numpy.where#
- numpy.where(condition, [x, y, ]/)#
- Return elements chosen from x or y depending on condition. - Note - When only condition is provided, this function is a shorthand for - np.asarray(condition).nonzero(). Using- nonzerodirectly should be preferred, as it behaves correctly for subclasses. The rest of this documentation covers only the case where all three arguments are provided.- Parameters:
- conditionarray_like, bool
- Where True, yield x, otherwise yield y. 
- x, yarray_like
- Values from which to choose. x, y and condition need to be broadcastable to some shape. 
 
- Returns:
- outndarray
- An array with elements from x where condition is True, and elements from y elsewhere. 
 
 - Notes - If all the arrays are 1-D, - whereis equivalent to:- [xv if c else yv for c, xv, yv in zip(condition, x, y)] - Examples - >>> import numpy as np >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.where(a < 5, a, 10*a) array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90]) - This can be used on multidimensional arrays too: - >>> np.where([[True, False], [True, True]], ... [[1, 2], [3, 4]], ... [[9, 8], [7, 6]]) array([[1, 8], [3, 4]]) - The shapes of x, y, and the condition are broadcast together: - >>> x, y = np.ogrid[:3, :4] >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast array([[10, 0, 0, 0], [10, 11, 1, 1], [10, 11, 12, 2]]) - >>> a = np.array([[0, 1, 2], ... [0, 2, 4], ... [0, 3, 6]]) >>> np.where(a < 4, a, -1) # -1 is broadcast array([[ 0, 1, 2], [ 0, 2, -1], [ 0, 3, -1]])