numpy.zeros#
- numpy.zeros(shape, dtype=float, order='C', *, like=None)#
- Return a new array of given shape and type, filled with zeros. - Parameters:
- shapeint or tuple of ints
- Shape of the new array, e.g., - (2, 3)or- 2.
- dtypedata-type, optional
- The desired data-type for the array, e.g., - numpy.int8. Default is- numpy.float64.
- order{‘C’, ‘F’}, optional, default: ‘C’
- Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory. 
- likearray_like, optional
- Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as - likesupports the- __array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.- New in version 1.20.0. 
 
- Returns:
- outndarray
- Array of zeros with the given shape, dtype, and order. 
 
 - See also - zeros_like
- Return an array of zeros with shape and type of input. 
- empty
- Return a new uninitialized array. 
- ones
- Return a new array setting values to one. 
- full
- Return a new array of given shape filled with value. 
 - Examples - >>> import numpy as np >>> np.zeros(5) array([ 0., 0., 0., 0., 0.]) - >>> np.zeros((5,), dtype=int) array([0, 0, 0, 0, 0]) - >>> np.zeros((2, 1)) array([[ 0.], [ 0.]]) - >>> s = (2,2) >>> np.zeros(s) array([[ 0., 0.], [ 0., 0.]]) - >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype array([(0, 0), (0, 0)], dtype=[('x', '<i4'), ('y', '<i4')])