Search
Search Results
Search finished, found 33 page(s) matching the search query.
- numpy.polynomial.polynomial.Polynomial.identity
...nomial.polynomial) numpy.polynomial.polynomial.Polynomial numpy.polynomial.polynomial.Polynomial.identity...
- numpy.polynomial.chebyshev.Chebyshev.identity (Python method, in numpy.polynomial.chebyshev.Chebyshev.identity)
- numpy.polynomial.hermite.Hermite.identity (Python method, in numpy.polynomial.hermite.Hermite.identity)
- numpy.polynomial.hermite_e.HermiteE.identity (Python method, in numpy.polynomial.hermite_e.HermiteE.identity)
- numpy.polynomial.laguerre.Laguerre.identity (Python method, in numpy.polynomial.laguerre.Laguerre.identity)
- numpy.polynomial.legendre.Legendre.identity (Python method, in numpy.polynomial.legendre.Legendre.identity)
- numpy.polynomial.polynomial.Polynomial.identity (Python method, in numpy.polynomial.polynomial.Polynomial.identity)
numpy.polynomial
...g Creation Methods for creating polynomial instances. Poly.basis(degree) – Basis polynomial of given degree Poly.identity() – p where p(x) = x for all x Poly.fit(x, y, deg) – p of degree deg with coefficients determined by th...
- Array creation
...numpy.diag, and numpy.vander define properties of special matrices represented as 2D arrays. np.eye(n, m) defines a 2D identity matrix. The elements where i=j (row index and column index are equal) are 1 and the rest are 0, as such: >>> im...
- Chebyshev Series (
numpy.polynomial.chebyshev
)....polynomial Notes The implementations of multiplication, division, integration, and differentiation use the algebraic identities [1]: \[\begin{split}T_n(x) = \frac{z^n + z^{-n}}{2} \\ z\frac{dx}{dz} = \frac{z - z^{-1}}{2}.\end{split}\] w...
- NumPy 1.12.0 Release Notes
...1.6 to 1.12 assignment between structured arrays occurs “by field name”: Fields in the destination array are set to the identically-named field in the source array or to 0 if the source does not have a field: >>> a = np.array([(1,2),(3,4)],...
- NumPy 1.13.0 Release Notes
...ys with different field names will change in NumPy 1.14. Previously, fields in the dst would be set to the value of the identically-named field in the src. In numpy 1.14 fields will instead be assigned ‘by position’: The n-th field of the d...
- NumPy 1.14.0 Release Notes
...oating-point values (16, 32, 64 and 128 bit) are now printed to give the shortest decimal representation which uniquely identifies the value from others of the same type. Previously this was only true for float64 values. The remaining float...
- NumPy 1.16.0 Release Notes
...ncremented to 0x0000D, due to the addition of: PyUFuncObject.core_dim_flags PyUFuncObject.core_dim_sizes PyUFuncObject.identity_value PyUFunc_FromFuncAndDataAndSignatureAndIdentity New Features Integrated squared error (ISE) estimator...
- NumPy 1.17.0 Release Notes
...ord argument, which can be used to tell which elements to include in the reduction. For reductions that do not have an identity, it is necessary to also pass in an initial value (e.g., initial=np.inf for min). For instance, the equivalent...
- NumPy 1.20.0 Release Notes
...with their exact meaning. Replacing uses of items in the first column with the contents of the second column will work identically and silence the deprecation warning. The third column lists alternative NumPy names which may occasionally b...
- NumPy 1.24 Release Notes
...t that the logic is aligned with item assignment: arr = np.array([1]) # with any dtype/value arr.fill(scalar) # is now identical to: arr[0] = scalar Previously casting may have produced slightly different answers when using values that c...
- NumPy 1.9.0 Release Notes
...k. Object array equality comparisons In the future object array comparisons both == and np.equal will not make use of identity checks anymore. For example: >>> a = np.array([np.array([1, 2, 3]), 1]) >>> b = np.array([np.array([1, 2, 3]),...
- NumPy 2.0.0 Release Notes
...generalized ufuncs (PyUFunc_FromFuncAndData, PyUFunc_FromFuncAndDataAndSignature, PyUFunc_FromFuncAndDataAndSignatureAndIdentity) take types and data arguments that are not modified by NumPy’s internals. Like the name and doc arguments, thi...
- numpy.poly
...a(t)\), of an n-by-n matrix A is given by \(p_a(t) = \mathrm{det}(t\, \mathbf{I} - \mathbf{A})\), where I is the n-by-n identity matrix. [2] References [1] M. Sullivan and M. Sullivan, III, “Algebra and Trigonometry, Enhanced With Graphin...
- numpy.polynomial.chebyshev.Chebyshev.identity
....polynomial.chebyshev) numpy.polynomial.chebyshev.Chebyshev numpy.polynomial.chebyshev.Chebyshev.identity...
- numpy.polynomial.chebyshev.Chebyshev.mapparms
- numpy.polynomial.hermite.Hermite.identity
...ts” (numpy.polynomial.hermite) numpy.polynomial.hermite.Hermite numpy.polynomial.hermite.Hermite.identity...
- numpy.polynomial.hermite.Hermite.mapparms
- numpy.polynomial.hermite_e.HermiteE.identity
...py.polynomial.hermite_e) numpy.polynomial.hermite_e.HermiteE numpy.polynomial.hermite_e.HermiteE.identity...
- numpy.polynomial.hermite_e.HermiteE.mapparms
- numpy.polynomial.laguerre.Laguerre.identity
- numpy.polynomial.laguerre.Laguerre.mapparms
- numpy.polynomial.legendre.Legendre.identity
- numpy.polynomial.legendre.Legendre.mapparms
...luated. The map depends on the domain and window; if the current domain is equal to the window the resulting map is the identity. If the coefficients of the series instance are to be used by themselves outside this class, then the linear f...
- numpy.polynomial.polynomial.Polynomial.identity
...nomial.polynomial) numpy.polynomial.polynomial.Polynomial numpy.polynomial.polynomial.Polynomial.identity...
- numpy.polynomial.polynomial.Polynomial.mapparms
...luated. The map depends on the domain and window; if the current domain is equal to the window the resulting map is the identity. If the coefficients of the series instance are to be used by themselves outside this class, then the linear f...
- numpy.vectorize
...syntax is supported. The decorator can be called as a function to provide keyword arguments: >>> @np.vectorize ... def identity(x): ... return x ... >>> identity([0, 1, 2]) array([0, 1, 2]) >>> @np.vectorize(otypes=[float]) ... def as_...