Skip to main content
Ctrl+K
NumPy v2.3 Manual - Home NumPy v2.3 Manual - Home
  • User Guide
  • API reference
  • Building from source
  • Development
  • Release notes
  • Learn
    • NEPs
dev2.3 (stable)2.22.12.01.261.251.241.231.221.211.201.191.181.171.161.151.141.13
  • GitHub
  • User Guide
  • API reference
  • Building from source
  • Development
  • Release notes
  • Learn
  • NEPs
dev2.3 (stable)2.22.12.01.261.251.241.231.221.211.201.191.181.171.161.151.141.13
  • GitHub

Search

Ctrl+K

Searching

  • numpy.s_

    ...NumPy reference Routines and objects by topic Indexing routines numpy.s_...

  • numpy.s_ (Python data, in numpy.s_)
  • numpy.distutils user guide
  • numpy.polynomial
  • Array broadcasting in Numpy
  • Array creation
  • Array creation routines
  • Array iterator API
  • Building from source
  • Building the NumPy API and reference docs
  • Chebyshev Series (numpy.polynomial.chebyshev)
  • Constants of the numpy.ma module
  • Contributing to NumPy
  • CPU build options
  • ctypes foreign function interface (numpy.ctypeslib)
  • Data type classes (numpy.dtypes)
  • Data type promotion in NumPy
  • Data types
  • Extending numpy.random via Cython
  • For downstream package authors
  • Hermite Series, “Physicists” (numpy.polynomial.hermite)
  • HermiteE Series, “Probabilists” (numpy.polynomial.hermite_e)
  • How to contribute to the NumPy documentation
  • How to extend NumPy
  • How to write a NumPy how-to
  • I/O with NumPy
  • Input and output
  • Installing NumPy
  • Internal organization of NumPy arrays
  • Interoperability with NumPy
  • Laguerre Series (numpy.polynomial.laguerre)
  • Legacy random generation
  • Legendre Series (numpy.polynomial.legendre)
  • Lib module (numpy.lib)
  • Matrix library (numpy.matlib)
  • Memory alignment
  • Memory management in NumPy
  • Miscellaneous
  • Miscellaneous routines
  • NumPy 1.10.0 Release Notes
  • NumPy 1.10.1 Release Notes
  • NumPy 1.10.2 Release Notes
  • NumPy 1.10.3 Release Notes

© Copyright 2008-2025, NumPy Developers.

Created using Sphinx 7.2.6.

Built with the PyData Sphinx Theme 0.16.1.