numpy.poly1d#
- class numpy.poly1d(c_or_r, r=False, variable=None)[source]#
- A one-dimensional polynomial class. - Note - This forms part of the old polynomial API. Since version 1.4, the new polynomial API defined in - numpy.polynomialis preferred. A summary of the differences can be found in the transition guide.- A convenience class, used to encapsulate “natural” operations on polynomials so that said operations may take on their customary form in code (see Examples). - Parameters:
- c_or_rarray_like
- The polynomial’s coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial’s roots (values where the polynomial evaluates to 0). For example, - poly1d([1, 2, 3])returns an object that represents \(x^2 + 2x + 3\), whereas- poly1d([1, 2, 3], True)returns one that represents \((x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6\).
- rbool, optional
- If True, c_or_r specifies the polynomial’s roots; the default is False. 
- variablestr, optional
- Changes the variable used when printing p from x to - variable(see Examples).
 
 - Examples - >>> import numpy as np - Construct the polynomial \(x^2 + 2x + 3\): - >>> import numpy as np - >>> p = np.poly1d([1, 2, 3]) >>> print(np.poly1d(p)) 2 1 x + 2 x + 3 - Evaluate the polynomial at \(x = 0.5\): - >>> p(0.5) 4.25 - Find the roots: - >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary - These numbers in the previous line represent (0, 0) to machine precision - Show the coefficients: - >>> p.c array([1, 2, 3]) - Display the order (the leading zero-coefficients are removed): - >>> p.order 2 - Show the coefficient of the k-th power in the polynomial (which is equivalent to - p.c[-(i+1)]):- >>> p[1] 2 - Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): - >>> p * p poly1d([ 1, 4, 10, 12, 9]) - >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.])) - asarray(p)gives the coefficient array, so polynomials can be used in all functions that accept arrays:- >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) - >>> np.square(p) # square of individual coefficients array([1, 4, 9]) - The variable used in the string representation of p can be modified, using the - variableparameter:- >>> p = np.poly1d([1,2,3], variable='z') >>> print(p) 2 1 z + 2 z + 3 - Construct a polynomial from its roots: - >>> np.poly1d([1, 2], True) poly1d([ 1., -3., 2.]) - This is the same polynomial as obtained by: - >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) - Attributes:
- c
- The polynomial coefficients 
- coef
- The polynomial coefficients 
- coefficients
- The polynomial coefficients 
- coeffs
- The polynomial coefficients 
- o
- The order or degree of the polynomial 
- order
- The order or degree of the polynomial 
- r
- The roots of the polynomial, where self(x) == 0 
- roots
- The roots of the polynomial, where self(x) == 0 
- variable
- The name of the polynomial variable 
 
 - Methods