Search
Search Results
Search finished, found 19 page(s) matching the search query.
- numpy.tensordot
...NumPy reference NumPy’s module structure Linear algebra (numpy.linalg) numpy.tensordot...
- numpy.linalg.tensordot (Python function, in numpy.linalg.tensordot)
- numpy.tensordot (Python function, in numpy.tensordot)
- NumPy 1.14.0 Release Notes
...hen expressions of the form np.asarray(a.flat) are used, or when a.flat is passed as the out parameter to a ufunc. np.tensordot now returns zero array when contracting over 0-length dimension Previously np.tensordot raised a ValueError wh...
- NumPy 2.0.0 Release Notes
...n2. Bitwise: bitwise_left_shift, bitwise_invert, bitwise_right_shift. Misc: concat, permute_dims, pow. In numpy.linalg: tensordot, matmul. (gh-25086) New unique_* functions The unique_all, unique_counts, unique_inverse, and unique_values...
- numpy.dot
...d-to-last dimension of b. See also vdotComplex-conjugating dot product. vecdotVector dot product of two arrays. tensordotSum products over arbitrary axes. einsumEinstein summation convention. matmul‘@’ operator as method with out...
- numpy.einsum
...outputndarrayThe calculation based on the Einstein summation convention. See also einsum_path, dot, inner, outer, tensordot, linalg.multi_dot einsumSimilar verbose interface is provided by the einops package to cover additional operat...
- numpy.inner
...-1]) Raises: ValueErrorIf both a and b are nonscalar and their last dimensions have different sizes. See also tensordotSum products over arbitrary axes. dotGeneralised matrix product, using second last dimension of b. vecdotVect...
- numpy.linalg.tensordot
...umPy reference NumPy’s module structure Linear algebra (numpy.linalg) numpy.linalg.tensordot...
- numpy.linalg.tensorinv
...orinv(a, ind=2)[source] Compute the ‘inverse’ of an N-dimensional array. The result is an inverse for a relative to the tensordot operation tensordot(a, b, ind), i. e., up to floating-point accuracy, tensordot(tensorinv(a), a, ind) is the “...
- numpy.linalg.tensorsolve
...all indices of x are summed over in the product, together with the rightmost indices of a, as is done in, for example, tensordot(a, x, axes=x.ndim). Parameters: aarray_likeCoefficient tensor, of shape b.shape + Q. Q, a tuple, equals the...
- numpy.ma.inner
...-1]) Raises: ValueErrorIf both a and b are nonscalar and their last dimensions have different sizes. See also tensordotSum products over arbitrary axes. dotGeneralised matrix product, using second last dimension of b. vecdotVect...
- numpy.ma.innerproduct
...-1]) Raises: ValueErrorIf both a and b are nonscalar and their last dimensions have different sizes. See also tensordotSum products over arbitrary axes. dotGeneralised matrix product, using second last dimension of b. vecdotVect...
- numpy.ma.outer
...s the equivalent. linalg.outerAn Array API compatible variation of np.outer, which accepts 1-dimensional inputs only. tensordotnp.tensordot(a.ravel(), b.ravel(), axes=((), ())) is the equivalent. Notes Masked values are replaced by 0....
- numpy.ma.outerproduct
...s the equivalent. linalg.outerAn Array API compatible variation of np.outer, which accepts 1-dimensional inputs only. tensordotnp.tensordot(a.ravel(), b.ravel(), axes=((), ())) is the equivalent. Notes Masked values are replaced by 0....
- numpy.matmul
...ix-vector product for stacks of matrices and vectors. vecmatVector-matrix product for stacks of vectors and matrices. tensordotSum products over arbitrary axes. einsumEinstein summation convention. dotalternative matrix product with dif...
- numpy.outer
...s the equivalent. linalg.outerAn Array API compatible variation of np.outer, which accepts 1-dimensional inputs only. tensordotnp.tensordot(a.ravel(), b.ravel(), axes=((), ())) is the equivalent. References [1] G. H. Golub and C. F....
- numpy.tensordot
...NumPy reference NumPy’s module structure Linear algebra (numpy.linalg) numpy.tensordot...
- numpy.ufunc.outer
...rful version of np.multiply.outer that ravels all inputs to 1D. This exists primarily for compatibility with old code. tensordotnp.tensordot(a, b, axes=((), ())) and np.multiply.outer(a, b) behave same for all dimensions of a and b. Exa...