or manually inline the macro by replacing it with the new definition:

```c
PyObject_TypeCheck(op, &PyArrayDescr_Type)
```

which is compatible with all NumPy versions.

Size of np.ndarray and np.void_ changed

The size of the PyArrayObject and PyVoidScalarObject structures have changed. The following header definition has been removed:

```c
#define NPY_SIZEOF_PYARRAYOBJECT (sizeof(PyArrayObject_fields))
```

since the size must not be considered a compile time constant: it will change for different runtime versions of NumPy. The most likely relevant use are potential subclasses written in C which will have to be recompiled and should be updated. Please see the documentation for PyArrayObject for more details and contact the NumPy developers if you are affected by this change.

NumPy will attempt to give a graceful error but a program expecting a fixed structure size may have undefined behaviour and likely crash.

(gh-16938)

17.1.7 New Features

where keyword argument for numpy.all and numpy.any functions

The keyword argument where is added and allows to only consider specified elements or subaxes from an array in the Boolean evaluation of all and any. This new keyword is available to the functions all and any both via numpy directly or in the methods of numpy.ndarray.

Any broadcastable Boolean array or a scalar can be set as where. It defaults to True to evaluate the functions for all elements in an array if where is not set by the user. Examples are given in the documentation of the functions.
NumPy User Guide, Release 1.20.0

where keyword argument for numpy functions mean, std, var

The keyword argument `where` is added and allows to limit the scope in the calculation of `mean`, `std` and `var` to only a subset of elements. It is available both via `numpy` directly or in the methods of `numpy.ndarray`.

Any broadcastable Boolean array or a scalar can be set as `where`. It defaults to `True` to evaluate the functions for all elements in an array if `where` is not set by the user. Examples are given in the documentation of the functions.

(gh-15852)

norm=backward, forward keyword options for numpy.fft functions

The keyword argument option `norm=backward` is added as an alias for `None` and acts as the default option; using it has the direct transforms unscaled and the inverse transforms scaled by $1/n$.

Using the new keyword argument option `norm=forward` has the direct transforms scaled by $1/n$ and the inverse transforms unscaled (i.e. exactly opposite to the default option `norm=backward`).

(gh-16476)

NumPy is now typed

Type annotations have been added for large parts of NumPy. There is also a new `numpy.typing` module that contains useful types for end-users. The currently available types are

- **ArrayLike**: for objects that can be coerced to an array
- **DtypeLike**: for objects that can be coerced to a dtype

(gh-16515)

numpy.typing is accessible at runtime

The types in `numpy.typing` can now be imported at runtime. Code like the following will now work:

```python
from numpy.typing import ArrayLike
x: ArrayLike = [1, 2, 3, 4]
```

(gh-16558)

New __f2py_numpy_version__ attribute for f2py generated modules.

Because f2py is released together with NumPy, `__f2py_numpy_version__` provides a way to track the version f2py used to generate the module.

(gh-16594)
mypy tests can be run via runtests.py

Currently running mypy with the NumPy stubs configured requires either:

- Installing NumPy
- Adding the source directory to MYPYPATH and linking to the mypy.ini

Both options are somewhat inconvenient, so add a `--mypy` option to runtests that handles setting things up for you. This will also be useful in the future for any typing codegen since it will ensure the project is built before type checking.

(gh-17123)

Negation of user defined BLAS/LAPACK detection order

`distutils` allows negation of libraries when determining BLAS/LAPACK libraries. This may be used to remove an item from the library resolution phase, i.e. to disallow NetLIB libraries one could do:

```
NPY_BLAS_ORDER='^blas' NPY_LAPACK_ORDER='^lapack' python setup.py build
```

That will use any of the accelerated libraries instead.

(gh-17219)

Allow passing optimizations arguments to asv build

It is now possible to pass `-j`, `--cpu-baseline`, `--cpu-dispatch` and `--disable-optimization` flags to ASV build when the `--bench-compare` argument is used.

(gh-17284)

The NVIDIA HPC SDK nvfortran compiler is now supported

Support for the nvfortran compiler, a version of pgfortran, has been added.

(gh-17344)

dtype option for cov and corrcoef

The `dtype` option is now available for `numpy.cov` and `numpy.corrcoef`. It specifies which data-type the returned result should have. By default the functions still return a `numpy.float64` result.

(gh-17456)

17.1.8 Improvements

Improved string representation for polynomials (__str__**)**

The string representation (**__str__**) of all six polynomial types in `numpy.polynomial` has been updated to give the polynomial as a mathematical expression instead of an array of coefficients. Two package-wide formats for the polynomial expressions are available - one using Unicode characters for superscripts and subscripts, and another using only ASCII characters.

(gh-15666)
Remove the Accelerate library as a candidate LAPACK library

Apple no longer supports Accelerate. Remove it.

(gh-15759)

Object arrays containing multi-line objects have a more readable repr

If elements of an object array have a repr containing new lines, then the wrapped lines will be aligned by column. Notably, this improves the repr of nested arrays:

```python
>>> np.array([np.eye(2), np.eye(3)], dtype=object)
array([array([[1., 0.],
            [0., 1.]]),
      array([[1., 0., 0.],
            [0., 1., 0.],
            [0., 0., 1.]]),
      dtype=object])
```

(gh-15997)

Concatenate supports providing an output dtype

Support was added to `concatenate` to provide an output dtype and casting using keyword arguments. The dtype argument cannot be provided in conjunction with the out one.

(gh-16134)

Thread safe f2py callback functions

Callback functions in f2py are now thread safe.

(gh-16519)

`numpy.core.records.fromfile` now supports file-like objects

`numpy.rec.fromfile` can now use file-like objects, for instance `io.BytesIO`

(gh-16675)

RPATH support on AIX added to distutils

This allows SciPy to be built on AIX.

(gh-16710)
Use f90 compiler specified by the command line args

The compiler command selection for Fortran Portland Group Compiler is changed in `numpy.distutils.fcompiler`. This only affects the linking command. This forces the use of the executable provided by the command line option (if provided) instead of the pgfortran executable. If no executable is provided to the command line option it defaults to the pgf90 executable, which is an alias for pgfortran according to the PGI documentation.

(gh-16730)

Add NumPy declarations for Cython 3.0 and later

The pxd declarations for Cython 3.0 were improved to avoid using deprecated NumPy C-API features. Extension modules built with Cython 3.0+ that use NumPy can now set the C macro `NPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION` to avoid C compiler warnings about deprecated API usage.

(gh-16986)

Make the window functions exactly symmetric

Make sure the window functions provided by NumPy are symmetric. There were previously small deviations from symmetry due to numerical precision that are now avoided by better arrangement of the computation.

(gh-17195)

17.1.9 Performance improvements and changes

Enable multi-platform SIMD compiler optimizations

A series of improvements for NumPy infrastructure to pave the way to NEP-38, that can be summarized as follow:

- **New Build Arguments**
 - `--cpu-baseline` to specify the minimal set of required optimizations, default value is `min` which provides the minimum CPU features that can safely run on a wide range of users platforms.
 - `--cpu-dispatch` to specify the dispatched set of additional optimizations, default value is `max -xop -fma4` which enables all CPU features, except for AMD legacy features.
 - `--disable-optimization` to explicitly disable the whole new improvements, It also adds a new C compiler #definition called `NPY_DISABLE_OPTIMIZATION` which it can be used as guard for any SIMD code.

- **Advanced CPU dispatcher**
 A flexible cross-architecture CPU dispatcher built on the top of Python/Numpy distutils, support all common compilers with a wide range of CPU features.

 The new dispatcher requires a special file extension `*.dispatch.c` to mark the dispatch-able C sources. These sources have the ability to be compiled multiple times so that each compilation process represents certain CPU features and provides different #definitions and flags that affect the code paths.

- **New auto-generated C header “core/src/common/_cpu_dispatch.h“**
 This header is generated by the distutils module `ccompiler_opt`, and contains all the #definitions and headers of instruction sets, that had been configured through command arguments ‘--cpu-baseline’ and ‘--cpu-dispatch’.
• New C header “core/src/common/npy_cpu_dispatch.h”
 This header contains all utilities that required for the whole CPU dispatching process, it also can be considered as a bridge linking the new infrastructure work with NumPy CPU runtime detection.

• Add new attributes to NumPy umath module (Python level)
 - __cpu_baseline__ a list contains the minimal set of required optimizations that supported by the compiler and platform according to the specified values to command argument ‘--cpu-baseline’.
 - __cpu_dispatch__ a list contains the dispatched set of additional optimizations that supported by the compiler and platform according to the specified values to command argument ‘--cpu-dispatch’.

• Print the supported CPU features during the run of PytestTester

(gh-13516)

17.1.10 Changes

Changed behavior of \texttt{divmod(1., 0.)} and related functions

The changes also assure that different compiler versions have the same behavior for nan or inf usages in these operations. This was previously compiler dependent, we now force the invalid and divide by zero flags, making the results the same across compilers. For example, gcc-5, gcc-8, or gcc-9 now result in the same behavior. The changes are tabulated below:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Old Warning</th>
<th>New Warning</th>
<th>Old Result</th>
<th>New Result</th>
<th>Works on MacOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>np.divmod(1.0, 0.0)</td>
<td>Invalid</td>
<td>Invalid and Dividebyzero</td>
<td>nan, nan</td>
<td>inf, nan</td>
<td>Yes</td>
</tr>
<tr>
<td>np.fmod(1.0, 0.0)</td>
<td>Invalid</td>
<td>Invalid</td>
<td>nan</td>
<td>nan</td>
<td>No? Yes</td>
</tr>
<tr>
<td>np.floor_divide(1.0, 0.0)</td>
<td>Invalid</td>
<td>Dividebyzero</td>
<td>nan</td>
<td>inf</td>
<td>Yes</td>
</tr>
<tr>
<td>np.remainder(1.0, 0.0)</td>
<td>Invalid</td>
<td>Invalid</td>
<td>nan</td>
<td>nan</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(gh-16161)

\texttt{np.linspace} on integers now uses floor

When using \texttt{int} dtype in \texttt{numpy.linspace}, previously float values would be rounded towards zero. Now \texttt{numpy.floor} is used instead, which rounds toward $-\text{inf}$. This changes the results for negative values. For example, the following would previously give:

```python
>>> np.linspace(-3, 1, 8, dtype=int)
array([-3, -2, -1, 0, 0, 0, 1])
```

and now results in:

```python
>>> np.linspace(-3, 1, 8, dtype=int)
array([-3, -3, -2, -2, -1, -1, 0, 1])
```

The former result can still be obtained with:

```python
>>> np.linspace(-3, 1, 8).astype(int)
array([-3, -2, -1, 0, 0, 0, 1])
```
17.2 NumPy 1.19.5 Release Notes

NumPy 1.19.5 is a short bugfix release. Apart from fixing several bugs, the main improvement is the update to OpenBLAS 0.3.13 that works around the windows 2004 bug while not breaking execution on other platforms. This release supports Python 3.6-3.9 and is planned to be the last release in the 1.19.x cycle.

17.2.1 Contributors

A total of 8 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Christoph Gohlke
- Matti Picus
- Raghuveer Devulapalli
- Sebastian Berg
- Simon Graham +
- Veniamin Petrenko +
- Bernie Gray +

17.2.2 Pull requests merged

A total of 11 pull requests were merged for this release.

- #17756: BUG: Fix segfault due to out of bound pointer in floatstatus…
- #17774: BUG: fix np.timedelta64('nat').__format__ throwing an exception
- #17775: BUG: Fixed file handle leak in array.tofile.
- #17786: BUG: Raise recursion error during dimension discovery
- #17917: BUG: Fix subarray dtype used with too large count in fromfile
- #17918: BUG: ‘bool’ object has no attribute ‘ndim’
- #17919: BUG: ensure _UFuncNoLoopError can be pickled
- #17924: BLD: use BUFFERSIZE=20 in OpenBLAS
- #18026: BLD: update to OpenBLAS 0.3.13
- #18036: BUG: make a variable volatile to work around clang compiler bug
- #18114: REL: Prepare for the NumPy 1.19.5 release.
17.3 NumPy 1.19.4 Release Notes

NumPy 1.19.4 is a quick release to revert the OpenBLAS library version. It was hoped that the 0.3.12 OpenBLAS version used in 1.19.3 would work around the Microsoft fmod bug, but problems in some docker environments turned up. Instead, 1.19.4 will use the older library and run a sanity check on import, raising an error if the problem is detected. Microsoft is aware of the problem and has promised a fix, users should upgrade when it becomes available.

This release supports Python 3.6-3.9

17.3.1 Contributors

A total of 1 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris

17.3.2 Pull requests merged

A total of 2 pull requests were merged for this release.

- #17680: REV: Revert OpenBLAS to 1.19.2 version for 1.19.4

17.4 NumPy 1.19.3 Release Notes

NumPy 1.19.3 is a small maintenance release with two major improvements:

- Python 3.9 binary wheels on all supported platforms.
- OpenBLAS fixes for Windows 10 version 2004 fmod bug.

This release supports Python 3.6-3.9 and is linked with OpenBLAS 0.3.12 to avoid some of the fmod problems on Windows 10 version 2004. Microsoft is aware of the problem and users should upgrade when the fix becomes available, the fix here is limited in scope.

17.4.1 Contributors

A total of 8 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Chris Brown +
- Daniel Vanzo +
- E. Madison Bray +
- Hugo van Kemenade +
- Ralf Gommers
- Sebastian Berg
- @danbeibei +
17.4.2 Pull requests merged

A total of 10 pull requests were merged for this release.

- #17298: BLD: set upper versions for build dependencies
- #17336: BUG: Set deprecated fields to null in PyArray_InitArrFuncs
- #17446: ENH: Warn on unsupported Python 3.10+
- #17450: MAINT: Update test_requirements.txt.
- #17522: ENH: Support for the NVIDIA HPC SDK nvfortran compiler
- #17568: BUG: Cygwin Workaround for #14787 on affected platforms
- #17647: BUG: Fix memory leak of buffer-info cache due to relaxed strides
- #17652: MAINT: Backport openblas_support from master.
- #17653: TST: Add Python 3.9 to the CI testing on Windows, Mac.
- #17660: TST: Simplify source path names in test_extending.

17.5 NumPy 1.19.2 Release Notes

NumPy 1.19.2 fixes several bugs, prepares for the upcoming Cython 3.x release, and pins setuptools to keep distutils working while upstream modifications are ongoing. The arch64 wheels are built with the latest manylinux2014 release that fixes the problem of differing page sizes used by different Linux distros.

This release supports Python 3.6-3.8. Cython >= 0.29.21 needs to be used when building with Python 3.9 for testing purposes.

There is a known problem with Windows 10 version=2004 and OpenBLAS svd that we are trying to debug. If you are running that Windows version you should use a NumPy version that links to the MKL library, earlier Windows versions are fine.

17.5.1 Improvements

Add NumPy declarations for Cython 3.0 and later

The pxd declarations for Cython 3.0 were improved to avoid using deprecated NumPy C-API features. Extension modules built with Cython 3.0+ that use NumPy can now set the C macro NPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION to avoid C compiler warnings about deprecated API usage.

17.5.2 Contributors

A total of 8 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Pauli Virtanen
- Philippe Ombredanne +
- Sebastian Berg
17.5.3 Pull requests merged

A total of 9 pull requests were merged for this release.

- #16959: TST: Change arch64 to arm64 in travis.yml.
- #16998: MAINT: Configure hypothesis in np.test() for determinism,…
- #17000: BLD: pin setuptools < 49.2.0
- #17015: ENH: Add NumPy declarations to be used by Cython 3.0+
- #17125: BUG: Remove non-threadsafe sigint handling from fft calculation
- #17243: BUG: core: fix ilp64 blas dot/vdot/… for strides > int32 max
- #17244: DOC: Use SPDX license expressions with correct license
- #17245: DOC: Fix the link to the quick-start in the old API functions
- #17272: BUG: fix pickling of arrays larger than 2GiB

17.6 NumPy 1.19.1 Release Notes

NumPy 1.19.1 fixes several bugs found in the 1.19.0 release, replaces several functions deprecated in the upcoming Python-3.9 release, has improved support for AIX, and has a number of development related updates to keep CI working with recent upstream changes.

This release supports Python 3.6-3.8. Cython >= 0.29.21 needs to be used when building with Python 3.9 for testing purposes.

17.6.1 Contributors

A total of 15 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Abhinav Reddy +
- Anirudh Subramanian
- Antonio Larrosa +
- Charles Harris
- Chunlin Fang
- Eric Wieser
- Etienne Guesnet +
- Kevin Sheppard
- Matti Picus
- Raguveer Devulapalli
- Roman Yurchak
17.6.2 Pull requests merged

A total of 25 pull requests were merged for this release.

- #16649: MAINT, CI: disable Shippable cache
- #16654: REL: Fix outdated docs link
- #16656: BUG: raise IEEE exception on AIX
- #16672: BUG: Fix bug in AVX complex absolute while processing array of...
- #16693: TST: Add extra debugging information to CPU features detection
- #16703: BLD: Add CPU entry for Emscripten / WebAssembly
- #16705: TST: Disable Python 3.9-dev testing.
- #16714: MAINT: Disable use_hugepages in case of ValueError
- #16724: BUG: Fix PyArray_SearchSorted signature.
- #16768: MAINT: Fixes for deprecated functions in scalaratypes.c.src
- #16772: MAINT: Remove unneeded call to PyUnicode_READY
- #16776: MAINT: Fix deprecated functions in scalarapi.c
- #16779: BLD, ENH: Add RPATH support for AIX
- #16780: BUG: Fix default fallback in genfromtxt
- #16784: BUG: Added missing return after raising error in methods.c
- #16795: BLD: update cython to 0.29.21
- #16832: MAINT: setuptools 49.2.0 emits a warning, avoid it
- #16872: BUG: Validate output size in bin- and multinomial
- #16875: BLD, MAINT: Pin setuptools
- #16905: TST, BUG: Re-raise MemoryError exception in test_large_zip's...
- #16906: BUG, DOC: Fix bad MPL kwarg.
- #16916: BUG: Fix string/bytes to complex assignment
- #16922: REL: Prepare for NumPy 1.19.1 release
17.7 NumPy 1.19.0 Release Notes

This NumPy release is marked by the removal of much technical debt: support for Python 2 has been removed, many deprecations have been expired, and documentation has been improved. The polishing of the random module continues apace with bug fixes and better usability from Cython.

The Python versions supported for this release are 3.6-3.8. Downstream developers should use Cython >= 0.29.16 for Python 3.8 support and OpenBLAS >= 3.7 to avoid problems on the Skylake architecture.

17.7.1 Highlights

- Code compatibility with Python versions < 3.6 (including Python 2) was dropped from both the python and C code. The shims in `numpy.compat` will remain to support third-party packages, but they may be deprecated in a future release. Note that 1.19.x will not compile with earlier versions of Python due to the use of f-strings.

 ([gh-15233](https://github.com/numpy/numpy/issues/15233))

17.7.2 Expired deprecations

`numpy.insert` and `numpy.delete` can no longer be passed an axis on 0d arrays

This concludes a deprecation from 1.9, where when an `axis` argument was passed to a call to `~numpy.insert` and `~numpy.delete` on a 0d array, the `axis` and `obj` argument and indices would be completely ignored. In these cases, `insert(arr, "nonsense", 42, axis=0)` would actually overwrite the entire array, while `delete(arr, "nonsense", axis=0)` would be `arr.copy()`.

Now passing `axis` on a 0d array raises `~numpy.AxisError`.

([gh-15802](https://github.com/numpy/numpy/issues/15802))

`numpy.delete` no longer ignores out-of-bounds indices

This concludes deprecations from 1.8 and 1.9, where `np.delete` would ignore both negative and out-of-bounds items in a sequence of indices. This was at odds with its behavior when passed a single index.

Now out-of-bounds items throw `IndexError`, and negative items index from the end.

([gh-15804](https://github.com/numpy/numpy/issues/15804))

`numpy.insert` and `numpy.delete` no longer accept non-integral indices

This concludes a deprecation from 1.9, where sequences of non-integers indices were allowed and cast to integers. Now passing sequences of non-integral indices raises `IndexError`, just like it does when passing a single non-integral scalar.

([gh-15805](https://github.com/numpy/numpy/issues/15805))
numpy.delete no longer casts boolean indices to integers

This concludes a deprecation from 1.8, where `numpy.delete` would cast boolean arrays and scalars passed as an index argument into integer indices. The behavior now is to treat boolean arrays as a mask, and to raise an error on boolean scalars.

(gh-15815)

17.7.3 Compatibility notes

Changed random variate stream from numpy.random.Generator.dirichlet

A bug in the generation of random variates for the Dirichlet distribution with small ‘alpha’ values was fixed by using a different algorithm when `max(alpha) < 0.1`. Because of the change, the stream of variates generated by `dirichlet` in this case will be different from previous releases.

(gh-14924)

Scalar promotion in PyArray_ConvertToCommonType

The promotion of mixed scalars and arrays in `PyArray_ConvertToCommonType` has been changed to adhere to those used by `np.result_type`. This means that input such as `(1000, np.array([1], dtype=np.uint8))` will now return `uint16` dtypes. In most cases the behaviour is unchanged. Note that the use of this C-API function is generally discouraged. This also fixes `np.choose` to behave the same way as the rest of NumPy in this respect.

(gh-14933)

Fasttake and fastputmask slots are deprecated and NULL’ed

The fasttake and fastputmask slots are now never used and must always be set to NULL. This will result in no change in behaviour. However, if a user dtypeshould set one of these a DeprecationWarning will be given.

(gh-14942)

np.ediff1d casting behaviour with to_end and to_begin

`np.ediff1d` now uses the "same_kind" casting rule for its additional `to_end` and `to_begin` arguments. This ensures type safety except when the input array has a smaller integer type than `to_begin` or `to_end`. In rare cases, the behaviour will be more strict than it was previously in 1.16 and 1.17. This is necessary to solve issues with floating point NaN.

(gh-14981)
Converting of empty array-like objects to NumPy arrays

Objects with `len(obj) == 0` which implement an “array-like” interface, meaning an object implementing `obj.__array__()`, `obj.__array_interface__`, `obj.__array_struct__`, or the python buffer interface and which are also sequences (i.e. Pandas objects) will now always retain there shape correctly when converted to an array. If such an object has a shape of `(0, 1)` previously, it could be converted into an array of shape `(0,)` (losing all dimensions after the first 0).

(gh-14995)

Removed `multiarray.int_asbuffer`

As part of the continued removal of Python 2 compatibility, `multiarray.int_asbuffer` was removed. On Python 3, it threw a `NotImplementedError` and was unused internally. It is expected that there are no downstream use cases for this method with Python 3.

(gh-15229)

`numpy.distutils.compat` has been removed

This module contained only the function `get_exception()`, which was used as:

```python
try:
    ...
except Exception:
    e = get_exception()
```

Its purpose was to handle the change in syntax introduced in Python 2.6, from `except Exception, e:` to `except Exception as e:`., meaning it was only necessary for codebases supporting Python 2.5 and older.

(gh-15255)

`issubdtype` no longer interprets `float` as `np.floating`

`numpy.issubdtype` had a FutureWarning since NumPy 1.14 which has expired now. This means that certain input where the second argument was neither a datatype nor a NumPy scalar type (such as a string or a python type like `int` or `float`) will now be consistent with passing in `np.dtype(arg2).type`. This makes the result consistent with expectations and leads to a false result in some cases which previously returned true.

(gh-15773)

Change output of `round` on scalars to be consistent with Python

Output of the `__round__` dunder method and consequently the Python built-in `round` has been changed to be a Python `int` to be consistent with calling it on Python `float` objects when called with no arguments. Previously, it would return a scalar of the `np.dtype` that was passed in.

(gh-15840)
The `numpy.ndarray` constructor no longer interprets `strides=()` as `strides=None`:

The former has changed to have the expected meaning of setting `numpy.ndarray.strides` to `()`, while the latter continues to result in strides being chosen automatically.

(gh-15882)

C-Level string to datetime casts changed

The C-level casts from strings were simplified. This changed also fixes string to datetime and timedelta casts to behave correctly (i.e. like Python casts using `string_arr.astype("M8")`) while previously the cast would behave like `string_arr.astype(np.int_).astype("M8")`. This only affects code using low-level C-API to do manual casts (not full array casts) of single scalar values or using e.g. `PyArray_GetCastFunc`, and should thus not affect the vast majority of users.

(gh-16068)

SeedSequence with small seeds no longer conflicts with spawning

Small seeds (less than 2^{**96}) were previously implicitly 0-padded out to 128 bits, the size of the internal entropy pool. When spawned, the spawn key was concatenated before the 0-padding. Since the first spawn key is $(0,)$, small seeds before the spawn created the same states as the first spawned `SeedSequence`. Now, the seed is explicitly 0-padded out to the internal pool size before concatenating the spawn key. Spawned `SeedSequences` will produce different results than in the previous release. Unspawned `SeedSequences` will still produce the same results.

(gh-16551)

17.7.4 Deprecations

Deprecate automatic dtype=object for ragged input

Calling `np.array([[1, [1, 2, 3]]])` will issue a `DeprecationWarning` as per NEP 34. Users should explicitly use `dtype=object` to avoid the warning.

(gh-15119)

Passing shape=0 to factory functions in `numpy.rec` is deprecated

0 is treated as a special case and is aliased to `None` in the functions:

- `numpy.core.records.fromarrays`
- `numpy.core.records.fromrecords`
- `numpy.core.records.fromstring`
- `numpy.core.records.fromfile`

In future, 0 will not be special cased, and will be treated as an array length like any other integer.

(gh-15217)
Deprecation of probably unused C-API functions

The following C-API functions are probably unused and have been deprecated:

- PyArray_GetArrayParamsFromObject
- PyUFunc_GenericFunction
- PyUFunc_SetUsesArraysAsData

In most cases PyArray_GetArrayParamsFromObject should be replaced by converting to an array, while PyUFunc_GenericFunction can be replaced with PyObject_Call (see documentation for details).

(gh-15427)

Converting certain types to dtypes is Deprecated

The super classes of scalar types, such as np.integer, np.generic, or np.inexact will now give a deprecation warning when converted to a dtype (or used in a dtype keyword argument). The reason for this is that np.integer is converted to np.int_, while it would be expected to represent any integer (e.g. also int8, int16, etc. For example, dtype=np.floating is currently identical to dtype=np.float64, even though also np.float32 is a subclass of np.float64.

(gh-15534)

Deprecation of round for np.complexfloating scalars

Output of the __round__ dunder method and consequently the Python built-in round has been deprecated on complex scalars. This does not affect np.round.

(gh-15840)

numpy.ndarray.tostring() is deprecated in favor of tobytes()

~numpy.ndarray.tobytes has existed since the 1.9 release, but until this release ~numpy.ndarray.tobystring emitted no warning. The change to emit a warning brings NumPy in line with the builtin array.array methods of the same name.

(gh-15867)

17.7.5 C API changes

Better support for const dimensions in API functions

The following functions now accept a constant array of npy_intp:

- PyArray_BroadcastToShape
- PyArray_IntTupleFromIntp
- PyArray_OverflowMultiplyList

Previously the caller would have to cast away the const-ness to call these functions.

(gh-15251)
Const qualify UFunc inner loops

`UFuncGenericFunction` now expects pointers to const `dimension` and `strides` as arguments. This means inner loops may no longer modify either `dimension` or `strides`. This change leads to an `incompatible-pointer-types` warning forcing users to either ignore the compiler warnings or to const qualify their own loop signatures.

(gh-15355)

17.7.6 New Features

numpy.frompyfunc now accepts an identity argument

This allows the `attr: numpy.ufunc.identity` attribute to be set on the resulting ufunc, meaning it can be used for empty and multi-dimensional calls to `meth: numpy.ufunc.reduce`.

(gh-8255)

np.str_ scalars now support the buffer protocol

`np.str_` arrays are always stored as UCS4, so the corresponding scalars now expose this through the buffer interface, meaning `memoryview(np.str_('test'))` now works.

(gh-15385)

subok option for numpy.copy

A new kwarg, `subok`, was added to `numpy.copy` to allow users to toggle the behavior of `numpy.copy` with respect to array subclasses. The default value is `False` which is consistent with the behavior of `numpy.copy` for previous numpy versions. To create a copy that preserves an array subclass with `numpy.copy`, call `np.copy(arr, subok=True)`. This addition better documents that the default behavior of `numpy.copy` differs from the `numpy.ndarray.copy` method which respects array subclasses by default.

(gh-15685)

numpy.linalg.multi_dot now accepts an out argument

`out` can be used to avoid creating unnecessary copies of the final product computed by `numpy.linalg.multidot`.

(gh-15715)

keepdims parameter for numpy.count_nonzero

The parameter `keepdims` was added to `numpy.count_nonzero`. The parameter has the same meaning as it does in reduction functions such as `numpy.sum` or `numpy.mean`.

(gh-15870)
equal_nan parameter for numpy.array_equal

The keyword argument equal_nan was added to numpy.array_equal. equal_nan is a boolean value that toggles whether or not nan values are considered equal in comparison (default is False). This matches API used in related functions such as numpy.isclose and numpy.allclose.

(gh-16128)

17.7.7 Improvements

17.7.8 Improve detection of CPU features

Replace npy_cpu_supports which was a gcc specific mechanism to test support of AVX with more general functions npy_cpu_init and npy_cpu_have, and expose the results via a NPY_CPU_HAVE c-macro as well as a python-level __cpu_features__ dictionary.

(gh-13421)

Use 64-bit integer size on 64-bit platforms in fallback lapack_lite

Use 64-bit integer size on 64-bit platforms in the fallback LAPACK library, which is used when the system has no LAPACK installed, allowing it to deal with linear algebra for large arrays.

(gh-15218)

Use AVX512 intrinsic to implement np.exp when input is np.float64

Use AVX512 intrinsic to implement np.exp when input is np.float64, which can improve the performance of np.exp with np.float64 input 5-7x faster than before. The _multiarray_umath.so module has grown about 63 KB on linux64.

(gh-15648)

Ability to disable madvise hugepages

On Linux NumPy has previously added support for madavise hugepages which can improve performance for very large arrays. Unfortunately, on older Kernel versions this led to performance regressions, thus by default the support has been disabled on kernels before version 4.6. To override the default, you can use the environment variable:

```
NUMPY_MADVISE_HUGEPAGE=0
```

or set it to 1 to force enabling support. Note that this only makes a difference if the operating system is set up to use madvise transparent hugepage.

(gh-15769)
numpy.einsum accepts NumPy int64 type in subscript list

There is no longer a type error thrown when `numpy.einsum` is passed a NumPy int64 array as its subscript list. (gh-16080)

np.logaddexp2.identity changed to -inf

The ufunc ~numpy.logaddexp2 now has an identity of -inf, allowing it to be called on empty sequences. This matches the identity of ~numpy.logaddexp. (gh-16102)

17.7.9 Changes

Remove handling of extra argument to __array__

A code path and test have been in the code since NumPy 0.4 for a two-argument variant of `__array__(dtype=None, context=None)`. It was activated when calling `ufunc(op)` or `ufunc.reduce(op)` if `op.__array__` existed. However that variant is not documented, and it is not clear what the intention was for its use. It has been removed. (gh-15118)

numpy.random._bit_generator moved to numpy.random.bit_generator

In order to expose `numpy.random.BitGenerator` and `numpy.random.SeedSequence` to Cython, the `_bitgenerator` module is now public as `numpy.random.bit_generator`.

Cython access to the random distributions is provided via a pxd file

`c_distributions.pxd` provides access to the c functions behind many of the random distributions from Cython, making it convenient to use and extend them. (gh-15463)

Fixed eigh and cholesky methods in numpy.random.multivariate_normal

Previously, when passing `method='eigh'` or `method='cholesky'`, `numpy.random.multivariate_normal` produced samples from the wrong distribution. This is now fixed. (gh-15872)
Fixed the jumping implementation in `MT19937.jumped`

This fix changes the stream produced from jumped MT19937 generators. It does not affect the stream produced using `RandomState` or `MT19937` that are directly seeded.

The translation of the jumping code for the MT19937 contained a reversed loop ordering. `MT19937.jumped` matches the Makoto Matsumoto's original implementation of the Horner and Sliding Window jump methods.

(gh-16153)

17.8 NumPy 1.18.4 Release Notes

This is the last planned release in the 1.18.x series. It reverts the `bool("0")` behavior introduced in 1.18.3 and fixes a bug in `Generator.integers`. There is also a link to a new troubleshooting section in the documentation included in the error message emitted when numpy import fails.

The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.15 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

17.8.1 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

• Charles Harris
• Matti Picus
• Sebastian Berg
• Warren Weckesser

17.8.2 Pull requests merged

A total of 6 pull requests were merged for this release.

• #16055: BLD: add i686 for 1.18 builds
• #16090: BUG: random: `Generator.integers(2**32)` always returned 0.
• #16091: BLD: fix path to libgfortran on macOS
• #16109: REV: Reverts side-effect changes to casting
• #16114: BLD: put openblas library in local directory on windows
• #16132: DOC: Change import error “howto” to link to new troubleshooting…
17.9 NumPy 1.18.3 Release Notes

This release contains various bug/regression fixes.

The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.15 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

17.9.1 Highlights

- Fix for the `method='eigh'` and `method='cholesky'` methods in `numpy.random.multivariate_normal`. Those were producing samples from the wrong distribution.

17.9.2 Contributors

A total of 6 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Max Balandat +
- @Mibu287 +
- Pan Jan +
- Sebastian Berg
- @panpiort8 +

17.9.3 Pull requests merged

A total of 5 pull requests were merged for this release.

- #15916: BUG: Fix eigh and cholesky methods of `numpy.random.multivariate_normal`
- #15929: BUG,MAINT: Remove incorrect special case in string to number…
- #15930: BUG: Guarantee array is in valid state after memory error occurs…
- #15954: BUG: Check that `pvals` is 1D in `_generator.multinomial`.
- #16017: BUG: Alpha parameter must be 1D in `generator.dirichlet`

17.10 NumPy 1.18.2 Release Notes

This small release contains a fix for a performance regression in `numpy/random` and several bug/maintenance updates.

The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.15 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.
17.10.1 Contributors

A total of 5 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Ganesh Kathiresan +
- Matti Picus
- Sebastian Berg
- przemb +

17.10.2 Pull requests merged

A total of 7 pull requests were merged for this release.

- #15675: TST: move _no_tracing to testing._private
- #15676: MAINT: Large overhead in some random functions
- #15677: TST: Do not create gfortran link in azure Mac testing.
- #15679: BUG: Added missing error check in ndarray.__contains__
- #15722: MAINT: use list-based APIs to call subprocesses
- #15729: REL: Prepare for 1.18.2 release.
- #15734: BUG: fix logic error when nm fails on 32-bit

17.11 NumPy 1.18.1 Release Notes

This release contains fixes for bugs reported against NumPy 1.18.0. Two bugs in particular that caused widespread problems downstream were:

- The cython random extension test was not using a temporary directory for building, resulting in a permission violation. Fixed.
- Numpy distutils was appending -std=c99 to all C compiler runs, leading to changed behavior and compile problems downstream. That flag is now only applied when building numpy C code.

The Python versions supported in this release are 3.5-3.8. Downstream developers should use Cython >= 0.29.14 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

17.11.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Maxwell Aladago
- Pauli Virtanen
- Ralf Gommers
- Tyler Reddy
17.11.2 Pull requests merged

A total of 13 pull requests were merged for this release.
- #15158: MAINT: Update pavement.py for towncrier.
- #15159: DOC: add moved modules to 1.18 release note
- #15161: MAINT, DOC: Minor backports and updates for 1.18.x
- #15176: TST: Add assert_array_equal test for big integer arrays
- #15184: BUG: use tmp dir and check version for cython test (#15170)
- #15220: BUG: distutils: fix msvc+gfortran openblas handling corner case
- #15221: BUG: remove -std=c99 for c++ compilation (#15194)
- #15222: MAINT: unskip test on win32
- #15223: TST: add BLAS ILP64 run in Travis & Azure
- #15245: MAINT: only add --std=c99 where needed
- #15246: BUG: lib: Fix handling of integer arrays by gradient.
- #15247: MAINT: Do not use private Python function in testing
- #15250: REL: Prepare for the NumPy 1.18.1 release.

17.12 NumPy 1.18.0 Release Notes

In addition to the usual bug fixes, this NumPy release cleans up and documents the new random C-API, expires a large number of old deprecations, and improves the appearance of the documentation. The Python versions supported are 3.5-3.8. This is the last NumPy release series that will support Python 3.5.

Downstream developers should use Cython >= 0.29.14 for Python 3.8 support and OpenBLAS >= 3.7 to avoid problems on the Skylake architecture.

17.12.1 Highlights

- The C-API for `numpy.random` has been defined and documented.
- Basic infrastructure for linking with 64 bit BLAS and LAPACK libraries.
- Many documentation improvements.
17.12.2 New functions

Multivariate hypergeometric distribution added to numpy.random

The method multivariate_hypergeometric has been added to the class numpy.random.Generator. This method generates random variates from the multivariate hypergeometric probability distribution. (gh-13794)

17.12.3 Deprecations

np.fromfile and np.fromstring will error on bad data

In future numpy releases, the functions np.fromfile and np.fromstring will throw an error when parsing bad data. This will now give a DeprecationWarning where previously partial or even invalid data was silently returned. This deprecation also affects the C defined functions PyArray_FromString and PyArray_FromFile (gh-13605)

Deprecate non-scalar arrays as fill values in ma.fill_value

Setting a MaskedArray.fill_value to a non-scalar array is deprecated since the logic to broadcast the fill value to the array is fragile, especially when slicing. (gh-13698)

Deprecate PyArray_As1D, PyArray_As2D

PyArray_As1D, PyArray_As2D are deprecated, use PyArray_AsArray instead (gh-14036)

Deprecate np.alen

np.alen was deprecated. Use len instead. (gh-14181)

Deprecate the financial functions

In accordance with NEP-32, the financial functions fv, ipmt, irr,mirr,nper,npv,pmt,ppmt,pv and rate are deprecated, and will be removed from NumPy 1.20. The replacement for these functions is the Python package numpy-financial. (gh-14720)

The axis argument to numpy.ma.mask_cols and numpy.ma.mask_row is deprecated

This argument was always ignored. (gh-14996)

17.12.4 Expired deprecations

• PyArray_As1D and PyArray_As2D have been removed in favor of PyArray_AsArray (gh-14036)
• np.rank has been removed. This was deprecated in NumPy 1.10 and has been replaced by np.ndim. (gh-14039)
• The deprecation of expand_dims out-of-range axes in 1.13.0 has expired. (gh-14051)
• PyArray_FromDimsAndDataAndDescr and PyArray_FromDims have been removed (they will always raise an error). Use PyArray_NewFromDescr and PyArray_SimpleNew instead. (gh-14100)
- `numeric.loads`, `numeric.load`, `np.ma.dump`, `np.ma.dumps`, `np.ma.load`, `np.ma.loads` are removed, use pickle methods instead (gh-14256)

- `arrayprint.FloatFormat`, `arrayprint.LongFloatFormat` has been removed, use `FloatingFormat` instead

- `arrayprint.ComplexFormat`, `arrayprint.LongComplexFormat` has been removed, use `ComplexFloatingFormat` instead

- `arrayprint.StructureFormat` has been removed, use `StructureVoidFormat` instead (gh-14259)

- `np.testing.rand` has been removed. This was deprecated in NumPy 1.11 and has been replaced by `np.random.rand`. (gh-14325)

- Class `SafeEval` in `numpy/lib/utils.py` has been removed. This was deprecated in NumPy 1.10. Use `np.safe_eval` instead. (gh-14335)

- Remove deprecated support for boolean and empty condition lists in `np.select` (gh-14583)

- Array order only accepts 'C', 'F', 'A', and 'K'. More permissive options were deprecated in NumPy 1.11. (gh-14596)

- `np.linspace` parameter `num` must be an integer. Deprecated in NumPy 1.12. (gh-14620)

- UFuncs with multiple outputs must use a tuple for the `out` kwarg. This finishes a deprecation started in NumPy 1.10. (gh-14682)

The files `numpy/testing/decorators.py`, `numpy/testing/noseclasses.py` and `numpy/testing/nosetester.py` have been removed. They were never meant to be public (all relevant objects are present in the `numpy.testing` namespace), and importing them has given a deprecation warning since NumPy 1.15.0 (gh-14567)

17.12.5 Compatibility notes

`numpy.lib.recfunctions.drop_fields` can no longer return `None`

If `drop_fields` is used to drop all fields, previously the array would be completely discarded and None returned. Now it returns an array of the same shape as the input, but with no fields. The old behavior can be retained with:

```python
dropped_arr = drop_fields(arr, ['a', 'b'])
if dropped_arr.dtype.names == ():
    dropped_arr = None
```

Converting the empty recarray to None (gh-14510)

`numpy.argmin/argmax/min/max` returns `NaT` if it exists in array

`numpy.argmin`, `numpy.argmax`, `numpy.min`, and `numpy.max` will return `NaT` if it exists in the array. (gh-14717)
np.can_cast(np.uint64, np.timedelta64, casting='safe') is now False

Previously this was True - however, this was inconsistent with uint64 not being safely castable to int64, and resulting in strange type resolution.

If this impacts your code, cast uint64 to int64 first. (gh-14718)

Changed random variate stream from numpy.random.Generator.integers

There was a bug in numpy.random.Generator.integers that caused biased sampling of 8 and 16 bit integer types. Fixing that bug has changed the output stream from what it was in previous releases. (gh-14777)

Add more ufunc loops for datetime64, timedelta64

np.datetime('NaT') should behave more like float('NaN'). Add needed infrastructure so np.isinf(a) and np.isnan(a) will run on datetime64 and timedelta64 dtypes. Also added specific loops for numpy. fmin and numpy.fmax that mask NaT. This may require adjustment to user-facing code. Specifically, code that either disallowed the calls to numpy.isinf or numpy.isnan or checked that they raised an exception will require adaptation, and code that mistakenly called numpy.fmax and numpy.fmin instead of numpy.maximum or numpy. minimum respectively will require adjustment. This also affects numpy.nanmax and numpy.nanmin. (gh-14841)

Moved modules in numpy.random

As part of the API cleanup, the submodules in numpy.random.bit_generator, philox, pcg64, sfc64, `common.generator, and bounded_integers` were moved to `_bit_generator`, `_philox`, `_pcg64`, `_sfc64`, `__common, _generator, and _bounded_integers` respectively to indicate that they are not part of the public interface. (gh-14608)

17.12.6 C API changes

PyDataType_ISUNSIZED(descr) now returns False for structured dtatypes

Previously this returned True for any datatype of itemsize 0, but now this returns false for the non-flexible datatype with itemsize 0, np.dtype([]). (gh-14393)

17.12.7 New Features

Add our own *.pxd cython import file

Added a numpy/__init__.pxd file. It will be used for cimport numpy (gh-12284)
A tuple of axes can now be input to `expand_dims`

The `numpy.expand_dims` axis keyword can now accept a tuple of axes. Previously, `axis` was required to be an integer. (gh-14051)

Support for 64-bit OpenBLAS

Added support for 64-bit (ILP64) OpenBLAS. See `site.cfg.example` for details. (gh-15012)

Add --f2cmap option to F2PY

Allow specifying a file to load Fortran-to-C type map customizations from. (gh-15113)

17.12.8 Improvements

Different C numeric types of the same size have unique names

On any given platform, two of `np.intc`, `np.int_`, and `np.longlong` would previously appear indistinguishable through their `repr`, despite their corresponding `dtype` having different properties. A similar problem existed for the unsigned counterparts to these types, and on some platforms for `np.double` and `np.longdouble`.

These types now always print with a unique `__name__`. (gh-10151)

argwhere now produces a consistent result on 0d arrays

On N-d arrays, `numpy.argwhere` now always produces an array of shape `(n_non_zero, arr.ndim)`, even when `arr.ndim == 0`. Previously, the last axis would have a dimension of 1 in this case. (gh-13610)

Add axis argument for random.permutation and random.shuffle

Previously the `random.permutation` and `random.shuffle` functions can only shuffle an array along the first axis; they now have a new argument `axis` which allows shuffle along a specified axis. (gh-13829)

method keyword argument for `np.random.multivariate_normal`

A `method` keyword argument is now available for `np.random.multivariate_normal` with possible values {'svd', 'eigh', 'cholesky'}. To use it, write `np.random.multivariate_normal(..., method=<method>).` (gh-14197)

Add complex number support for `numpy.fromstring`

Now `numpy.fromstring` can read complex numbers. (gh-14227)
NumPy User Guide, Release 1.20.0

numpy.unique has consistent axes order when axis is not None

Using `moveaxis` instead of `swapaxes` in `numpy.unique`, so that the ordering of axes except the axis in arguments will not be broken. (gh-14255)

numpy.matmul with boolean output now converts to boolean values

Calling `numpy.matmul` where the output is a boolean array would fill the array with uint8 equivalents of the result, rather than 0/1. Now it forces the output to 0 or 1 (NPY_TRUE or NPY_FALSE). (gh-14464)

numpy.random.randint produced incorrect value when the range was 2

The implementation introduced in 1.17.0 had an incorrect check when determining whether to use the 32-bit path or the full 64-bit path that incorrectly redirected random integer generation with a high - low range of \(2^{32}\) to the 64-bit generator. (gh-14501)

Add complex number support for numpy.fromfile

Now `numpy.fromfile` can read complex numbers. (gh-14730)

std=c99 added if compiler is named gcc

GCC before version 5 requires the `-std=c99` command line argument. Newer compilers automatically turn on C99 mode. The compiler setup code will automatically add the code if the compiler name has `gcc` in it. (gh-14771)

17.12.9 Changes

NaT now sorts to the end of arrays

`NaT` is now effectively treated as the largest integer for sorting purposes, so that it sorts to the end of arrays. This change is for consistency with `NaN` sorting behavior. (gh-12658) (gh-15068)

Incorrect threshold in np.set_printoptions raises TypeError or ValueError

Previously an incorrect `threshold` raised `ValueError`; it now raises `TypeError` for non-numeric types and `ValueError` for `nan` values. (gh-13899)

Warn when saving a dtype with metadata

A `UserWarning` will be emitted when saving an array via `numpy.save` with metadata. Saving such an array may not preserve metadata, and if metadata is preserved, loading it will cause a `ValueError`. This shortcoming in save and load will be addressed in a future release. (gh-14142)
numpy.distutils append behavior changed for LDFLAGS and similar

numpy.distutils has always overridden rather than appended to LDFLAGS and other similar such environment variables for compiling Fortran extensions. Now the default behavior has changed to appending - which is the expected behavior in most situations. To preserve the old (overwriting) behavior, set the NPY_DISTUTILS_APPEND_FLAGS environment variable to 0. This applies to: LDFLAGS, F77FLAGS, F90FLAGS, FREEFLAGS, FOPT, FDEBUG, and FFLAGS. NumPy 1.16 and 1.17 gave build warnings in situations where this change in behavior would have affected the compile flags used. (gh-14248)

Remove numpy.random.entropy without a deprecation

numpy.random.entropy was added to the numpy.random namespace in 1.17.0. It was meant to be a private c-extension module, but was exposed as public. It has been replaced by numpy.random.SeedSequence so the module was completely removed. (gh-14498)

Add options to quiet build configuration and build with -Werror

Added two new configuration options. During the build_src subcommand, as part of configuring NumPy, the files _numpyconfig.h and config.h are created by probing support for various runtime functions and routines. Previously, the very verbose compiler output during this stage clouded more important information. By default the output is silenced. Running runtests.py --debug-info will add --verbose-cfg to the build_src subcommand, which will restore the previous behaviour.

Adding CFLAGS=-Werror to turn warnings into errors would trigger errors during the configuration. Now runtests.py --warn-error will add --warn-error to the build subcommand, which will percolate to the build_ext and build_lib subcommands. This will add the compiler flag to those stages and turn compiler warnings into errors while actually building NumPy itself, avoiding the build_src subcommand compiler calls.

(gh-14527) (gh-14518)

17.13 NumPy 1.17.5 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.4 along with some build improvements. The Python versions supported in this release are 3.5-3.8.

Downstream developers should use Cython >= 0.29.14 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

It is recommended that developers interested in the new random bit generators upgrade to the NumPy 1.18.x series, as it has updated documentation and many small improvements.

17.13.1 Contributors

A total of 6 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Eric Wieser
- Ilhan Polat
- Matti Picus
- Michael Hudson-Doyle
17.13.2 Pull requests merged

A total of 8 pull requests were merged for this release.

- #14593: MAINT: backport Cython API cleanup to 1.17.x, remove docs
- #14937: BUG: fix integer size confusion in handling array's ndmin argument
- #14939: BUILD: remove SSE2 flag from numpy.random builds
- #14993: MAINT: Added Python3.8 branch to dll lib discovery
- #15038: BUG: Fix refcounting in ufunc object loops
- #15067: BUG: Exceptions tracebacks are dropped
- #15175: ENH: Backport improvements to testing functions.
- #15213: REL: Prepare for the NumPy 1.17.5 release.

17.14 NumPy 1.17.4 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.3 along with some build improvements. The Python versions supported in this release are 3.5-3.8.

Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

17.14.1 Highlights

- Fixed `random.random_integers` biased generation of 8 and 16 bit integers.
- Fixed `np.einsum` regression on Power9 and z/Linux.
- Fixed histogram problem with signed integer arrays.

17.14.2 Contributors

A total of 5 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Chris Burr +
- Matti Picus
- Qiming Sun +
- Warren Weckesser
17.14.3 Pull requests merged

A total of 8 pull requests were merged for this release.

- #14758: BLD: declare support for python 3.8
- #14781: BUG: random: biased samples from integers() with 8 or 16 bit…
- #14851: BUG: Fix _ctypes class circular reference. (#13808)
- #14852: BLD: add ‘apt update’ to shippable
- #14855: BUG: Fix np.einsum errors on Power9 Linux and z/Linux
- #14858: BLD: Prevent -flto from optimising long double representation…
- #14866: MAINT: move buffer.h -> npy_buffer.h to avoid conflicts

17.15 NumPy 1.17.3 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.2 along with a some documentation improvements. The Python versions supported in this release are 3.5-3.8.

Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture.

17.15.1 Highlights

- Wheels for Python 3.8
- Boolean matmul fixed to use booleans instead of integers.

17.15.2 Compatibility notes

- The seldom used PyArray_DescrCheck macro has been changed/fixed.

17.15.3 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Allan Haldane
- Charles Harris
- Kevin Sheppard
- Matti Picus
- Ralf Gommers
- Sebastian Berg
- Warren Weckesser
17.15.4 Pull requests merged

A total of 12 pull requests were merged for this release.

- #14456: MAINT: clean up pocketfft modules inside numpy.fft namespace.
- #14463: BUG: random.hypergeometric assumes npy_long is npy_int64, hung…
- #14502: BUG: random: Revert gh-14458 and refix gh-14557.
- #14504: BUG: add a specialized loop for boolean matmul.
- #14506: MAINT: Update pytest version for Python 3.8
- #14512: DOC: random: fix doc linking, was referencing private submodules.
- #14513: BUG,MAINT: Some fixes and minor cleanup based on clang analysis
- #14515: BUG: Fix randint when range is 2**32
- #14519: MAINT: remove the entropy c-extension module
- #14563: DOC: remove note about Pocketfft license file (non-existing here).
- #14578: BUG: random: Create a legacy implementation of random.binomial.
- #14687: BUG: properly define PyArray_DescrCheck

17.16 NumPy 1.17.2 Release Notes

This release contains fixes for bugs reported against NumPy 1.17.1 along with a some documentation improvements. The most important fix is for lexsort when the keys are of type (u)int8 or (u)int16. If you are currently using 1.17 you should upgrade.

The Python versions supported in this release are 3.5-3.7, Python 2.7 has been dropped. Python 3.8b4 should work with the released source packages, but there are no future guarantees.

Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and OpenBLAS >= 3.7 to avoid errors on the Skylake architecture. The NumPy wheels on PyPI are built from the OpenBLAS development branch in order to avoid those errors.

17.16.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- CakeWithSteak +
- Charles Harris
- Dan Allan
- Hameer Abbasi
- Lars Grueter
- Matti Picus
- Sebastian Berg
17.16.2 Pull requests merged

A total of 8 pull requests were merged for this release.

• #14418: BUG: Fix aradixsort indirect indexing.
• #14420: DOC: Fix a minor typo in dispatch documentation.
• #14421: BUG: test, fix regression in converting to ctypes
• #14430: BUG: Do not show Override module in private error classes.
• #14432: BUG: Fixed maximum relative error reporting in assert_allclose.
• #14433: BUG: Fix uint-overflow if padding with linear_ramp and negative…
• #14436: BUG: Update 1.17.x with 1.18.0-dev pocketfft.py.
• #14446: REL: Prepare for NumPy 1.17.2 release.

17.17 NumPy 1.17.1 Release Notes

This release contains a number of fixes for bugs reported against NumPy 1.17.0 along with a few documentation and build improvements. The Python versions supported are 3.5-3.7, note that Python 2.7 has been dropped. Python 3.8b3 should work with the released source packages, but there are no future guarantees.

Downstream developers should use Cython >= 0.29.13 for Python 3.8 support and OpenBLAS >= 3.7 to avoid problems on the Skylake architecture. The NumPy wheels on PyPI are built from the OpenBLAS development branch in order to avoid those problems.

17.17.1 Contributors

A total of 17 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

• Alexander Jung +
• Allan Haldane
• Charles Harris
• Eric Wieser
• Giuseppe Cuccu +
• Hiroyuki V. Yamazaki
• Jérémie du Boisberranger
• Kmol Yuan +
• Matti Picus
• Max Bolingbroke +
• Maxwell Aladago +
• Oleksandr Pavlyk
• Peter Andreas Entschev
• Sergei Lebedev
• Seth Troisi +
17.17.2 Pull requests merged

A total of 24 pull requests were merged for this release.

- #14156: TST: Allow fuss in testing strided/non-strided exp/log loops
- #14157: BUG: avx2_scalef_ps must be static
- #14158: BUG: Remove stray print that causes a SystemError on python 3.7.
- #14160: BLD: Add missing gcd/lcm definitions to npy_math.h
- #14161: DOC, BUILD: cleanups and fix (again) ‘build dist’
- #14166: TST: Add 3.8-dev to travisCI testing.
- #14194: BUG: Remove the broken clip wrapper (Backport)
- #14198: DOC: Fix hermitian argument docs in svd.
- #14199: MAINT: Workaround for Intel compiler bug leading to failing test
- #14200: TST: Clean up of test_pocketfft.py
- #14201: BUG: Make advanced indexing result on read-only subclass writeable...
- #14236: BUG: Fixed default BitGenerator name
- #14237: ENH: add c-imported modules for freeze analysis in np.random
- #14296: TST: Pin pytest version to 5.0.1
- #14301: BUG: Fix leak in the f2py-generated module init and PyMem_Del...
- #14302: BUG: Fix formatting error in exception message
- #14307: MAINT: random: Match type of SeedSequence.pool_size to DEFAULT_POOL_SIZE.
- #14308: BUG: Fix numpy.random bug in platform detection
- #14309: ENH: Enable huge pages in all Linux builds
- #14330: BUG: Fix segfault in random.permutation(x) when x is a string.
- #14338: BUG: don't fail when lexsorting some empty arrays (#14228)
- #14339: BUG: Fix misuse of .names and .fields in various places (backport...)
- #14345: BUG: fix behavior of structured_to_unstructured on non-trivial...
- #14350: REL: Prepare 1.17.1 release
17.18 NumPy 1.17.0 Release Notes

This NumPy release contains a number of new features that should substantially improve its performance and usefulness, see Highlights below for a summary. The Python versions supported are 3.5-3.7, note that Python 2.7 has been dropped. Python 3.8b2 should work with the released source packages, but there are no future guarantees.

Downstream developers should use Cython >= 0.29.11 for Python 3.8 support and OpenBLAS >= 3.7 (not currently out) to avoid problems on the Skylake architecture. The NumPy wheels on PyPI are built from the OpenBLAS development branch in order to avoid those problems.

17.18.1 Highlights

- A new extensible random module along with four selectable random number generators and improved seeding designed for use in parallel processes has been added. The currently available bit generators are MT19937, PCG64, Philox, and SFC64. See below under New Features.
- NumPy’s FFT implementation was changed from fftpack to pockettff, resulting in faster, more accurate transforms and better handling of datasets of prime length. See below under Improvements.
- New radix sort and timsort sorting methods. It is currently not possible to choose which will be used. They are hardwired to the datatype and used when either stable or mergesort is passed as the method. See below under Improvements.
- Overriding numpy functions is now possible by default, see __array_function__ below.

17.18.2 New functions

- numpy.errstate is now also a function decorator

17.18.3 Deprecations

numpy.polynomial functions warn when passed float in place of int

Previously functions in this module would accept float values provided they were integral (1.0, 2.0, etc). For consistency with the rest of numpy, doing so is now deprecated, and in future will raise a TypeError.

Similarly, passing a float like 0.5 in place of an integer will now raise a TypeError instead of the previous ValueError.

Deprecate numpy.distutils.exec_command and temp_file_name

The internal use of these functions has been refactored and there are better alternatives. Replace exec_command with subprocess.Popen and temp_file_name with tempfile.mkstemp.
Writeable flag of C-API wrapped arrays

When an array is created from the C-API to wrap a pointer to data, the only indication we have of the read-write nature of the data is the writeable flag set during creation. It is dangerous to force the flag to writeable. In the future it will not be possible to switch the writeable flag to True from python. This deprecation should not affect many users since arrays created in such a manner are very rare in practice and only available through the NumPy C-API.

numpy.nonzero should no longer be called on 0d arrays

The behavior of numpy.nonzero on 0d arrays was surprising, making uses of it almost always incorrect. If the old behavior was intended, it can be preserved without a warning by using nonzero(atleast_1d(arr)) instead of nonzero(arr). In a future release, it is most likely this will raise a ValueError.

Writing to the result of numpy.broadcast_arrays will warn

Commonly numpy.broadcast_arrays returns a writeable array with internal overlap, making it unsafe to write to. A future version will set the writeable flag to False, and require users to manually set it to True if they are sure that is what they want to do. Now writing to it will emit a deprecation warning with instructions to set the writeable flag True. Note that if one were to inspect the flag before setting it, one would find it would already be True. Explicitly setting it, though, as one will need to do in future versions, clears an internal flag that is used to produce the deprecation warning. To help alleviate confusion, an additional FutureWarning will be emitted when accessing the writeable flag state to clarify the contradiction.

Note that for the C-side buffer protocol such an array will return a readonly buffer immediately unless a writable buffer is requested. If a writeable buffer is requested a warning will be given. When using cython, the const qualifier should be used with such arrays to avoid the warning (e.g. cdef const double[:1] view).

17.18.4 Future Changes

Shape-1 fields in dtypes won’t be collapsed to scalars in a future version

Currently, a field specified as [(name, dtype, 1)] or "1type" is interpreted as a scalar field (i.e., the same as [(name, dtype)] or [(name, dtype, ())]. This now raises a FutureWarning; in a future version, it will be interpreted as a shape-(1,) field, i.e. the same as [(name, dtype, (1,))] or "(1,)type" (consistently with [(name, dtype, n)="/"ntype" with n>1, which is already equivalent to [(name, dtype, (n,))]="/"(n,)type").

17.18.5 Compatibility notes

float16 subnormal rounding

Casting from a different floating point precision to float16 used incorrect rounding in some edge cases. This means in rare cases, subnormal results will now be rounded up instead of down, changing the last bit (ULP) of the result.
Signed zero when using `divmod`

Starting in version 1.12.0, numpy incorrectly returned a negatively signed zero when using the `divmod` and `floor_divide` functions when the result was zero. For example:

```python
>>> np.zeros(10)//1
array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0.])
```

With this release, the result is correctly returned as a positively signed zero:

```python
>>> np.zeros(10)//1
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
```

`MaskedArray .mask now returns a view of the mask, not the mask itself`

Returning the mask itself was unsafe, as it could be reshaped in place which would violate expectations of the masked array code. The behavior of `mask` is now consistent with `data`, which also returns a view.

The underlying mask can still be accessed with `.mask` if it is needed. Tests that contain `assert x.mask is not y.mask` or similar will need to be updated.

`Do not lookup __buffer__ attribute in `numpy.frombuffer`

Looking up `__buffer__` attribute in `numpy.frombuffer` was undocumented and non-functional. This code was removed. If needed, use `frombuffer(memoryview(obj), ...)` instead.

`out is buffered for memory overlaps in take, choose, put`

If the `out` argument to these functions is provided and has memory overlap with the other arguments, it is now buffered to avoid order-dependent behavior.

`Unpickling while loading requires explicit opt-in`

The functions `load` and `lib.format.read_array` take an `allow_pickle` keyword which now defaults to `False` in response to CVE-2019-6446.

`Potential changes to the random stream in old random module`

Due to bugs in the application of log to random floating point numbers, the stream may change when sampling from `beta`, `binomial`, `laplace`, `logistic`, `logseries` or `multinomial` if a 0 is generated in the underlying MT19937 random stream. There is a 1 in 10^{53} chance of this occurring, so the probability that the stream changes for any given seed is extremely small. If a 0 is encountered in the underlying generator, then the incorrect value produced (either `numpy.inf` or `numpy.nan`) is now dropped.
10 now always returns a result with the same shape as the input

Previously, the output was squeezed, such that, e.g., input with just a single element would lead to an array scalar being returned, and inputs with shapes such as \((10, 1)\) would yield results that would not broadcast against the input.

Note that we generally recommend the SciPy implementation over the numpy one: it is a proper ufunc written in C, and more than an order of magnitude faster.

can_cast no longer assumes all unsafe casting is allowed

Previously, `can_cast` returned `True` for almost all inputs for `casting='unsafe'`, even for cases where casting was not possible, such as from a structured dtype to a regular one. This has been fixed, making it more consistent with actual casting using, e.g., the `.astype` method.

ndarray.flags.writeable can be switched to true slightly more often

In rare cases, it was not possible to switch an array from not writeable to writeable, although a base array is writeable. This can happen if an intermediate `ndarray.base` object is writeable. Previously, only the deepest base object was considered for this decision. However, in rare cases this object does not have the necessary information. In that case switching to writeable was never allowed. This has now been fixed.

17.18.6 C API changes

dimension or stride input arguments are now passed by `npy_intp const*`

Previously these function arguments were declared as the more strict `npy_intp*`, which prevented the caller passing constant data. This change is backwards compatible, but now allows code like:

```c
npy_intp const fixed_dims[] = {1, 2, 3};
// no longer complains that the const-qualifier is discarded
npy_intp size = PyArray_MultiplyList(fixed_dims, 3);
```

17.18.7 New Features

New extensible `numpy.random` module with selectable random number generators

A new extensible `numpy.random` module along with four selectable random number generators and improved seeding designed for use in parallel processes has been added. The currently available Bit Generators are `MT19937`, `PCG64`, `Philox`, and `SFC64`. PCG64 is the new default while MT19937 is retained for backwards compatibility. Note that the legacy random module is unchanged and is now frozen, your current results will not change. More information is available in the API change description and in the top-level view documentation.
libFLAME

Support for building NumPy with the libFLAME linear algebra package as the LAPACK implementation, see libFLAME for details.

User-defined BLAS detection order

distutils now uses an environment variable, comma-separated and case insensitive, to determine the detection order for BLAS libraries. By default NPY_BLAS_ORDER=mkl,blis,openblas,atlas,accelerate,blas. However, to force the use of OpenBLAS simply do:

```
NPY_BLAS_ORDER=openblas python setup.py build
```

which forces the use of OpenBLAS. This may be helpful for users which have a MKL installation but wishes to try out different implementations.

User-defined LAPACK detection order

numpy.distutils now uses an environment variable, comma-separated and case insensitive, to determine the detection order for LAPACK libraries. By default NPY_LAPACK_ORDER=mkl,openblas,flame,atlas,accelerate,lapack. However, to force the use of OpenBLAS simply do:

```
NPY_LAPACK_ORDER=openblas python setup.py build
```

which forces the use of OpenBLAS. This may be helpful for users which have a MKL installation but wishes to try out different implementations.

ufunc.reduce and related functions now accept a where mask

ufunc.reduce, sum, prod, min, max all now accept a where keyword argument, which can be used to tell which elements to include in the reduction. For reductions that do not have an identity, it is necessary to also pass in an initial value (e.g., initial=np.inf for min). For instance, the equivalent of nansum would be np.sum(a, where=~np.isnan(a)).

Timsort and radix sort have replaced mergesort for stable sorting

Both radix sort and timsort have been implemented and are now used in place of mergesort. Due to the need to maintain backward compatibility, the sorting kind options "stable" and "mergesort" have been made aliases of each other with the actual sort implementation depending on the array type. Radix sort is used for small integer types of 16 bits or less and timsort for the remaining types. Timsort features improved performance on data containing already or nearly sorted data and performs like mergesort on random data and requires $O(n/2)$ working space. Details of the timsort algorithm can be found at CPython listsort.txt.
packbits and unpackbits accept an order keyword

The `order` keyword defaults to `big`, and will order the bits accordingly. For 'order=big' 3 will become [0, 0, 0, 0, 0, 1, 1], and [1, 1, 0, 0, 0, 0, 0] for `order=little`.

unpackbits now accepts a count parameter

`count` allows subsetting the number of bits that will be unpacked up-front, rather than reshaping and subsetting later, making the `packbits` operation invertible, and the unpacking less wasteful. Counts larger than the number of available bits add zero padding. Negative counts trim bits off the end instead of counting from the beginning. None counts implement the existing behavior of unpacking everything.

linalg.svd and linalg.pinv can be faster on hermitian inputs

These functions now accept a `hermitian` argument, matching the one added to `linalg.matrix_rank` in 1.14.0.

divmod operation is now supported for two timedelta64 operands

The `divmod` operator now handles two `timedelta64` operands, with type signature `mm->qm`.

fromfile now takes an offset argument

This function now takes an `offset` keyword argument for binary files, which specifies the offset (in bytes) from the file’s current position. Defaults to 0.

New mode “empty” for pad

This mode pads an array to a desired shape without initializing the new entries.

empty_like and related functions now accept a shape argument

`empty_like`, `full_like`, `ones_like` and `zeros_like` now accept a `shape` keyword argument, which can be used to create a new array as the prototype, overriding its shape as well. This is particularly useful when combined with the `__array_function__` protocol, allowing the creation of new arbitrary-shape arrays from NumPy-like libraries when such an array is used as the prototype.

Floating point scalars implement as_integer_ratio to match the builtin float

This returns a (numerator, denominator) pair, which can be used to construct a `fractions.Fraction`.
Structured dtype objects can be indexed with multiple fields names

```
arr.dtype[['a', 'b']] now returns a dtype that is equivalent to arr[['a', 'b']].dtype, for consistency with arr.dtype['a'] == arr['a'].dtype.
```

Like the dtype of structured arrays indexed with a list of fields, this dtype has the same itemsize as the original, but only keeps a subset of the fields.

This means that arr[['a', 'b']] and arr.view(arr.dtype[['a', 'b']]) are equivalent.

`.npy` files support unicode field names

A new format version of 3.0 has been introduced, which enables structured types with non-latin1 field names. This is used automatically when needed.

17.18.8 Improvements

Array comparison assertions include maximum differences

Error messages from array comparison tests such as `testing.assert_allclose` now include “max absolute difference” and “max relative difference,” in addition to the previous “mismatch” percentage. This information makes it easier to update absolute and relative error tolerances.

Replacement of the fftpack based `fft` module by the pocketfft library

Both implementations have the same ancestor (Fortran77 FFTPACK by Paul N. Swarztrauber), but pocketfft contains additional modifications which improve both accuracy and performance in some circumstances. For FFT lengths containing large prime factors, pocketfft uses Bluestein’s algorithm, which maintains $O(N \log N)$ run time complexity instead of deteriorating towards $O(N \times N)$ for prime lengths. Also, accuracy for real valued FFTs with near prime lengths has improved and is on par with complex valued FFTs.

Further improvements to ctypes support in numpy.ctypeslib

A new `numpy.ctypeslib.as_ctypes_type` function has been added, which can be used to converts a dtype into a best-guess ctypes type. Thanks to this new function, `numpy.ctypeslib.as_ctypes_type` now supports a much wider range of array types, including structures, booleans, and integers of non-native endianness.

numpy.errstate is now also a function decorator

Currently, if you have a function like:

```python
def foo():
    pass
```

and you want to wrap the whole thing in `errstate`, you have to rewrite it like so:

```python
def foo():
    with np.errstate(...):
        pass
```

but with this change, you can do:
```python
@np.errstate(...)
def foo():
    pass
```

thereby saving a level of indentation

numpy.exp and numpy.log speed up for float32 implementation

float32 implementation of `exp` and `log` now benefit from AVX2/AVX512 instruction set which are detected during runtime. `exp` has a max ulp error of 2.52 and `log` has a max ulp error of 3.83.

Improve performance of numpy.pad

The performance of the function has been improved for most cases by filling in a preallocated array with the desired padded shape instead of using concatenation.

numpy.interp handles infinities more robustly

In some cases where `interp` would previously return `nan`, it now returns an appropriate infinity.

Pathlib support for fromfile, tofile and ndarray.dump

`fromfile`, `ndarray.ndarray.tofile` and `ndarray.dump` now support the `pathlib.Path` type for the `file/fid` parameter.

Specialized isnan, isinf, and isfinite ufuncs for bool and int types

The boolean and integer types are incapable of storing `nan` and `inf` values, which allows us to provide specialized ufuncs that are up to 250x faster than the previous approach.

isfinite supports datetime64 and timedelta64 types

Previously, `isfinite` used to raise a `TypeError` on being used on these two types.

New keywords added to nan_to_num

`nan_to_num` now accepts keywords `nan`, `posinf` and `neginf` allowing the user to define the value to replace the `nan`, positive and negative `np.inf` values respectively.
MemoryErrors caused by allocated overly large arrays are more descriptive

Often the cause of a MemoryError is incorrect broadcasting, which results in a very large and incorrect shape. The message of the error now includes this shape to help diagnose the cause of failure.

floor, ceil, and trunc now respect builtin magic methods

These ufuncs now call the __floor__, __ceil__, and __trunc__ methods when called on object arrays, making them compatible with decimal.Decimal and fractions.Fraction objects.

quantile now works on fraction.Fraction and decimal.Decimal objects

In general, this handles object arrays more gracefully, and avoids floating-point operations if exact arithmetic types are used.

Support of object arrays in matmul

It is now possible to use matmul (or the @ operator) with object arrays. For instance, it is now possible to do:

```python
from fractions import Fraction
a = np.array([[(Fraction(1, 2), Fraction(1, 3)), [Fraction(1, 3), Fraction(1, 2)]]])
b = a @ a
```

17.18.9 Changes

median and percentile family of functions no longer warn about nan

numpy.median, numpy.percentile, and numpy.quantile used to emit a RuntimeWarning when encountering an nan. Since they return the nan value, the warning is redundant and has been removed.

timedelta64 % 0 behavior adjusted to return NaT

The modulus operation with two np.timedelta64 operands now returns NaT in the case of division by zero, rather than returning zero

NumPy functions now always support overrides with __array_function__

NumPy now always checks the __array_function__ method to implement overrides of NumPy functions on non-NumPy arrays, as described in NEP 18. The feature was available for testing with NumPy 1.16 if appropriate environment variables are set, but is now always enabled.
lib.recfunctions.structured_to_unstructured does not squeeze single-field views

Previously structured_to_unstructured(arr[['a']]) would produce a squeezed result inconsistent with structured_to_unstructured(arr[['a', 'b']]). This was accidental. The old behavior can be retained with structured_to_unstructured(arr[['a']]).squeeze(axis=-1) or far more simply, arr['a'].

clip now uses a ufunc under the hood

This means that registering clip functions for custom dtypes in C via descr->f->fastclip is deprecated - they should use the ufunc registration mechanism instead, attaching to the np.core.umath.clip ufunc.

It also means that clip accepts where and casting arguments, and can be override with __array_ufunc__.

A consequence of this change is that some behaviors of the old clip have been deprecated:

- Passing nan to mean “do not clip” as one or both bounds. This didn’t work in all cases anyway, and can be better handled by passing infinities of the appropriate sign.
- Using “unsafe” casting by default when an out argument is passed. Using casting="unsafe" explicitly will silence this warning.

Additionally, there are some corner cases with behavior changes:

- Padding max < min has changed to be more consistent across dtypes, but should not be relied upon.
- Scalar min and max take part in promotion rules like they do in all other ufuncs.

__array_interface__ offset now works as documented

The interface may use an offset value that was mistakenly ignored.

Pickle protocol in savez set to 3 for force zip64 flag

savez was not using the force_zip64 flag, which limited the size of the archive to 2GB. But using the flag requires us to use pickle protocol 3 to write object arrays. The protocol used was bumped to 3, meaning the archive will be unreadable by Python2.

Structured arrays indexed with non-existent fields raise KeyError not ValueError

arr['bad_field'] on a structured type raises KeyError, for consistency with dict['bad_field'].

17.19 NumPy 1.16.6 Release Notes

The NumPy 1.16.6 release fixes bugs reported against the 1.16.5 release, and also backports several enhancements from master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked with OpenBLAS v0.3.7, which should fix errors on Skylake series cpus.

Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python versions are 2.7 and 3.5-3.7.
17.19.1 Highlights

- The `np.testing.utils` functions have been updated from 1.19.0-dev0. This improves the function documentation and error messages as well extending the `assert_array_compare` function to additional types.

17.19.2 New functions

Allow `matmul (@ operator)` to work with object arrays.

This is an enhancement that was added in NumPy 1.17 and seems reasonable to include in the LTS 1.16 release series.

17.19.3 Compatibility notes

Fix regression in `matmul (@ operator)` for boolean types

Booleans were being treated as integers rather than booleans, which was a regression from previous behavior.

17.19.4 Improvements

Array comparison assertions include maximum differences

Error messages from array comparison tests such as `testing.assert_allclose` now include “max absolute difference” and “max relative difference,” in addition to the previous “mismatch” percentage. This information makes it easier to update absolute and relative error tolerances.

17.19.5 Contributors

A total of 10 people contributed to this release.

- CakeWithSteak
- Charles Harris
- Chris Burr
- Eric Wieser
- Fernando Saravia
- Lars Grueter
- Matti Picus
- Maxwell Aladago
- Qiming Sun
- Warren Weckesser
17.19.6 Pull requests merged

A total of 14 pull requests were merged for this release.

- #14211: BUG: Fix uint-overflow if padding with linear_ramp and negative...
- #14275: BUG: fixing to allow unpickling of PY3 pickles from PY2
- #14340: BUG: Fix misuse of .names and .fields in various places (backport…
- #14423: BUG: test, fix regression in converting to ctypes.
- #14434: BUG: Fixed maximum relative error reporting in assert_allclose
- #14509: BUG: Fix regression in boolean matmul.
- #14686: BUG: properly define PyArray_DescrCheck
- #14853: BLD: add 'apt update' to shippable
- #14854: BUG: Fix _ctypes class circular reference. (#13808)
- #14856: BUG: Fix np.einsum errors on Power9 Linux and z/Linux
- #14863: BLD: Prevent -flio from optimising long double representation…
- #14864: BUG: lib: Fix histogram problem with signed integer arrays.
- #15172: ENH: Backport improvements to testing functions.
- #15191: REL: Prepare for 1.16.6 release.

17.20 NumPy 1.16.5 Release Notes

The NumPy 1.16.5 release fixes bugs reported against the 1.16.4 release, and also backports several enhancements from master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked with OpenBLAS v0.3.7-dev, which should fix errors on Skylake series cpus.

Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python versions are 2.7 and 3.5-3.7.

17.20.1 Contributors

A total of 18 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Alexander Shadchin
- Allan Haldane
- Bruce Merry +
- Charles Harris
- Colin Snyder +
- Dan Allan +
- Emile +
- Eric Wieser
- Grey Baker +
- Maksim Shabunin +
17.20.2 Pull requests merged

A total of 23 pull requests were merged for this release.

- #13742: ENH: Add project URLs to setup.py
- #13823: TEST, ENH: fix tests and ctypes code for PyPy
- #13845: BUG: use npy_intp instead of int for indexing array
- #13867: TST: Ignore DeprecationWarning during nose imports
- #13905: BUG: Fix use-after-free in boolean indexing
- #13933: MAINT/BUG/DOC: Fix errors in _add_newdocs
- #13984: BUG: fix byte order reversal for datetime64[ns]
- #13994: MAINT,BUG: Use nbytes to also catch empty descr during allocation
- #14042: BUG: np.array cleared errors occurred in PyMemoryView_FromObject
- #14043: BUG: Fixes for Undefined Behavior Sanitizer (UBSan) errors.
- #14044: BUG: ensure that casting to/from structured is properly checked.
- #14045: MAINT: fix histogram* dispatchers
- #14046: BUG: further fixup to histogram2d dispatcher.
- #14052: BUG: Replace contextlib.suppress for Python 2.7
- #14056: BUG: fix compilation of 3rd party modules with Py_LIMITED_API
- #14057: BUG: Fix memory leak in dtype from dict constructor
- #14058: DOC: Document array_function at a higher level.
- #14084: BUG, DOC: add new recfunctions to __all__
- #14162: BUG: Remove stray print that causes a SystemError on python 3.7
- #14297: TST: Pin pytest version to 5.0.1.
- #14322: ENH: Enable huge pages in all Linux builds
- #14346: BUG: fix behavior of structured_to_unstructured on non-trivial...
- #14382: REL: Prepare for the NumPy 1.16.5 release.
17.21 NumPy 1.16.4 Release Notes

The NumPy 1.16.4 release fixes bugs reported against the 1.16.3 release, and also backports several enhancements from master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked with OpenBLAS v0.3.7-dev, which should fix issues on Skylake series cpus.

Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.7. The supported Python versions are 2.7 and 3.5-3.7.

17.21.1 New deprecations

Writeable flag of C-API wrapped arrays

When an array is created from the C-API to wrap a pointer to data, the only indication we have of the read-write nature of the data is the writeable flag set during creation. It is dangerous to force the flag to writable. In the future it will not be possible to switch the writeable flag to True from python. This deprecation should not affect many users since arrays created in such a manner are very rare in practice and only available through the NumPy C-API.

17.21.2 Compatibility notes

Potential changes to the random stream

Due to bugs in the application of log to random floating point numbers, the stream may change when sampling from np.random.beta, np.random.binomial, np.random.laplace, np.random.logistic, np.random.logserires or np.random.multinomial if a 0 is generated in the underlying MT19937 random stream. There is a 1 in 10^{33} chance of this occurring, and so the probability that the stream changes for any given seed is extremely small. If a 0 is encountered in the underlying generator, then the incorrect value produced (either np.inf or np.nan) is now dropped.

17.21.3 Changes

numpy.lib.recfunctions.structured_to_unstructured does not squeeze single-field views

Previously structured_to_unstructured(arr[['a']]) would produce a squeezed result inconsistent with structured_to_unstructured(arr[['a', 'b']]. This was accidental. The old behavior can be retained with structured_to_unstructured(arr[['a']].squeeze(axis=-1)) or far more simply, arr['a'].

17.21.4 Contributors

A total of 10 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Eric Wieser
- Dennis Zollo +
- Hunter Damron +
- Jingbei Li +
• Kevin Sheppard
• Matti Picus
• Nicola Soranzo +
• Sebastian Berg
• Tyler Reddy

17.21.5 Pull requests merged

A total of 16 pull requests were merged for this release.

• #13392: BUG: Some PyPy versions lack PyStructSequence_InitType2.
• #13394: MAINT, DEP: Fix deprecated assertEquals()
• #13396: BUG: Fix structured_to_unstructured on single-field types (backport)
• #13549: BLD: Make CI pass again with pytest 4.5
• #13552: TST: Register markers in conftest.py.
• #13559: BUG: Removes ValueError for empty kwargs in arraymultiter_new
• #13600: BUG: Add TypeError to accepted exceptions in crackfortran.
• #13561: BUG: Handle subarrays in descr_to_dtype
• #13562: BUG: Protect generators from log(0.0)
• #13563: BUG: Always return views from structured_to_unstructured when…
• #13564: BUG: Catch stderr when checking compiler version
• #13565: BUG: longdouble(int) does not work
• #13587: BUG: distutils/system_info.py fix missing subprocess import (#13523)
• #13621: BUG, DEP: Fix writeable flag setting for arrays without base
• #13640: MAINT: Prepare for the 1.16.4 release.
• #13644: BUG: special case object arrays when printing rel-, abs-error

17.22 NumPy 1.16.3 Release Notes

The NumPy 1.16.3 release fixes bugs reported against the 1.16.2 release, and also backports several enhancements from master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked with OpenBLAS v0.3.4+, which should fix the known threading issues found in previous OpenBLAS versions.

Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.4.

The most noticeable change in this release is that unpickling object arrays when loading *.npy or *.npz files now requires an explicit opt-in. This backwards incompatible change was made in response to CVE-2019-6446.
17.22.1 Compatibility notes

Unpickling while loading requires explicit opt-in

The functions `np.load`, and `np.lib.format.read_array` take an `allow_pickle` keyword which now defaults to `False` in response to CVE-2019-6446.

17.22.2 Improvements

Covariance in `random.mvnormal` cast to double

This should make the tolerance used when checking the singular values of the covariance matrix more meaningful.

17.22.3 Changes

__array_interface__ offset now works as documented

The interface may use an `offset` value that was previously mistakenly ignored.

17.23 NumPy 1.16.2 Release Notes

NumPy 1.16.2 is a quick release fixing several problems encountered on Windows. The Python versions supported are 2.7 and 3.5-3.7. The Windows problems addressed are:

- DLL load problems for NumPy wheels on Windows,
- distutils command line parsing on Windows.

There is also a regression fix correcting signed zeros produced by `divmod`, see below for details.

Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.4.

If you are installing using `pip`, you may encounter a problem with older installed versions of NumPy that `pip` did not delete becoming mixed with the current version, resulting in an `ImportError`. That problem is particularly common on Debian derived distributions due to a modified `pip`. The fix is to make sure all previous NumPy versions installed by `pip` have been removed. See #12736 for discussion of the issue.

17.23.1 Compatibility notes

Signed zero when using `divmod`

Starting in version 1.12.0, `numpy` incorrectly returned a negatively signed zero when using the `divmod` and `floor_divide` functions when the result was zero. For example:

```python
>>> np.zeros(10)//1
array([-0., -0., -0., -0., -0., -0., -0., -0., -0., -0.])
```

With this release, the result is correctly returned as a positively signed zero:

```python
>>> np.zeros(10)//1
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
```
17.23.2 Contributors

A total of 5 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Eric Wieser
- Matti Picus
- Tyler Reddy
- Tony LaTorre +

17.23.3 Pull requests merged

A total of 7 pull requests were merged for this release.

- #12909: TST: fix vmImage dispatch in Azure
- #12923: MAINT: remove complicated test of multiarray import failure mode
- #13020: BUG: fix signed zero behavior in npy_divmod
- #13026: MAINT: Add functions to parse shell-strings in the platform-native…
- #13028: BUG: Fix regression in parsing of F90 and F77 environment variables
- #13038: BUG: parse shell escaping in extra_compile_args and extra_link_args
- #13041: BLD: Windows absolute path DLL loading

17.24 NumPy 1.16.1 Release Notes

The NumPy 1.16.1 release fixes bugs reported against the 1.16.0 release, and also backports several enhancements from master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked with OpenBLAS v0.3.4+, which should fix the known threading issues found in previous OpenBLAS versions.

Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.4.

If you are installing using pip, you may encounter a problem with older installed versions of NumPy that pip did not delete becoming mixed with the current version, resulting in an ImportError. That problem is particularly common on Debian derived distributions due to a modified pip. The fix is to make sure all previous NumPy versions installed by pip have been removed. See #12736 for discussion of the issue. Note that previously this problem resulted in an AttributeError.

17.24.1 Contributors

A total of 16 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Antoine Pitrou
- Arcesio Castaneda Medina +
- Charles Harris
- Chris Markiewicz +
- Christoph Gohlke
• Christopher J. Markiewicz +
• Daniel Hrisca +
• Eelco Peacs +
• Eric Wieser
• Kevin Sheppard
• Matti Picus
• OBATA Akio +
• Ralf Gommers
• Sebastian Berg
• Stephan Hoyer
• Tyler Reddy

17.24.2 Enhancements

• #12767: ENH: add mm->q floordiv
• #12768: ENH: port np.core.overrides to C for speed
• #12769: ENH: Add np.ctypeslib.as_ctypes_type(dtype), improve np.ctypeslib.as_ctypes
• #12773: ENH: add “max difference” messages to np.testing.assert_array_equal...
• #12820: ENH: Add mm->qm divmod
• #12890: ENH: add _dtype_ctype to namespace for freeze analysis

17.24.3 Compatibility notes

• The changed error message emitted by array comparison testing functions may affect doctests. See below for detail.
• Casting from double and single denormals to float16 has been corrected. In some rare cases, this may result in results being rounded up instead of down, changing the last bit (ULP) of the result.

17.24.4 New Features

divmod operation is now supported for two timedelta64 operands

The divmod operator now handles two np.timedelta64 operands, with type signature mm->qm.
17.24.5 Improvements

Further improvements to ctypes support in np.ctypeslib

A new numpy.ctypeslib.as_ctypes_type function has been added, which can be used to converts a dtype into a best-guess ctypes type. Thanks to this new function, numpy.ctypeslib.as_ctypes now supports a much wider range of array types, including structures, booleans, and integers of non-native endianness.

Array comparison assertions include maximum differences

Error messages from array comparison tests such as np.testing.assert_allclose now include “max absolute difference” and “max relative difference,” in addition to the previous “mismatch” percentage. This information makes it easier to update absolute and relative error tolerances.

17.24.6 Changes

timedelta64 % 0 behavior adjusted to return NaT

The modulus operation with two np.timedelta64 operands now returns NaT in the case of division by zero, rather than returning zero.

17.25 NumPy 1.16.0 Release Notes

This NumPy release is the last one to support Python 2.7 and will be maintained as a long term release with bug fixes until 2020. Support for Python 3.4 been dropped, the supported Python versions are 2.7 and 3.5-3.7. The wheels on PyPI are linked with OpenBLAS v0.3.4+, which should fix the known threading issues found in previous OpenBLAS versions.

Downstream developers building this release should use Cython >= 0.29 and, if using OpenBLAS, OpenBLAS > v0.3.4.

This release has seen a lot of refactoring and features many bug fixes, improved code organization, and better cross platform compatibility. Not all of these improvements will be visible to users, but they should help make maintenance easier going forward.

17.25.1 Highlights

- Experimental (opt-in only) support for overriding numpy functions, see __array_function__ below.
- The matmul function is now a ufunc. This provides better performance and allows overriding with __array_ufunc__.
- Improved support for the ARM and POWER architectures.
- Improved support for AIX and PyPy.
- Improved interop with ctypes.
- Improved support for PEP 3118.
17.25.2 New functions

- New functions added to the `numpy.lib.recfunctions` module to ease the structured assignment changes:
 - `assign_fields_by_name`
 - `structured_to_unstructured`
 - `unstructured_to_structured`
 - `apply_along_fields`
 - `require_fields`

See the user guide at `<https://docs.scipy.org/doc/numpy/user/basics.rec.html>` for more info.

17.25.3 New deprecations

- The type dictionaries `numpy.core.typeNA` and `numpy.core.sctypeNA` are deprecated. They were buggy and not documented and will be removed in the 1.18 release. Use `numpy.sctypeDict` instead.
- The `numpy.asscalar` function is deprecated. It is an alias to the more powerful `numpy.ndarray.item`, not tested, and fails for scalars.
- The `numpy.set_array_ops` and `numpy.get_array_ops` functions are deprecated. As part of NEP 15, they have been deprecated along with the C-API functions `PyArray_SetNumericOps` and `PyArray_GetNumericOps`. Users who wish to override the inner loop functions in built-in ufuncs should use `PyUFunc_ReplaceLoopBySignature`.
- The `numpy.unravel_index` keyword argument `dims` is deprecated, use `shape` instead.
- The `numpy.histogram` `normed` argument is deprecated. It was deprecated previously, but no warning was issued.
- The `positive` operator (`+`) applied to non-numerical arrays is deprecated. See below for details.
- Passing an iterator to the stack functions is deprecated

17.25.4 Expired deprecations

- NaT comparisons now return `False` without a warning, finishing a deprecation cycle begun in NumPy 1.11.
- `np.lib.function_base.unique` was removed, finishing a deprecation cycle begun in NumPy 1.4. Use `numpy.unique` instead.
- multi-field indexing now returns views instead of copies, finishing a deprecation cycle begun in NumPy 1.7. The change was previously attempted in NumPy 1.14 but reverted until now.
- `np.PackageLoader` and `np.pkgload` have been removed. These were deprecated in 1.10, had no tests, and seem to no longer work in 1.15.
17.25.5 Future changes

- NumPy 1.17 will drop support for Python 2.7.

17.25.6 Compatibility notes

f2py script on Windows

On Windows, the installed script for running f2py is now an .exe file rather than a *.py file and should be run from the command line as f2py whenever the Scripts directory is in the path. Running f2py as a module python -m numpy.f2py [...] will work without path modification in any version of NumPy.

NaT comparisons

Consistent with the behavior of NaN, all comparisons other than inequality checks with datetime64 or timedelta64 NaT ("not-a-time") values now always return False, and inequality checks with NaT now always return True. This includes comparisons between NaT values. For compatibility with the old behavior, use np.isnat to explicitly check for NaT or convert datetime64/timedelta64 arrays with a dispatched function before making comparisons.

complex64/128 alignment has changed

The memory alignment of complex types is now the same as a C-struct composed of two floating point values, while before it was equal to the size of the type. For many users (for instance on x64/unix/gcc) this means that complex64 is now 4-byte aligned instead of 8-byte aligned. An important consequence is that aligned structured dtypes may now have a different size. For instance, np.dtype('c8,u1', align=True) used to have an itemsize of 16 (on x64/gcc) but now it is 12.

More in detail, the complex64 type now has the same alignment as a C-struct struct {float r, i;}, according to the compiler used to compile numpy, and similarly for the complex128 and complex256 types.

nd_grid __len__ removal

len(np.mgrid) and len(np.ogrid) are now considered nonsensical and raise a TypeError.

np.unravel_index now accepts shape keyword argument

Previously, only the dims keyword argument was accepted for specification of the shape of the array to be used for unraveling. dims remains supported, but is now deprecated.

multi-field views return a view instead of a copy

Indexing a structured array with multiple fields, e.g., arr[['f1', 'f3']], returns a view into the original array instead of a copy. The returned view will often have extra padding bytes corresponding to intervening fields in the original array, unlike before, which will affect code such as arr[['f1', 'f3']].view('float64'). This change has been planned since NumPy 1.7. Operations hitting this path have emitted FutureWarnings since then. Additional FutureWarnings about this change were added in 1.12.

To help users update their code to account for these changes, a number of functions have been added to the numpy.lib.recfunctions module which safely allow such operations. For instance, the code above can be replaced with
structured_to_unstructured(arr[['f1', 'f3']], dtype='float64'). See the “accessing multiple fields” section of the user guide.

17.25.7 C API changes

The NPY_FEATURE_VERSION was incremented to 0x0000D, due to the addition of:

- PyUFuncObject.core_dim_flags
- PyUFuncObject.core_dim_sizes
- PyUFuncObject.identity_value
- PyUFunc_FromFuncAndDataAndSignatureAndIdentity

17.25.8 New Features

Integrated squared error (ISE) estimator added to histogram

This method (bins='stone') for optimizing the bin number is a generalization of the Scott’s rule. The Scott’s rule assumes the distribution is approximately Normal, while the ISE is a non-parametric method based on cross-validation.

max_rows keyword added for np.loadtxt

New keyword max_rows in numpy.loadtxt sets the maximum rows of the content to be read after skiprows, as in numpy.genfromtxt.

modulus operator support added for np.timedelta64 operands

The modulus (remainder) operator is now supported for two operands of type np.timedelta64. The operands may have different units and the return value will match the type of the operands.

17.25.9 Improvements

no-copy pickling of numpy arrays

Up to protocol 4, numpy array pickling created 2 spurious copies of the data being serialized. With pickle protocol 5, and the PickleBuffer API, a large variety of numpy arrays can now be serialized without any copy using out-of-band buffers, and with one less copy using in-band buffers. This results, for large arrays, in an up to 66% drop in peak memory usage.
build shell independence

NumPy builds should no longer interact with the host machine shell directly. `exec_command` has been replaced with `subprocess.check_output` where appropriate.

`np.polynomial.Polynomial` classes render in LaTeX in Jupyter notebooks

When used in a front-end that supports it, `Polynomial` instances are now rendered through LaTeX. The current format is experimental, and is subject to change.

`randint` and `choice` now work on empty distributions

Even when no elements needed to be drawn, `np.random.randint` and `np.random.choice` raised an error when the arguments described an empty distribution. This has been fixed so that e.g. `np.random.choice([], 0) == np.array([], dtype=float64)`.

`linalg.lstsq`, `linalg.qr`, and `linalg.svd` now work with empty arrays

Previously, a `LinAlgError` would be raised when an empty matrix/empty matrices (with zero rows and/or columns) is/are passed in. Now outputs of appropriate shapes are returned.

Chain exceptions to give better error messages for invalid PEP3118 format strings

This should help track down problems.

Einsum optimization path updates and efficiency improvements

Einsum was synchronized with the current upstream work.

`numpy.angle` and `numpy.expand_dims` now work on `ndarray` subclasses

In particular, they now work for masked arrays.

NPY_NO_DEPRECATED_API compiler warning suppression

Setting `NPY_NO_DEPRECATED_API` to a value of 0 will suppress the current compiler warnings when the deprecated `numpy` API is used.

`np.diff` Added kwargs `prepend` and `append`

New kwargs `prepend` and `append`, allow for values to be inserted on either end of the differences. Similar to options for `ediff1d`. Now the inverse of `cumsum` can be obtained easily via `prepend=0`.
ARM support updated

Support for ARM CPUs has been updated to accommodate 32 and 64 bit targets, and also big and little endian byte ordering. AARCH32 memory alignment issues have been addressed. CI testing has been expanded to include AARCH64 targets via the services of shippable.com.

Appending to build flags

`numpy.distutils` has always overridden rather than appended to `LDFLAGS` and other similar such environment variables for compiling Fortran extensions. Now, if the `NPY_DISTUTILS_APPEND_FLAGS` environment variable is set to 1, the behavior will be appending. This applied to: `LDFLAGS`, `F77FLAGS`, `F90FLAGS`, `FREEFLAGS`, `FOPT`, `FDEBUG`, and `FFLAGS`. See gh-11525 for more details.

Generalized ufunc signatures now allow fixed-size dimensions

By using a numerical value in the signature of a generalized ufunc, one can indicate that the given function requires input or output to have dimensions with the given size. E.g., the signature of a function that converts a polar angle to a two-dimensional cartesian unit vector would be \((\cdot) \to (2)\); that for one that converts two spherical angles to a three-dimensional unit vector would be \((1,1) \to (3)\); and that for the cross product of two three-dimensional vectors would be \((3),(3) \to (3)\).

Note that to the elementary function these dimensions are not treated any differently from variable ones indicated with a name starting with a letter; the loop still is passed the corresponding size, but it can now count on that size being equal to the fixed one given in the signature.

Generalized ufunc signatures now allow flexible dimensions

Some functions, in particular numpy’s implementation of \(\otimes\) as `matmul`, are very similar to generalized ufuncs in that they operate over core dimensions, but one could not present them as such because they were able to deal with inputs in which a dimension is missing. To support this, it is now allowed to postfix a dimension name with a question mark to indicate that the dimension does not necessarily have to be present.

With this addition, the signature for `matmul` can be expressed as \((m?,n),(n,p?) \to (m?,p?)\). This indicates that if, e.g., the second operand has only one dimension, for the purposes of the elementary function it will be treated as if that input has core shape \((n,1)\), and the output has the corresponding core shape of \((m,1)\). The actual output array, however, has the flexible dimension removed, i.e., it will have shape \((\ldots, m)\). Similarly, if both arguments have only a single dimension, the inputs will be presented as having shapes \((1,n)\) and \((n,1)\) to the elementary function, and the output as \((1,1)\), while the actual output array returned will have shape \((\cdot)\). In this way, the signature allows one to use a single elementary function for four related but different signatures, \((m,n),(n,p) \to (m,p),(n),(n,p) \to (p)\), \((m,n),(n) \to (m)\) and \((n),(n) \to (\cdot)\).

`np.clip` and the `clip` method check for memory overlap

The `out` argument to these functions is now always tested for memory overlap to avoid corrupted results when memory overlap occurs.
New value unscaled for option cov in np.polyfit

A further possible value has been added to the `cov` parameter of the `np.polyfit` function. With `cov='unscaled'` the scaling of the covariance matrix is disabled completely (similar to setting `absolute_sigma=True` in `scipy.optimize.curve_fit`). This would be useful in occasions, where the weights are given by `1/sigma` with `sigma` being the (known) standard errors of (Gaussian distributed) data points, in which case the unscaled matrix is already a correct estimate for the covariance matrix.

Detailed docstrings for scalar numeric types

The `help` function, when applied to numeric types such as `numpy.intc`, `numpy.int_`, and `numpy.longlong`, now lists all of the aliased names for that type, distinguishing between platform-dependent and -independent aliases.

__module__ attribute now points to public modules

The `__module__` attribute on most NumPy functions has been updated to refer to the preferred public module from which to access a function, rather than the module in which the function happens to be defined. This produces more informative displays for functions in tools such as IPython, e.g., instead of `<function 'numpy.core.fromnumeric.sum'>` you now see `<function 'numpy.sum'>`.

Large allocations marked as suitable for transparent hugepages

On systems that support transparent hugepages over the madvise system call numpy now marks that large memory allocations can be backed by hugepages which reduces page fault overhead and can in some fault heavy cases improve performance significantly. On Linux the setting for huge pages to be used, `/sys/kernel/mm/transparent_hugepage/enabled`, must be at least `madvise`. Systems which already have it set to `always` will not see much difference as the kernel will automatically use huge pages where appropriate.

Users of very old Linux kernels (~3.x and older) should make sure that `/sys/kernel/mm/transparent_hugepage/defrag` is not set to `always` to avoid performance problems due concurrency issues in the memory defragmentation.

Alpine Linux (and other musl libc library distros) support

We now default to use `fenv.h` for floating point status error reporting. Previously we had a broken default that sometimes would not report underflow, overflow, and invalid floating point operations. Now we can support non-glibc distributions like Alpine Linux as long as they ship `fenv.h`.

Speedup np.block for large arrays

Large arrays (greater than `512 * 512`) now use a blocking algorithm based on copying the data directly into the appropriate slice of the resulting array. This results in significant speedups for these large arrays, particularly for arrays being blocked along more than 2 dimensions.
arr.ctypes.data_as(...) holds a reference to arr

Previously the caller was responsible for keeping the array alive for the lifetime of the pointer.

Speedup np.take for read-only arrays

The implementation of np.take no longer makes an unnecessary copy of the source array when its writeable flag is set to False.

Support path-like objects for more functions

The np.core.records.fromfile function now supports pathlib.Path and other path-like objects in addition to a file object. Furthermore, the np.load function now also supports path-like objects when using memory mapping (mmap_mode keyword argument).

Better behaviour of ufunc identities during reductions

Universal functions have an .identity which is used when .reduce is called on an empty axis.

As of this release, the logical binary ufuncs, logical_and, logical_or, and logical_xor, now have identity's of type bool, where previously they were of type int. This restores the 1.14 behavior of getting bool's when reducing empty object arrays with these ufuncs, while also keeping the 1.15 behavior of getting int's when reducing empty object arrays with arithmetic ufuncs like add and multiply.

Additionally, logaddexp now has an identity of -inf, allowing it to be called on empty sequences, where previously it could not be.

This is possible thanks to the new PyUFunc_FromFuncAndDataAndSignatureAndIdentity, which allows arbitrary values to be used as identities now.

Improved conversion from ctypes objects

Numpy has always supported taking a value or type from ctypes and converting it into an array or dtype, but only behaved correctly for simpler types. As of this release, this caveat is lifted - now:

- The _pack_ attribute of ctypes.Structure, used to emulate C's __attribute__((packed)), is respected.
- Endianness of all ctypes objects is preserved
- ctypes.Union is supported
- Non-representable constructs raise exceptions, rather than producing dangerously incorrect results:
 - Bitfields are no longer interpreted as sub-arrays
 - Pointers are no longer replaced with the type that they point to
A new `ndpointer.contents` member

This matches the `.contents` member of normal ctypes arrays, and can be used to construct an `np.array` around the pointers contents. This replaces `np.array(some_nd_pointer)`, which stopped working in 1.15. As a side effect of this change, `ndpointer` now supports dtypes with overlapping fields and padding.

Matmul is now a ufunc

`numpy.matmul` is now a ufunc which means that both the function and the `__matmul__` operator can now be overridden by `__array_ufunc__`. Its implementation has also changed. It uses the same BLAS routines as `numpy.dot`, ensuring its performance is similar for large matrices.

Start and stop arrays for `linspace`, `logspace` and `geomspace`

These functions used to be limited to scalar stop and start values, but can now take arrays, which will be properly broadcast and result in an output which has one axis prepended. This can be used, e.g., to obtain linearly interpolated points between sets of points.

CI extended with additional services

We now use additional free CI services, thanks to the companies that provide:

- Code coverage testing via codecov.io
- Arm testing via shippable.com
- Additional test runs on azure pipelines

These are in addition to our continued use of travis, appveyor (for wheels) and LGTM

17.25.10 Changes

Comparison ufuncs will now error rather than return `NotImplemented`

Previously, comparison ufuncs such as `np.equal` would return `NotImplemented` if their arguments had structured dtypes, to help comparison operators such as `__eq__` deal with those. This is no longer needed, as the relevant logic has moved to the comparison operators proper (which thus do continue to return `NotImplemented` as needed). Hence, like all other ufuncs, the comparison ufuncs will now error on structured dtypes.

Positive will now raise a deprecation warning for non-numerical arrays

Previously, `+array` unconditionally returned a copy. Now, it will raise a `DeprecationWarning` if the array is not numerical (i.e., if `np.positive(array)` raises a `TypeError`. For `ndarray` subclasses that override the default `__array_ufunc__` implementation, the `TypeError` is passed on.
NDArrayOperatorsMixin now implements matrix multiplication

Previously, `np.lib.mixins.NDArrayOperatorsMixin` did not implement the special methods for Python’s matrix multiplication operator (@). This has changed now that `matmul` is a ufunc and can be overridden using `__array_ufunc__`.

The scaling of the covariance matrix in `np.polyfit` is different

So far, `np.polyfit` used a non-standard factor in the scaling of the the covariance matrix. Namely, rather than using the standard chisq/(M−N), it scaled it with chisq/(M−N−2) where M is the number of data points and N is the number of parameters. This scaling is inconsistent with other fitting programs such as e.g. `scipy.optimize.curve_fit` and was changed to chisq/(M−N).

maximum and minimum no longer emit warnings

As part of code introduced in 1.10, `float32` and `float64` set invalid float status when a Nan is encountered in `numpy.maximum` and `numpy.minimum`, when using SSE2 semantics. This caused a `RuntimeWarning` to sometimes be emitted. In 1.15 we fixed the inconsistencies which caused the warnings to become more conspicuous. Now no warnings will be emitted.

Umath and multiarray c-extension modules merged into a single module

The two modules were merged, according to NEP 15. Previously `np.core.umath` and `np.core.multiarray` were separate c-extension modules. They are now python wrappers to the single `np.core/_multiarray_math` c-extension module.

getfield validity checks extended

`numpy.ndarray.getfield` now checks the dtype and offset arguments to prevent accessing invalid memory locations.

NumPy functions now support overrides with `__array_function__`

NumPy has a new experimental mechanism for overriding the implementation of almost all NumPy functions on non-NumPy arrays by defining an `__array_function__` method, as described in NEP 18.

This feature is not yet been enabled by default, but has been released to facilitate experimentation by potential users. See the NEP for details on setting the appropriate environment variable. We expect the NumPy 1.17 release will enable overrides by default, which will also be more performant due to a new implementation written in C.

Arrays based off readonly buffers cannot be set writable

We now disallow setting the `writeable` flag True on arrays created from `fromstring(readonly-buffer)`.
17.26 NumPy 1.15.4 Release Notes

This is a bugfix release for bugs and regressions reported following the 1.15.3 release. The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg problems reported for NumPy 1.14.

17.26.1 Compatibility Note

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit binaries. That will also be the case in future releases. See #11625 for the related discussion. Those needing 32-bit support should look elsewhere or build from source.

17.26.2 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Matti Picus
- Sebastian Berg
- bbbbbbbbbbb +

17.26.3 Pull requests merged

A total of 4 pull requests were merged for this release.

- #12296: BUG: Dealloc cached buffer info
- #12297: BUG: Fix fill value in masked array ‘==’ and ‘!=’ ops.
- #12307: DOC: Correct the default value of optimize in numpy.einsum
- #12320: REL: Prepare for the NumPy 1.15.4 release

17.27 NumPy 1.15.3 Release Notes

This is a bugfix release for bugs and regressions reported following the 1.15.2 release. The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg problems reported for NumPy 1.14.

17.27.1 Compatibility Note

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit binaries. That will also be the case in future releases. See #11625 for the related discussion. Those needing 32-bit support should look elsewhere or build from source.
17.27.2 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Allan Haldane
- Charles Harris
- Jeroen Demeyer
- Kevin Sheppard
- Matthew Bowden +
- Matti Picus
- Tyler Reddy

17.27.3 Pull requests merged

A total of 12 pull requests were merged for this release.

- #12080: MAINT: Blacklist some MSVC complex functions.
- #12083: TST: Add azure CI testing to 1.15.x branch.
- #12084: BUG: test_path() now uses Path.resolve()
- #12085: TST, MAINT: Fix some failing tests on azure-pipelines mac and…
- #12187: BUG: Fix memory leak in mapping.c
- #12188: BUG: Allow boolean subtract in histogram
- #12189: BUG: Fix in-place permutation
- #12190: BUG: limit default for get_num_build_jobs() to 8
- #12191: BUG: OBJECT_to_* should check for errors
- #12192: DOC: Prepare for NumPy 1.15.3 release.
- #12237: BUG: Fix MaskedArray fill_value type conversion.
- #12238: TST: Backport azure-pipeline testing fixes for Mac

17.28 NumPy 1.15.2 Release Notes

This is a bugfix release for bugs and regressions reported following the 1.15.1 release.

- The matrix PendingDeprecationWarning is now suppressed in pytest 3.8.
- The new cached allocations machinery has been fixed to be thread safe.
- The boolean indexing of subclasses now works correctly.
- A small memory leak in PyArray_AdaptFlexibleDType has been fixed.

The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg problems reported for NumPy 1.14.
17.28.1 Compatibility Note

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit binaries. That will also be the case in future releases. See #11625 for the related discussion. Those needing 32-bit support should look elsewhere or build from source.

17.28.2 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Julian Taylor
- Marten van Kerkwijk
- Matti Picus

17.28.3 Pull requests merged

A total of 4 pull requests were merged for this release.

- #11902: BUG: Fix matrix PendingDeprecationWarning suppression for pytest…
- #11981: BUG: fix cached allocations without the GIL for 1.15.x
- #11982: BUG: fix refcount leak in PyArray_AdaptFlexibleDType
- #11992: BUG: Ensure boolean indexing of subclasses sets base correctly.

17.29 NumPy 1.15.1 Release Notes

This is a bugfix release for bugs and regressions reported following the 1.15.0 release.

- The annoying but harmless RuntimeWarning that “numpy.dtype size changed” has been suppressed. The long standing suppression was lost in the transition to pytest.
- The update to Cython 0.28.3 exposed a problematic use of a gcc attribute used to prefer code size over speed in module initialization, possibly resulting in incorrect compiled code. This has been fixed in latest Cython but has been disabled here for safety.
- Support for big-endian and ARMv8 architectures has been improved.

The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg problems reported for NumPy 1.14.

17.29.1 Compatibility Note

The NumPy 1.15.x OS X wheels released on PyPI no longer contain 32-bit binaries. That will also be the case in future releases. See #11625 for the related discussion. Those needing 32-bit support should look elsewhere or build from source.
17.29.2 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Chris Billington
- Elliott Sales de Andrade +
- Eric Wieser
- Jeremy Manning +
- Matti Picus
- Ralf Gommers

17.29.3 Pull requests merged

A total of 24 pull requests were merged for this release.

- #11647: MAINT: Filter Cython warnings in __init__.py
- #11648: BUG: Fix doc source links to unwrap decorators
- #11657: BUG: Ensure singleton dimensions are not dropped when converting...
- #11661: BUG: Warn on Nan in minimum,maximum for scalars
- #11665: BUG: cython sometimes emits invalid gcc attribute
- #11682: BUG: Fix regression in void_getitem
- #11698: BUG: Make matrix_power again work for object arrays.
- #11700: BUG: Add missing PyErr_NoMemory after failing malloc
- #11719: BUG: Fix undefined functions on big-endian systems.
- #11720: MAINT: Make einsum optimize default to False.
- #11757: BUG: Revert use of console_scripts.
- #11758: BUG: Fix Fortran kind detection for aarch64 & s390x.
- #11759: BUG: Fix printing of longdouble on ppc64le.
- #11760: BUG: Fixes for unicode field names in Python 2
- #11761: BUG: Increase required cython version on python 3.7
- #11763: BUG: check return value of _buffer_format_string
- #11775: MAINT: Make assert_array_compare more generic.
- #11776: TST: Fix urlopen stubbing.
- #11777: BUG: Fix regression in intersect1d.
- #11779: BUG: Fix test sensitive to platform byte order.
- #11781: BUG: Avoid signed overflow in histogram
- #11785: BUG: Fix pickle and memoryview for datetime64, timedelta64 scalars
17.30 NumPy 1.15.0 Release Notes

NumPy 1.15.0 is a release with an unusual number of cleanups, many deprecations of old functions, and improvements to many existing functions. Please read the detailed descriptions below to see if you are affected.

For testing, we have switched to pytest as a replacement for the no longer maintained nose framework. The old nose based interface remains for downstream projects who may still be using it.

The Python versions supported by this release are 2.7, 3.4-3.7. The wheels are linked with OpenBLAS v0.3.0, which should fix some of the linalg problems reported for NumPy 1.14.

17.30.1 Highlights

- NumPy has switched to pytest for testing.
- A new `numpy.printoptions` context manager.
- Many improvements to the histogram functions.
- Support for unicode field names in python 2.7.
- Improved support for PyPy.
- Fixes and improvements to `numpy.einsum`.

17.30.2 New functions

- `numpy.gcd` and `numpy.lcm`, to compute the greatest common divisor and least common multiple.
- `numpy.ma.stack`, the `numpy.stack` array-joining function generalized to masked arrays.
- `numpy.quantile function`, an interface to `percentile` without factors of 100
- `numpy.nanquantile function`, an interface to `nanpercentile` without factors of 100
- `numpy.printoptions`, a context manager that sets print options temporarily for the scope of the `with` block:

```python
>>> with np.printoptions(precision=2):
...    print(np.array([2.0]) / 3)
[0.67]
```

- `numpy.histogram_bin_edges`, a function to get the edges of the bins used by a histogram without needing to calculate the histogram.
- C functions `npy_get_floatstatus_barrier` and `npy_clear_floatstatus_barrier` have been added to deal with compiler optimization changing the order of operations. See below for details.
17.30.3 Deprecations

- Aliases of builtin pickle functions are deprecated, in favor of their unaliased pickle.<func> names:
 - `numpy.loads`
 - `numpy.core.numeric.load`
 - `numpy.core.numeric.loads`
 - `numpy.ma.loads`, `numpy.ma.dumps`
 - `numpy.ma.load`, `numpy.ma.dump` - these functions already failed on python 3 when called with a string.

- Multidimensional indexing with anything but a tuple is deprecated. This means that the index list in `ind = [slice(None), 0]; arr[ind]` should be changed to a tuple, e.g., `ind = [slice(None), 0]; arr[tuple(ind)]` or `arr[(slice(None), 0)]`. That change is necessary to avoid ambiguity in expressions such as `arr[[[0, 1], [0, 1]]]`, currently interpreted as `arr[array([0, 1]), array([0, 1])]`, that will be interpreted as `arr[array([0, 1], [0, 1])]` in the future.

- Imports from the following sub-modules are deprecated, they will be removed at some future date.
 - `numpy.testing.utils`
 - `numpy.testing.decorators`
 - `numpy.testing.nosetester`
 - `numpy.testing.noseclasses`
 - `numpy.core.umath_tests`

- Giving a generator to `numpy.sum` is now deprecated. This was undocumented behavior, but worked. Previously, it would calculate the sum of the generator expression. In the future, it might return a different result. Use `np.sum(np.from_iter(generator))` or the built-in Python `sum` instead.

- Users of the C-API should call `PyArrayResolveWriteBackIfCopy` or `PyArray_DiscardWritebackIfCopy` on any array with the WRITEBACKIFCOPY flag set, before deallocating the array. A deprecation warning will be emitted if those calls are not used when needed.

- Users of nditer should use the nditer object as a context manager anytime one of the iterator operands is writable, so that numpy can manage writeback semantics, or should call `it.close()`. A `RuntimeWarning` may be emitted otherwise in these cases.

- The normed argument of `np.histogram`, deprecated long ago in 1.6.0, now emits a DeprecationWarning.

17.30.4 Future Changes

- NumPy 1.16 will drop support for Python 3.4.
- NumPy 1.17 will drop support for Python 2.7.
17.30.5 Compatibility notes

Compiled testing modules renamed and made private

The following compiled modules have been renamed and made private:

- `umath_tests` -> `_umath_tests`
- `test_rational` -> `_rational_tests`
- `multiarray_tests` -> `_multiarray_tests`
- `struct_ufunc_test` -> `_struct_ufunc_tests`
- `operand_flag_tests` -> `_operand_flag_tests`

The `umath_tests` module is still available for backwards compatibility, but will be removed in the future.

The `NpzFile` returned by `np.savez` is now a `collections.abc.Mapping`

This means it behaves like a readonly dictionary, and has a new `.values()` method and `len()` implementation.

For python 3, this means that `.iteritems()`, `.iterkeys()` have been deprecated, and `.keys()` and `.items()` now return views and not lists. This is consistent with how the builtin `dict` type changed between python 2 and python 3.

Under certain conditions, `nditer` must be used in a context manager

When using an `numpy.nditer` with the "writeonly" or "readwrite" flags, there are some circumstances where `nditer` doesn't actually give you a view of the writable array. Instead, it gives you a copy, and if you make changes to the copy, `nditer` later writes those changes back into your actual array. Currently, this writeback occurs when the array objects are garbage collected, which makes this API error-prone on CPython and entirely broken on PyPy. Therefore, `nditer` should now be used as a context manager whenever it is used with writeable arrays, e.g., with `np.nditer(...)` as `it`: You may also explicitly call `it.close()` for cases where a context manager is unusable, for instance in generator expressions.

Numpy has switched to using pytest instead of nose for testing

The last nose release was 1.3.7 in June, 2015, and development of that tool has ended, consequently NumPy has now switched to using pytest. The old decorators and nose tools that were previously used by some downstream projects remain available, but will not be maintained. The standard testing utilities, `assert_almost_equal` and such, are not be affected by this change except for the nose specific functions `import_nose` and `raises`. Those functions are not used in numpy, but are kept for downstream compatibility.

Numpy no longer monkey-patches `ctypes` with `__array_interface__`

Previously numpy added `__array_interface__` attributes to all the integer types from `ctypes`.
np.ma.notmasked_contiguous and np.ma.flatnotmasked_contiguous always return lists

This is the documented behavior, but previously the result could be any of slice, None, or list. All downstream users seem to check for the None result from flatnotmasked_contiguous and replace it with[]. Those callers will continue to work as before.

np.squeeze restores old behavior of objects that cannot handle an axis argument

Prior to version 1.7.0, npy.squeeze did not have an axis argument and all empty axes were removed by default. The incorporation of an axis argument made it possible to selectively squeeze single or multiple empty axes, but the old API expectation was not respected because axes could still be selectively removed (silent success) from an object expecting all empty axes to be removed. That silent, selective removal of empty axes for objects expecting the old behavior has been fixed and the old behavior restored.

unstructured void array's .item method now returns a bytes object

.item now returns a bytes object instead of a buffer or byte array. This may affect code which assumed the return value was mutable, which is no longer the case.

copy.copy and copy.deepcopy no longer turn masked into an array

Since np.ma.masked is a readonly scalar, copying should be a no-op. These functions now behave consistently with np.copy().

Multifield Indexing of Structured Arrays will still return a copy

The change that multi-field indexing of structured arrays returns a view instead of a copy is pushed back to 1.16. A new method numpy.lib.recfunctions.repack_fields has been introduced to help mitigate the effects of this change, which can be used to write code compatible with both numpy 1.15 and 1.16. For more information on how to update code to account for this future change see the “accessing multiple fields” section of the user guide.

17.30.6 C API changes

New functions npy_get_floatstatus_barrier and npy_clear_floatstatus_barrier

Functions npy_get_floatstatus_barrier and npy_clear_floatstatus_barrier have been added and should be used in place of the npy_get_floatstatus`` and ¦npy_clear_status functions. Optimizing compilers like GCC 8.1 and Clang were rearranging the order of operations when the previous functions were used in the ufunc SIMD functions, resulting in the floatstatus flags being checked before the operation whose status we wanted to check was run. See #10339.
Changes to `PyArray_GetDTypeTransferFunction`

`PyArray_GetDTypeTransferFunction` now defaults to using user-defined `copyswapn/copyswap` for user-defined dtypes. If this causes a significant performance hit, consider implementing `copyswapn` to reflect the implementation of `PyArray_GetStridedCopyFn`. See #10898.

17.30.7 New Features

`np.gcd` and `np.lcm` ufuncs added for integer and objects types

These compute the greatest common divisor, and lowest common multiple, respectively. These work on all the numpy integer types, as well as the built-in arbitrary-precision `Decimal` and `long` types.

Support for cross-platform builds for iOS

The build system has been modified to add support for the `_PYTHON_HOST_PLATFORM` environment variable, used by `distutils` when compiling on one platform for another platform. This makes it possible to compile NumPy for iOS targets.

This only enables you to compile NumPy for one specific platform at a time. Creating a full iOS-compatible NumPy package requires building for the 5 architectures supported by iOS (i386, x86_64, armv7, armv7s and arm64), and combining these 5 compiled builds products into a single “fat” binary.

`return_indices` keyword added for `np.intersect1d`

New keyword `return_indices` returns the indices of the two input arrays that correspond to the common elements.

`np.quantile` and `np.nanquantile`

Like `np.percentile` and `np.nanpercentile`, but takes quantiles in [0, 1] rather than percentiles in [0, 100]. `np.percentile` is now a thin wrapper around `np.quantile` with the extra step of dividing by 100.

Build system

Added experimental support for the 64-bit RISC-V architecture.

17.30.8 Improvements

`np.einsum` updates

Syncs einsum path optimization tech between `numpy` and `opt_einsum`. In particular, the greedy path has received many enhancements by @jcmgray. A full list of issues fixed are:

- Arbitrary memory can be passed into the greedy path. Fixes gh-11210.
- The greedy path has been updated to contain more dynamic programming ideas preventing a large number of duplicate (and expensive) calls that figure out the actual pair contraction that takes place. Now takes a few seconds on several hundred input tensors. Useful for matrix product state theories.
- Reworks the broadcasting dot error catching found in gh-11218 gh-10352 to be a bit earlier in the process.
• Enhances the `can_dot` functionality that previous missed an edge case (part of gh-11308).

np.ufunc.reduce and related functions now accept an initial value

`np.ufunc.reduce, np.sum, np.prod, np.min and np.max all now accept an initial keyword argument that specifies the value to start the reduction with.**

np.flip can operate over multiple axes

`np.flip now accepts None, or tuples of int, in its axis argument. If axis is None, it will flip over all the axes.**

histogram and histogramdd functions have moved to np.lib.histograms

These were originally found in `np.lib.function_base`. They are still available under their un-scoped `np.histogram(dd)` names, and to maintain compatibility, aliased at `np.lib.function_base.histogram(dd)`.

Code that does `from np.lib.function_base import *` will need to be updated with the new location, and should consider not using `import *` in future.

histogram will accept NaN values when explicit bins are given

Previously it would fail when trying to compute a finite range for the data. Since the range is ignored anyway when the bins are given explicitly, this error was needless.

Note that calling `histogram` on NaN values continues to raise the `RuntimeWarning` typical of working with nan values, which can be silenced as usual with `errstate`.

histogram works on datetime types, when explicit bin edges are given

Dates, times, and timedeltas can now be histogrammed. The bin edges must be passed explicitly, and are not yet computed automatically.

histogram “auto” estimator handles limited variance better

No longer does an IQR of 0 result in `n_bins=1`, rather the number of bins chosen is related to the data size in this situation.

The edges returned by histogram’ and histogramdd now match the data float type

When passed `np.float16, np.float32, or np.longdouble` data, the returned edges are now of the same dtype. Previously, `histogram` would only return the same type if explicit bins were given, and `histogram` would produce `float64` bins no matter what the inputs.
histogramdd allows explicit ranges to be given in a subset of axes

The `range` argument of `numpy.histogramdd` can now contain `None` values to indicate that the range for the corresponding axis should be computed from the data. Previously, this could not be specified on a per-axis basis.

The normed arguments of histogramdd and histogram2d have been renamed

These arguments are now called `density`, which is consistent with `histogram`. The old argument continues to work, but the new name should be preferred.

np.r_ works with 0d arrays, and np.ma.mr_ works with np.ma.masked

0d arrays passed to the `r_` and `mr_` concatenation helpers are now treated as though they are arrays of length 1. Previously, passing these was an error. As a result, `numpy.ma.mr_` now works correctly on the `masked` constant.

np.ptp accepts a keepdims argument, and extended axis tuples

`np.ptp` (peak-to-peak) can now work over multiple axes, just like `np.max` and `np.min`.

MaskedArray.astype now is identical to ndarray.astype

This means it takes all the same arguments, making more code written for `ndarray` work for `masked array` too.

Enable AVX2/AVX512 at compile time

Change to `simd.inc.src` to allow use of AVX2 or AVX512 at compile time. Previously compilation for avx2 (or 512) with `-march=native` would still use the SSE code for the simd functions even when the rest of the code got AVX2.

nan_to_num always returns scalars when receiving scalar or 0d inputs

Previously an array was returned for integer scalar inputs, which is inconsistent with the behavior for float inputs, and that of ufuncs in general. For all types of scalar or 0d input, the result is now a scalar.

np.flatnonzero works on numpy-convertible types

`np.flatnonzero` now uses `np.ravel(a)` instead of `a.ravel()`, so it works for lists, tuples, etc.

np.interp returns numpy scalars rather than builtin scalars

Previously `np.interp(0.5, [0, 1], [10, 20])` would return a `float`, but now it returns a `np.float64` object, which more closely matches the behavior of other functions.

Additionally, the special case of `np.interp(object_array_0d, ...) is no longer supported, as np.interp(object_array_nd) was never supported anyway.

As a result of this change, the `period` argument can now be used on 0d arrays.
Allow dtype field names to be unicode in Python 2

Previously np.dtype([(u'name', float)]) would raise a TypeError in Python 2, as only bytestrings were allowed in field names. Now any unicode string field names will be encoded with the ascii codec, raising a UnicodeEncodeError upon failure.

This change makes it easier to write Python 2/3 compatible code using from __future__ import unicode_literals, which previously would cause string literal field names to raise a TypeError in Python 2.

Comparison ufuncs accept dtype=object, overriding the default bool

This allows object arrays of symbolic types, which override == and other operators to return expressions, to be compared elementwise with np.equal(a, b, dtype=object).

sort functions accept kind='stable'

Up until now, to perform a stable sort on the data, the user must do:

```python
>>> np.sort([5, 2, 6, 2, 1], kind='mergesort')
[1, 2, 2, 5, 6]
```

because merge sort is the only stable sorting algorithm available in NumPy. However, having kind='mergesort' does not make it explicit that the user wants to perform a stable sort thus harming the readability.

This change allows the user to specify kind='stable' thus clarifying the intent.

Do not make temporary copies for in-place accumulation

When ufuncs perform accumulation they no longer make temporary copies because of the overlap between input and output, that is, the next element accumulated is added before the accumulated result is stored in its place, hence the overlap is safe. Avoiding the copy results in faster execution.

linalg.matrix_power can now handle stacks of matrices

Like other functions in linalg.matrix_power can now deal with arrays of dimension larger than 2, which are treated as stacks of matrices. As part of the change, to further improve consistency, the name of the first argument has been changed to a (from M), and the exceptions for non-square matrices have been changed to LinAlgError (from ValueError).

Increased performance in random.permutation for multidimensional arrays

permutation uses the fast path in random.shuffle for all input array dimensions. Previously the fast path was only used for 1-d arrays.
Generalized ufuns now accept axes, axis and keepdims arguments

One can control over which axes a generalized ufunc operates by passing in an axes argument, a list of tuples with indices of particular axes. For instance, for a signature of \((i, j), (j, k) \rightarrow (i, k)\) appropriate for matrix multiplication, the base elements are two-dimensional matrices and these are taken to be stored in the two last axes of each argument. The corresponding axes keyword would be \([(-2, -1), (-2, -1), (-2, -1)]\). If one wanted to use leading dimensions instead, one would pass in \([(0, 1), (0, 1), (0, 1)]\).

For simplicity, for generalized ufuns that operate on 1-dimensional arrays (vectors), a single integer is accepted instead of a single-element tuple, and for generalized ufuns for which all outputs are scalars, the (empty) output tuples can be omitted. Hence, for a signature of \((i), (i) \rightarrow ()\) appropriate for an inner product, one could pass in axes=[0, 0] to indicate that the vectors are stored in the first dimensions of the two inputs arguments.

As a short-cut for generalized ufuns that are similar to reductions, i.e., that act on a single, shared core dimension such as the inner product example above, one can pass an axis argument. This is equivalent to passing in axes with identical entries for all arguments with that core dimension (e.g., for the example above, axes=[(axis,), (axis,)]).

Furthermore, like for reductions, for generalized ufuns that have inputs that all have the same number of core dimensions and outputs with no core dimension, one can pass in keepdims to leave a dimension with size 1 in the outputs, thus allowing proper broadcasting against the original inputs. The location of the extra dimension can be controlled with axes. For instance, for the inner-product example, keepdims=True, axes=[-2, -2, -2] would act on the inner-product example, keepdims=True, axis=-2 would act on the one-but-last dimension of the input arguments, and leave a size 1 dimension in that place in the output.

float128 values now print correctly on ppc systems

Previously printing float128 values was buggy on ppc, since the special double-double floating-point-format on these systems was not accounted for. float128s now print with correct rounding and uniqueness.

Warning to ppc users: You should upgrade glibc if it is version <=2.23, especially if using float128. On ppc, glibc’s malloc in these versions often misaligns allocated memory which can crash numpy when using float128 values.

New np.take_along_axis and np.put_along_axis functions

When used on multidimensional arrays, argsort, argmin, argmax, and argpartition return arrays that are difficult to use as indices. take_along_axis provides an easy way to use these indices to lookup values within an array, so that:

```python
np.take_along_axis(a, np.argsort(a, axis=axis), axis=axis)
```

is the same as:

```python
np.sort(a, axis=axis)
```

np.put_along_axis acts as the dual operation for writing to these indices within an array.
17.31 NumPy 1.14.6 Release Notes

This is a bugfix release for bugs reported following the 1.14.5 release. The most significant fixes are:

- Fix for behavior change in `ma.masked_values(shrink=True)`
- Fix the new cached allocations machinery to be thread safe.

The Python versions supported in this release are 2.7 and 3.4 - 3.7. The Python 3.6 wheels on PyPI should be compatible with all Python 3.6 versions.

17.31.1 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Eric Wieser
- Julian Taylor
- Matti Picus

17.31.2 Pull requests merged

A total of 4 pull requests were merged for this release.

- #11985: BUG: fix cached allocations without the GIL
- #11986: BUG: Undo behavior change in `ma.masked_values(shrink=True)`
- #11987: BUG: fix refcount leak in `PyArray_AdaptFlexibleDType`

17.32 NumPy 1.14.5 Release Notes

This is a bugfix release for bugs reported following the 1.14.4 release. The most significant fixes are:

- fixes for compilation errors on alpine and NetBSD

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized with Cython 0.28.2 and should work for the upcoming Python 3.7.

17.32.1 Contributors

A total of 1 person contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
17.32.2 Pull requests merged

A total of 2 pull requests were merged for this release.

- #11274: BUG: Correct use of NPY_UNUSED.
- #11294: BUG: Remove extra trailing parentheses.

17.33 NumPy 1.14.4 Release Notes

This is a bugfix release for bugs reported following the 1.14.3 release. The most significant fixes are:

- fixes for compiler instruction reordering that resulted in NaN’s not being properly propagated in \texttt{np.max} and \texttt{np.min},
- fixes for bus faults on SPARC and older ARM due to incorrect alignment checks.

There are also improvements to printing of long doubles on PPC platforms. All is not yet perfect on that platform, the whitespace padding is still incorrect and is to be fixed in numpy 1.15, consequently NumPy still fails some printing-related (and other) unit tests on ppc systems. However, the printed values are now correct.

Note that NumPy will error on import if it detects incorrect float32 \texttt{dot} results. This problem has been seen on the Mac when working in the Anaconda environment and is due to a subtle interaction between MKL and PyQt5. It is not strictly a NumPy problem, but it is best that users be aware of it. See the gh-8577 NumPy issue for more information.

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized with Cython 0.28.2 and should work for the upcoming Python 3.7.

17.33.1 Contributors

A total of 7 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Allan Haldane
- Charles Harris
- Marten van Kerkwijk
- Matti Picus
- Pauli Virtanen
- Ryan Soklaski +
- Sebastian Berg

17.33.2 Pull requests merged

A total of 11 pull requests were merged for this release.

- #11104: BUG: str of DOUBLE_DOUBLE format wrong on ppc64
- #11170: TST: linalg: add regression test for gh-8577
- #11174: MAINT: add sanity-checks to be run at import time
- #11181: BUG: void dtype setup offset not actual pointer for alignment
- #11194: BUG: Python2 doubles don’t print correctly in interactive shell.
NumPy User Guide, Release 1.20.0

• #11198: BUG: optimizing compilers can reorder call to npy_get_floatstatus
• #11199: BUG: reduce using SSE only warns if inside SSE loop
• #11203: BUG: Bytes delimiter/comments in genfromtxt should be decoded
• #11211: BUG: Fix reference count/memory leak exposed by better testing
• #11219: BUG: Fixes einsum broadcasting bug when optimize=True

17.34 NumPy 1.14.3 Release Notes

This is a bugfix release for a few bugs reported following the 1.14.2 release:
 • np.lib.recfunctions.fromrecords accepts a list-of-lists, until 1.15
 • In python2, float types use the new print style when printing to a file
 • style arg in “legacy” print mode now works for 0d arrays

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized with Cython 0.28.2.

17.34.1 Contributors

A total of 6 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
 • Allan Haldane
 • Charles Harris
 • Jonathan March +
 • Malcolm Smith +
 • Matti Picus
 • Pauli Virtanen

17.34.2 Pull requests merged

A total of 8 pull requests were merged for this release.
 • #10862: BUG: floating types should override tp_print (1.14 backport)
 • #10905: BUG: for 1.14 back-compat, accept list-of-lists in fromrecords
 • #10947: BUG: ‘style’ arg to array2string broken in legacy mode (1.14…
 • #10959: BUG: test, fix for missing flags[‘WRITEBACKIFCOPY’] key
 • #10960: BUG: Add missing underscore to prototype in check_embedded_lapack
 • #10961: BUG: Fix encoding regression in ma/bench.py (Issue #10868)
 • #10962: BUG: core: fix NPY_TITLE_KEY macro on pypy
 • #10974: BUG: test, fix PyArray_DiscardWritebackIfCopy…
17.35 NumPy 1.14.2 Release Notes

This is a bugfix release for some bugs reported following the 1.14.1 release. The major problems dealt with are as follows.

- Residual bugs in the new array printing functionality.
- Regression resulting in a relocation problem with shared library.
- Improved PyPy compatibility.

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized with Cython 0.26.1, which is known to not support the upcoming Python 3.7 release. People who wish to run Python 3.7 should check out the NumPy repo and try building with the, as yet, unreleased master branch of Cython.

17.35.1 Contributors

A total of 4 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Allan Haldane
- Charles Harris
- Eric Wieser
- Pauli Virtanen

17.35.2 Pull requests merged

A total of 5 pull requests were merged for this release.

- #10674: BUG: Further back-compat fix for subclassed array repr
- #10725: BUG: dragon4 fractional output mode adds too many trailing zeros
- #10726: BUG: Fix f2py generated code to work on PyPy
- #10727: BUG: Fix missing NPY_VISIBILITY_HIDDEN on npy_longdouble_to_PyLong
- #10729: DOC: Create 1.14.2 notes and changelog.

17.36 NumPy 1.14.1 Release Notes

This is a bugfix release for some problems reported following the 1.14.0 release. The major problems fixed are the following.

- Problems with the new array printing, particularly the printing of complex values, Please report any additional problems that may turn up.
- Problems with np.einsum due to the new optimized=True default. Some fixes for optimization have been applied and optimize=False is now the default.
- The sort order in np.unique when axis=<some-number> will now always be lexicographic in the subarray elements. In previous NumPy versions there was an optimization that could result in sorting the subarrays as unsigned byte strings.
• The change in 1.14.0 that multi-field indexing of structured arrays returns a view instead of a copy has been reverted but remains on track for NumPy 1.15. Affected users should read the 1.14.1 Numpy User Guide section “basics/structured arrays/accessing multiple fields” for advice on how to manage this transition.

The Python versions supported in this release are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The source releases were cythonized with Cython 0.26.1, which is known to not support the upcoming Python 3.7 release. People who wish to run Python 3.7 should check out the NumPy repo and try building with the, as yet, unreleased master branch of Cython.

17.36.1 Contributors

A total of 14 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

• Allan Haldane
• Charles Harris
• Daniel Smith
• Dennis Weyland +
• Eric Larson
• Eric Wieser
• Jarrod Millman
• Kenichi Maehashi +
• Marten van Kerkwijk
• Mathieu Lamarre
• Sebastian Berg
• Simon Conseil
• Simon Gibbons
• xoviat

17.36.2 Pull requests merged

A total of 36 pull requests were merged for this release.

• #10339: BUG: restrict the __config__ modifications to win32
• #10368: MAINT: Adjust type promotion in linalg.norm
• #10375: BUG: add missing paren and remove quotes from repr of fieldless…
• #10395: MAINT: Update download URL in setup.py.
• #10396: BUG: fix einsum issue with unicode input and py2
• #10397: BUG: fix error message not formatted in einsum
• #10398: DOC: add documentation about how to handle new array printing
• #10403: BUG: Set einsum optimize parameter default to False.
• #10424: ENH: Fix repr of np.record objects to match np.void types #10412
• #10425: MAINT: Update zesty to artful for i386 testing
• #10431: REL: Add 1.14.1 release notes template
• #10435: MAINT: Use ValueError for duplicate field names in lookup (backport)
• #10534: BUG: Provide a better error message for out-of-order fields
• #10536: BUG: Resize bytes columns in genfromtxt (backport of #10401)
• #10537: BUG: multifield-indexing adds padding bytes: revert for 1.14.1
• #10539: BUG: fix np.save issue with python 2.7.5
• #10540: BUG: Add missing DECREF in Py2 int() cast
• #10541: TST: Add cireclei document testing to maintenance/1.14.x
• #10542: BUG: complex repr has extra spaces, missing + (1.14 backport)
• #10550: BUG: Set missing exception after malloc
• #10557: BUG: In numpy.i, clear CARRAY flag if wrapped buffer is not C_CONTIGUOUS.
• #10558: DEP: Issue FutureWarning when malformed records detected.
• #10559: BUG: Fix einsum optimize logic for singleton dimensions
• #10560: BUG: Fix calling ufuncs with a positional output argument.
• #10561: BUG: Fix various Big-Endian test failures (ppc64)
• #10562: BUG: Make dtype.descr error for out-of-order fields.
• #10563: BUG: arrays not being flattened in union1d
• #10607: MAINT: Update sphinxext submodule hash.
• #10608: BUG: Revert sort optimization in np.unique.
• #10609: BUG: infinite recursion in str of 0d subclasses
• #10610: BUG: Align type definition with generated lapack
• #10612: BUG/ENH: Improve output for structured non-void types
• #10622: BUG: deallocate recursive closure in arrayprint.py (1.14 backport)
• #10624: BUG: Correctly identify comma separated dtype strings
• #10629: BUG: deallocate recursive closure in arrayprint.py (backport…
• #10630: REL: Prepare for 1.14.1 release.

17.37 NumPy 1.14.0 Release Notes

NumPy 1.14.0 is the result of seven months of work and contains a large number of bug fixes and new features, along with several changes with potential compatibility issues. The major change that users will notice are the stylistic changes in the way numpy arrays and scalars are printed, a change that will affect doctests. See below for details on how to preserve the old style printing when needed.

A major decision affecting future development concerns the schedule for dropping Python 2.7 support in the runup to 2020. The decision has been made to support 2.7 for all releases made in 2018, with the last release being designated a long term release with support for bug fixes extending through 2019. In 2019 support for 2.7 will be dropped in all new releases. More details can be found in NEP 12.

This release supports Python 2.7 and 3.4 - 3.6.
17.37.1 Highlights

- The `np.einsum` function uses BLAS when possible
- `genfromtxt`, `loadtxt`, `fromregex` and `savetxt` can now handle files with arbitrary Python supported encoding.
- Major improvements to printing of NumPy arrays and scalars.

17.37.2 New functions

- `parametrize`: decorator added to `numpy.testing`
- `chebinterpolate`: Interpolate function at Chebyshev points.
- `format_float_positional` and `format_float_scientific`: format floating-point scalars unambiguously with control of rounding and padding.
- `PyArray_ResolveWritebackIfCopy` and `PyArray_SetWritebackIfCopyBase`, new C-API functions useful in achieving PyPy compatibility.

17.37.3 Deprecations

- Using `np.bool_` objects in place of integers is deprecated. Previously `operator.index(np.bool_)` was legal and allowed constructs such as `[1, 2, 3][np.True_]`. That was misleading, as it behaved differently from `np.array([1, 2, 3])[np.True_]`.
- Truth testing of an empty array is deprecated. To check if an array is not empty, use `array.size > 0`.
- Calling `np.bincount` with `minlength=None` is deprecated. `minlength=0` should be used instead.
- Calling `np.fromstring` with the default value of the `sep` argument is deprecated. When that argument is not provided, a broken version of `np.frombuffer` is used that silently accepts unicode strings and – after encoding them as either utf-8 (python 3) or the default encoding (python 2) – treats them as binary data. If reading binary data is desired, `np.frombuffer` should be used directly.
- The style option of `array2string` is deprecated in non-legacy printing mode.
- `PyArray_SetUpdateIfCopyBase` has been deprecated. For NumPy versions >= 1.14 use `PyArray_WritebackIfCopyBase` instead, see C API changes below for more details.
- The use of UPDATEIFCOPY arrays is deprecated, see C API changes below for details. We will not be dropping support for those arrays, but they are not compatible with PyPy.

17.37.4 Future Changes

- `np.issubdtype` will stop downcasting dtype-like arguments. It might be expected that `issubdtype(np.float32, 'float64')` and `issubdtype(np.float32, np.float64)` mean the same thing - however, there was an undocumented special case that translated the former into `issubdtype(np.float32, np.float64)`, giving the surprising result of True.
 This translation now gives a warning that explains what translation is occurring. In the future, the translation will be disabled, and the first example will be made equivalent to the second.
- `np.linalg.lstsq` default for `rcond` will be changed. The `rcond` parameter to `np.linalg.lstsq` will change its default to machine precision times the largest of the input array dimensions. A FutureWarning is issued when `rcond` is not passed explicitly.
• `a.flat.__array__() will return a writeable copy of a when a is non-contiguous. Previously it returned an UPDATEIFCOPY array when a was writeable. Currently it returns a non-writeable copy. See gh-7054 for a discussion of the issue.

• Unstructured void array's `.item` method will return a bytes object. In the future, calling `.item()` on arrays or scalars of `np.void` datatype will return a bytes object instead of a buffer or int array, the same as returned by `bytes(void_scalar)`. This may affect code which assumed the return value was mutable, which will no longer be the case. A `FutureWarning` is now issued when this would occur.

17.37.5 Compatibility notes

The mask of a masked array view is also a view rather than a copy

There was a `FutureWarning` about this change in NumPy 1.11.x. In short, it is now the case that, when changing a view of a masked array, changes to the mask are propagated to the original. That was not previously the case. This change affects slices in particular. Note that this does not yet work properly if the mask of the original array is `nomask` and the mask of the view is changed. See gh-5580 for an extended discussion. The original behavior of having a copy of the mask can be obtained by calling the `unshare_mask` method of the view.

`np.ma.masked` is no longer writeable

Attempts to mutate the masked constant now error, as the underlying arrays are marked readonly. In the past, it was possible to get away with:

```python
# emulating a function that sometimes returns np.ma.masked
val = random.choice([np.ma.masked, 10])
var_arr = np.asarray(val)
val_arr += 1  # now errors, previously changed np.ma.masked.data
```

`np.ma` functions producing fill_values have changed

Previously, `np.ma.default_fill_value` would return a 0d array, but `np.ma.minimum_fill_value` and `np.ma.maximum_fill_value` would return a tuple of the fields. Instead, all three methods return a structured `np.void` object, which is what you would already find in the `.fill_value` attribute.

Additionally, the dtype guessing now matches that of `np.array` - so when passing a python scalar `x`, `maximum_fill_value(x)` is always the same as `maximum_fill_value(np.array(x))`. Previously `x = long(1)` on Python 2 violated this assumption.

`a.flat.__array__()` returns non-writeable arrays when a is non-contiguous

The intent is that the UPDATEIFCOPY array previously returned when a was non-contiguous will be replaced by a writeable copy in the future. This temporary measure is aimed to notify folks who expect the underlying array be modified in this situation that that will no longer be the case. The most likely places for this to be noticed is when expressions of the form `np.asarray(a.flat)` are used, or when `a.flat` is passed as the out parameter to a ufunc.
np.tensordot now returns zero array when contracting over 0-length dimension

Previously `np.tensordot` raised a `ValueError` when contracting over 0-length dimension. Now it returns a zero array, which is consistent with the behaviour of `np.dot` and `np.einsum`.

numpy.testing reorganized

This is not expected to cause problems, but possibly something has been left out. If you experience an unexpected import problem using `numpy.testing` let us know.

np.asfarray no longer accepts non-dtypes through the `dtype` argument

This previously would accept `dtype=some_array`, with the implied semantics of `dtype=some_array.dtype`. This was undocumented, unique across the numpy functions, and if used would likely correspond to a typo.

1D np.linalg.norm preserves float input types, even for arbitrary orders

Previously, this would promote to `float64` when arbitrary orders were passed, despite not doing so under the simple cases:

```python
>>> f32 = np.float32([[1, 2]])
>>> np.linalg.norm(f32, 2.0, axis=-1).dtype
'dtype('float32')
>>> np.linalg.norm(f32, 2.0001, axis=-1).dtype
'dtype('float64')' # numpy 1.13
'dtype('float32')' # numpy 1.14
```

This change affects only `float32` and `float16` arrays.

count_nonzero(arr, axis=()) now counts over no axes, not all axes

Elsewhere, `axis==()` is always understood as “no axes”, but `count_nonzero` had a special case to treat this as “all axes”. This was inconsistent and surprising. The correct way to count over all axes has always been to pass `axis == None`.

__init__.py files added to test directories

This is for pytest compatibility in the case of duplicate test file names in the different directories. As a result, `run_module_suite` no longer works, i.e., `python <path-to-test-file>` results in an error.

.astype(bool) on unstructured void arrays now calls bool on each element

On Python 2, `void_array.astype(bool)` would always return an array of True, unless the dtype is V0. On Python 3, this operation would usually crash. Going forwards, `astype` matches the behavior of `bool(np.void)`, considering a buffer of all zeros as false, and anything else as true. Checks for V0 can still be done with `arr.dtype.itemsize == 0`.
MaskedArray. squeeze never returns np.ma.masked

np.squeeze is documented as returning a view, but the masked variant would sometimes return masked, which is not a view. This has been fixed, so that the result is always a view on the original masked array. This breaks any code that used masked_arr.squeeze() is np.ma.masked, but fixes code that writes to the result of squeeze().

Renamed first parameter of can_cast from from to from_

The previous parameter name from is a reserved keyword in Python, which made it difficult to pass the argument by name. This has been fixed by renaming the parameter to from_.

isnat raises TypeError when passed wrong type

The ufunc isnat used to raise a ValueError when it was not passed variables of type datetime or timedelta. This has been changed to raising a TypeError.

dtype.__getitem__ raises TypeError when passed wrong type

When indexed with a float, the dtype object used to raise ValueError.

User-defined types now need to implement __str__ and __repr__

Previously, user-defined types could fall back to a default implementation of __str__ and __repr__ implemented in numpy, but this has now been removed. Now user-defined types will fall back to the python default object.__str__ and object.__repr__.

Many changes to array printing, disableable with the new “legacy” printing mode

The str and repr of ndarrays and numpy scalars have been changed in a variety of ways. These changes are likely to break downstream user’s doctests.

These new behaviors can be disabled to mostly reproduce numpy 1.13 behavior by enabling the new 1.13 “legacy” printing mode. This is enabled by calling np.set_printoptions(legacy="1.13"), or using the new legacy argument to np.array2string, as np.array2string(arr, legacy='1.13').

In summary, the major changes are:

- For floating-point types:
 - The repr of float arrays often omits a space previously printed in the sign position. See the new sign option to np.set_printoptions.
 - Floating-point arrays and scalars use a new algorithm for decimal representations, giving the shortest unique representation. This will usually shorten float16 fractional output, and sometimes float32 and float128 output. float64 should be unaffected. See the new floatmode option to np.set_printoptions.
 - Float arrays printed in scientific notation no longer use fixed-precision, and now instead show the shortest unique representation.
 - The str of floating-point scalars is no longer truncated in python2.
- For other data types:
 - Non-finite complex scalars print like nanj instead of nan*j.
– NaT values in datetime arrays are now properly aligned.
– Arrays and scalars of `np.void` datatype are now printed using hex notation.

• For line-wrapping:
 – The “dtype” part of ndarray reprs will now be printed on the next line if there isn’t space on the last line of array output.
 – The `linewidth` format option is now always respected. The `repr` or `str` of an array will never exceed this, unless a single element is too wide.
 – The last line of an array string will never have more elements than earlier lines.
 – An extra space is no longer inserted on the first line if the elements are too wide.

• For summarization (the use of `...` to shorten long arrays):
 – A trailing comma is no longer inserted for `str`. Previously, `str(np.arange(1001))` gave `'[0 1 2 ..., 998 999 1000]'`, which has an extra comma.
 – For arrays of 2-D and beyond, when `...` is printed on its own line in order to summarize any but the last axis, newlines are now appended to that line to match its leading newlines and a trailing space character is removed.

• `MaskedArray` arrays now separate printed elements with commas, always print the dtype, and correctly wrap the elements of long arrays to multiple lines. If there is more than 1 dimension, the array attributes are now printed in a new “left-justified” printing style.

• `recarray` arrays no longer print a trailing space before their dtype, and wrap to the right number of columns.

• 0d arrays no longer have their own idiosyncratic implementations of `str` and `repr`. The `style` argument to `np.array2string` is deprecated.

• Arrays of `bool` datatype will omit the datatype in the `repr`.

• User-defined dtypes (subclasses of `np.generic`) now need to implement `__str__` and `__repr__`.

Some of these changes are described in more detail below. If you need to retain the previous behavior for doctests or other reasons, you may want to do something like:

```python
# FIXME: We need the str/repr formatting used in Numpy < 1.14.
try:
    np.set_printoptions(legacy='1.13')
except TypeError:
    pass
```

17.37.6 C API changes

PyPy compatible alternative to UPDATEIFCOPY arrays

UPDATEIFCOPY arrays are contiguous copies of existing arrays, possibly with different dimensions, whose contents are copied back to the original array when their refcount goes to zero and they are deallocated. Because PyPy does not use refcounts, they do not function correctly with PyPy. NumPy is in the process of eliminating their use internally and two new C-API functions,

• `PyArray_SetWritebackIfCopyBase`
• `PyArray_ResolveWritebackIfCopy`,

have been added together with a complimentary flag, NPY_ARRAY_WRITEBACKIFCOPY. Using the new functionality also requires that some flags be changed when new arrays are created, to wit: NPY_ARRAY_INOUT_ARRAY should be replaced by NPY_ARRAY_INOUT_ARRAY2 and NPY_ARRAY_INOUT_FARRAY should be replaced by NPY_ARRAY_INOUT_FARRAY2. Arrays created with these new flags will then have the WRITEBACKIFCOPY semantics.

If PyPy compatibility is not a concern, these new functions can be ignored, although there will be a DeprecationWarning. If you do wish to pursue PyPy compatibility, more information on these functions and their use may be found in the c-api documentation and the example in how-to-extend.

17.37.7 New Features

Encoding argument for text IO functions

genfromtxt, loadtxt, fromregex and savetxt can now handle files with arbitrary encoding supported by Python via the encoding argument. For backward compatibility the argument defaults to the special bytes value which continues to treat text as raw byte values and continues to pass latin1 encoded bytes to custom converters. Using any other value (including None for system default) will switch the functions to real text IO so one receives unicode strings instead of bytes in the resulting arrays.

External nose plugins are usable by numpy.testing.Tester

numpy.testing.Tester is now aware of nose plugins that are outside the nose built-in ones. This allows using, for example, nose-timer like so: np.test(extra_argv=['--with-timer', '--timer-top-n', '20']) to obtain the runtime of the 20 slowest tests. An extra keyword timer was also added to Tester.test, so np.test(timer=20) will also report the 20 slowest tests.

parametrize decorator added to numpy.testing

A basic parametrize decorator is now available in numpy.testing. It is intended to allow rewriting yield based tests that have been deprecated in pytest so as to facilitate the transition to pytest in the future. The nose testing framework has not been supported for several years and looks like abandonware.

The new parametrize decorator does not have the full functionality of the one in pytest. It doesn't work for classes, doesn't support nesting, and does not substitute variable names. Even so, it should be adequate to rewrite the NumPy tests.

chebinterpolate function added to numpy.polynomial.chebyshev

The new chebinterpolate function interpolates a given function at the Chebyshev points of the first kind. A new Chebyshev.interpolate class method adds support for interpolation over arbitrary intervals using the scaled and shifted Chebyshev points of the first kind.
Support for reading lzma compressed text files in Python 3

With Python versions containing the `lzma` module the text IO functions can now transparently read from files with .xz or .lzma extension.

sign option added to np.set_printoptions and np.array2string

This option controls printing of the sign of floating-point types, and may be one of the characters ‘-’, ‘+’ or ‘ ‘. With ‘+’ numpy always prints the sign of positive values, with ‘ ’ it always prints a space (whitespace character) in the sign position of positive values, and with ‘-’ it will omit the sign character for positive values. The new default is ‘-’.

This new default changes the float output relative to numpy 1.13. The old behavior can be obtained in 1.13 “legacy” printing mode, see compatibility notes above.

hermitian option added to np.linalg.matrix_rank

The new `hermitian` option allows choosing between standard SVD based matrix rank calculation and the more efficient eigenvalue based method for symmetric/hermitian matrices.

threshold and edgeitems options added to np.array2string

These options could previously be controlled using `np.set_printoptions`, but now can be changed on a per-call basis as arguments to `np.array2string`.

concatenate and stack gained an out argument

A preallocated buffer of the desired dtype can now be used for the output of these functions.

Support for PGI flang compiler on Windows

The PGI flang compiler is a Fortran front end for LLVM released by NVIDIA under the Apache 2 license. It can be invoked by

```bash
python setup.py config --compiler=clang --fcompiler=flang install
```

There is little experience with this new compiler, so any feedback from people using it will be appreciated.

17.37.8 Improvements

Numerator degrees of freedom in random.noncentral_f need only be positive.

Prior to NumPy 1.14.0, the numerator degrees of freedom needed to be > 1, but the distribution is valid for values > 0, which is the new requirement.
The GIL is released for all np.einsum variations

Some specific loop structures which have an accelerated loop version did not release the GIL prior to NumPy 1.14.0. This oversight has been fixed.

The np.einsum function will use BLAS when possible and optimize by default

The np.einsum function will now call np.tensordot when appropriate. Because np.tensordot uses BLAS when possible, that will speed up execution. By default, np.einsum will also attempt optimization as the overhead is small relative to the potential improvement in speed.

f2py now handles arrays of dimension 0

f2py now allows for the allocation of arrays of dimension 0. This allows for more consistent handling of corner cases downstream.

numpy.distutils supports using MSVC and mingw64-gfortran together

Numpy distutils now supports using Mingw64 gfortran and MSVC compilers together. This enables the production of Python extension modules on Windows containing Fortran code while retaining compatibility with the binaries distributed by Python.org. Not all use cases are supported, but most common ways to wrap Fortran for Python are functional.

Compilation in this mode is usually enabled automatically, and can be selected via the --fcompiler and --compiler options to setup.py. Moreover, linking Fortran codes to static OpenBLAS is supported; by default a gfortran compatible static archive openblas.a is looked for.

np.linalg.pinv now works on stacked matrices

Previously it was limited to a single 2d array.

numpy.save aligns data to 64 bytes instead of 16

Saving NumPy arrays in the npy format with numpy.save inserts padding before the array data to align it at 64 bytes. Previously this was only 16 bytes (and sometimes less due to a bug in the code for version 2). Now the alignment is 64 bytes, which matches the widest SIMD instruction set commonly available, and is also the most common cache line size. This makes npy files easier to use in programs which open them with mmap, especially on Linux where an mmap offset must be a multiple of the page size.

NPZ files now can be written without using temporary files

In Python 3.6+ numpy.savez and numpy.savez_compressed now write directly to a ZIP file, without creating intermediate temporary files.
Better support for empty structured and string types

Structured types can contain zero fields, and string dtypes can contain zero characters. Zero-length strings still cannot be created directly, and must be constructed through structured dtypes:

```python
str0 = np.empty(10, np.dtype([('v', str, N)]))[0]
void0 = np.empty(10, np.void)
```

It was always possible to work with these, but the following operations are now supported for these arrays:

- `arr.sort()`
- `arr.view(bytes)`
- `arr.resize(...)`
- `pickle.dumps(arr)`

Support for `decimal.Decimal` in `np.lib.financial`

Unless otherwise stated all functions within the `financial` package now support using the `decimal.Decimal` built-in type.

Float printing now uses “dragon4” algorithm for shortest decimal representation

The `str` and `repr` of floating-point values (16, 32, 64 and 128 bit) are now printed to give the shortest decimal representation which uniquely identifies the value from others of the same type. Previously this was only true for float64 values. The remaining float types will now often be shorter than in numpy 1.13. Arrays printed in scientific notation now also use the shortest scientific representation, instead of fixed precision as before.

Additionally, the `str` of float scalars will no longer be truncated in python2, unlike python2 float's. `np.double` scalars now have a `str` and `repr` identical to that of a python3 float.

New functions `np.format_float_scientific` and `np.format_float_positional` are provided to generate these decimal representations.

A new option `floatmode` has been added to `np.set_printoptions` and `np.array2string`, which gives control over uniqueness and rounding of printed elements in an array. The new default is `floatmode='maxprec'` with `precision=8`, which will print at most 8 fractional digits, or fewer if an element can be uniquely represented with fewer. A useful new mode is `floatmode='unique'`, which will output enough digits to specify the array elements uniquely.

Numpy complex-floating-scalars with values like `inf*j` or `nan*j` now print as `infj` and `nanj`, like the pure-python complex type.

The `FloatFormat` and `LongFloatFormat` classes are deprecated and should both be replaced by `FloatingFormat`. Similarly `ComplexFormat` and `LongComplexFormat` should be replaced by `ComplexFloatingFormat`.
void datatype elements are now printed in hex notation

A hex representation compatible with the python `bytes` type is now printed for unstructured `np.void` elements, e.g., V4 datatype. Previously, in python2 the raw void data of the element was printed to stdout, or in python3 the integer byte values were shown.

printing style for void datatypes is now independently customizable

The printing style of `np.void` arrays is now independently customizable using the `formatter` argument to `np.set_printoptions`, using the 'void' key, instead of the catch-all `numpystr` key as before.

Reduced memory usage of np.loadtxt

`np.loadtxt` now reads files in chunks instead of all at once which decreases its memory usage significantly for large files.

17.37.9 Changes

Multiple-field indexing/assignment of structured arrays

The indexing and assignment of structured arrays with multiple fields has changed in a number of ways, as warned about in previous releases.

First, indexing a structured array with multiple fields, e.g., `arr[['f1', 'f3']]`, returns a view into the original array instead of a copy. The returned view will have extra padding bytes corresponding to intervening fields in the original array, unlike the copy in 1.13, which will affect code such as `arr[['f1', 'f3']].view(newdtype)`.

Second, assignment between structured arrays will now occur “by position” instead of “by field name”. The Nth field of the destination will be set to the Nth field of the source regardless of field name, unlike in numpy versions 1.6 to 1.13 in which fields in the destination array were set to the identically-named field in the source array or to 0 if the source did not have a field.

Correspondingly, the order of fields in a structured dtypes now matters when computing dtype equality. For example, with the dtypes

```python
x = dtype({'names': ['A', 'B'], 'formats': ['i4', 'f4'], 'offsets': [0, 4]})
y = dtype({'names': ['B', 'A'], 'formats': ['f4', 'i4'], 'offsets': [4, 0]})
```

the expression `x == y` will now return `False`, unlike before. This makes dictionary based dtype specifications like `dtype({'a': ('i4', 0), 'b': ('f4', 4)})` dangerous in python < 3.6 since dict key order is not preserved in those versions.

Assignment from a structured array to a boolean array now raises a `ValueError`, unlike in 1.13, where it always set the destination elements to `True`.

Assignment from structured array with more than one field to a non-structured array now raises a `ValueError`. In 1.13 this copied just the first field of the source to the destination.

Using field “titles” in multiple-field indexing is now disallowed, as is repeating a field name in a multiple-field index.

The documentation for structured arrays in the user guide has been significantly updated to reflect these changes.
Integer and Void scalars are now unaffected by `np.set_string_function`

Previously, unlike most other numpy scalars, the `str` and `repr` of integer and void scalars could be controlled by `np.set_string_function`. This is no longer possible.

0d array printing changed, `style` arg of `array2string` deprecated

Previously the `str` and `repr` of 0d arrays had idiosyncratic implementations which returned `str(a.item())` and `'array(' + repr(a.item()) + ')'` respectively for 0d array `a`, unlike both numpy scalars and higher dimension ndarrays.

Now, the `str` of a 0d array acts like a numpy scalar using `str(a[()])` and the `repr` acts like higher dimension arrays using `formatter(a[()])`, where `formatter` can be specified using `np.set_printoptions`. The `style` argument of `np.array2string` is deprecated.

This new behavior is disabled in 1.13 legacy printing mode, see compatibility notes above.

Seeding `RandomState` using an array requires a 1-d array

`RandomState` previously would accept empty arrays or arrays with 2 or more dimensions, which resulted in either a failure to seed (empty arrays) or for some of the passed values to be ignored when setting the seed.

MaskedArray objects show a more useful `repr`

The `repr` of a `MaskedArray` is now closer to the python code that would produce it, with arrays now being shown with commas and dtypes. Like the other formatting changes, this can be disabled with the 1.13 legacy printing mode in order to help transition doctests.

The `repr` of `np.polynomial` classes is more explicit

It now shows the domain and window parameters as keyword arguments to make them more clear:

```python
>>> np.polynomial.Polynomial(range(4))
Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
```

17.38 NumPy 1.13.3 Release Notes

This is a bugfix release for some problems found since 1.13.1. The most important fixes are for CVE-2017-12852 and temporary elision. Users of earlier versions of 1.13 should upgrade.

The Python versions supported are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. It was cythonized with Cython 0.26.1, which should be free of the bugs found in 0.27 while also being compatible with Python 3.7-dev. The Windows wheels were built with OpenBlas instead ATLAS, which should improve the performance of the linear algebra functions.

The NumPy 1.13.3 release is a re-release of 1.13.2, which suffered from a bug in Cython 0.27.0.
17.38.1 Contributors

A total of 12 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Allan Haldane
- Brandon Carter
- Charles Harris
- Eric Wieser
- Iryna Shcherbina +
- James Bourbeau +
- Jonathan Helmus
- Julian Taylor
- Matti Picus
- Michael Lamparski +
- Michael Seifert
- Ralf Gommers

17.38.2 Pull requests merged

A total of 22 pull requests were merged for this release.

- #9390 BUG: Return the poly1d coefficients array directly
- #9555 BUG: Fix regression in 1.13.x in distutils.mingw32ccompiler.
- #9556 BUG: Fix true_divide when dtype=np.float64 specified.
- #9557 DOC: Fix some rst markup in numpy/doc/basics.py.
- #9558 BLD: Remove -xhost flag from IntelFCompiler.
- #9559 DOC: Removes broken docstring example (source code, png, pdf)…
- #9580 BUG: Add hypot and cabs functions to WIN32 blacklist.
- #9732 BUG: Make scalar function elision check if temp is writeable.
- #9736 BUG: Various fixes to np.gradient
- #9742 BUG: Fix np.pad for CVE-2017-12852
- #9744 BUG: Check for exception in sort functions, add tests
- #9745 DOC: Add whitespace after “versionadded::” directive so it actually…
- #9746 BUG: Memory leak in np.dot of size 0
- #9747 BUG: Adjust gfortran version search regex
- #9757 BUG: Cython 0.27 breaks NumPy on Python 3.
- #9764 BUG: Ensure _npy_scaled_cexp{,f,l} is defined when needed.
- #9765 BUG: PyArray_CountNonzero does not check for exceptions
- #9766 BUG: Fixes histogram monotonicity check for unsigned bin values
• #9767 BUG: Ensure consistent result dtype of count_nonzero
• #9771 BUG: MAINT: Fix mtrand for Cython 0.27.
• #9772 DOC: Create the 1.13.2 release notes.
• #9794 DOC: Create 1.13.3 release notes.

17.39 NumPy 1.13.2 Release Notes

This is a bugfix release for some problems found since 1.13.1. The most important fixes are for CVE-2017-12852 and temporary elision. Users of earlier versions of 1.13 should upgrade.

The Python versions supported are 2.7 and 3.4 - 3.6. The Python 3.6 wheels available from PIP are built with Python 3.6.2 and should be compatible with all previous versions of Python 3.6. The Windows wheels are now built with OpenBlas instead ATLAS, which should improve the performance of the linear algebra functions.

17.39.1 Contributors

A total of 12 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

• Allan Haldane
• Brandon Carter
• Charles Harris
• Eric Wieser
• Iryna Shcherbina +
• James Bourbeau +
• Jonathan Helmus
• Julian Taylor
• Matti Picus
• Michael Lamparski +
• Michael Seifert
• Ralf Gommers

17.39.2 Pull requests merged

A total of 20 pull requests were merged for this release.

• #9390 BUG: Return the poly1d coefficients array directly
• #9555 BUG: Fix regression in 1.13.x in distutils.mingw32ccompiler.
• #9556 BUG: Fix true_divide when dtype=np.float64 specified.
• #9557 DOC: Fix some rst markup in numpy/doc/basics.py.
• #9558 BLD: Remove -xhost flag from IntelFCompiler.
• #9559 DOC: Removes broken docstring example (source code, png, pdf)…
• #9580 BUG: Add hypot and cabs functions to WIN32 blacklist.
• #9732 BUG: Make scalar function elision check if temp is writeable.
• #9736 BUG: Various fixes to np.gradient
• #9742 BUG: Fix np.pad for CVE-2017-12852
• #9744 BUG: Check for exception in sort functions, add tests
• #9745 DOC: Add whitespace after “versionadded::” directive so it actually…
• #9746 BUG: Memory leak in np.dot of size 0
• #9747 BUG: Adjust gfortran version search regex
• #9757 BUG: Cython 0.27 breaks NumPy on Python 3.
• #9764 BUG: Ensure _npy_scaled_cexp{,f,l} is defined when needed.
• #9765 BUG: PyArray_CountNonzero does not check for exceptions
• #9766 BUG: Fixes histogram monotonicity check for unsigned bin values
• #9767 BUG: Ensure consistent result dtype of count_nonzero
• #9771 BUG, MAINT: Fix mtrand for Cython 0.27.

17.40 NumPy 1.13.1 Release Notes

This is a bugfix release for problems found in 1.13.0. The major changes are fixes for the new memory overlap detection and temporary elision as well as reversion of the removal of the boolean binary – operator. Users of 1.13.0 should upgrade.

The Python versions supported are 2.7 and 3.4 - 3.6. Note that the Python 3.6 wheels available from PIP are built against 3.6.1, hence will not work when used with 3.6.0 due to Python bug 29943. NumPy 1.13.2 will be released shortly after Python 3.6.2 is out to fix that problem. If you are using 3.6.0 the workaround is to upgrade to 3.6.1 or use an earlier Python version.

17.40.1 Pull requests merged

A total of 19 pull requests were merged for this release.
• #9240 DOC: BLD: fix lots of Sphinx warnings/errors.
• #9255 Revert “DEP: Raise TypeError for subtract(bool, bool).”
• #9261 BUG: don’t elide into readonly and updateifcopy temporaries for…
• #9262 BUG: fix missing keyword rename for common block in numpy.f2py
• #9263 BUG: handle resize of 0d array
• #9267 DOC: update f2py front page and some doc build metadata.
• #9299 BUG: Fix Intel compilation on Unix.
• #9317 BUG: fix wrong ndim used in empty where check
• #9319 BUG: Make extensions compilable with MinGW on Py2.7
• #9339 BUG: Prevent crash if ufunc doc string is null
• #9340 BUG: umath: un-break ufunc where= when no out= is given
• #9371 DOC: Add isnat/positive ufunc to documentation
• #9372 BUG: Fix error in fromstring function from numpy.core.records…
• #9373 BUG: ‘)’ is printed at the end pointer of the buffer in numpy.f2py.
• #9374 DOC: Create NumPy 1.13.1 release notes.
• #9376 BUG: Prevent hang traversing ufunc userloop linked list
• #9377 DOC: Use x1 and x2 in the heaviside docstring.
• #9378 DOC: Add $PARAMS to the isnat docstring
• #9379 DOC: Update the 1.13.1 release notes

17.40.2 Contributors

A total of 12 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

• Andras Deak +
• Bob Eldering +
• Charles Harris
• Daniel Hrisca +
• Eric Wieser
• Joshua Leahy +
• Julian Taylor
• Michael Seifert
• Pauli Virtanen
• Ralf Gommers
• Roland Kaufmann
• Warren Weckesser

17.41 NumPy 1.13.0 Release Notes

This release supports Python 2.7 and 3.4 - 3.6.

17.41.1 Highlights

• Operations like \(a + b + c\) will reuse temporaries on some platforms, resulting in less memory use and faster execution.
• Inplace operations check if inputs overlap outputs and create temporaries to avoid problems.
• New `__array_ufunc__` attribute provides improved ability for classes to override default ufunc behavior.
• New `np.block` function for creating blocked arrays.
17.41.2 New functions

- New np.positive ufunc.
- New np.divmod ufunc provides more efficient divmod.
- New np.isnat ufunc tests for NaT special values.
- New np.heaviside ufunc computes the Heaviside function.
- New np.isin function, improves on in1d.
- New np.block function for creating blocked arrays.
- New PyArray_MapIterArrayCopyIfOverlap added to NumPy C-API.

See below for details.

17.41.3 Deprecations

- Calling np.fix, np.isposinf, and np.isneginf with f(x, y=out) is deprecated - the argument should be passed as f(x, out=out), which matches other ufunc-like interfaces.
- Use of the C-API NPY_CHAR type number deprecated since version 1.7 will now raise deprecation warnings at runtime. Extensions built with older f2py versions need to be recompiled to remove the warning.
- np.ma.argsort, np.ma.minimum.reduce, and np.ma.maximum.reduce should be called with an explicit axis argument when applied to arrays with more than 2 dimensions, as the default value of this argument (None) is inconsistent with the rest of numpy (-1, 0, and 0, respectively).
- np.ma.MaskedArray.mini is deprecated, as it almost duplicates the functionality of np.MaskedArray.min. Exactly equivalent behaviour can be obtained with np.ma.minimum.reduce.
- The single-argument form of np.ma.minimum and np.ma.maximum is deprecated. np.maximum. np.ma.minimum(x) should now be spelt np.ma.minimum.reduce(x), which is consistent with how this would be done with np.minimum.
- Calling ndarray.conjugate on non-numeric dtypes is deprecated (it should match the behavior of np.conjugate, which throws an error).
- Calling expand_dims when the axis keyword does not satisfy -a.ndim - 1 <= axis <= a.ndim, where a is the array being reshaped, is deprecated.

17.41.4 Future Changes

- Assignment between structured arrays with different field names will change in NumPy 1.14. Previously, fields in the dst would be set to the value of the identically-named field in the src. In numpy 1.14 fields will instead be assigned ‘by position’: The n-th field of the dst will be set to the n-th field of the src array. Note that the FutureWarning raised in NumPy 1.12 incorrectly reported this change as scheduled for NumPy 1.13 rather than NumPy 1.14.
17.41.5 Build System Changes

- `numpy.distutils` now automatically determines C-file dependencies with GCC compatible compilers.

17.41.6 Compatibility notes

Error type changes

- `numpy.hstack()` now throws `ValueError` instead of `IndexError` when input is empty.
- Functions taking an axis argument, when that argument is out of range, now throw `np.AxisError` instead of a mixture of `IndexError` and `ValueError`. For backwards compatibility, `AxisError` subclasses both of these.

Tuple object dtypes

Support has been removed for certain obscure dtypes that were unintentionally allowed, of the form `(old_dtype, new_dtype)`, where either of the dtypes is or contains the `object` dtype. As an exception, dtypes of the form `(object, [('name', object)])` are still supported due to evidence of existing use.

DeprecationWarning to error

See Changes section for more detail.

- `partition`, `TypeError` when non-integer partition index is used.
- `NpyIter_AdvancedNew`, `ValueError` when `oa_ndim == 0` and `op_axes` is NULL.
- `negative(bool_)`, `TypeError` when negative applied to booleans.
- `subtract(bool_, bool_)`, `TypeError` when subtracting boolean from boolean.
- `np.equal`, `np.not_equal`, object identity doesn’t override failed comparison.
- `np.equal`, `np.not_equal`, object identity doesn’t override non-boolean comparison.
- Deprecated boolean indexing behavior dropped. See Changes below for details.
- Deprecated `np.alterdot()` and `np.restoredot()` removed.

FutureWarning to changed behavior

See Changes section for more detail.

- `numpy.average` preserves subclasses
- `array == None` and `array != None` do element-wise comparison.
- `np.equal`, `np.not_equal`, object identity doesn’t override comparison result.
dtypes are now always true

Previously bool(dtype) would fall back to the default python implementation, which checked if len(dtype) > 0. Since dtype objects implement __len__ as the number of record fields, bool of scalar dtypes would evaluate to False, which was unintuitive. Now bool(dtype) == True for all dtypes.

__getslice__ and __setslice__ are no longer needed in ndarray subclasses

When subclassing np.ndarray in Python 2.7, it is no longer necessary to implement __*slice__ on the derived class, as __*item__ will intercept these calls correctly.

Any code that did implement these will work exactly as before. Code that invokes“ndarray.__getslice__“ (e.g. through super(...).__getslice__) will now issue a DeprecationWarning - .__getitem__(slice(start, end)) should be used instead.

Indexing MaskedArrays/Constants with . . . (ellipsis) now returns MaskedArray

This behavior mirrors that of np.ndarray, and accounts for nested arrays in MaskedArrays of object dtype, and ellipsis combined with other forms of indexing.

17.41.7 C API changes

GUfuncs on empty arrays and NpyIter axis removal

It is now allowed to remove a zero-sized axis from NpyIter. Which may mean that code removing axes from NpyIter has to add an additional check when accessing the removed dimensions later on.

The largest followup change is that gufuncs are now allowed to have zero-sized inner dimensions. This means that a gufunc now has to anticipate an empty inner dimension, while this was never possible and an error raised instead.

For most gufuncs no change should be necessary. However, it is now possible for gufuncs with a signature such as (... , N, M) -> (..., M) to return a valid result if N=0 without further wrapping code.

PyArray_MapIterArrayCopyIfOverlap added to NumPy C-API

Similar to PyArray_MapIterArray but with an additional copy_if_overlap argument. If copy_if_overlap ! = 0, checks if input has memory overlap with any of the other arrays and make copies as appropriate to avoid problems if the input is modified during the iteration. See the documentation for more complete documentation.

17.41.8 New Features

__array_ufunc__ added

This is the renamed and redesigned __numpy_ufunc__. Any class, ndarray subclass or not, can define this method or set it to None in order to override the behavior of NumPy’s ufuncs. This works quite similarly to Python’s __mul__ and other binary operation operation routines. See the documentation for a more detailed description of the implementation and behavior of this new option. The API is provisional, we do not yet guarantee backward compatibility as modifications may be made pending feedback. See NEP 13 and documentation for more details.
New positive ufunc

This ufunc corresponds to unary +, but unlike + on an ndarray it will raise an error if array values do not support numeric operations.

New divmod ufunc

This ufunc corresponds to the Python builtin `divmod`, and is used to implement `divmod` when called on numpy arrays. `np.divmod(x, y)` calculates a result equivalent to `(np.floor_divide(x, y), np.remainder(x, y))` but is approximately twice as fast as calling the functions separately.

np.isnat ufunc tests for NaT special datetime and timedelta values

The new ufunc `np.isnat` finds the positions of special NaT values within datetime and timedelta arrays. This is analogous to `np.isnan`.

np.heaviside ufunc computes the Heaviside function

The new function `np.heaviside(x, h0)` (a ufunc) computes the Heaviside function:

```
heaviside(x, h0) = { 0 if x < 0,
                    { h0 if x == 0,
                    { 1 if x > 0.
```

np.block function for creating blocked arrays

Add a new `block` function to the current stacking functions `vstack`, `hstack`, and `stack`. This allows concatenation across multiple axes simultaneously, with a similar syntax to array creation, but where elements can themselves be arrays. For instance:

```python
>>> A = np.eye(2) * 2
>>> B = np.eye(3) * 3
>>> np.block([...
            [A, np.zeros((2, 3))],
            [np.ones((3, 2)), B]
            ])
array([[ 2.,  0.,  0.,  0.,  0.],
       [ 0.,  2.,  0.,  0.,  0.],
       [ 1.,  1.,  3.,  0.,  0.],
       [ 1.,  1.,  0.,  3.,  0.],
       [ 1.,  1.,  0.,  0.,  3.]])
```

While primarily useful for block matrices, this works for arbitrary dimensions of arrays.

It is similar to Matlab's square bracket notation for creating block matrices.
isin function, improving on in1d

The new function `isin` tests whether each element of an N-dimensional array is present anywhere within a second array. It is an enhancement of `in1d` that preserves the shape of the first array.

Temporary elision

On platforms providing the `backtrace` function NumPy will try to avoid creating temporaries in expression involving basic numeric types. For example `d = a + b + c` is transformed to `d = a + b; d += c` which can improve performance for large arrays as less memory bandwidth is required to perform the operation.

axes argument for unique

In an N-dimensional array, the user can now choose the axis along which to look for duplicate N-1-dimensional elements using `numpy.unique`. The original behaviour is recovered if `axis=None` (default).

np.gradient now supports unevenly spaced data

Users can now specify a not-constant spacing for data. In particular `np.gradient` can now take:

1. A single scalar to specify a sample distance for all dimensions.
2. N scalars to specify a constant sample distance for each dimension. i.e. dx, dy, dz, ...
3. N arrays to specify the coordinates of the values along each dimension of F. The length of the array must match the size of the corresponding dimension
4. Any combination of N scalars/arrays with the meaning of 2. and 3.

This means that, e.g., it is now possible to do the following:

```python
>>> f = np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float_)
>>> dx = 2.
>>> y = [1., 1.5, 3.5]
>>> np.gradient(f, dx, y)
(array([[ 1.,  1., -0.5],
       [ 1.,  1., -0.5]]),
 array([[ 2.,  2.,  2.],
       [ 2.,  1.7,  0.5]]))
```

Support for returning arrays of arbitrary dimensions in apply_along_axis

Previously, only scalars or 1D arrays could be returned by the function passed to `apply_along_axis`. Now, it can return an array of any dimensionality (including 0D), and the shape of this array replaces the axis of the array being iterated over.
.ndim property added to dtype to complement .shape

For consistency with ndarray and broadcast, d.ndim is a shorthand for len(d.shape).

Support for tracemalloc in Python 3.6

NumPy now supports memory tracing with tracemalloc module of Python 3.6 or newer. Memory allocations from NumPy are placed into the domain defined by numpy.lib.tracemalloc_domain. Note that NumPy allocation will not show up in tracemalloc of earlier Python versions.

NumPy may be built with relaxed stride checking debugging

Setting NPY_RELAXED_STRIDES_DEBUG=1 in the environment when relaxed stride checking is enabled will cause NumPy to be compiled with the affected strides set to the maximum value of npy_intp in order to help detect invalid usage of the strides in downstream projects. When enabled, invalid usage often results in an error being raised, but the exact type of error depends on the details of the code. TypeError and OverflowError have been observed in the wild.

It was previously the case that this option was disabled for releases and enabled in master and changing between the two required editing the code. It is now disabled by default but can be enabled for test builds.

17.41.9 Improvements

Ufunc behavior for overlapping inputs

Operations where ufunc input and output operands have memory overlap produced undefined results in previous NumPy versions, due to data dependency issues. In NumPy 1.13.0, results from such operations are now defined to be the same as for equivalent operations where there is no memory overlap.

Operations affected now make temporary copies, as needed to eliminate data dependency. As detecting these cases is computationally expensive, a heuristic is used, which may in rare cases result to needless temporary copies. For operations where the data dependency is simple enough for the heuristic to analyze, temporary copies will not be made even if the arrays overlap, if it can be deduced copies are not necessary. As an example,”np.add(a, b, out=a)” will not involve copies.

To illustrate a previously undefined operation:

```python
g++ x = np.arange(16).astype(float)
g++ np.add(x[1:], x[:-1], out=x[1:])
```

In NumPy 1.13.0 the last line is guaranteed to be equivalent to:

```python
g++ np.add(x[1:].copy(), x[:-1].copy(), out=x[1:])
```

A similar operation with simple non-problematic data dependence is:

```python
g++ x = np.arange(16).astype(float)
g++ np.add(x[1:], x[:-1], out=x[:-1])
```

It will continue to produce the same results as in previous NumPy versions, and will not involve unnecessary temporary copies.

The change applies also to in-place binary operations, for example:

```python
g++ x = np.random.rand(500, 500)
g++ x += x.T
```
This statement is now guaranteed to be equivalent to $x[...] = x + x.T$, whereas in previous NumPy versions the results were undefined.

Partial support for 64-bit f2py extensions with MinGW

Extensions that incorporate Fortran libraries can now be built using the free MinGW toolset, also under Python 3.5. This works best for extensions that only do calculations and uses the runtime modestly (reading and writing from files, for instance). Note that this does not remove the need for Mingwpy; if you make extensive use of the runtime, you will most likely run into issues. Instead, it should be regarded as a band-aid until Mingwpy is fully functional.

Extensions can also be compiled using the MinGW toolset using the runtime library from the (moveable) WinPython 3.4 distribution, which can be useful for programs with a PySide1/Qt4 front-end.

Performance improvements for packbits and unpackbits

The functions `numpy.packbits` with boolean input and `numpy.unpackbits` have been optimized to be a significantly faster for contiguous data.

Fix for PPC long double floating point information

In previous versions of NumPy, the `finfo` function returned invalid information about the `double` double format of the `longdouble` float type on Power PC (PPC). The invalid values resulted from the failure of the NumPy algorithm to deal with the variable number of digits in the significand that are a feature of PPC long doubles. This release by-passes the failing algorithm by using heuristics to detect the presence of the PPC double double format. A side-effect of using these heuristics is that the `finfo` function is faster than previous releases.

Better default repr for ndarray subclasses

Subclasses of `ndarray` with no `repr` specialization now correctly indent their data and type lines.

More reliable comparisons of masked arrays

Comparisons of masked arrays were buggy for masked scalars and failed for structured arrays with dimension higher than one. Both problems are now solved. In the process, it was ensured that in getting the result for a structured array, masked fields are properly ignored, i.e., the result is equal if all fields that are non-masked in both are equal, thus making the behaviour identical to what one gets by comparing an unstructured masked array and then doing `.all()` over some axis.

np.matrix with booleans elements can now be created using the string syntax

`np.matrix` failed whenever one attempts to use it with booleans, e.g., `np.matrix('True')`. Now, this works as expected.
More linalg operations now accept empty vectors and matrices

All of the following functions in np.linalg now work when given input arrays with a 0 in the last two dimensions: det, slogdet, pinv, eigvals, eigvalsh, eig, eigh.

Bundled version of LAPACK is now 3.2.2

NumPy comes bundled with a minimal implementation of lapack for systems without a lapack library installed, under the name of lapack_lite. This has been upgraded from LAPACK 3.0.0 (June 30, 1999) to LAPACK 3.2.2 (June 30, 2010). See the LAPACK changelogs for details on the all the changes this entails.

While no new features are exposed through numpy, this fixes some bugs regarding “workspace” sizes, and in some places may use faster algorithms.

reduce of np.hypot.reduce and np.logical_xor allowed in more cases

This now works on empty arrays, returning 0, and can reduce over multiple axes. Previously, a ValueError was thrown in these cases.

Better repr of object arrays

Object arrays that contain themselves no longer cause a recursion error.

Object arrays that contain list objects are now printed in a way that makes clear the difference between a 2d object array, and a 1d object array of lists.

17.4.10 Changes

argsort on masked arrays takes the same default arguments as sort

By default, argsort now places the masked values at the end of the sorted array, in the same way that sort already did. Additionally, the end_with argument is added to argsort, for consistency with sort. Note that this argument is not added at the end, so breaks any code that passed fill_value as a positional argument.

average now preserves subclasses

For ndarray subclasses, numpy.average will now return an instance of the subclass, matching the behavior of most other NumPy functions such as mean. As a consequence, also calls that returned a scalar may now return a subclass array scalar.

array == None and array != None do element-wise comparison

Previously these operations returned scalars False and True respectively.
np.equal, np.not_equal for object arrays ignores object identity

Previously, these functions always treated identical objects as equal. This had the effect of overriding comparison failures, comparison of objects that did not return booleans, such as np.arrays, and comparison of objects where the results differed from object identity, such as NaNs.

Boolean indexing changes

- Boolean array-likes (such as lists of python bools) are always treated as boolean indexes.
- Boolean scalars (including python True) are legal boolean indexes and never treated as integers.
- Boolean indexes must match the dimension of the axis that they index.
- Boolean indexes used on the lhs of an assignment must match the dimensions of the rhs.
- Boolean indexing into scalar arrays return a new 1-d array. This means that array(1)[array(True)] gives array([1]) and not the original array.

np.random.multivariate_normal behavior with bad covariance matrix

It is now possible to adjust the behavior the function will have when dealing with the covariance matrix by using two new keyword arguments:

- tol can be used to specify a tolerance to use when checking that the covariance matrix is positive semidefinite.
- check_valid can be used to configure what the function will do in the presence of a matrix that is not positive semidefinite. Valid options are ignore, warn and raise. The default value, warn keeps the the behavior used on previous releases.

assert_array_less compares np.inf and -np.inf now

Previously, np.testing.assert_array_less ignored all infinite values. This is not the expected behavior both according to documentation and intuitively. Now, -inf < x < inf is considered True for any real number x and all other cases fail.

assert_array_ and masked arrays assert_equal hide less warnings

Some warnings that were previously hidden by the assert_array_ functions are not hidden anymore. In most cases the warnings should be correct and, should they occur, will require changes to the tests using these functions. For the masked array assert_equal version, warnings may occur when comparing NaT. The function presently does not handle NaT or NaN specifically and it may be best to avoid it at this time should a warning show up due to this change.

offset attribute value in memmap objects

The offset attribute in a memmap object is now set to the offset into the file. This is a behaviour change only for offsets greater than mmap.ALLOCATIONGRANULARITY.
np.real and np.imag return scalars for scalar inputs

Previously, `np.real` and `np.imag` used to return array objects when provided a scalar input, which was inconsistent with other functions like `np.angle` and `np.conj`.

The polynomial convenience classes cannot be passed to ufuncs

The `ABCPolyBase` class, from which the convenience classes are derived, sets `__array_ufun__ = None` in order of opting out of ufuncs. If a polynomial convenience class instance is passed as an argument to a ufunc, a `TypeError` will now be raised.

Output arguments to ufuncs can be tuples also for ufunc methods

For calls to ufuncs, it was already possible, and recommended, to use an `out` argument with a tuple for ufuncs with multiple outputs. This has now been extended to output arguments in the `reduce`, `accumulate`, and `reduceat` methods. This is mostly for compatibility with `__array_ufunc`; there are no ufuncs yet that have more than one output.

17.42 NumPy 1.12.1 Release Notes

NumPy 1.12.1 supports Python 2.7 and 3.4 - 3.6 and fixes bugs and regressions found in NumPy 1.12.0. In particular, the regression in `f2py` constant parsing is fixed. Wheels for Linux, Windows, and OSX can be found on pypi.

17.42.1 Bugs Fixed

- BUG: Fix wrong future nat warning and equiv type logic error…
- BUG: Fix wrong masked median for some special cases
- DOC: Place np.average in inline code
- TST: Work around isfinite inconsistency on i386
- BUG: Guard against replacing constants without '_' spec in f2py.
- BUG: Fix mean for float 16 non-array inputs for 1.12
- BUG: Fix calling python api with error set and minor leaks for…
- BUG: Make iscomplexobj compatible with custom dtypes again
- BUG: Fix undefined behaviour induced by bad __array_wrap__
- BUG: Fix MaskedArray.__setitem__
- BUG: PPC64el machines are POWER for Fortran in f2py
- BUG: Look up methods on MaskedArray in __frommethod
- BUG: Remove extra digit in binary_repr at limit
- BUG: Fix deepcopy regression for empty arrays.
- BUG: Fix ma.median for empty ndarrays
17.43 NumPy 1.12.0 Release Notes

This release supports Python 2.7 and 3.4 - 3.6.

17.43.1 Highlights

The NumPy 1.12.0 release contains a large number of fixes and improvements, but few that stand out above all others. That makes picking out the highlights somewhat arbitrary but the following may be of particular interest or indicate areas likely to have future consequences.

- Order of operations in `np.einsum` can now be optimized for large speed improvements.
- New `signature` argument to `np.vectorize` for vectorizing with core dimensions.
- The `keepdims` argument was added to many functions.
- New context manager for testing warnings
- Support for BLIS in `numpy.distutils`
- Much improved support for PyPy (not yet finished)

17.43.2 Dropped Support

- Support for Python 2.6, 3.2, and 3.3 has been dropped.

17.43.3 Added Support

- Support for PyPy 2.7 v5.6.0 has been added. While not complete (nditer `updateifcopy` is not supported yet), this is a milestone for PyPy's C-API compatibility layer.

17.43.4 Build System Changes

- Library order is preserved, instead of being reordered to match that of the directories.

17.43.5 Deprecations

Assignment of ndarray object’s data attribute

Assigning the ‘data’ attribute is an inherently unsafe operation as pointed out in gh-7083. Such a capability will be removed in the future.
Unsafe int casting of the num attribute in linspace

`np.linspace` now raises `DeprecationWarning` when `num` cannot be safely interpreted as an integer.

Insufficient bit width parameter to `binary_repr`

If a ‘width’ parameter is passed into `binary_repr` that is insufficient to represent the number in base 2 (positive) or 2’s complement (negative) form, the function used to silently ignore the parameter and return a representation using the minimal number of bits needed for the form in question. Such behavior is now considered unsafe from a user perspective and will raise an error in the future.

17.43.6 Future Changes

- In 1.13 NAT will always compare False except for `NAT != NAT`, which will be True. In short, NAT will behave like NaN.
- In 1.13 `np.average` will preserve subclasses, to match the behavior of most other numpy functions such as `np.mean`. In particular, this means calls which returned a scalar may return a 0-d subclass object instead.

Multiple-field manipulation of structured arrays

In 1.13 the behavior of structured arrays involving multiple fields will change in two ways:

First, indexing a structured array with multiple fields (e.g., `arr[['f1', 'f3']]`) will return a view into the original array in 1.13, instead of a copy. Note the returned view will have extra padding bytes corresponding to intervening fields in the original array, unlike the copy in 1.12, which will affect code such as `arr[['f1', 'f3']].view(newdtype)`.

Second, for numpy versions 1.6 to 1.12 assignment between structured arrays occurs “by field name”: Fields in the destination array are set to the identically-named field in the source array or to 0 if the source does not have a field:

```
>>> a = np.array([(1, 2), (3, 4)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> b = np.ones(2, dtype=[('z', '<i4'), ('y', '<i4'), ('x', '<i4')])
>>> b[:] = a
>>> b
array([(0, 2, 1), (0, 4, 3)],
      dtype=[('z', '<i4'), ('y', '<i4'), ('x', '<i4')])
```

In 1.13 assignment will instead occur “by position”: The Nth field of the destination will be set to the Nth field of the source regardless of field name. The old behavior can be obtained by using indexing to reorder the fields before assignment, e.g., `b[['x', 'y']] = a[['y', 'x']]`.

17.43.7 Compatibility notes

DeprecationWarning to error

- Indexing with floats raises `IndexError`, e.g., `a[0, 0.0]`.
- Indexing with non-integer array_like raises `IndexError`, e.g., `a['1', '2']`
- Indexing with multiple ellipsis raises `IndexError`, e.g., `a[...,
 ...]`.
- Non-integers used as index values raise `TypeError`, e.g., in `reshape`, `take`, and specifying reduce axis.
FutureWarning to changed behavior

- `np.full` now returns an array of the fill-value's dtype if no dtype is given, instead of defaulting to float.
- `np.average` will emit a warning if the argument is a subclass of ndarray, as the subclass will be preserved starting in 1.13. (see Future Changes)

power and ** raise errors for integer to negative integer powers

The previous behavior depended on whether numpy scalar integers or numpy integer arrays were involved.

For arrays
- Zero to negative integer powers returned least integral value.
- Both 1, -1 to negative integer powers returned correct values.
- The remaining integers returned zero when raised to negative integer powers.

For scalars
- Zero to negative integer powers returned least integral value.
- Both 1, -1 to negative integer powers returned correct values.
- The remaining integers sometimes returned zero, sometimes the correct float depending on the integer type combination.

All of these cases now raise a `ValueError` except for those integer combinations whose common type is float, for instance uint64 and int8. It was felt that a simple rule was the best way to go rather than have special exceptions for the integer units. If you need negative powers, use an inexact type.

Relaxed stride checking is the default

This will have some impact on code that assumed that `F_CONTIGUOUS` and `C_CONTIGUOUS` were mutually exclusive and could be set to determine the default order for arrays that are now both.

The `np.percentile` ‘midpoint’ interpolation method fixed for exact indices

The ‘midpoint’ interpolator now gives the same result as ‘lower’ and ‘higher’ when the two coincide. Previous behavior of ‘lower’ + 0.5 is fixed.

`keepdims` kwarg is passed through to user-class methods

Numpy functions that take a `keepdims` kwarg now pass the value through to the corresponding methods on ndarray sub-classes. Previously the `keepdims` keyword would be silently dropped. These functions now have the following behavior:

1. If user does not provide `keepdims`, no keyword is passed to the underlying method.
2. Any user-provided value of `keepdims` is passed through as a keyword argument to the method.

This will raise in the case where the method does not support a `keepdims` kwarg and the user explicitly passes in `keepdims`.

The following functions are changed: `sum`, `product`, `sometrue`, `alltrue`, `any`, `all`, `amax`, `amin`, `prod`, `mean`, `std`, `var`, `nanmin`, `nanmax`, `nansum`, `nanprod`, `nanmean`, `nanmedian`, `nanvar`, `nanstd`
bitwise_and identity changed

The previous identity was 1, it is now -1. See entry in Improvements for more explanation.

ma.median warns and returns nan when unmasked invalid values are encountered

Similar to unmasked median the masked median `ma.median` now emits a Runtime warning and returns `NaN` in slices where an unmasked `NaN` is present.

Greater consistency in assert_almost_equal

The precision check for scalars has been changed to match that for arrays. It is now:

\[\text{abs}(\text{actual} - \text{desired}) < 1.5 \times 10^{\text{-(decimal)}} \]

Note that this is looser than previously documented, but agrees with the previous implementation used in `assert_array_almost_equal`. Due to the change in implementation some very delicate tests may fail that did not fail before.

NoseTester behaviour of warnings during testing

When `raise_warnings="develop"` is given, all uncaught warnings will now be considered a test failure. Previously only selected ones were raised. Warnings which are not caught or raised (mostly when in release mode) will be shown once during the test cycle similar to the default python settings.

assert_warns and deprecated decorator more specific

The `assert_warns` function and context manager are now more specific to the given warning category. This increased specificity leads to them being handled according to the outer warning settings. This means that no warning may be raised in cases where a wrong category warning is given and ignored outside the context. Alternatively the increased specificity may mean that warnings that were incorrectly ignored will now be shown or raised. See also the new `suppress_warnings` context manager. The same is true for the `deprecated` decorator.

C API

No changes.

17.43.8 New Features

Writeable keyword argument for as_strided

`np.lib.stride_tricks.as_strided` now has a `writeable` keyword argument. It can be set to `False` when no write operation to the returned array is expected to avoid accidental unpredictable writes.
The axes keyword argument in \texttt{rot90} determines the plane in which the array is rotated. It defaults to axes=(0,1) as in the original function.

Generalized flip

\texttt{flipud} and \texttt{fliplr} reverse the elements of an array along axis=0 and axis=1 respectively. The newly added \texttt{flip} function reverses the elements of an array along any given axis.

- \texttt{np.count_nonzero} now has an \texttt{axis} parameter, allowing non-zero counts to be generated on more than just a flattened array object.

BLIS support in numpy.distutils

Building against the BLAS implementation provided by the BLIS library is now supported. See the [blis] section in \texttt{site.cfg.example} (in the root of the numpy repo or source distribution).

Hook in \texttt{numpy/__init__.py} to run distribution-specific checks

Binary distributions of numpy may need to run specific hardware checks or load specific libraries during numpy initialization. For example, if we are distributing numpy with a BLAS library that requires SSE2 instructions, we would like to check the machine on which numpy is running does have SSE2 in order to give an informative error.

Add a hook in \texttt{numpy/__init__.py} to import a \texttt{numpy/_distributor_init.py} file that will remain empty (bar a docstring) in the standard numpy source, but that can be overwritten by people making binary distributions of numpy.

New nan functions \texttt{nancumsum} and \texttt{nancumprod} added

Nan-functions \texttt{nancumsum} and \texttt{nancumprod} have been added to compute \texttt{cumsum} and \texttt{cumprod} by ignoring \texttt{nans}.

\texttt{np.interp} can now interpolate complex values

\texttt{np.lib.interp(x, xp, fp)} now allows the interpolated array \texttt{fp} to be complex and will interpolate at \texttt{complex128} precision.

New polynomial evaluation function \texttt{polyvalfromroots} added

The new function \texttt{polyvalfromroots} evaluates a polynomial at given points from the roots of the polynomial. This is useful for higher order polynomials, where expansion into polynomial coefficients is inaccurate at machine precision.
New array creation function `geomspace` added

The new function `geomspace` generates a geometric sequence. It is similar to `logspace`, but with start and stop specified directly: `geomspace(start, stop)` behaves the same as `logspace(log10(start), log10(stop))`.

New context manager for testing warnings

A new context manager `suppress_warnings` has been added to the testing utils. This context manager is designed to help reliably test warnings. Specifically to reliably filter/ignore warnings. Ignoring warnings by using an “ignore” filter in Python versions before 3.4.x can quickly result in these (or similar) warnings not being tested reliably.

The context manager allows to filter (as well as record) warnings similar to the `catch_warnings` context, but allows for easier specificity. Also printing warnings that have not been filtered or nesting the context manager will work as expected. Additionally, it is possible to use the context manager as a decorator which can be useful when multiple tests give need to hide the same warning.

New masked array functions `ma.convolve` and `ma.correlate` added

These functions wrapped the non-masked versions, but propagate through masked values. There are two different propagation modes. The default causes masked values to contaminate the result with masks, but the other mode only outputs masks if there is no alternative.

New float_power ufunc

The new float_power ufunc is like the power function except all computation is done in a minimum precision of float64. There was a long discussion on the numpy mailing list of how to treat integers to negative integer powers and a popular proposal was that the `__pow__` operator should always return results of at least float64 precision. The float_power function implements that option. Note that it does not support object arrays.

np.loadtxt now supports a single integer as usecol argument

Instead of using `usecol=(n,)` to read the nth column of a file it is now allowed to use `usecol=n`. Also the error message is more user friendly when a non-integer is passed as a column index.

Improved automated bin estimators for histogram

Added ‘doane’ and ‘sqrt’ estimators to histogram via the `bins` argument. Added support for range-restricted histograms with automated bin estimation.

np.roll can now roll multiple axes at the same time

The `shift` and `axis` arguments to `roll` are now broadcast against each other, and each specified axis is shifted accordingly.
The __complex__ method has been implemented for the ndarrays

Calling complex() on a size 1 array will now cast to a python complex.

pathlib.Path objects now supported

The standard np.load, np.save, np.loadtxt, np.savez, and similar functions can now take pathlib.Path objects as an argument instead of a filename or open file object.

New bits attribute for np.finfo

This makes np.finfo consistent with np.iinfo which already has that attribute.

New signature argument to np.vectorize

This argument allows for vectorizing user defined functions with core dimensions, in the style of NumPy's generalized universal functions. This allows for vectorizing a much broader class of functions. For example, an arbitrary distance metric that combines two vectors to produce a scalar could be vectorized with signature='(n),(n)->()'. See np.vectorize for full details.

Emit py3k warnings for division of integer arrays

To help people migrate their code bases from Python 2 to Python 3, the python interpreter has a handy option -3, which issues warnings at runtime. One of its warnings is for integer division:

```
$ python -3 -c "2/3"
-c:1: DeprecationWarning: classic int division
```

In Python 3, the new integer division semantics also apply to numpy arrays. With this version, numpy will emit a similar warning:

```
$ python -3 -c "import numpy as np; np.array(2)/np.array(3)"
-c:1: DeprecationWarning: numpy: classic int division
```

Previously, it included str (bytes) and unicode on Python2, but only str (unicode) on Python3.

17.43.9 Improvements

bitwise_and identity changed

The previous identity was 1 with the result that all bits except the LSB were masked out when the reduce method was used. The new identity is -1, which should work properly on twos complement machines as all bits will be set to one.
Generalized Ufuncs will now unlock the GIL

Generalized Ufuncs, including most of the linalg module, will now unlock the Python global interpreter lock.

Caches in np.fft are now bounded in total size and item count

The caches in np.fft that speed up successive FFTs of the same length can no longer grow without bounds. They have been replaced with LRU (least recently used) caches that automatically evict no longer needed items if either the memory size or item count limit has been reached.

Improved handling of zero-width string/unicode dtypes

Fixed several interfaces that explicitly disallowed arrays with zero-width string dtypes (i.e. dtype('S0') or dtype('U0')), and fixed several bugs where such dtypes were not handled properly. In particular, changed ndarray.__new__ to not implicitly convert dtype('S0') to dtype('S1') (and likewise for unicode) when creating new arrays.

Integer ufuncs vectorized with AVX2

If the cpu supports it at runtime the basic integer ufuncs now use AVX2 instructions. This feature is currently only available when compiled with GCC.

Order of operations optimization in np.einsum

np.einsum now supports the optimize argument which will optimize the order of contraction. For example, np.einsum('ij,jk,kl->il', a, b, c) in a single pass which would scale like \(N^4 \); however, when optimize=True np.einsum will create an intermediate array to reduce this scaling to \(N^3 \) or effectively np.dot(a, b).dot(c). Usage of intermediate tensors to reduce scaling has been applied to the general einsum summation notation. See np.einsum_path for more details.

quicksort has been changed to an introsort

The quicksort kind of np.sort and np.argsort is now an introsort which is regular quicksort but changing to a heapsort when not enough progress is made. This retains the good quicksort performance while changing the worst case runtime from \(O(N^2) \) to \(O(N\log(N)) \).

ediff1d improved performance and subclass handling

The ediff1d function uses an array instead on a flat iterator for the subtraction. When to_begin or to_end is not None, the subtraction is performed in place to eliminate a copy operation. A side effect is that certain subclasses are handled better, namely astropy.Quantity, since the complete array is created, wrapped, and then begin and end values are set, instead of using concatenate.
Improved precision of `ndarray.mean` for float16 arrays

The computation of the mean of float16 arrays is now carried out in float32 for improved precision. This should be useful in packages such as Theano where the precision of float16 is adequate and its smaller footprint is desirable.

17.43.10 Changes

All array-like methods are now called with keyword arguments in `fromnumeric.py`

Internally, many array-like methods in `fromnumeric.py` were being called with positional arguments instead of keyword arguments as their external signatures were doing. This caused a complication in the downstream ‘pandas’ library that encountered an issue with ‘numpy’ compatibility. Now, all array-like methods in this module are called with keyword arguments instead.

Operations on `np.memmap` objects return `numpy` arrays in most cases

Previously operations on a memmap object would misleadingly return a memmap instance even if the result was actually not memmapped. For example, `arr + 1` or `arr + arr` would return memmap instances, although no memory from the output array is memmapped. Version 1.12 returns ordinary `numpy` arrays from these operations.

Also, reduction of a memmap (e.g. `.sum(axis=None)` now returns a `numpy` scalar instead of a 0d memmap.

stacklevel of warnings increased

The stacklevel for python based warnings was increased so that most warnings will report the offending line of the user code instead of the line the warning itself is given. Passing of stacklevel is now tested to ensure that new warnings will receive the `stacklevel` argument.

This causes warnings with the “default” or “module” filter to be shown once for every offending user code line or user module instead of only once. On python versions before 3.4, this can cause warnings to appear that were falsely ignored before, which may be surprising especially in test suits.

17.44 NumPy 1.11.3 Release Notes

NumPy 1.11.3 fixes a bug that leads to file corruption when very large files opened in append mode are used in `ndarray.tofile`. It supports Python versions 2.6 - 2.7 and 3.2 - 3.5. Wheels for Linux, Windows, and OS X can be found on PyPI.

17.44.1 Contributors to maintenance/1.11.3

A total of 2 people contributed to this release. People with a “+” by their names contributed a patch for the first time.

- Charles Harris
- Pavel Potocek +
17.44.2 Pull Requests Merged

- #8341: BUG: Fix ndarray.tofile large file corruption in append mode.
- #8346: TST: Fix tests in PR #8341 for NumPy 1.11.x

17.45 NumPy 1.11.2 Release Notes

NumPy 1.11.2 supports Python 2.6 - 2.7 and 3.2 - 3.5. It fixes bugs and regressions found in NumPy 1.11.1 and includes several build related improvements. Wheels for Linux, Windows, and OS X can be found on PyPI.

17.45.1 Pull Requests Merged

Fixes overridden by later merges and release notes updates are omitted.

- #7736 BUG: Many functions silently drop ‘keepdims’ kwarg.
- #7738 ENH: Add extra kwargs and update doc of many MA methods.
- #7778 DOC: Update NumPy 1.11.1 release notes.
- #7793 BUG: MaskedArray.count treats negative axes incorrectly.
- #7816 BUG: Fix array too big error for wide dtypes.
- #7821 BUG: Make sure npy_mun_with_overflow_<type> detects overflow.
- #7824 MAINT: Allocate fewer bytes for empty arrays.
- #7847 MAINT,DOC: Fix some imp module uses and update f2py.compile docstring.
- #7849 MAINT: Fix remaining uses of deprecated Python imp module.
- #7851 BLD: Fix ATLAS version detection.
- #7896 BUG: Construct ma.array from np.array which contains padding.
- #7904 BUG: Fix float16 type not being called due to wrong ordering.
- #7917 BUG: Production install of numpy should not require nose.
- #7919 BLD: Fixed MKL detection for recent versions of this library.
- #7920 BUG: Fix for issue #7835 (ma.median of 1d).
- #7932 BUG: Monkey-patch _msvccompile.gen_lib_option like other compilers.
- #7939 BUG: Check for HAVE_LDOUBLE_DOUBLE_DOUBLE_LE in npy_math_complex.
- #7953 BLD: Guard against buggy comparisons in generic quicksort.
- #7954 BUG: Use keyword arguments to initialize Extension base class.
- #7955 BUG: Make sure numpy globals keep identity after reload.
- #7972 BLD: MSVCCCompiler grows ‘lib’ & ‘include’ env strings exponentially.
- #8005 BLD: Remove __NUMPY_SETUP__ from builtins at end of setup.py.
- #8010 MAINT: Remove leftover imp module imports.
- #8020 BUG: Fix return of np.ma.count if keepdims is True and axis is None.
- #8024 BUG: Fix numpy.ma.median.
• #8031 BUG: Fix np.ma.median with only one non-masked value.
• #8044 BUG: Fix bug in NpyIter buffering with discontinuous arrays.

17.46 NumPy 1.11.1 Release Notes

NumPy 1.11.1 supports Python 2.6 - 2.7 and 3.2 - 3.5. It fixes bugs and regressions found in NumPy 1.11.0 and includes several build related improvements. Wheels for Linux, Windows, and OSX can be found on pypi.

17.46.1 Fixes Merged

• #7506 BUG: Make sure numpy imports on python 2.6 when nose is unavailable.
• #7530 BUG: Floating exception with invalid axis in np.lexsort.
• #7535 BUG: Extend glibc complex trig functions blacklist to glibc < 2.18.
• #7551 BUG: Allow graceful recovery for no compiler.
• #7558 BUG: Constant padding expected wrong type in constant_values.
• #7578 BUG: Fix OverflowError in Python 3.x in swig interface.
• #7590 BLD: Fix configparser.InterpolationSyntaxError.
• #7597 BUG: Make np.ma.take work on scalars.
• #7608 BUG: linalg.norm(): Don’t convert object arrays to float.
• #7638 BLD: Correct C compiler customization in system_info.py.
• #7654 BUG: ma.median of 1d array should return a scalar.
• #7656 BLD: Remove hardcoded Intel compiler flag -xSSE4.2.
• #7660 BUG: Temporary fix for str(mvoid) for object field types.
• #7665 BUG: Fix incorrect printing of 1D masked arrays.
• #7670 BUG: Correct initial index estimate in histogram.
• #7671 BUG: Boolean assignment no GIL release when transfer needs API.
• #7676 BUG: Fix handling of right edge of final histogram bin.
• #7680 BUG: Fix np.clip bug NaN handling for Visual Studio 2015.
• #7724 BUG: Fix segfaults in np.random.shuffle.
• #7731 MAINT: Change mkl_info.dir_env_var from MKL to MKLROOT.
• #7737 BUG: Fix issue on OS X with Python 3.x, npymath.ini not installed.
17.47 NumPy 1.11.0 Release Notes

This release supports Python 2.6 - 2.7 and 3.2 - 3.5 and contains a number of enhancements and improvements. Note also the build system changes listed below as they may have subtle effects.

No Windows (TM) binaries are provided for this release due to a broken toolchain. One of the providers of Python packages for Windows (TM) is your best bet.

17.47.1 Highlights

Details of these improvements can be found below.

- The datetime64 type is now timezone naive.
- A dtype parameter has been added to randint.
- Improved detection of two arrays possibly sharing memory.
- Automatic bin size estimation for np.histogram.
- Speed optimization of A @ A.T and dot(A, A.T).
- New function np.moveaxis for reordering array axes.

17.47.2 Build System Changes

- Numpy now uses setuptools for its builds instead of plain distutils. This fixes usage of install_requires='numpy' in the setup.py files of projects that depend on Numpy (see gh-6551). It potentially affects the way that build/install methods for Numpy itself behave though. Please report any unexpected behavior on the Numpy issue tracker.
- Bento build support and related files have been removed.
- Single file build support and related files have been removed.

17.47.3 Future Changes

The following changes are scheduled for Numpy 1.12.0.

- Support for Python 2.6, 3.2, and 3.3 will be dropped.
- Relaxed stride checking will become the default. See the 1.8.0 release notes for a more extended discussion of what this change implies.
- The behavior of the datetime64 “not a time” (NaT) value will be changed to match that of floating point “not a number” (NaN) values: all comparisons involving NaT will return False, except for NaT != NaT which will return True.
- Indexing with floats will raise IndexError, e.g., a[0, 0.0].
- Indexing with non-integer array_like will raise IndexError, e.g., a['1', '2']
- Indexing with multiple ellipsis will raise IndexError, e.g., a[...].
- Non-integers used as index values will raise TypeError, e.g., in reshape, take, and specifying reduce axis.

In a future release the following changes will be made.
• The `rand` function exposed in `numpy.testing` will be removed. That function is left over from early Numpy and was implemented using the Python random module. The random number generators from `numpy.random` should be used instead.

• The `ndarray.view` method will only allow c_contiguous arrays to be viewed using a dtype of different size causing the last dimension to change. That differs from the current behavior where arrays that are f_contiguous but not c_contiguous can be viewed as a dtype type of different size causing the first dimension to change.

• Slicing a `MaskedArray` will return views of both data and mask. Currently the mask is copy-on-write and changes to the mask in the slice do not propagate to the original mask. See the FutureWarnings section below for details.

17.47.4 Compatibility notes

datetime64 changes

In prior versions of NumPy the experimental datetime64 type always stored times in UTC. By default, creating a datetime64 object from a string or printing it would convert from or to local time:

```python
# old behavior
>>> np.datetime64('2000-01-01T00:00:00')
numpy.datetime64('2000-01-01T00:00:00-08:00')  # note the timezone offset -08:00
```

A consensus of datetime64 users agreed that this behavior is undesirable and at odds with how datetime64 is usually used (e.g., by pandas). For most use cases, a timezone naive datetime type is preferred, similar to the `datetime.datetimetype in the Python standard library`. Accordingly, datetime64 no longer assumes that input is in local time, nor does it print local times:

```python
>>> np.datetime64('2000-01-01T00:00:00')
numpy.datetime64('2000-01-01T00:00:00')
```

For backwards compatibility, datetime64 still parses timezone offsets, which it handles by converting to UTC. However, the resulting datetime is timezone naive:

```python
>>> np.datetime64('2000-01-01T00:00:00-08:00')
DeprecationWarning: parsing timezone aware datetimes is deprecated; this will raise an error in the future
numpy.datetime64('2000-01-01T08:00:00')
```

As a corollary to this change, we no longer prohibit casting between datetimes with date units and datetimes with time units. With timezone naive datetimes, the rule for casting from dates to times is no longer ambiguous.

linalg.norm return type changes

The return type of the `linalg.norm` function is now floating point without exception. Some of the norm types previously returned integers.
polynomial fit changes

The various fit functions in the numpy polynomial package no longer accept non-integers for degree specification.

\texttt{np.dot} now raises \texttt{TypeError} instead of \texttt{ValueError}

This behaviour mimics that of other functions such as \texttt{np.inner}. If the two arguments cannot be cast to a common type, it could have raised a \texttt{TypeError} or \texttt{ValueError} depending on their order. Now, \texttt{np.dot} will now always raise a \texttt{TypeError}.

FutureWarning to changed behavior

- In \texttt{np.lib.split} an empty array in the result always had dimension (0,) no matter the dimensions of the array being split. This has been changed so that the dimensions will be preserved. A \texttt{FutureWarning} for this change has been in place since Numpy 1.9 but, due to a bug, sometimes no warning was raised and the dimensions were already preserved.

\% and // operators

These operators are implemented with the \texttt{remainder} and \texttt{floor_divide} functions respectively. Those functions are now based around \texttt{fmod} and are computed together so as to be compatible with each other and with the Python versions for float types. The results should be marginally more accurate or outright bug fixes compared to the previous results, but they may differ significantly in cases where roundoff makes a difference in the integer returned by \texttt{floor_divide}. Some corner cases also change, for instance, \texttt{NaN} is always returned for both functions when the divisor is zero, \texttt{divmod(1.0, inf)} returns (0.0, 1.0) except on MSVC 2008, and \texttt{divmod(-1.0, inf)} returns (-1.0, \texttt{inf}).

C API

Removed the \texttt{check_return} and \texttt{inner_loop_selector} members of the \texttt{PyUFuncObject} struct (replacing them with \texttt{reserved} slots to preserve struct layout). These were never used for anything, so it's unlikely that any third-party code is using them either, but we mention it here for completeness.

object dtype detection for old-style classes

In python 2, objects which are instances of old-style user-defined classes no longer automatically count as ‘object’ type in the dtype-detection handler. Instead, as in python 3, they may potentially count as sequences, but only if they define both a \texttt{_len_} and a \texttt{_getitem_} method. This fixes a segfault and inconsistency between python 2 and 3.

17.47.5 New Features

- \texttt{np.histogram} now provides plugin estimators for automatically estimating the optimal number of bins. Passing one of ['auto', 'fd', 'scott', 'rice', 'sturges'] as the argument to 'bins' results in the corresponding estimator being used.
- A benchmark suite using Airspeed Velocity has been added, converting the previous vbench-based one. You can run the suite locally via \texttt{python runtests.py --bench}. For more details, see \texttt{benchmarks/README.rst}.
- A new function \texttt{np.shares_memory} that can check exactly whether two arrays have memory overlap is added. \texttt{np.may_share_memory} also now has an option to spend more effort to reduce false positives.
• **SkipTest** and **KnownFailureException** exception classes are exposed in the **numpy.testing** namespace. Raise them in a test function to mark the test to be skipped or mark it as a known failure, respectively.

• **f2py.compile** has a new extension keyword parameter that allows the fortran extension to be specified for generated temp files. For instance, the files can be specifies to be *.f90. The **verbose** argument is also activated, it was previously ignored.

• A **dtype** parameter has been added to **np.random.randint** Random ndarrays of the following types can now be generated:

 - `np.bool_`
 - `np.int8, np.uint8`
 - `np.int16, np.uint16`
 - `np.int32, np.uint32`
 - `np.int64, np.uint64`
 - `np.int_`, `np.intp`

 The specification is by precision rather than by C type. Hence, on some platforms `np.int64` may be a **long** instead of **long long** even if the specified **dtype** is **long long** because the two may have the same precision. The resulting type depends on which C type numpy uses for the given precision. The byteorder specification is also ignored, the generated arrays are always in native byte order.

• A new **np.moveaxis** function allows for moving one or more array axes to a new position by explicitly providing source and destination axes. This function should be easier to use than the current **rollaxis** function as well as providing more functionality.

• The **deg** parameter of the various **numpy.polynomial** fits has been extended to accept a list of the degrees of the terms to be included in the fit, the coefficients of all other terms being constrained to zero. The change is backward compatible, passing a scalar **deg** will behave as before.

• A divmod function for float types modeled after the Python version has been added to the **npy_math** library.

17.47.6 Improvements

np.gradient now supports an **axis** argument

The **axis** parameter was added to **np.gradient** for consistency. It allows to specify over which axes the gradient is calculated.

np.lexsort now supports arrays with object data-type

The function now internally calls the generic **npy_amergesort** when the type does not implement a merge-sort kind of **argsort** method.
np.ma.core.MaskedArray now supports an order argument

When constructing a new `MaskedArray` instance, it can be configured with an `order` argument analogous to the one when calling `np.ndarray`. The addition of this argument allows for the proper processing of an `order` argument in several `MaskedArray`-related utility functions such as `np.ma.core.array` and `np.ma.core.asarray`.

Memory and speed improvements for masked arrays

Creating a masked array with `mask=True` (resp. `mask=False`) now uses `np.ones` (resp. `np.zeros`) to create the mask, which is faster and avoid a big memory peak. Another optimization was done to avoid a memory peak and useless computations when printing a masked array.

ndarray.tofile now uses fallocate on linux

The function now uses the `fallocate` system call to reserve sufficient disk space on file systems that support it.

Optimizations for operations of the form A.T @ A and A @ A.T

Previously, `gemm` BLAS operations were used for all matrix products. Now, if the matrix product is between a matrix and its transpose, it will use `syrk` BLAS operations for a performance boost. This optimization has been extended to `@`, `numpy.dot`, `numpy.inner`, and `numpy.matmul`.

Note: Requires the transposed and non-transposed matrices to share data.

np.testing.assert_warns can now be used as a context manager

This matches the behavior of `assert_raises`.

Speed improvement for np.random.shuffle

`np.random.shuffle` is now much faster for 1d ndarrays.

17.47.7 Changes

Pyrex support was removed from numpy.distutils

The method `build_src.generate_a_pyrex_source` will remain available; it has been monkeypatched by users to support Cython instead of Pyrex. It's recommended to switch to a better supported method of build Cython extensions though.
np.broadcast can now be called with a single argument

The resulting object in that case will simply mimic iteration over a single array. This change obsoletes distinctions like

```python
if len(x) == 1:
    shape = x[0].shape
else:
    shape = np.broadcast(*x).shape
```

Instead, `np.broadcast` can be used in all cases.

np.trace now respects array subclasses

This behaviour mimics that of other functions such as `np.diagonal` and ensures, e.g., that for masked arrays `np.trace(ma)` and `ma.trace()` give the same result.

np.dot now raises **TypeError** instead of **ValueError**

This behaviour mimics that of other functions such as `np.inner`. If the two arguments cannot be cast to a common type, it could have raised a `TypeError` or `ValueError` depending on their order. Now, `np.dot` will now always raise a `TypeError`.

linalg.norm return type changes

The `linalg.norm` function now does all its computations in floating point and returns floating results. This change fixes bugs due to integer overflow and the failure of `abs` with signed integers of minimum value, e.g., `int8(-128)`. For consistency, floats are used even where an integer might work.

17.47.8 Deprecations

Views of arrays in Fortran order

The `F_CONTIGUOUS` flag was used to signal that views using a dtype that changed the element size would change the first index. This was always problematical for arrays that were both `F_CONTIGUOUS` and `C_CONTIGUOUS` because `C_CONTIGUOUS` took precedence. Relaxed stride checking results in more such dual contiguous arrays and breaks some existing code as a result. Note that this also affects changing the dtype by assigning to the dtype attribute of an array. The aim of this deprecation is to restrict views to `C_CONTIGUOUS` arrays at some future time. A workaround that is backward compatible is to use `a.T.view(...).T` instead. A parameter may also be added to the view method to explicitly ask for Fortran order views, but that will not be backward compatible.
Invalid arguments for array ordering

It is currently possible to pass in arguments for the `order` parameter in methods like `array.flatten` or `array.ravel` that were not one of the following: ‘C’, ‘F’, ‘A’, ‘K’ (note that all of these possible values are both unicode and case insensitive). Such behavior will not be allowed in future releases.

Random number generator in the `testing` namespace

The Python standard library random number generator was previously exposed in the `testing` namespace as `testing.rand`. Using this generator is not recommended and it will be removed in a future release. Use generators from `numpy.random` namespace instead.

Random integer generation on a closed interval

In accordance with the Python C API, which gives preference to the half-open interval over the closed one, `np.random.random_integers` is being deprecated in favor of calling `np.random.randint`, which has been enhanced with the `dtype` parameter as described under “New Features”. However, `np.random.random_integers` will not be removed anytime soon.

17.47.9 FutureWarnings

Assigning to slices/views of `MaskedArray`

Currently a slice of a masked array contains a view of the original data and a copy-on-write view of the mask. Consequently, any changes to the slice’s mask will result in a copy of the original mask being made and that new mask being changed rather than the original. For example, if we make a slice of the original like so, `view = original[:],` then modifications to the data in one array will affect the data of the other but, because the mask will be copied during assignment operations, changes to the mask will remain local. A similar situation occurs when explicitly constructing a masked array using `MaskedArray(data, mask),` the returned array will contain a view of `data` but the mask will be a copy-on-write view of `mask.`

In the future, these cases will be normalized so that the data and mask arrays are treated the same way and modifications to either will propagate between views. In 1.11, numpy will issue a `MaskedArrayFutureWarning` whenever user code modifies the mask of a view that in the future may cause values to propagate back to the original. To silence these warnings and make your code robust against the upcoming changes, you have two options: if you want to keep the current behavior, call `masked_view.unshare_mask()` before modifying the mask. If you want to get the future behavior early, use `masked_view._sharedmask = False`. However, note that setting the `_sharedmask` attribute will break following explicit calls to `masked_view.unshare_mask()`.

17.48 NumPy 1.10.4 Release Notes

This release is a bugfix source release motivated by a segfault regression. No windows binaries are provided for this release, as there appear to be bugs in the toolchain we use to generate those files. Hopefully that problem will be fixed for the next release. In the meantime, we suggest using one of the providers of windows binaries.
17.48.1 Compatibility notes

- The trace function now calls the trace method on subclasses of ndarray, except for matrix, for which the current behavior is preserved. This is to help with the units package of AstroPy and hopefully will not cause problems.

17.48.2 Issues Fixed

- gh-6922 BUG: numpy.recarray.sort segfaults on Windows.
- gh-6937 BUG: busday_offset does the wrong thing with modifiedpreceding roll.
- gh-6949 BUG: Type is lost when slicing a subclass of recarray.

17.48.3 Merged PRs

The following PRs have been merged into 1.10.4. When the PR is a backport, the PR number for the original PR against master is listed.

- gh-6840 TST: Update travis testing script in 1.10.x
- gh-6843 BUG: Fix use of python 3 only FileNotFoundError in test_f2py.
- gh-6884 REL: Update pavement.py and setup.py to reflect current version.
- gh-6916 BUG: Fix test_f2py so it runs correctly in runtests.py.
- gh-6924 BUG: Fix segfault gh-6922.
- gh-6942 Fix datetime roll=modifiedpreceding bug.
- gh-6943 DOC,BUG: Fix some latex generation problems.
- gh-6950 BUG trace is not subclass aware, np.trace(ma) != ma.trace().
- gh-6952 BUG recarray slices should preserve subclass.

17.49 NumPy 1.10.3 Release Notes

N/A this release did not happen due to various screwups involving PyPi.

17.50 NumPy 1.10.2 Release Notes

This release deals with a number of bugs that turned up in 1.10.1 and adds various build and release improvements. NumPy 1.10.1 supports Python 2.6 - 2.7 and 3.2 - 3.5.
17.50.1 Compatibility notes

Relaxed stride checking is no longer the default

There were back compatibility problems involving views changing the dtype of multidimensional Fortran arrays that need to be dealt with over a longer timeframe.

Fix swig bug in numpy.i

Relaxed stride checking revealed a bug in `array_is_fortran(a)`, that was using `PyArray_ISFORTRAN` to check for Fortran contiguity instead of `PyArray_IS_F_CONTIGUOUS`. You may want to regenerate swigged files using the updated `numpy.i`.

Deprecate views changing dimensions in fortran order

This deprecates assignment of a new descriptor to the dtype attribute of a non-C-contiguous array if it result in changing the shape. This effectively bars viewing a multidimensional Fortran array using a dtype that changes the element size along the first axis.

The reason for the deprecation is that, when relaxed strides checking is enabled, arrays that are both C and Fortran contiguous are always treated as C contiguous which breaks some code that depended the two being mutually exclusive for non-scalar arrays of ndim > 1. This deprecation prepares the way to always enable relaxed stride checking.

17.50.2 Issues Fixed

- gh-6019 Masked array repr fails for structured array with multi-dimensional column.
- gh-6462 Median of empty array produces IndexError.
- gh-6467 Performance regression for record array access.
- gh-6468 numpy.interp uses 'left' value even when x[0]==xp[0].
- gh-6475 np.allclose returns a memmap when one of its arguments is a memmap.
- gh-6491 Error in broadcasting stride_tricks array.
- gh-6495 Unrecognized command line option ‘-fpe-summary’ in fortran.
- gh-6497 Failure of reduce operation on recarrays.
- gh-6498 Mention change in default casting rule in 1.10 release notes.
- gh-6530 The partition function errors out on empty input.
- gh-6532 numpy.inner return wrong inaccurate value sometimes.
- gh-6563 Intent(out) broken in recent versions of f2py.
- gh-6569 Cannot run tests after ‘python setup.py build_ext -i’
- gh-6572 Error in broadcasting stride_tricks array component.
- gh-6575 BUG: Split produces empty arrays with wrong number of dimensions
- gh-6590 Fortran Array problem in numpy 1.10.
- gh-6602 Random __all__ missing choice and dirichlet.
- gh-6611 ma.dot no longer always returns a masked array in 1.10.
• gh-6618 NPY_FORTRANORDER in make_fortran() in numpy.i
• gh-6636 Memory leak in nested dtypes in numpy.recarray
• gh-6641 Subsetting recarray by fields yields a structured array.
• gh-6667 ma.make_mask handles ma.nomask input incorrectly.
• gh-6675 Optimized blas detection broken in master and 1.10.
• gh-6678 Getting unexpected error from: X.dtype = complex (or Y = X.view(complex))
• gh-6718 f2py test fail in pip installed numpy-1.10.1 in virtualenv.
• gh-6719 Error compiling Cython file: Pythonic division not allowed without gil.
• gh-6771 Numpy.rec.fromarrays losing dtype metadata between versions 1.9.2 and 1.10.1
• gh-6781 The travis-ci script in maintenance/1.10.x needs fixing.
• gh-6807 Windows testing errors for 1.10.2

17.50.3 Merged PRs

The following PRs have been merged into 1.10.2. When the PR is a backport, the PR number for the original PR against master is listed.

• gh-5773 MAINT: Hide testing helper tracebacks when using them with pytest.
• gh-6094 BUG: Fixed a bug with string representation of masked structured arrays.
• gh-6208 MAINT: Speedup field access by removing unneeded safety checks.
• gh-6460 BUG: Replacing the os.environ.clear by less invasive procedure.
• gh-6470 BUG: Fix AttributeError in numpy distutils.
• gh-6472 MAINT: Use Python 3.5 instead of 3.5-dev for travis 3.5 testing.
• gh-6474 REL: Update Paver script for sdist and auto-switch test warnings.
• gh-6478 BUG: Fix Intel compiler flags for OS X build.
• gh-6481 MAINT: LIBPATH with spaces is now supported Python 2.7+ and Win32.
• gh-6487 BUG: Allow nested use of parameters in definition of arrays in f2py.
• gh-6488 BUG: Extend common blocks rather than overwriting in f2py.
• gh-6499 DOC: Mention that default casting for inplace operations has changed.
• gh-6500 BUG: Recarrays viewed as subarrays don’t convert to np.record type.
• gh-6501 REL: Add “make upload” command for built docs, update “make dist”.
• gh-6526 BUG: Fix use of __doc__ in setup.py for -OO mode.
• gh-6527 BUG: Fix the IndexError when taking the median of an empty array.
• gh-6537 BUG: Make ma.atleast_* with scalar argument return arrays.
• gh-6538 BUG: Fix ma.masked_values does not shrink mask if requested.
• gh-6546 BUG: Fix inner product regression for non-contiguous arrays.
• gh-6553 BUG: Fix partition and argsort error for empty input.
• gh-6556 BUG: Error in broadcast_arrays with as_strided array.
• gh-6558 MAINT: Minor update to “make upload” doc build command.
• gh-6562 BUG: Disable view safety checks in recarray.
• gh-6567 BUG: Revert some import * fixes in f2py.
• gh-6574 DOC: Release notes for Numpy 1.10.2.
• gh-6577 BUG: Fix for #6569, allowing build_ext --inplace
• gh-6579 MAINT: Fix mistake in doc upload rule.
• gh-6596 BUG: Fix swig for relaxed stride checking.
• gh-6606 DOC: Update 1.10.2 release notes.
• gh-6614 BUG: Add choice and dirichlet to numpy.random.__all__.
• gh-6621 BUG: Fix swig make_fortran function.
• gh-6628 BUG: Make allclose return python bool.
• gh-6642 BUG: Fix memleak in _convert_from_dict.
• gh-6643 ENH: make recarray.getitem return a recarray.
• gh-6653 BUG: Fix ma dot to always return masked array.
• gh-6668 BUG: ma.make_mask should always return nomask for nomask argument.
• gh-6686 BUG: Fix a bug in assert_string_equal.
• gh-6695 BUG: Fix removing tempdirs created during build.
• gh-6697 MAINT: Fix spurious semicolon in macro definition of PyArray_FROM_OT.
• gh-6698 TST: test np.rint bug for large integers.
• gh-6717 BUG: Readd fallback CBLAS detection on linux.
• gh-6721 BUG: Fix for #6719.
• gh-6726 BUG: Fix bugs exposed by relaxed stride rollback.
• gh-6757 BUG: link cblas library if cblas is detected.
• gh-6756 TST: only test f2py, not f2py2.7 etc, fixes #6718.
• gh-6747 DEP: Deprecate changing shape of non-C-contiguous array via descr.
• gh-6775 MAINT: Include from __future__ boilerplate in some files missing it.
• gh-6780 BUG: metadata is not copied to base_dtype.
• gh-6783 BUG: Fix travis ci testing for new google infrastructure.
• gh-6785 BUG: Quick and dirty fix for interp.
• gh-6813 TST,BUG: Make test_mvoid_multidim_print work for 32 bit systems.
• gh-6817 BUG: Disable 32-bit msvc9 compiler optimizations for npy_rint.
• gh-6819 TST: Fix test_mvoid_multidim_print failures on Python 2.x for Windows.

Initial support for mingwpy was reverted as it was causing problems for non-windows builds.

• gh-6536 BUG: Revert gh-5614 to fix non-windows build problems

A fix for np.lib.split was reverted because it resulted in “fixing” behavior that will be present in the Numpy 1.11 and that was already present in Numpy 1.9. See the discussion of the issue at gh-6575 for clarification.
• gh-6576 BUG: Revert gh-6376 to fix split behavior for empty arrays.

Relaxed stride checking was reverted. There were back compatibility problems involving views changing the dtype of multidimensional Fortran arrays that need to be dealt with over a longer timeframe.

• gh-6735 MAINT: Make no relaxed stride checking the default for 1.10.

17.50.4 Notes

A bug in the Numpy 1.10.1 release resulted in exceptions being raised for RuntimeException and DeprecationWarning in projects depending on Numpy. That has been fixed.

17.51 NumPy 1.10.1 Release Notes

This release deals with a few build problems that showed up in 1.10.0. Most users would not have seen these problems. The differences are:

• Compiling with msvc9 or msvc10 for 32 bit Windows now requires SSE2. This was the easiest fix for what looked to be some miscompiled code when SSE2 was not used. If you need to compile for 32 bit Windows systems without SSE2 support, mingw32 should still work.

• Make compiling with VS2008 python2.7 SDK easier

• Change Intel compiler options so that code will also be generated to support systems without SSE4.2.

• Some _config test functions needed an explicit integer return in order to avoid the openSUSE rpm linter erring out.

• We ran into a problem with pipynot allowing reuse of filenames and a resulting proliferation of ..*.postN releases. Not only were the names getting out of hand, some packages were unable to work with the postN suffix.

Numpy 1.10.1 supports Python 2.6 - 2.7 and 3.2 - 3.5.

Commits:

45a3d84 DEP: Remove warning for full when dtype is set. 0c1a5df BLD: import setuptools to allow compile with VS2008 python2.7 sdk 04211c6 BUG: mask nan to 1 in ordered compare 826716f DOC: Document the reason msvc requires SSE2 on 32 bit platforms. 49fa187 BLD: enable SSE2 for 32-bit msvc 9 and 10 compilers 49fa187 BLD: enable SSE2 for 32-bit msvc 9 and 10 compilers 826716f MAINT: remove Wreturn-type warnings from config checks 6564cb BLD: do not build exclusively for SSE4.2 processors 15cb66f BLD: do not build exclusively for SSE4.2 processors c38bc08 DOC: fix var. reference in percentile docstring 78497f4 DOC: Sync 1.10.0-notes.rst in 1.10.x branch with master.

17.52 NumPy 1.10.0 Release Notes

This release supports Python 2.6 - 2.7 and 3.2 - 3.5.
17.52.1 Highlights

- `numpy.distutils` now supports parallel compilation via the `-parallel/-j` argument passed to `setup.py` build.
- `numpy.distutils` now supports additional customization via `site.cfg` to control compilation parameters, i.e. runtime libraries, extra linking/compilation flags.
- Addition of `np.linalg.multi_dot`: compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order.
- The new function `np.stack` provides a general interface for joining a sequence of arrays along a new axis, complementing `np.concatenate` for joining along an existing axis.
- Addition of `nanprod` to the set of nan functions.
- Support for the `@` operator in Python 3.5.

17.52.2 Dropped Support

- The `_dotblas` module has been removed. CBLAS Support is now in Multiarray.
- The `testcalc.py` file has been removed.
- The `polytemplate.py` file has been removed.
- `npy_PyFile_Dup` and `npy_PyFile_DupClose` have been removed from `npy_3kcompat.h`.
- `splitcmdline` has been removed from `npy/distutils/exec_command.py`.
- `try_run` and `get_output` have been removed from `npy/distutils/command/config.py`.
- The `a._format` attribute is no longer supported for array printing.
- Keywords `skiprows` and `missing` removed from `np.genfromtxt`.
- Keyword `old_behavior` removed from `np.correlate`.

17.52.3 Future Changes

- In array comparisons like `arr1 == arr2`, many corner cases involving strings or structured dtypes that used to return scalars now issue `FutureWarning` or `DeprecationWarning`, and in the future will be changed to either perform elementwise comparisons or raise an error.
- In `np.lib.split` an empty array in the result always had dimension `(0,)` no matter the dimensions of the array being split. In Numpy 1.11 that behavior will be changed so that the dimensions will be preserved. A `FutureWarning` for this change has been in place since Numpy 1.9 but, due to a bug, sometimes no warning was raised and the dimensions were already preserved.
- The `SafeEval` class will be removed in Numpy 1.11.
- The `alterdot` and `restoredot` functions will be removed in Numpy 1.11.

See below for more details on these changes.
17.52.4 Compatibility notes

Default casting rule change

Default casting for in-place operations has changed to 'same_kind'. For instance, if n is an array of integers, and f is an array of floats, then n += f will result in a TypeError, whereas in previous Numpy versions the floats would be silently cast to ints. In the unlikely case that the example code is not an actual bug, it can be updated in a backward compatible way by rewriting it as np.add(n, f, out=n, casting='unsafe'). The old 'unsafe' default has been deprecated since Numpy 1.7.

numpy version string

The numpy version string for development builds has been changed from x.y.z.dev-githash to x.y.z.dev0+githash (note the +) in order to comply with PEP 440.

relaxed stride checking

NPY_RELAXED_STRIDE_CHECKING is now true by default.

UPDATE: In 1.10.2 the default value of NPY_RELAXED_STRIDE_CHECKING was changed to false for back compatibility reasons. More time is needed before it can be made the default. As part of the roadmap a deprecation of dimension changing views of f_contiguous not c_contiguous arrays was also added.

Concatenation of 1d arrays along any but axis=0 raises IndexError

Using axis != 0 has raised a DeprecationWarning since NumPy 1.7, it now raises an error.

np.ravel, np.diagonal and np.diag now preserve subtypes

There was inconsistent behavior between x.ravel() and np.ravel(x), as well as between x.diagonal() and np.diagonal(x), with the methods preserving subtypes while the functions did not. This has been fixed and the functions now behave like the methods, preserving subtypes except in the case of matrices. Matrices are special cased for backward compatibility and still return 1-D arrays as before. If you need to preserve the matrix subtype, use the methods instead of the functions.

rollaxis and swapaxes always return a view

Previously, a view was returned except when no change was made in the order of the axes, in which case the input array was returned. A view is now returned in all cases.

nonzero now returns base ndarrays

Previously, an inconsistency existed between 1-D inputs (returning a base ndarray) and higher dimensional ones (which preserved subclasses). Behavior has been unified, and the return will now be a base ndarray. Subclasses can still override this behavior by providing their own nonzero method.
C API

The changes to swapaxes also apply to the PyArray_SwapAxes C function, which now returns a view in all cases.
The changes to nonzero also apply to the PyArray_Nonzero C function, which now returns a base ndarray in all cases.
The dtype structure (PyArray_Descr) has a new member at the end to cache its hash value. This shouldn’t affect any
well-written applications.
The change to the concatenation function DeprecationWarning also affects PyArray_ConcatenateArrays,

recarray field return types

Previously the returned types for recarray fields accessed by attribute and by index were inconsistent, and fields of string
type were returned as chararrays. Now, fields accessed by either attribute or indexing will return an ndarray for fields
of non-structured type, and a recarray for fields of structured type. Notably, this affect recarrays containing strings with
whitespace, as trailing whitespace is trimmed from chararrays but kept in ndarrays of string type. Also, the dtype.type of
nested structured fields is now inherited.

recarray views

Viewing an ndarray as a recarray now automatically converts the dtype to np.record. See new record array documentation.
Additionally, viewing a recarray with a non-structured dtype no longer converts the result’s type to ndarray - the result
will remain a recarray.

‘out’ keyword argument of ufuncs now accepts tuples of arrays

When using the ‘out’ keyword argument of a ufunc, a tuple of arrays, one per ufunc output, can be provided. For ufuncs
with a single output a single array is also a valid ‘out’ keyword argument. Previously a single array could be provided in
the ‘out’ keyword argument, and it would be used as the first output for ufuncs with multiple outputs, is deprecated, and
will result in a DeprecationWarning now and an error in the future.

byte-array indices now raises an IndexError

Indexing an ndarray using a byte-string in Python 3 now raises an IndexError instead of a ValueError.

Masked arrays containing objects with arrays

For such (rare) masked arrays, getting a single masked item no longer returns a corrupted masked array, but a fully masked
version of the item.

Median warns and returns nan when invalid values are encountered

Similar to mean, median and percentile now emits a Runtime warning and returns NaN in slices where a NaN is present.
To compute the median or percentile while ignoring invalid values use the new nanmedian or nanpercentile functions.
Functions available from numpy.ma.testutils have changed

All functions from numpy.testing were once available from numpy.ma.testutils but not all of them were redefined to work with masked arrays. Most of those functions have now been removed from numpy.ma.testutils with a small subset retained in order to preserve backward compatibility. In the long run this should help avoid mistaken use of the wrong functions, but it may cause import problems for some.

17.52.5 New Features

Reading extra flags from site.cfg

Previously customization of compilation of dependency libraries and numpy itself was only accomplishable via code changes in the distutils package. Now numpy.distutils reads in the following extra flags from each group of the site.cfg:

- `runtime_library_dirs/rpath`, sets runtime library directories to override `LD_LIBRARY_PATH`
- `extra_compile_args`, add extra flags to the compilation of sources
- `extra_link_args`, add extra flags when linking libraries

This should, at least partially, complete user customization.

`np.cbrt` to compute cube root for real floats

`np.cbrt` wraps the C99 cube root function `cbrt`. Compared to `np.power(x, 1./3.)` it is well defined for negative real floats and a bit faster.

By passing `-parallel=n` or `-j n` to `setup.py build` the compilation of extensions is now performed in `n` parallel processes. The parallelization is limited to files within one extension so projects using Cython will not profit because it builds extensions from single files.

`genfromtxt` has a new `max_rows` argument

A `max_rows` argument has been added to `genfromtxt` to limit the number of rows read in a single call. Using this functionality, it is possible to read in multiple arrays stored in a single file by making repeated calls to the function.

New function `np.broadcast_to` for invoking array broadcasting

`np.broadcast_to` manually broadcasts an array to a given shape according to numpy’s broadcasting rules. The functionality is similar to `broadcast_arrays`, which in fact has been rewritten to use `broadcast_to` internally, but only a single array is necessary.
New context manager `clear_and_catch_warnings` for testing warnings

When Python emits a warning, it records that this warning has been emitted in the module that caused the warning, in a module attribute `__warningregistry__`. Once this has happened, it is not possible to emit the warning again, unless you clear the relevant entry in `__warningregistry__`. This makes it hard and fragile to test warnings, because if your test comes after another that has already caused the warning, you will not be able to emit the warning or test it. The context manager `clear_and_catch_warnings` clears warnings from the module registry on entry and resets them on exit, meaning that warnings can be re-raised.

`cov` has new `fweights` and `aweights` arguments

The `fweights` and `aweights` arguments add new functionality to covariance calculations by applying two types of weighting to observation vectors. An array of `fweights` indicates the number of repeats of each observation vector, and an array of `aweights` provides their relative importance or probability.

Support for the `@` operator in Python 3.5+

Python 3.5 adds support for a matrix multiplication operator `@` proposed in PEP465. Preliminary support for that has been implemented, and an equivalent function `matmul` has also been added for testing purposes and use in earlier Python versions. The function is preliminary and the order and number of its optional arguments can be expected to change.

New argument `norm` to fft functions

The default normalization has the direct transforms unscaled and the inverse transforms are scaled by $1/n$. It is possible to obtain unitary transforms by setting the keyword argument `norm` to "ortho" (default is `None`) so that both direct and inverse transforms will be scaled by $1/\sqrt{n}$.

17.52.6 Improvements

`np.digitize` using binary search

`np.digitize` is now implemented in terms of `np.searchsorted`. This means that a binary search is used to bin the values, which scales much better for a larger number of bins than the previous linear search. It also removes the requirement for the input array to be 1-dimensional.

`np.poly` now casts integer inputs to float

`np.poly` will now cast 1-dimensional input arrays of integer type to double precision floating point, to prevent integer overflow when computing the monic polynomial. It is still possible to obtain higher precision results by passing an array of object type, filled e.g. with Python ints.
np.interp can now be used with periodic functions

np.interp now has a new parameter `period` that supplies the period of the input data `xp`. In such case, the input data is properly normalized to the given period and one end point is added to each extremity of `xp` in order to close the previous and the next period cycles, resulting in the correct interpolation behavior.

np.pad supports more input types for `pad_width` and `constant_values`

`constant_values` parameters now accepts NumPy arrays and float values. NumPy arrays are supported as input for `pad_width`, and an exception is raised if its values are not of integral type.

np.argmax and **np.argmin** now support an `out` argument

The `out` parameter was added to *np.argmax* and *np.argmin* for consistency with *ndarray.argmax* and *ndarray.argmin*. The new parameter behaves exactly as it does in those methods.

More system C99 complex functions detected and used

All of the functions in *complex.h* are now detected. There are new fallback implementations of the following functions.

- `npy_ctan`,
- `npy_cacos`, `npy_casin`, `npy_catan`
- `npy_ccosh`, `npy_csinh`, `npy_ctanh`,
- `npy_cacosh`, `npy_casinh`, `npy_catanh`

As a result of these improvements, there will be some small changes in returned values, especially for corner cases.

np.loadtxt support for the strings produced by the `float.hex` method

The strings produced by `float.hex` look like `0x1.921fb54442d18p+1`, so this is not the hex used to represent unsigned integer types.

np.isclose properly handles minimal values of integer dtypes

In order to properly handle minimal values of integer types, *np.isclose* will now cast to the float dtype during comparisons. This aligns its behavior with what was provided by *np.allclose*.

np.allclose uses *np.isclose* internally.

np.allclose now uses *np.isclose* internally and inherits the ability to compare NaNs as equal by setting `equal_nan=True`. Subclasses, such as *np.ma.MaskedArray*, are also preserved now.
np.genfromtxt now handles large integers correctly

`np.genfromtxt` now correctly handles integers larger than $2 ** 31 - 1$ on 32-bit systems and larger than $2 ** 63 - 1$ on 64-bit systems (it previously crashed with an `OverflowError` in these cases). Integers larger than $2 ** 63 - 1$ are converted to floating-point values.

np.load, np.save have pickle backward compatibility flags

The functions `np.load` and `np.save` have additional keyword arguments for controlling backward compatibility of pickled Python objects. This enables Numpy on Python 3 to load npy files containing object arrays that were generated on Python 2.

MaskedArray support for more complicated base classes

Built-in assumptions that the baseclass behaved like a plain array are being removed. In particular, setting and getting elements and ranges will respect baseclass overrides of `__setitem__` and `__getitem__`, and arithmetic will respect overrides of `__add__`, `__sub__`, etc.

17.52.7 Changes

dotblas functionality moved to multiarray

The cblas versions of dot, inner, and vdot have been integrated into the multiarray module. In particular, vdot is now a multiarray function, which it was not before.

stricter check of gufunc signature compliance

Inputs to generalized universal functions are now more strictly checked against the function’s signature: all core dimensions are now required to be present in input arrays; core dimensions with the same label must have the exact same size; and output core dimension’s must be specified, either by a same label input core dimension or by a passed-in output array.

views returned from np.einsum are writeable

Views returned by `np.einsum` will now be writeable whenever the input array is writeable.

np.argmin skips NaT values

`np.argmin` now skips NaT values in datetime64 and timedelta64 arrays, making it consistent with `np.min, np.argmax` and `np.max`.

17.52.8 Deprecations

Array comparisons involving strings or structured dtypes

Normally, comparison operations on arrays perform elementwise comparisons and return arrays of booleans. But in some corner cases, especially involving strings are structured dtypes, NumPy has historically returned a scalar instead. For example:

```python
>>> np.arange(2) == "foo"
# -> False

>>> np.arange(2) < "foo"
# -> True on Python 2, error on Python 3

>>> np.ones(2, dtype="i4,i4") == np.ones(2, dtype="i4,i4,i4")
# -> False
```

Continuing work started in 1.9, in 1.10 these comparisons will now raise FutureWarning or DeprecationWarning, and in the future they will be modified to behave more consistently with other comparison operations, e.g.:

```python
>>> np.arange(2) == "foo"
# -> array([False, False])

>>> np.arange(2) < "foo"
# -> error, strings and numbers are not orderable

>>> np.ones(2, dtype="i4,i4") == np.ones(2, dtype="i4,i4,i4")
# -> [False, False]
```

SafeEval

The SafeEval class in numpy/lib/utils.py is deprecated and will be removed in the next release.

alterdot, restoredot

The alterdot and restoredot functions no longer do anything, and are deprecated.

pkgload, PackageLoader

These ways of loading packages are now deprecated.
bias, ddof arguments to corrcoef

The values for the bias and ddof arguments to the corrcoef function canceled in the division implied by the correlation coefficient and so had no effect on the returned values.

We now deprecate these arguments to corrcoef and the masked array version ma.corrcoef.

Because we are deprecating the bias argument to ma.corrcoef, we also deprecate the use of the allow_masked argument as a positional argument, as its position will change with the removal of bias. allow_masked will in due course become a keyword-only argument.

dtype string representation changes

Since 1.6, creating a dtype object from its string representation, e.g. 'f4', would issue a deprecation warning if the size did not correspond to an existing type, and default to creating a dtype of the default size for the type. Starting with this release, this will now raise a TypeError.

The only exception is object dtypes, where both 'O4' and 'O8' will still issue a deprecation warning. This platform-dependent representation will raise an error in the next release.

In preparation for this upcoming change, the string representation of an object dtype, i.e. np.dtype(object).str, no longer includes the item size, i.e. will return '|O' instead of '|O4' or '|O8' as before.

17.53 NumPy 1.9.2 Release Notes

This is a bugfix only release in the 1.9.x series.

17.53.1 Issues fixed

- #5316: fix too large dtype alignment of strings and complex types
- #5424: fix ma.median when used on ndarrays
- #5481: Fix astype for structured array fields of different byte order
- #5354: fix segfault when clipping complex arrays
- #5524: allow np.argpartition on non ndarrays
- #5612: Fixes ndarray.fill to accept full range of uint64
- #5155: Fix loadtxt with comments=None and a string None data
- #4476: Masked array view fails if structured dtype has datetime component
- #5388: Make RandomState.set_state and RandomState.get_state threadsafe
- #5390: make seed, randint and shuffle threadsafe
- #5374: Fixed incorrect assert_array_almost_equal_nulp documentation
- #5393: Add support for ATLAS > 3.9.33.
- #5313: PyArray_AsCArray caused segfault for 3d arrays
- #5492: handle out of memory in rfft
- #4181: fix a few bugs in the random.pareto docstring
- #5359: minor changes to linspace docstring
• #4723: fix a compile issues on AIX

17.54 NumPy 1.9.1 Release Notes

This is a bugfix only release in the 1.9.x series.

17.54.1 Issues fixed

• gh-5184: restore linear edge behaviour of gradient to as it was in < 1.9. The second order behaviour is available via the edge_order keyword
• gh-4007: workaround Accelerate sgemv crash on OSX 10.9
• gh-5100: restore object dtype inference from iterable objects without len()
• gh-5163: avoid gcc-4.1.2 (red hat 5) miscompilation causing a crash
• gh-5138: fix nanmedian on arrays containing inf
• gh-5240: fix not returning out array from ufuncs with subok=False set
• gh-5203: copy inherited masks in MaskedArray.__array_finalize__
• gh-2317: genfromtxt did not handle filling_values=0 correctly
• gh-5067: restore api of npy_PyFile_DupClose in python2
• gh-5063: cannot convert invalid sequence index to tuple
• gh-5082: Segmentation fault with argmin() on unicode arrays
• gh-5095: don’t propagate subtypes from np.where
• gh-5104: np.inner segfaults with SciPy’s sparse matrices
• gh-5251: Issue with fromarrays not using correct format for unicode arrays
• gh-5136: Import dummy_threading if importing threading fails
• gh-5148: Make numpy import when run with Python flag `-OO`
• gh-5147: Einsum double contraction in particular order causes ValueError
• gh-479: Make f2py work with intent(in out)
• gh-5170: Make python2 .npy files readable in python3
• gh-5027: Use ‘l’ as the default length specifier for long long
• gh-4896: fix build error with MSVC 2013 caused by C99 complex support
• gh-4465: Make PyArray_PutTo respect writeable flag
• gh-5225: fix crash when using arange on datetime without dtype set
• gh-5231: fix build in c99 mode
17.55 NumPy 1.9.0 Release Notes

This release supports Python 2.6 - 2.7 and 3.2 - 3.4.

17.55.1 Highlights

- Numerous performance improvements in various areas, most notably indexing and operations on small arrays are significantly faster. Indexing operations now also release the GIL.
- Addition of `nanmedian` and `nanpercentile` rounds out the nan function set.

17.55.2 Dropped Support

- The old numeric and numarray modules have been removed.
- The doc/pyrex and doc/cython directories have been removed.
- The doc/numpybook directory has been removed.
- The numpy/testing/numpytest.py file has been removed together with the importall function it contained.

17.55.3 Future Changes

- The numpy/polynomial/polytemplate.py file will be removed in NumPy 1.10.0.
- Default casting for inplace operations will change to 'same_kind' in Numpy 1.10.0. This will certainly break some code that is currently ignoring the warning.
- Relaxed stride checking will be the default in 1.10.0
- String version checks will break because, e.g., ‘1.9’ > ‘1.10’ is True. A NumpyVersion class has been added that can be used for such comparisons.
- The diagonal and diag functions will return writeable views in 1.10.0
- The `S` and/or `a` dtypes may be changed to represent Python strings instead of bytes, in Python 3 these two types are very different.

17.55.4 Compatibility notes

The `diagonal` and `diag` functions return readonly views.

In NumPy 1.8, the diagonal and diag functions returned readonly copies, in NumPy 1.9 they return readonly views, and in 1.10 they will return writeable views.
Special scalar float values don’t cause upcast to double anymore

In previous numpy versions operations involving floating point scalars containing special values NaN, Inf and -Inf caused the result type to be at least float64. As the special values can be represented in the smallest available floating point type, the upcast is not performed anymore.

For example the dtype of:

```
np.array([1.], dtype=np.float32) * float('nan')
```

now remains float32 instead of being cast to float64. Operations involving non-special values have not been changed.

Percentile output changes

If given more than one percentile to compute numpy.percentile returns an array instead of a list. A single percentile still returns a scalar. The array is equivalent to converting the list returned in older versions to an array via np.array.

If the overwrite_input option is used the input is only partially instead of fully sorted.

ndarray.tofile exception type

All tofile exceptions are now IOError, some were previously ValueError.

Invalid fill value exceptions

Two changes to numpy.ma.core._check_fill_value:

- When the fill value is a string and the array type is not one of ‘OSUV’, TypeError is raised instead of the default fill value being used.
- When the fill value overflows the array type, TypeError is raised instead of OverflowError.

Polynomial Classes no longer derived from PolyBase

This may cause problems with folks who depended on the polynomial classes being derived from PolyBase. They are now all derived from the abstract base class ABCPolyBase. Strictly speaking, there should be a deprecation involved, but no external code making use of the old baseclass could be found.

Using numpy.random.binomial may change the RNG state vs. numpy < 1.9

A bug in one of the algorithms to generate a binomial random variate has been fixed. This change will likely alter the number of random draws performed, and hence the sequence location will be different after a call to distribution.c:rk_binomial_btpe. Any tests which rely on the RNG being in a known state should be checked and/or updated as a result.
Random seed enforced to be a 32 bit unsigned integer

`np.random.seed` and `np.random.RandomState` now throw a `ValueError` if the seed cannot safely be converted to 32 bit unsigned integers. Applications that now fail can be fixed by masking the higher 32 bit values to zero: `seed = seed & 0xFFFFFFFF`. This is what is done silently in older versions so the random stream remains the same.

Argmin and argmax out argument

The `out` argument to `np.argmin` and `np.argmax` and their equivalent C-API functions is now checked to match the desired output shape exactly. If the check fails a `ValueError` instead of `TypeError` is raised.

Einsum

Remove unnecessary broadcasting notation restrictions. `np.einsum('ijk,j->ijk', A, B)` can also be written as `np.einsum('ij...,j->ij...', A, B)` (ellipsis is no longer required on ‘j’)

Indexing

The NumPy indexing has seen a complete rewrite in this version. This makes most advanced integer indexing operations much faster and should have no other implications. However some subtle changes and deprecations were introduced in advanced indexing operations:

- Boolean indexing into scalar arrays will always return a new 1-d array. This means that `array(1)[array(True)]` gives `array([1])` and not the original array.

- Advanced indexing into one dimensional arrays used to have (undocumented) special handling regarding repeating the value array in assignments when the shape of the value array was too small or did not match. Code using this will raise an error. For compatibility you can use `arr.flat[index] = values`, which uses the old code branch. (For example `a = np.ones(10); a[np.arange(10)] = [1, 2, 3]`)

- The iteration order over advanced indexes used to be always C-order. In NumPy 1.9. the iteration order adapts to the inputs and is not guaranteed (with the exception of a single advanced index which is never reversed for compatibility reasons). This means that the result is undefined if multiple values are assigned to the same element. An example for this is `arr[[0, 0], [1, 1]] = [1, 2, 3]`, which may set `arr[0, 1]` to either 1 or 2.

- Equivalent to the iteration order, the memory layout of the advanced indexing result is adapted for faster indexing and cannot be predicted.

- All indexing operations return a view or a copy. No indexing operation will return the original array object. (For example `arr[...]`)

- In the future Boolean array-likes (such as lists of python bools) will always be treated as Boolean indexes and Boolean scalars (including python `True`) will be a legal boolean index. At this time, this is already the case for scalar arrays to allow the general `positive = a[a > 0]` to work when `a` is zero dimensional.

- In NumPy 1.8 it was possible to use `array(True)` and `array(False)` equivalent to 1 and 0 if the result of the operation was a scalar. This will raise an error in NumPy 1.9 and, as noted above, treated as a boolean index in the future.

- All non-integer array-likes are deprecated, object arrays of custom integer like objects may have to be cast explicitly.

- The error reporting for advanced indexing is more informative, however the error type has changed in some cases. (Broadcasting errors of indexing arrays are reported as `IndexError`)

- Indexing with more then one ellipsis (…) is deprecated.
Non-integer reduction axis indexes are deprecated

Non-integer axis indexes to reduction ufuncs like `add.reduce` or `sum` are deprecated.

promote_types and string dtype

`promote_types` function now returns a valid string length when given an integer or float dtype as one argument and a string dtype as another argument. Previously it always returned the input string dtype, even if it wasn’t long enough to store the max integer/float value converted to a string.

can_cast and string dtype

`can_cast` function now returns False in “safe” casting mode for integer/float dtype and string dtype if the string dtype length is not long enough to store the max integer/float value converted to a string. Previously `can_cast` in “safe” mode returned True for integer/float dtype and a string dtype of any length.

astype and string dtype

The `astype` method now returns an error if the string dtype to cast to is not long enough in “safe” casting mode to hold the max value of integer/float array that is being casted. Previously the casting was allowed even if the result was truncated.

npyio.recfromcsv keyword arguments change

`npyio.recfromcsv` no longer accepts the undocumented `update` keyword, which used to override the `dtype` keyword.

The doc/swig directory moved

The `doc/swig` directory has been moved to `tools/swig`.

The npy_3kcompat.h header changed

The unused `simple_capsule_dtor` function has been removed from `npy_3kcompat.h`. Note that this header is not meant to be used outside of numpy; other projects should be using their own copy of this file when needed.

Negative indices in C-API sq_item and sq_ass_item sequence methods

When directly accessing the `sq_item` or `sq_ass_item` PyObject slots for item getting, negative indices will not be supported anymore. `PySequence_GetItem` and `PySequence_SetItem` however fix negative indices so that they can be used there.
NDIter

When `NpyIter_RemoveAxis` is now called, the iterator range will be reset.

When a multi index is being tracked and an iterator is not buffered, it is possible to use `NpyIter_RemoveAxis`. In this case an iterator can shrink in size. Because the total size of an iterator is limited, the iterator may be too large before these calls. In this case its size will be set to -1 and an error issued not at construction time but when removing the multi index, setting the iterator range, or getting the next function.

This has no effect on currently working code, but highlights the necessity of checking for an error return if these conditions can occur. In most cases the arrays being iterated are as large as the iterator so that such a problem cannot occur.

This change was already applied to the 1.8.1 release.

zeros_like for string dtypes now returns empty strings

To match the `zeros` function `zeros_like` now returns an array initialized with empty strings instead of an array filled with ‘0’.

17.55.5 New Features

Percentile supports more interpolation options

`np.percentile` now has the interpolation keyword argument to specify in which way points should be interpolated if the percentiles fall between two values. See the documentation for the available options.

Generalized axis support for median and percentile

`np.median` and `np.percentile` now support generalized axis arguments like ufunc reductions do since 1.7. One can now say axis=(index, index) to pick a list of axes for the reduction. The `keepdims` keyword argument was also added to allow convenient broadcasting to arrays of the original shape.

Dtype parameter added to np.linspace and np.logspace

The returned data type from the `linspace` and `logspace` functions can now be specified using the `dtype` parameter.

More general np.triu and np.tril broadcasting

For arrays with `ndim` exceeding 2, these functions will now apply to the final two axes instead of raising an exception.

tobytes alias for tostring method

`ndarray.tobytes` and `MaskedArray.tobytes` have been added as aliases for `tostring` which exports arrays as `bytes`. This is more consistent in Python 3 where `str` and `bytes` are not the same.
Build system

Added experimental support for the ppc64le and OpenRISC architecture.

Compatibility to python numbers module

All numerical numpy types are now registered with the type hierarchy in the python numbers module.

increasing parameter added to np.vander

The ordering of the columns of the Vandermonde matrix can be specified with this new boolean argument.

unique_counts parameter added to np.unique

The number of times each unique item comes up in the input can now be obtained as an optional return value.

Support for median and percentile in nanfunctions

The np.nanmedian and np.nanpercentile functions behave like the median and percentile functions except that NaNs are ignored.

NumpyVersion class added

The class may be imported from numpy.lib and can be used for version comparison when the numpy version goes to 1.10.devel. For example:

```python
>>> from numpy.lib import NumpyVersion
>>> if NumpyVersion(np.__version__) < '1.10.0':
...     print('Wow, that is an old NumPy version!')
```

Allow saving arrays with large number of named columns

The numpy storage format 1.0 only allowed the array header to have a total size of 65535 bytes. This can be exceeded by structured arrays with a large number of columns. A new format 2.0 has been added which extends the header size to 4 GiB. np.save will automatically save in 2.0 format if the data requires it, else it will always use the more compatible 1.0 format.

Full broadcasting support for np.cross

np.cross now properly broadcasts its two input arrays, even if they have different number of dimensions. In earlier versions this would result in either an error being raised, or wrong results computed.
17.55.6 Improvements

Better numerical stability for sum in some cases

Pairwise summation is now used in the sum method, but only along the fast axis and for groups of the values <= 8192 in length. This should also improve the accuracy of var and std in some common cases.

Percentile implemented in terms of np.partition

np.percentile has been implemented in terms of np.partition which only partially sorts the data via a selection algorithm. This improves the time complexity from $O(n \log(n))$ to $O(n)$.

Performance improvement for np.array

The performance of converting lists containing arrays to arrays using np.array has been improved. It is now equivalent in speed to np.vstack(list).

Performance improvement for np.searchsorted

For the built-in numeric types, np.searchsorted no longer relies on the data type’s compare function to perform the search, but is now implemented by type specific functions. Depending on the size of the inputs, this can result in performance improvements over 2x.

Optional reduced verbosity for np.distutils

Set numpy.distutils.system_info.system_info.verbosity = 0 and then calls to numpy.distutils.system_info.get_info('blas_opt') will not print anything on the output. This is mostly for other packages using numpy.distutils.

Covariance check in np.random.multivariate_normal

A RuntimeWarning warning is raised when the covariance matrix is not positive-semidefinite.

Polynomial Classes no longer template based

The polynomial classes have been refactored to use an abstract base class rather than a template in order to implement a common interface. This makes importing the polynomial package faster as the classes do not need to be compiled on import.
More GIL releases

Several more functions now release the Global Interpreter Lock allowing more efficient parallelization using the threading module. Most notably the GIL is now released for fancy indexing, np.where and the random module now uses a per-state lock instead of the GIL.

MaskedArray support for more complicated base classes

Built-in assumptions that the baseclass behaved like a plain array are being removed. In particular, repr and str should now work more reliably.

C-API

17.55.7 Deprecations

Non-integer scalars for sequence repetition

Using non-integer numpy scalars to repeat python sequences is deprecated. For example np.float_(2) * [1] will be an error in the future.

select input deprecations

The integer and empty input to select is deprecated. In the future only boolean arrays will be valid conditions and an empty condlist will be considered an input error instead of returning the default.

rank function

The rank function has been deprecated to avoid confusion with numpy.linalg.matrix_rank.

Object array equality comparisons

In the future object array comparisons both == and np.equal will not make use of identity checks anymore. For example:

```python
>>> a = np.array([[np.array([1, 2, 3]), 1]])
>>> b = np.array([[np.array([1, 2, 3]), 1]])
>>> a == b
```

will consistently return False (and in the future an error) even if the array in a and b was the same object.

The equality operator == will in the future raise errors like np.equal if broadcasting or element comparisons, etc. fails.

Comparison with arr == None will in the future do an elementwise comparison instead of just returning False. Code should be using arr is None.

All of these changes will give Deprecation- or FutureWarnings at this time.
C-API

The utility function npy_PyFile_Dup and npy_PyFile_DupClose are broken by the internal buffering python 3 applies to its file objects. To fix this two new functions npy_PyFile_Dup2 and npy_PyFile_DupClose2 are declared in npy_3kcompat.h and the old functions are deprecated. Due to the fragile nature of these functions it is recommended to instead use the python API when possible.

This change was already applied to the 1.8.1 release.

17.56 NumPy 1.8.2 Release Notes

This is a bugfix only release in the 1.8.x series.

17.56.1 Issues fixed

- gh-4836: partition produces wrong results for multiple selections in equal ranges
- gh-4656: Make fftpack._raw_fft threadsafe
- gh-4628: incorrect argument order to _copyto in in np.nanmax, np.nanmin
- gh-4642: Hold GIL for converting dtypes types with fields
- gh-4733: fix np.linalg.svd(b, compute_uv=False)
- gh-4853: avoid unaligned simd load on reductions on i386
- gh-4722: Fix seg fault converting empty string to object
- gh-4613: Fix lack of NULL check in array_richcompare
- gh-4774: avoid unaligned access for strided byteswap
- gh-650: Prevent division by zero when creating arrays from some buffers
- gh-4602: ifort has issues with optimization flag O2, use O1

17.57 NumPy 1.8.1 Release Notes

This is a bugfix only release in the 1.8.x series.

17.57.1 Issues fixed

- gh-4276: Fix mean, var, std methods for object arrays
- gh-4262: remove insecure mktemp usage
- gh-2385: absolute(complex(inf)) raises invalid warning in python3
- gh-4024: Sequence assignment doesn’t raise exception on shape mismatch
- gh-4027: Fix chunked reading of strings longer than BUFFERSIZE
- gh-4109: Fix object scalar return type of 0-d array indices
- gh-4018: fix missing check for memory allocation failure in ufuncs
• gh-4156: high order linalg.norm discards imaginary elements of complex arrays
• gh-4144: linalg: norm fails on longdouble, signed int
• gh-4094: fix NaN handling in _strided_to_strided_string_to_datetime
• gh-4051: fix uninitialized use in _strided_to_strided_string_to_datetime
• gh-4093: Loading compressed .npz file fails under Python 2.6.6
• gh-4138: segfault with non-native endian memoryview in python 3.4
• gh-4123: Fix missing NULL check in lexsort
• gh-4170: fix native-only long long check in memoryviews
• gh-4187: Fix large file support on 32 bit
• gh-4152: fromfile: ensure file handle positions are in sync in python3
• gh-4176: clang compatibility: Typos in conversion_utils
• gh-4223: Fetching a non-integer item caused array return
• gh-4197: fix minor memory leak in memoryview failure case
• gh-4206: fix build with single-threaded python
• gh-4220: add versionadded:: 1.8.0 to ufunc.at docstring
• gh-4267: improve handling of memory allocation failure
• gh-4267: fix use of capi without gil in ufunc.at
• gh-4261: Detect vendor versions of GNU Compilers
• gh-4253: IRR was returning nan instead of valid negative answer
• gh-4254: fix unnecessary byte order flag change for byte arrays
• gh-3263: numpy.random.shuffle clobbers mask of a MaskedArray
• gh-4270: np.random.shuffle not work with flexible dtypes
• gh-3173: Segmentation fault when ‘size’ argument to random.multinomial
• gh-2799: allow using unique with lists of complex
• gh-3504: fix linspace truncation for integer array scalar
• gh-4191: get_info('openblas') does not read libraries key
• gh-3348: Access violation in _descriptor_from_pep3118_format
• gh-3175: segmentation fault with numpy.array() from bytestring
• gh-4266: histogramdd - wrong result for entries very close to last boundary
• gh-4408: Fix stride_stricks.as_strided function for object arrays
• gh-4225: fix log1p and exp1 return for np.inf on windows compiler builds
• gh-4359: Fix infinite recursion in str.format of flex arrays
• gh-4145: Incorrect shape of broadcast result with the exponent operator
• gh-4483: Fix commutativity of {dot,multiply,inner}(scalar, matrix_of_objs)
• gh-4466: Delay npyiter size check when size may change
• gh-4485: Buffered stride was erroneously marked fixed
• gh-4354: byte_bounds fails with datetime dtypes
• gh-4486: segfault/error converting from/to high-precision datetime64 objects
• gh-4428: einsum(None, None, None, None) causes segfault
• gh-4134: uninitialized use for for size 1 object reductions

17.57.2 Changes

NDIter

When `NpyIter_RemoveAxis` is now called, the iterator range will be reset.

When a multi index is being tracked and an iterator is not buffered, it is possible to use `NpyIter_RemoveAxis`. In this case an iterator can shrink in size. Because the total size of an iterator is limited, the iterator may be too large before these calls. In this case its size will be set to -1 and an error issued not at construction time but when removing the multi index, setting the iterator range, or getting the next function.

This has no effect on currently working code, but highlights the necessity of checking for an error return if these conditions can occur. In most cases the arrays being iterated are as large as the iterator so that such a problem cannot occur.

Optional reduced verbosity for np.distutils

Set `numpy.distutils.system_info.system_info.verbosity = 0` and then calls to `numpy.distutils.system_info.get_info('blas_opt')` will not print anything on the output. This is mostly for other packages using numpy.distutils.

17.57.3 Deprecations

C-API

The utility function `npy_PyFile_Dup` and `npy_PyFile_DupClose` are broken by the internal buffering python 3 applies to its file objects. To fix this two new functions `npy_PyFile_Dup2` and `npy_PyFile_DupClose2` are declared in `npy_3kcompat.h` and the old functions are deprecated. Due to the fragile nature of these functions it is recommended to instead use the python API when possible.

17.58 NumPy 1.8.0 Release Notes

This release supports Python 2.6 -2.7 and 3.2 - 3.3.

17.58.1 Highlights

• New, no 2to3, Python 2 and Python 3 are supported by a common code base.
• New, gufuncs for linear algebra, enabling operations on stacked arrays.
• New, inplace fancy indexing for ufuncs with the .at method.
• New, `partition` function, partial sorting via selection for fast median.
• New, `nanmean`, `nanvar`, and `nanstd` functions skipping NaNs.
• New, full and full_like functions to create value initialized arrays.
• New, PyUFunc_RegisterLoopForDescr, better ufunc support for user dtypes.
• Numerous performance improvements in many areas.

17.58.2 Dropped Support

Support for Python versions 2.4 and 2.5 has been dropped,
Support for SCons has been removed.

17.58.3 Future Changes

The Datetime64 type remains experimental in this release. In 1.9 there will probably be some changes to make it more useable.
The diagonal method currently returns a new array and raises a FutureWarning. In 1.9 it will return a readonly view.
Multiple field selection from an array of structured type currently returns a new array and raises a FutureWarning. In 1.9 it will return a readonly view.
The numpy/oldnumeric and numpy/numarray compatibility modules will be removed in 1.9.

17.58.4 Compatibility notes

The doc/sphinxext content has been moved into its own github repository, and is included in numpy as a submodule. See
the instructions in doc/HOWTO_BUILD_DOCS.rst.txt for how to access the content.
The hash function of numpy.void scalars has been changed. Previously the pointer to the data was hashed as an integer.
Now, the hash function uses the tuple-hash algorithm to combine the hash functions of the elements of the scalar, but
only if the scalar is read-only.
Numpy has switched its build system to using ‘separate compilation’ by default. In previous releases this was supported,
but not default. This should produce the same results as the old system, but if you’re trying to do something compli-
cated like link numpy statically or using an unusual compiler, then it’s possible you will encounter problems. If so,
please file a bug and as a temporary workaround you can re-enable the old build system by exporting the shell variable
NPY_SEPARATE_COMPILATION=0.
For the AdvancedNew iterator the oa_ndim flag should now be -1 to indicate that no op_axes and itershape are
passed in. The oa_ndim == 0 case, now indicates a 0-D iteration and op_axes being NULL and the old usage is
deprecated. This does not effect the NpyIter_New or NpyIterMultiNew functions.
The functions nanargmin and nanargmax now return np.iinfo[‘intp’].min for the index in all-NaN slices. Previously the
functions would raise a ValueError for array returns and NaN for scalar returns.

17.58. NumPy 1.8.0 Release Notes
NPY_RELAXED_STRIDES_CHECKING

There is a new compile-time environment variable NPY_RELAXED_STRIDES_CHECKING. If this variable is set to 1, then numpy will consider more arrays to be C- or F-contiguous – for example, it becomes possible to have a column vector which is considered both C- and F-contiguous simultaneously. The new definition is more accurate, allows for faster code that makes fewer unnecessary copies, and simplifies numpy’s code internally. However, it may also break third-party libraries that make too-strong assumptions about the stride values of C- and F-contiguous arrays. (It is also currently known that this breaks Cython code using memoryviews, which will be fixed in Cython.) THIS WILL BECOME THE DEFAULT IN A FUTURE RELEASE, SO PLEASE TEST YOUR CODE NOW AGAINST NUMPY BUILT WITH:

```
NPY_RELAXED_STRIDES_CHECKING=1 python setup.py install
```

You can check whether NPY_RELAXED_STRIDES_CHECKING is in effect by running:

```
np.ones(((10, 1), order="C").flags.f_contiguous
```

This will be True if relaxed strides checking is enabled, and False otherwise. The typical problem we’ve seen so far is C code that works with C-contiguous arrays, and assumes that the itemsize can be accessed by looking at the last element in the PyArray_STRIDES(arr) array. When relaxed strides are in effect, this is not true (and in fact, it never was true in some corner cases). Instead, use PyArray_ITEMSIZE(arr).

For more information check the “Internal memory layout of an ndarray” section in the documentation.

Binary operations with non-arrays as second argument

Binary operations of the form `<array-or-subclass> * <non-array-subclass>` where `<non-array-subclass>` declares an __array_priority__ higher than that of `<array-or-subclass>` will now unconditionally return `NotImplemented`, giving `<non-array-subclass>` a chance to handle the operation. Previously, `NotImplemented` would only be returned if `<non-array-subclass>` actually implemented the reversed operation, and after a (potentially expensive) array conversion of `<non-array-subclass>` had been attempted. (bug, pull request)

Function median used with overwrite_input only partially sorts array

If `median` is used with `overwrite_input` option the input array will now only be partially sorted instead of fully sorted.

Fix to financial.npv

The `npv` function had a bug. Contrary to what the documentation stated, it summed from indexes 1 to `M` instead of from 0 to `M - 1`. The fix changes the returned value. The `mirr` function called the `npv` function, but worked around the problem, so that was also fixed and the return value of the `mirr` function remains unchanged.

Runtime warnings when comparing NaN numbers

Comparing NaN floating point numbers now raises the invalid runtime warning. If a NaN is expected the warning can be ignored using np.errstate. E.g.:

```
with np.errstate(invalid='ignore'):
    operation()
```
17.58.5 New Features

Support for linear algebra on stacked arrays

The gufunc machinery is now used for np.linalg, allowing operations on stacked arrays and vectors. For example:

```python
>>> a
array([[ 1.,  1.],
       [ 0.,  1.]],
       [[ 1.,  1.],
       [ 0.,  1.]]))

>>> np.linalg.inv(a)
array([[ 1., -1.],
       [ 0.,  1.]],
       [[ 1., -1.],
       [ 0.,  1.]]))
```

In place fancy indexing for ufuncs

The function `at` has been added to ufunc objects to allow in place ufuncs with no buffering when fancy indexing is used. For example, the following will increment the first and second items in the array, and will increment the third item twice:
```
numpy.add.at(arr, [0, 1, 2, 2], 1)
```

This is what many have mistakenly thought `arr[[0, 1, 2, 2]] += 1` would do, but that does not work as the incremented value of `arr[2]` is simply copied into the third slot in `arr` twice, not incremented twice.

New functions `partition` and `argpartition`

New functions to partially sort arrays via a selection algorithm.

A `partition` by index k moves the k smallest element to the front of an array. All elements before k are then smaller or equal than the value in position k and all elements following k are then greater or equal than the value in position k. The ordering of the values within these bounds is undefined. A sequence of indices can be provided to sort all of them into their sorted position at once iterative partitioning. This can be used to efficiently obtain order statistics like median or percentiles of samples. `partition` has a linear time complexity of $O(n)$ while a full sort has $O(n \log(n))$.

New functions `nanmean`, `nanvar` and `nanstd`

New nan aware statistical functions are added. In these functions the results are what would be obtained if nan values were omitted from all computations.
New functions *full and full_like*

New convenience functions to create arrays filled with a specific value; complementary to the existing *zeros* and *zeros_like* functions.

IO compatibility with large files

Large NPZ files >2GB can be loaded on 64-bit systems.

Building against OpenBLAS

It is now possible to build numpy against OpenBLAS by editing site.cfg.

New constant

Euler’s constant is now exposed in numpy as euler_gamma.

New modes for qr

New modes ‘complete’, ‘reduced’, and ‘raw’ have been added to the qr factorization and the old ‘full’ and ‘economic’ modes are deprecated. The ‘reduced’ mode replaces the old ‘full’ mode and is the default as was the ‘full’ mode, so backward compatibility can be maintained by not specifying the mode.

The ‘complete’ mode returns a full dimensional factorization, which can be useful for obtaining a basis for the orthogonal complement of the range space. The ‘raw’ mode returns arrays that contain the Householder reflectors and scaling factors that can be used in the future to apply q without needing to convert to a matrix. The ‘economic’ mode is simply deprecated, there isn’t much use for it and it isn’t any more efficient than the ‘raw’ mode.

New invert argument to in1d

The function in1d now accepts a *invert* argument which, when True, causes the returned array to be inverted.

Advanced indexing using np.newaxis

It is now possible to use np.newaxis/None together with index arrays instead of only in simple indices. This means that array[np.newaxis, [0, 1]] will now work as expected and select the first two rows while prepending a new axis to the array.

C-API

New ufuncs can now be registered with builtin input types and a custom output type. Before this change, NumPy wouldn’t be able to find the right ufunc loop function when the ufunc was called from Python, because the ufunc loop signature matching logic wasn’t looking at the output operand type. Now the correct ufunc loop is found, as long as the user provides an output argument with the correct output type.
runtests.py

A simple test runner script `runtests.py` was added. It also builds Numpy via `setup.py build` and can be used to run tests easily during development.

17.58.6 Improvements

IO performance improvements

Performance in reading large files was improved by chunking (see also IO compatibility).

Performance improvements to `pad`

The `pad` function has a new implementation, greatly improving performance for all inputs except `mode=` (retained for backwards compatibility). Scaling with dimensionality is dramatically improved for rank ≥ 4.

Performance improvements to `isnan`, `isinf`, `isfinite` and `byteswap`

`isnan`, `isinf`, `isfinite` and `byteswap` have been improved to take advantage of compiler builtins to avoid expensive calls to libc. This improves performance of these operations by about a factor of two on gnu libc systems.

Performance improvements via SSE2 vectorization

Several functions have been optimized to make use of SSE2 CPU SIMD instructions.

- **Float32 and float64:**
 - base math (`add`, `subtract`, `divide`, `multiply`)
 - `sqrt`
 - `minimum/maximum`
 - `absolute`
- **Bool:**
 - `logical_or`
 - `logical_and`
 - `logical_not`

This improves performance of these operations up to 4x/2x for float32/float64 and up to 10x for bool depending on the location of the data in the CPU caches. The performance gain is greatest for in-place operations.

In order to use the improved functions the SSE2 instruction set must be enabled at compile time. It is enabled by default on x86_64 systems. On x86_32 with a capable CPU it must be enabled by passing the appropriate flag to the CFLAGS build variable (`-msse2` with gcc).
Performance improvements to \textit{median}

\textit{median} is now implemented in terms of \textit{partition} instead of \textit{sort} which reduces its time complexity from $O(n \log(n))$ to $O(n)$. If used with the \textit{overwrite_input} option the array will now only be partially sorted instead of fully sorted.

Overrideable operand flags in ufunc C-API

When creating a ufunc, the default ufunc operand flags can be overridden via the new \texttt{op_flags} attribute of the ufunc object. For example, to set the operand flag for the first input to read/write:

\begin{verbatim}
PyObject *ufunc = PyUFunc_FromFuncAndData(…); ufunc->op_flags[0] = NPY_ITER_READWRITE;
\end{verbatim}

This allows a ufunc to perform an operation in place. Also, global nditer flags can be overridden via the new \texttt{iter_flags} attribute of the ufunc object. For example, to set the reduce flag for a ufunc:

\begin{verbatim}
ufunc->iter_flags = NPY_ITER_REDUCE_OK;
\end{verbatim}

17.58.7 Changes

General

The function \texttt{np.take} now allows 0-d arrays as indices.

The separate compilation mode is now enabled by default.

Several changes to \texttt{np.insert} and \texttt{np.delete}:

- Previously, negative indices and indices that pointed past the end of the array were simply ignored. Now, this will raise a Future or Deprecation Warning. In the future they will be treated like normal indexing treats them – negative indices will wrap around, and out-of-bound indices will generate an error.

- Previously, boolean indices were treated as if they were integers (always referring to either the 0th or 1st item in the array). In the future, they will be treated as masks. In this release, they raise a FutureWarning warning of this coming change.

- In Numpy 1.7. \texttt{np.insert} already allowed the syntax \texttt{np.insert(arr, 3, [1,2,3])} to insert multiple items at a single position. In Numpy 1.8. this is also possible for \texttt{np.insert(arr, [3], [1, 2, 3])}.

Padded regions from \texttt{np.pad} are now correctly rounded, not truncated.

C-API Array Additions

Four new functions have been added to the array C-API.

- \texttt{PyArray_Partition}

- \texttt{PyArray_ArgPartition}

- \texttt{PyArray>SelectkindConverter}

- \texttt{PyDataMem_NEW_ZEROED}
C-API Ufunc Additions

One new function has been added to the ufunc C-API that allows to register an inner loop for user types using the descr.

- PyUFunc_RegisterLoopForDescr

C-API Developer Improvements

The PyArray_Type instance creation function `tp_new` now uses `tp_basicsize` to determine how much memory to allocate. In previous releases only `sizeof(PyArrayObject)` bytes of memory were allocated, often requiring C-API subtypes to reimplement `tp_new`.

17.58.8 Deprecations

The ‘full’ and ‘economic’ modes of qr factorization are deprecated.

General

The use of non-integer for indices and most integer arguments has been deprecated. Previously float indices and function arguments such as axes or shapes were truncated to integers without warning. For example `arr.reshape(3., -1)` or `arr[0.]` will trigger a deprecation warning in NumPy 1.8., and in some future version of NumPy they will raise an error.

17.58.9 Authors

This release contains work by the following people who contributed at least one patch to this release. The names are in alphabetical order by first name:

- Adam Ginsburg +
- Adam Griffiths +
- Alexander Belopolsky +
- Alex Barth +
- Alex Ford +
- Andreas Hilboll +
- Andreas Kloeckner +
- Andreas Schwab +
- Andrew Horton +
- agriffing +
- Arink Verma +
- Bago Amirbekian +
- Bartosz Telenczuk +
- bebert218 +
- Benjamin Root +
• Bill Spotz +
• Bradley M. Froehle
• Carwyn Pelley +
• Charles Harris
• Chris
• Christian Brueffer +
• Christoph Dann +
• Christoph Gohlke
• Dan Hipschman +
• Daniel +
• Dan Miller +
• daveydave400 +
• David Cournapeau
• David Warde-Farley
• Denis Laxalde
• dmueller +
• Edward Catmur +
• Egor Zindy +
• endolith
• Eric Firing
• Eric Fode
• Eric Moore +
• Eric Price +
• Fazlul Shahriar +
• Félix Hartmann +
• Fernando Perez
• Frank B +
• Frank Breitling +
• Frederic
• Gabriel
• GaelVaroquaux
• Guillaume Gay +
• Han Genuit
• HaroldMills +
• hklemm +
• jamestwebber +
• Jason Madden +
• Jay Bourque
• jeromekelleher +
• Jesús Gómez +
• jmozi +
• jnothman +
• Johannes Schönberger +
• John Benediktsson +
• John Salvatier +
• John Stechschulte +
• Jonathan Waltman +
• Joon Ro +
• Jos de Kloé +
• Joseph Martinot-Lagarde +
• Josh Warner (Mac) +
• Jostein Bø Fløystad +
• Juan Luis Cano Rodríguez +
• Julian Taylor +
• Julien Phalip +
• K.-Michael Aye +
• Kumar Appaiah +
• Lars Buitinck
• Leon Weber +
• Luis Pedro Coelho
• Marcin Juszkiewicz
• Mark Wiebe
• Marten van Kerkwijk +
• Martin Baëumli +
• Martin Spacek
• Martin Teichmann +
• Matt Davis +
• Matthew Brett
• Maximilian Albert +
• m-d-w +
• Michael Droettboom
• mwtoews +
A total of 119 people contributed to this release. People with a “+” by their names contributed a patch for the first time.
17.59 NumPy 1.7.2 Release Notes

This is a bugfix only release in the 1.7.x series. It supports Python 2.4 - 2.7 and 3.1 - 3.3 and is the last series that supports Python 2.4 - 2.5.

17.59.1 Issues fixed

- gh-3153: Do not reuse nditer buffers when not filled enough
- gh-3192: f2py crashes with UnboundLocalError exception
- gh-442: Concatenate with axis=None now requires equal number of array elements
- gh-2485: Fix for astype('S') string truncate issue
- gh-3312: bug in count_nonzero
- gh-2684: numpy.ma.average casts complex to float under certain conditions
- gh-2403: masked array with named components does not behave as expected
- gh-2495: np.ma.compress treated inputs in wrong order
- gh-576: add __len__ method to ma.mvoid
- gh-3364: reduce performance regression of mmap slicing
- gh-3421: fix non-swapping strided copies in GetStridedCopySwap
- gh-3373: fix small leak in datetime metadata initialization
- gh-2791: add platform specific python include directories to search paths
- gh-3168: fix undefined function and add integer divisions
- gh-3301: memmap does not work with TemporaryFile in python3
- gh-3057: distutils.misc_util.get_shared_lib_extension returns wrong debug extension
- gh-3472: add module extensions to load_library search list
- gh-3324: Make comparison function (gt, ge, …) respect __array_priority__
- gh-3497: np.insert behaves incorrectly with argument ‘axis=-1’
- gh-3541: make preprocessor tests consistent in halffloat.c
- gh-3458: array_ass_boolean_subscript() writes ‘non-existent’ data to array
- gh-2892: Regression in ufunc.reduceat with zero-sized index array
- gh-3608: Regression when filling struct from tuple
- gh-3701: add support for Python 3.4 ast.NameConstant
- gh-3712: do not assume that GIL is enabled in xerbla
- gh-3712: fix LAPACK error handling in lapack_litemodule
- gh-3728: f2py fix decref on wrong object
- gh-3743: Hash changed signature in Python 3.3
- gh-3793: scalar int hashing broken on 64 bit python3
- gh-3160: SandboxViolation easyinstalling 1.7.0 on Mac OS X 10.8.3
• gh-3871: npy_math.h has invalid isnf for Solaris with SUNWspro12.2
• gh-2561: Disable check for oldstyle classes in python3
• gh-3900: Ensure NotImplemented is passed on in MaskedArray ufunc’s
• gh-2052: del scalar subscript causes segfault
• gh-3832: fix a few uninitialized uses and memleaks
• gh-3971: f2py changed string.lowercase to string.ascii_lowercase for python3
• gh-3480: numpy.random.binomial raised ValueError for n == 0
• gh-3992: hypot(inf, 0) shouldn’t raise a warning, hypot(inf, inf) wrong result
• gh-4018: Segmentation fault dealing with very large arrays
• gh-4094: fix NaT handling in _strided_to_strided_string_to_datetime
• gh-4051: fix uninitialized use in _strided_to_strided_string_to_datetime
• gh-4123: lexsort segfault
• gh-4141: Fix a few issues that show up with python 3.4b1

17.60 NumPy 1.7.1 Release Notes

This is a bugfix only release in the 1.7.x series. It supports Python 2.4 - 2.7 and 3.1 - 3.3 and is the last series that supports Python 2.4 - 2.5.

17.60.1 Issues fixed

• gh-2973: Fix / is printed during numpy.test()
• gh-2983: BUG: gh-2969: Backport memory leak fix 80b3a34.
• gh-3007: Backport gh-3006
• gh-2984: Backport fix complex polynomial fit
• gh-2982: BUG: Make nansum work with booleans.
• gh-2985: Backport large sort fixes
• gh-3039: Backport object take
• gh-3105: Backport nditer fix op axes initialization
• gh-3108: BUG: npy-pkg-config ini files were missing after Bento build.
• gh-3124: BUG: PyArray_LexSort allocates too much temporary memory.
• gh-3131: BUG: Exported f2py_size symbol prevents linking multiple f2py modules.
• gh-3117: Backport gh-2992
• gh-3135: DOC: Add mention of PyArray_SetBaseObject stealing a reference
• gh-3134: DOC: Fix typo in fft docs (the indexing variable is ‘m’, not ‘n’).
• gh-3136: Backport #3128
17.61 NumPy 1.7.0 Release Notes

This release includes several new features as well as numerous bug fixes and refactorings. It supports Python 2.4 - 2.7 and 3.1 - 3.3 and is the last release that supports Python 2.4 - 2.5.

17.61.1 Highlights

- `where=` parameter to ufuncs (allows the use of boolean arrays to choose where a computation should be done)
- `vectorize` improvements (added ‘excluded’ and ‘cache’ keyword, general cleanup and bug fixes)
- `numpy.random.choice` (random sample generating function)

17.61.2 Compatibility notes

In a future version of numpy, the functions `np.diag`, `np.diagonal`, and the diagonal method of ndarrays will return a view onto the original array, instead of producing a copy as they do now. This makes a difference if you write to the array returned by any of these functions. To facilitate this transition, numpy 1.7 produces a FutureWarning if it detects that you may be attempting to write to such an array. See the documentation for `np.diagonal` for details.

Similar to `np.diagonal` above, in a future version of numpy, indexing a record array by a list of field names will return a view onto the original array, instead of producing a copy as they do now. As with `np.diagonal`, numpy 1.7 produces a FutureWarning if it detects that you may be attempting to write to such an array. See the documentation for array indexing for details.

In a future version of numpy, the default casting rule for UFunc out= parameters will be changed from ‘unsafe’ to ‘same_kind’. (This also applies to in-place operations like a += b, which is equivalent to `np.add(a, b, out=a).`) Most usages which violate the ‘same_kind’ rule are likely bugs, so this change may expose previously undetected errors in projects that depend on NumPy. In this version of numpy, such usages will continue to succeed, but will raise a DeprecationWarning.

Full-array boolean indexing has been optimized to use a different, optimized code path. This code path should produce the same results, but any feedback about changes to your code would be appreciated.

Attempting to write to a read-only array (one with `arr.flags.writeable` set to `False`) used to raise either a `RuntimeError`, `ValueError`, or `TypeError` inconsistently, depending on which code path was taken. It now consistently raises a `ValueError`.

The `<ufunc>.reduce` functions evaluate some reductions in a different order than in previous versions of NumPy, generally providing higher performance. Because of the nature of floating-point arithmetic, this may subtly change some results, just as linking NumPy to a different BLAS implementations such as MKL can.

If upgrading from 1.5, then generally in 1.6 and 1.7 there have been substantial code added and some code paths altered, particularly in the areas of type resolution and buffered iteration over universal functions. This might have an impact on your code particularly if you relied on accidental behavior in the past.
17.61.3 New features

Reduction Ufuncs Generalize axis= Parameter

Any ufunc.reduce function call, as well as other reductions like sum, prod, any, all, max and min support the ability to choose a subset of the axes to reduce over. Previously, one could say axis=None to mean all the axes or axis=# to pick a single axis. Now, one can also say axis=(#, #) to pick a list of axes for reduction.

Reduction Ufuncs New keepdims= Parameter

There is a new keepdims= parameter, which if set to True, doesn’t throw away the reduction axes but instead sets them to have size one. When this option is set, the reduction result will broadcast correctly to the original operand which was reduced.

Datetime support

Note: The datetime API is experimental in 1.7.0, and may undergo changes in future versions of NumPy.

There have been a lot of fixes and enhancements to datetime64 compared to NumPy 1.6:

- the parser is quite strict about only accepting ISO 8601 dates, with a few convenience extensions
- converts between units correctly
- datetime arithmetic works correctly
- business day functionality (allows the datetime to be used in contexts where only certain days of the week are valid)

The notes in doc/source/reference/arrays.datetime.rst (also available in the online docs at arrays.datetime.html) should be consulted for more details.

Custom formatter for printing arrays

See the new formatter parameter of the numpy.set_printoptions function.

New function numpy.random.choice

A generic sampling function has been added which will generate samples from a given array-like. The samples can be with or without replacement, and with uniform or given non-uniform probabilities.

New function isclose

Returns a boolean array where two arrays are element-wise equal within a tolerance. Both relative and absolute tolerance can be specified.
Preliminary multi-dimensional support in the polynomial package

Axis keywords have been added to the integration and differentiation functions and a tensor keyword was added to the evaluation functions. These additions allow multi-dimensional coefficient arrays to be used in those functions. New functions for evaluating 2-D and 3-D coefficient arrays on grids or sets of points were added together with 2-D and 3-D pseudo-Vandermonde matrices that can be used for fitting.

Ability to pad rank-n arrays

A pad module containing functions for padding n-dimensional arrays has been added. The various private padding functions are exposed as options to a public ‘pad’ function. Example:

```
pad(a, 5, mode='mean')
```

Current modes are constant, edge, linear_ramp, maximum, mean, median, minimum, reflect, symmetric, wrap, and <function>.

New argument to searchsorted

The function searchsorted now accepts a ‘sorter’ argument that is a permutation array that sorts the array to search.

Build system

Added experimental support for the AArch64 architecture.

C API

New function PyArray_RequireWriteable provides a consistent interface for checking array writeability – any C code which works with arrays whose WRITEABLE flag is not known to be True a priori, should make sure to call this function before writing.

NumPy C Style Guide added (doc/C_STYLE_GUIDE.rst.txt).

17.61.4 Changes

General

The function np.concatenate tries to match the layout of its input arrays. Previously, the layout did not follow any particular reason, and depended in an undesirable way on the particular axis chosen for concatenation. A bug was also fixed which silently allowed out of bounds axis arguments.

The ufuncs logical_or, logical_and, and logical_not now follow Python’s behavior with object arrays, instead of trying to call methods on the objects. For example the expression (3 and ‘test’) produces the string ‘test’, and now np.logical_and(np.array(3, ‘O’), np.array(‘test’, ‘O’)) produces ‘test’ as well.

The .base attribute on ndarrays, which is used on views to ensure that the underlying array owning the memory is not deallocated prematurely, now collapses out references when you have a view-of-a-view. For example:

```
a = np.arange(10)
b = a[1:]
c = b[1:]
```
In numpy 1.6, `c.base` is `b`, and `c.base.base` is `a`. In numpy 1.7, `c.base` is `a`.

To increase backwards compatibility for software which relies on the old behaviour of `base`, we only 'skip over' objects which have exactly the same type as the newly created view. This makes a difference if you use `ndarray` subclasses. For example, if we have a mix of `ndarray` and `matrix` objects which are all views on the same original `ndarray`:

```python
a = np.arange(10)
b = np.asmatrix(a)
c = b[0, 1:]
d = c[0, 1:]
```

then `d.base` will be `b`. This is because `d` is a `matrix` object, and so the collapsing process only continues so long as it encounters other `matrix` objects. It considers `c`, `b`, and `a` in that order, and `b` is the last entry in that list which is a `matrix` object.

Casting Rules

Casting rules have undergone some changes in corner cases, due to the NA-related work. In particular for combinations of scalar+scalar:

- the `longlong` type (`q`) now stays `longlong` for operations with any other number (`b h i l q p B H I`), previously it was cast as `int_(l)`. The `ulonglong` type (`Q`) now stays as `ulonglong` instead of `uint (L)``.

- the `timedelta64` type (`m`) can now be mixed with any integer type (`b h i l q p B H I L Q P`), previously it raised `TypeError`.

For array + scalar, the above rules just broadcast except the case when the array and scalars are unsigned/signed integers, then the result gets converted to the array type (of possibly larger size) as illustrated by the following examples:

```python
>>> (np.zeros((2,), dtype=np.uint8) + np.int16(257)).dtype
dtype('uint16')

>>> (np.zeros((2,), dtype=np.int8) + np.uint16(257)).dtype
dtype('int16')

>>> (np.zeros((2,), dtype=np.int16) + np.uint32(2**17)).dtype
dtype('int32')
```

Whether the size gets increased depends on the size of the scalar, for example:

```python
>>> (np.zeros((2,), dtype=np.uint8) + np.int16(255)).dtype
dtype('uint8')

>>> (np.zeros((2,), dtype=np.uint8) + np.int16(256)).dtype
dtype('uint16')
```

Also a `complex128` scalar + `float32` array is cast to `complex64`.

In NumPy 1.7 the `datetime64` type (`M`) must be constructed by explicitly specifying the type as the second argument (e.g. `np.datetime64(2000, 'Y')`).
17.61.5 Deprecations

General

Specifying a custom string formatter with a _format array attribute is deprecated. The new formatter keyword in numpy.set_printoptions or numpy.array2string can be used instead.

The deprecated imports in the polynomial package have been removed.
concatenate now raises DepractionWarning for 1D arrays if axis != 0. Versions of numpy < 1.7.0 ignored axis argument value for 1D arrays. We allow this for now, but in due course we will raise an error.

C-API

Direct access to the fields of PyArrayObject* has been deprecated. Direct access has been recommended against for many releases. Expect similar deprecations for PyArray_Descr* and other core objects in the future as preparation for NumPy 2.0.

The macros in old_defines.h are deprecated and will be removed in the next major release (>= 2.0). The sed script tools/replace_old_macros.sed can be used to replace these macros with the newer versions.

You can test your code against the deprecated C API by adding a line composed of #define NPY_NO_DEPRECATED_API and the target version number, such as NPY_1_7_API_VERSION, before including any NumPy headers.

The NPY_CHAR member of the NPY_TYPES enum is deprecated and will be removed in NumPy 1.8. See the discussion at gh-2801 for more details.

17.62 NumPy 1.6.2 Release Notes

This is a bugfix release in the 1.6.x series. Due to the delay of the NumPy 1.7.0 release, this release contains far more fixes than a regular NumPy bugfix release. It also includes a number of documentation and build improvements.

17.62.1 Issues fixed

numpy.core

- #2063: make unique() return consistent index
- #1138: allow creating arrays from empty buffers or empty slices
- #1446: correct note about correspondence vstack and concatenate
- #1149: make argmin() work for datetime
- #1672: fix allclose() to work for scalar inf
- #1747: make np.median() work for 0-D arrays
- #1776: make complex division by zero to yield inf properly
- #1675: add scalar support for the format() function
- #1905: explicitly check for NaNs in allclose()
- #1952: allow floating ddof in std() and var()
• #1948: fix regression for indexing chararrays with empty list
• #2017: fix type hashing
• #2046: deleting array attributes causes segfault
• #2033: a**2.0 has incorrect type
• #2045: make attribute/iterator_element deletions not segfault
• #2021: fix segfault in searchsorted()
• #2073: fix float16 __array_interface__ bug

numpy.lib

• #2048: break reference cycle in NpzFile
• #1573: savetxt() now handles complex arrays
• #1387: allow bincount() to accept empty arrays
• #1899: fixed histogramdd() bug with empty inputs
• #1793: fix failing npyio test under py3k
• #1936: fix extra nesting for subarray dtypes
• #1848: make tril/triu return the same dtype as the original array
• #1918: use Py_TYPE to access ob_type, so it works also on Py3

numpy.distutils

• #1261: change compile flag on AIX from -O5 to -O3
• #1377: update HP compiler flags
• #1383: provide better support for C++ code on HPUX
• #1857: fix build for py3k + pip
• BLD: raise a clearer warning in case of building without cleaning up first
• BLD: follow build_ext coding convention in build_clib
• BLD: fix up detection of Intel CPU on OS X in system_info.py
• BLD: add support for the new X11 directory structure on Ubuntu & co.
• BLD: add uf sparse to the libraries search path.
• BLD: add ‘pgfortran’ as a valid compiler in the Portland Group
• BLD: update version match regexp for IBM AIX Fortran compilers.
NumPy User Guide, Release 1.20.0

numpy.random

- BUG: Use npy_intp instead of long in mtrand

17.62.2 Changes

numpy.f2py

- ENH: Introduce new options extra_f77_compiler_args and extra_f90_compiler_args
- BLD: Improve reporting of fcompiler value
- BUG: Fix f2py test_kind.py test

numpy.poly

- ENH: Add some tests for polynomial printing
- ENH: Add companion matrix functions
- DOC: Rearrange the polynomial documents
- BUG: Fix up links to classes
- DOC: Add version added to some of the polynomial package modules
- DOC: Document xxfit functions in the polynomial package modules
- BUG: The polynomial convenience classes let different types interact
- DOC: Document the use of the polynomial convenience classes
- DOC: Improve numpy reference documentation of polynomial classes
- ENH: Improve the computation of polynomials from roots
- STY: Code cleanup in polynomial [*]fromroots functions
- DOC: Remove references to cast and NA, which were added in 1.7

17.63 NumPy 1.6.1 Release Notes

This is a bugfix only release in the 1.6.x series.

17.63.1 Issues Fixed

- #1834: einsum fails for specific shapes
- #1837: einsum throws nan or freezes python for specific array shapes
- #1838: object <-> structured type arrays regression
- #1851: regression for SWIG based code in 1.6.0
- #1863: Buggy results when operating on array copied with astype()
- #1870: Fix corner case of object array assignment
- #1843: Py3k: fix error with recarray
17.64 NumPy 1.6.0 Release Notes

This release includes several new features as well as numerous bug fixes and improved documentation. It is backward compatible with the 1.5.0 release, and supports Python 2.4 - 2.7 and 3.1 - 3.2.

17.64.1 Highlights

• Re-introduction of datetime dtype support to deal with dates in arrays.
• A new 16-bit floating point type.
• A new iterator, which improves performance of many functions.

17.64.2 New features

New 16-bit floating point type

This release adds support for the IEEE 754-2008 binary16 format, available as the data type `numpy.half`. Within Python, the type behaves similarly to `float` or `double`, and C extensions can add support for it with the exposed half-float API.

New iterator

A new iterator has been added, replacing the functionality of the existing iterator and multi-iterator with a single object and API. This iterator works well with general memory layouts different from C or Fortran contiguous, and handles both standard NumPy and customized broadcasting. The buffering, automatic data type conversion, and optional output parameters, offered by ufuncs but difficult to replicate elsewhere, are now exposed by this iterator.

Legendre, Laguerre, Hermite, HermiteE polynomials in numpy.polynomial

Extend the number of polynomials available in the polynomial package. In addition, a new `window` attribute has been added to the classes in order to specify the range the domain maps to. This is mostly useful for the Laguerre, Hermite, and HermiteE polynomials whose natural domains are infinite and provides a more intuitive way to get the correct mapping of values without playing unnatural tricks with the domain.
Fortran assumed shape array and size function support in `numpy.f2py`

F2py now supports wrapping Fortran 90 routines that use assumed shape arrays. Before such routines could be called from Python but the corresponding Fortran routines received assumed shape arrays as zero length arrays which caused unpredictable results. Thanks to Lorenz Hüdepohl for pointing out the correct way to interface routines with assumed shape arrays.

In addition, f2py supports now automatic wrapping of Fortran routines that use two argument `size` function in dimension specifications.

Other new functions

- `numpy.ravel_multi_index`: Converts a multi-index tuple into an array of flat indices, applying boundary modes to the indices.
- `numpy.einsum`: Evaluates the Einstein summation convention. Using the Einstein summation convention, many common multi-dimensional array operations can be represented in a simple fashion. This function provides a way compute such summations.
- `numpy.count_nonzero`: Counts the number of non-zero elements in an array.
- `numpy.result_type` and `numpy.min_scalar_type`: These functions expose the underlying type promotion used by the ufuncs and other operations to determine the types of outputs. These improve upon the `numpy.common_type` and `numpy.mintypecode` which provide similar functionality but do not match the ufunc implementation.

17.64.3 Changes

default error handling

The default error handling has been change from `print` to `warn` for all except for `underflow`, which remains as `ignore`.

numpy.distutils

Several new compilers are supported for building Numpy: the Portland Group Fortran compiler on OS X, the PathScale compiler suite and the 64-bit Intel C compiler on Linux.

numpy.testing

The testing framework gained `numpy.testing.assert_allclose`, which provides a more convenient way to compare floating point arrays than `assert_almost_equal`, `assert_approx_equal` and `assert_array_almost_equal`.

17.64. NumPy 1.6.0 Release Notes
C API

In addition to the APIs for the new iterator and half data type, a number of other additions have been made to the C API. The type promotion mechanism used by ufuncs is exposed via PyArray_PromoteTypes, PyArray_ResultType, and PyArray_MinScalarType. A new enumeration NPY_CASTING has been added which controls what types of casts are permitted. This is used by the new functions PyArray_CanCastArrayTo and PyArray_CanCastTypeTo. A more flexible way to handle conversion of arbitrary python objects into arrays is exposed by PyArray_GetArrayParamsFromObject.

17.64.4 Deprecated features

The “normed” keyword in numpy.histogram is deprecated. Its functionality will be replaced by the new “density” keyword.

17.64.5 Removed features

numpy.fft

The functions refft, refft2, refftn, irefft, irefft2, irefftn, which were aliases for the same functions without the ‘e’ in the name, were removed.

numpy.memmap

The sync() and close() methods of memmap were removed. Use flush() and “del memmap” instead.

numpy.lib

The deprecated functions numpy.unique1d, numpy.setmember1d, numpy.intersect1d_nu and numpy.lib.ufunclike.log2 were removed.

numpy.ma

Several deprecated items were removed from the numpy.ma module:

```
* `numpy.ma.MaskedArray`` "raw_data" method
* `numpy.ma.MaskedArray`` constructor "flag" keyword
* `numpy.ma.make_mask`` "flag" keyword
* `numpy.ma.allclose`` "fill_value" keyword
```

numpy.distutils

The numpy.get_numpy_include function was removed, use numpy.get_include instead.
17.65 NumPy 1.5.0 Release Notes

17.65.1 Highlights

Python 3 compatibility

This is the first NumPy release which is compatible with Python 3. Support for Python 3 and Python 2 is done from a single code base. Extensive notes on changes can be found at https://web.archive.org/web/20100814160313/http://projects.scipy.org/numpy/browser/trunk/doc/Py3K.txt.

Note that the Numpy testing framework relies on nose, which does not have a Python 3 compatible release yet. A working Python 3 branch of nose can be found at https://web.archive.org/web/20100817112505/http://bitbucket.org/jpellerin/nose3/ however.

Porting of SciPy to Python 3 is expected to be completed soon.

PEP 3118 compatibility

The new buffer protocol described by PEP 3118 is fully supported in this version of Numpy. On Python versions >= 2.6 Numpy arrays expose the buffer interface, and array(), asarray() and other functions accept new-style buffers as input.

17.65.2 New features

Warning on casting complex to real

Numpy now emits a numpy.ComplexWarning when a complex number is cast into a real number. For example:

```python
>>> x = np.array([1, 2, 3])
>>> x[:2] = np.array([1+2j, 1-2j])
```

```
ComplexWarning: Casting complex values to real discards the imaginary part
```

The cast indeed discards the imaginary part, and this may not be the intended behavior in all cases, hence the warning. This warning can be turned off in the standard way:

```python
>>> import warnings
>>> warnings.simplefilter("ignore", np.ComplexWarning)
```

Dot method for ndarrays

Ndarrays now have the dot product also as a method, which allows writing chains of matrix products as

```python
>>> a.dot(b).dot(c)
```

instead of the longer alternative

```python
>>> np.dot(a, np.dot(b, c))
```
linalg.slogdet function

The **slogdet** function returns the sign and logarithm of the determinant of a matrix. Because the determinant may involve the product of many small/large values, the result is often more accurate than that obtained by simple multiplication.

new header

The new header file `ndarraytypes.h` contains the symbols from `ndarrayobject.h` that do not depend on the `PY_ARRAY_UNIQUE_SYMBOL` and `NO_IMPORT/_ARRAY` macros. Broadly, these symbols are types, typedefs, and enumerations; the array function calls are left in `ndarrayobject.h`. This allows users to include array-related types and enumerations without needing to concern themselves with the macro expansions and their side-effects.

17.65.3 Changes

polynomial.polynomial

- The **polyint** and **polyder** functions now check that the specified number integrations or derivations is a non-negative integer. The number 0 is a valid value for both functions.

- A degree method has been added to the **Polynomial** class.

- A trimdeg method has been added to the **Polynomial** class. It operates like `truncate` except that the argument is the desired degree of the result, not the number of coefficients.

- **Polynomial.fit** now uses `None` as the default domain for the fit. The default **Polynomial** domain can be specified by using `[]` as the domain value.

- Weights can be used in both **polyfit** and **Polynomial.fit**

- A linspace method has been added to the **Polynomial** class to ease plotting.

- The **polymulx** function was added.

polynomial.chebyshev

- The **chebint** and **chebder** functions now check that the specified number integrations or derivations is a non-negative integer. The number 0 is a valid value for both functions.

- A degree method has been added to the **Chebyshev** class.

- A trimdeg method has been added to the **Chebyshev** class. It operates like `truncate` except that the argument is the desired degree of the result, not the number of coefficients.

- **Chebyshev.fit** now uses `None` as the default domain for the fit. The default **Chebyshev** domain can be specified by using `[]` as the domain value.

- Weights can be used in both **chebfit** and **Chebyshev.fit**

- A linspace method has been added to the **Chebyshev** class to ease plotting.

- The **chebmulx** function was added.

- Added functions for the **Chebyshev** points of the first and second kind.
histogram

After a two year transition period, the old behavior of the histogram function has been phased out, and the “new” keyword has been removed.

correlate

The old behavior of correlate was deprecated in 1.4.0, the new behavior (the usual definition for cross-correlation) is now the default.

17.66 NumPy 1.4.0 Release Notes

This minor includes numerous bug fixes, as well as a few new features. It is backward compatible with 1.3.0 release.

17.66.1 Highlights

- New datet ime dtype support to deal with dates in arrays
- Faster import time
- Extended array wrapping mechanism for ufuncs
- New Neighborhood iterator (C-level only)
- C99-like complex functions in npymath

17.66.2 New features

Extended array wrapping mechanism for ufuncs

An __array_prepare__ method has been added to ndarray to provide subclasses greater flexibility to interact with ufuncs and ufunc-like functions. ndarray already provided __array_wrap__, which allowed subclasses to set the array type for the result and populate metadata on the way out of the ufunc (as seen in the implementation of MaskedArray). For some applications it is necessary to provide checks and populate metadata on the way in. __array_prepare__ is therefore called just after the ufunc has initialized the output array but before computing the results and populating it. This way, checks can be made and errors raised before operations which may modify data in place.

Automatic detection of forward incompatibilities

Previously, if an extension was built against a version N of NumPy, and used on a system with NumPy M < N, the import_array was successful, which could cause crashes because the version M does not have a function in N. Starting from NumPy 1.4.0, this will cause a failure in import_array, so the error will be caught early on.
New iterators

A new neighborhood iterator has been added to the C API. It can be used to iterate over the items in a neighborhood of an array, and can handle boundaries conditions automatically. Zero and one padding are available, as well as arbitrary constant value, mirror and circular padding.

New polynomial support

New modules chebyshev and polynomial have been added. The new polynomial module is not compatible with the current polynomial support in numpy, but is much like the new chebyshev module. The most noticeable difference to most will be that coefficients are specified from low to high power, that the low level functions do not work with the Chebyshev and Polynomial classes as arguments, and that the Chebyshev and Polynomial classes include a domain. Mapping between domains is a linear substitution and the two classes can be converted one to the other, allowing, for instance, a Chebyshev series in one domain to be expanded as a polynomial in another domain. The new classes should generally be used instead of the low level functions, the latter are provided for those who wish to build their own classes.

The new modules are not automatically imported into the numpy namespace, they must be explicitly brought in with an "import numpy.polynomial" statement.

New C API

The following C functions have been added to the C API:

1. PyArray_GetNDArrayCFeatureVersion: return the API version of the loaded numpy.
2. PyArray_Correlate2 - like PyArray_Correlate, but implements the usual definition of correlation. Inputs are not swapped, and conjugate is taken for complex arrays.
3. PyArray_NeighborhoodIterNew - a new iterator to iterate over a neighborhood of a point, with automatic boundaries handling. It is documented in the iterators section of the C-API reference, and you can find some examples in the multiarray_test.c.src file in numpy.core.

New ufuncs

The following ufuncs have been added to the C API:

1. copysign - return the value of the first argument with the sign copied from the second argument.
2. nextafter - return the next representable floating point value of the first argument toward the second argument.

New defines

The alpha processor is now defined and available in numpy/npy_cpu.h. The failed detection of the PARISC processor has been fixed. The defines are:

1. NPY_CPU_HPPA: PARISC
2. NPY_CPU_ALPHA: Alpha
Testing

1. deprecated decorator: this decorator may be used to avoid cluttering testing output while testing DeprecationWarning is effectively raised by the decorated test.

2. assert_array_almost_equal_nulp: new method to compare two arrays of floating point values. With this function, two values are considered close if there are not many representable floating point values in between, thus being more robust than assert_array_almost_equal when the values fluctuate a lot.

3. assert_array_max_ulp: raise an assertion if there are more than N representable numbers between two floating point values.

4. assert_warns: raise an AssertionError if a callable does not generate a warning of the appropriate class, without altering the warning state.

Reusing npymath

In 1.3.0, we started putting portable C math routines in npymath library, so that people can use those to write portable extensions. Unfortunately, it was not possible to easily link against this library: in 1.4.0, support has been added to numpy.distutils so that 3rd party can reuse this library. See coremath documentation for more information.

Improved set operations

In previous versions of NumPy some set functions (intersect1d, setxor1d, setdiff1d and setmember1d) could return incorrect results if the input arrays contained duplicate items. These now work correctly for input arrays with duplicates. setmember1d has been renamed to in1d, as with the change to accept arrays with duplicates it is no longer a set operation, and is conceptually similar to an elementwise version of the Python operator ‘in’. All of these functions now accept the boolean keyword assume_unique. This is False by default, but can be set True if the input arrays are known not to contain duplicates, which can increase the functions’ execution speed.

17.66.3 Improvements

1. numpy import is noticeably faster (from 20 to 30 % depending on the platform and computer)

2. The sort functions now sort nans to the end.
 - Real sort order is [R, nan]
 - Complex sort order is [R + Rj, R + nanj, nan + Rj, nan + nanj]

 Complex numbers with the same nan placements are sorted according to the non-nan part if it exists.

3. The type comparison functions have been made consistent with the new sort order of nans. Searchsorted now works with sorted arrays containing nan values.

4. Complex division has been made more resistant to overflow.

5. Complex floor division has been made more resistant to overflow.
17.66.4 Deprecations

The following functions are deprecated:

1. correlate: it takes a new keyword argument old_behavior. When True (the default), it returns the same result as before. When False, compute the conventional correlation, and take the conjugate for complex arrays. The old behavior will be removed in NumPy 1.5, and raises a DeprecationWarning in 1.4.

2. unique1d: use unique instead. unique1d raises a deprecation warning in 1.4, and will be removed in 1.5.

3. intersect1d_nu: use intersect1d instead. intersect1d_nu raises a deprecation warning in 1.4, and will be removed in 1.5.

4. setmember1d: use in1d instead. setmember1d raises a deprecation warning in 1.4, and will be removed in 1.5.

The following raise errors:

1. When operating on 0-d arrays, numpy.max and other functions accept only axis=0, axis=-1 and axis=None. Using an out-of-bounds axes is an indication of a bug, so Numpy raises an error for these cases now.

2. Specifying axis > MAX_DIMS is no longer allowed; Numpy raises now an error instead of behaving similarly as for axis=None.

17.66.5 Internal changes

Use C99 complex functions when available

The numpy complex types are now guaranteed to be ABI compatible with C99 complex type, if available on the platform. Moreover, the complex ufunc now use the platform C99 functions instead of our own.

split multiarray and umath source code

The source code of multiarray and umath has been split into separate logic compilation units. This should make the source code more amenable for newcomers.

Separate compilation

By default, every file of multiarray (and umath) is merged into one for compilation as was the case before, but if NPY_SEPARATE_COMPILATION env variable is set to a non-negative value, experimental individual compilation of each file is enabled. This makes the compile/debug cycle much faster when working on core numpy.

Separate core math library

New functions which have been added:

- npy_copysign
- npy_nextafter
- npy_cpack
- npy_creal
- npy_cimag
- npy_cabs
17.67 NumPy 1.3.0 Release Notes

This minor includes numerous bug fixes, official python 2.6 support, and several new features such as generalized ufuncs.

17.67.1 Highlights

Python 2.6 support

Python 2.6 is now supported on all previously supported platforms, including windows.

https://www.python.org/dev/peps/pep-0361/

Generalized ufuncs

There is a general need for looping over not only functions on scalars but also over functions on vectors (or arrays), as explained on http://scipy.org/scipy/numpy/wiki/GeneralLoopingFunctions. We propose to realize this concept by generalizing the universal functions (ufuncs), and provide a C implementation that adds ~500 lines to the numpy code base. In current (specialized) ufuncs, the elementary function is limited to element-by-element operations, whereas the generalized version supports “sub-array” by “sub-array” operations. The Perl vector library PDL provides a similar functionality and its terms are re-used in the following.

Each generalized ufunc has information associated with it that states what the “core” dimensionality of the inputs is, as well as the corresponding dimensionality of the outputs (the element-wise ufuncs have zero core dimensions). The list of the core dimensions for all arguments is called the “signature” of a ufunc. For example, the ufunc numpy.add has signature “(),()->()” defining two scalar inputs and one scalar output.

Another example is (see the GeneralLoopingFunctions page) the function inner1d(a,b) with a signature of “(i),(i)->()”. This applies the inner product along the last axis of each input, but keeps the remaining indices intact. For example, where a is of shape (3,5,N) and b is of shape (5,N), this will return an output of shape (3,5). The underlying elementary function is called 3*5 times. In the signature, we specify one core dimension “(i)” for each input and zero core dimensions “()” for the output, since it takes two 1-d arrays and returns a scalar. By using the same name “i”, we specify that the two corresponding dimensions should be of the same size (or one of them is of size 1 and will be broadcasted).

The dimensions beyond the core dimensions are called “loop” dimensions. In the above example, this corresponds to (3,5).

The usual numpy “broadcasting” rules apply, where the signature determines how the dimensions of each input/output object are split into core and loop dimensions:

While an input array has a smaller dimensionality than the corresponding number of core dimensions, 1’s are pre-pended to its shape. The core dimensions are removed from all inputs and the remaining dimensions are broadcasted; defining the loop dimensions. The output is given by the loop dimensions plus the output core dimensions.
Experimental Windows 64 bits support

Numpy can now be built on windows 64 bits (amd64 only, not IA64), with both MS compilers and mingw-w64 compilers: This is *highly experimental*: DO NOT USE FOR PRODUCTION USE. See INSTALL.txt, Windows 64 bits section for more information on limitations and how to build it by yourself.

17.67.2 New features

Formatting issues

Float formatting is now handled by numpy instead of the C runtime: this enables locale independent formatting, more robust fromstring and related methods. Special values (inf and nan) are also more consistent across platforms (nan vs IND/NaN, etc…), and more consistent with recent python formatting work (in 2.6 and later).

Nan handling in max/min

The maximum/minimum ufuncs now reliably propagate nans. If one of the arguments is a nan, then nan is returned. This affects np.min/np.max, amin/amax and the array methods max/min. New ufuncs fmax and fmin have been added to deal with non-propagating nans.

Nan handling in sign

The ufunc sign now returns nan for the sign of anan.

New ufuncs

1. fmax - same as maximum for integer types and non-nan floats. Returns the non-nan argument if one argument is nan and returns nan if both arguments are nan.
2. fmin - same as minimum for integer types and non-nan floats. Returns the non-nan argument if one argument is nan and returns nan if both arguments are nan.
3. deg2rad - converts degrees to radians, same as the radians ufunc.
4. rad2deg - converts radians to degrees, same as the degrees ufunc.
5. log2 - base 2 logarithm.
6. exp2 - base 2 exponential.
7. trunc - truncate floats to nearest integer towards zero.
8. logaddexp - add numbers stored as logarithms and return the logarithm of the result.
9. logaddexp2 - add numbers stored as base 2 logarithms and return the base 2 logarithm of the result.
Masked arrays

Several new features and bug fixes, including:

- structured arrays should now be fully supported by MaskedArray (r6463, r6324, r6305, r6300, r6294…)
- Minor bug fixes (r6356, r6352, r6335, r6299, r6298)
- Improved support for `__iter__` (r6326)
- made baseclass, sharedmask and hardmask accessible to the user (but read-only)
- doc update

gfortran support on windows

Gfortran can now be used as a fortran compiler for numpy on windows, even when the C compiler is Visual Studio (VS 2005 and above; VS 2003 will NOT work). Gfortran + Visual studio does not work on windows 64 bits (but gcc + gfortran does). It is unclear whether it will be possible to use gfortran and visual studio at all on x64.

Arch option for windows binary

Automatic arch detection can now be bypassed from the command line for the superpack installed:

 numpy-1.3.0-superpack-win32.exe /arch=nosse

will install a numpy which works on any x86, even if the running computer supports SSE set.

17.67.3 Deprecated features

Histogram

The semantics of histogram has been modified to fix long-standing issues with outliers handling. The main changes concern

1. the definition of the bin edges, now including the rightmost edge, and
2. the handling of upper outliers, now ignored rather than tallied in the rightmost bin.

The previous behavior is still accessible using `new=False`, but this is deprecated, and will be removed entirely in 1.4.0.

17.67.4 Documentation changes

A lot of documentation has been added. Both user guide and references can be built from sphinx.
17.67.5 New C API

Multiarray API

The following functions have been added to the multiarray C API:

- PyArray_GetEndianness: to get runtime endianness

Ufunc API

The following functions have been added to the ufunc API:

- PyUFunc_FromFuncAndDataAndSignature: to declare a more general ufunc (generalized ufunc).

New defines

New public C defines are available for ARCH specific code through numpy/npy_cpu.h:

- NPY_CPU_X86: x86 arch (32 bits)
- NPY_CPU_AMD64: amd64 arch (x86_64, NOT Itanium)
- NPY_CPU_PPC: 32 bits ppc
- NPY_CPU_PPC64: 64 bits ppc
- NPY_CPU_SPARC: 32 bits sparc
- NPY_CPU_SPARC64: 64 bits sparc
- NPY_CPU_S390: S390
- NPY_CPU_IA64: ia64
- NPY_CPU_PARISC: PARISC

New macros for CPU endianness has been added as well (see internal changes below for details):

- NPY_BYTE_ORDER: integer
- NPY_LITTLE_ENDIAN/NPY_BIG_ENDIAN defines

Those provide portable alternatives to glibc endian.h macros for platforms without it.

Portable NAN, INFINITY, etc...

npy_math.h now makes available several portable macro to get NAN, INFINITY:

- NPY_NAN: equivalent to NAN, which is a GNU extension
- NPY_INFINITY: equivalent to C99 INFINITY
- NPY_PZERO, NPY_NZERO: positive and negative zero respectively

Corresponding single and extended precision macros are available as well. All references to NAN, or home-grown computation of NAN on the fly have been removed for consistency.
17.67.6 Internal changes

This should make the porting to new platforms easier, and more robust. In particular, the configuration stage does not need to execute any code on the target platform, which is a first step toward cross-compilation.

umath refactor

A lot of code cleanup for umath/ufunc code (charris).

Improvements to build warnings

Numpy can now build with -W -Wall without warnings

https://www.numpy.org/neps/nep-0002-warnfix.html

Separate core math library

The core math functions (sin, cos, etc… for basic C types) have been put into a separate library; it acts as a compatibility layer, to support most C99 maths functions (real only for now). The library includes platform-specific fixes for various maths functions, such as using those versions should be more robust than using your platform functions directly. The API for existing functions is exactly the same as the C99 math functions API; the only difference is the npy prefix (npy_cos vs cos).

The core library will be made available to any extension in 1.4.0.

CPU arch detection

npy_cpu.h defines numpy specific CPU defines, such as NPY_CPU_X86, etc… Those are portable across OS and toolchains, and set up when the header is parsed, so that they can be safely used even in the case of cross-compilation (the values is not set when numpy is built), or for multi-arch binaries (e.g. fat binaries on Max OS X).

npy_endian.h defines numpy specific endianness defines, modeled on the glibc endian.h. NPY_BYTE_ORDER is equivalent to BYTE_ORDER, and one of NPY_LITTLE_ENDIAN or NPY_BIG_ENDIAN is defined. As for CPU archs, those are set when the header is parsed by the compiler, and as such can be used for cross-compilation and multi-arch binaries.
DOCUMENTATION CONVENTIONS

• Names that look like `numpy.array` are links to detailed documentation.

• Examples often include the Python prompt `>>>`. This is not part of the code and will cause an error if typed or pasted into the Python shell. It can be safely typed or pasted into the IPython shell; the `>>>` is ignored.

• Examples often use `np` as an alias for `numpy`; that is, they assume you’ve run:

  ```python
  >>> import numpy as np
  ```

• If you’re a code contributor writing a docstring, see `Docstrings`.

• If you’re a writer contributing ordinary (non-docstring) documentation, see `User documentation`.
CHAPTER
NINETEEN

NUMPY LICENSE

Copyright (c) 2005-2020, NumPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the NumPy Developers nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
n
numpy.f2py, 258
numpy.lib.recfunctions, 97
Non-alphabetical

A
adding new
dtype, 192, 194
ufunc, 174, 175, 178, 180, 189
advanced indexing, 266
along an axis, 266
append_fields() (in module numpy.lib.recfunctions), 97
apply_along_fields() (in module numpy.lib.recfunctions), 97
array, 267
array iterator, 190, 192
array scalar, 267
array_like, 267
assign_fields_by_name() (in module numpy.lib.recfunctions), 98
axis, 267

B
.base, 268
big-endian, 268
BLAS, 268
Boost.Python, 174
broadcast, 268
broadcasting, 192

C
C order, 269
castfunc (C function), 193
column-major, 269
compile() (in module numpy.f2py), 259
contiguous, 269
copy, 269
ctypes, 167, 172
cython, 164, 167

D
dimension, 269
drop_fields() (in module numpy.lib.recfunctions), 98
dtype, 269
adding new, 192, 194

e
extension module, 151, 157

F
f2py, 160, 164
fancy indexing, 269
field, 269
find_duplicates() (in module numpy.lib.recfunctions), 99
flatten_descr() (in module numpy.lib.recfunctions), 100
flattened, 269
Fortran order, 269

G
get_fieldstructure() (in module numpy.lib.recfunctions), 100
get_names() (in module numpy.lib.recfunctions), 100
get_names_flat() (in module numpy.lib.recfunctions), 101

H
homogeneous, 269

I
itemsize, 269

J
join_by() (in module numpy.lib.recfunctions), 101
L	little-endian, 269
M	mask, 270
	masked array, 270
	matrix, 270
	merge_arrays() (in module numpy.lib.recfunctions), 102
N	ndarray, 270
	subtyping, 194, 196
	ndpointer() (built-in function), 169
	numpy.f2py (module), 258
	numpy.lib.recfunctions (module), 97
O	object array, 270
P	PyModule_AddIntConstant (C function), 152
	PyModule_AddObject (C function), 152
	PyModule_AddStringConstant (C function), 152
	Python Enhancement Proposals PEP 3118, 463
R	ravel, 270
	rec_append_fields() (in module numpy.lib.recfunctions), 103
	rec_drop_fields() (in module numpy.lib.recfunctions), 104
	rec_join() (in module numpy.lib.recfunctions), 104
	record array, 270
	recursive_fill_fields() (in module numpy.lib.recfunctions), 104
	reference counting, 154
	rename_fields() (in module numpy.lib.recfunctions), 104
	repack_fields() (in module numpy.lib.recfunctions), 105
	require_fields() (in module numpy.lib.recfunctions), 106
	row-major, 270
	run_main() (in module numpy.f2py), 258
S	scalar, 271
	shape, 271
	SIP, 174
	stack_arrays() (in module numpy.lib.recfunctions), 106
	stride, 271
	structured array, 271
	structured data type, 271
	structured_to_unstructured() (in module numpy.lib.recfunctions), 107
	subarray, 271
	subarray data type, 271
	subtyping ndarray, 194, 196
	swig, 173
T	title, 271
	type, 271
U	ufunc, 271
	adding new, 174, 175, 178, 180, 189
	unstructured_to_structured() (in module numpy.lib.recfunctions), 108
V	vectorization, 271
	view, 272