NumPy
Pythonによる科学技術計算の基礎パッケージ
NumPy 1.26.0 がリリースされました。
2024-08-18
強力な多次元配列
NumPyの高速で多機能なベクトル化計算、インデックス処理、ブロードキャストの考え方は、現在の配列計算におけるデファクト・スタ>ンダードです。
数値計算ツール群
NumPyは、様々な数学関数、乱数生成器、線形代数ルーチン、フーリエ変換などを提供しています。
オープンソース
NumPyは、寛容なBSDライセンスで公開されています。NumPyは活発で、互いを尊重し、多様性を認め合うコミュニティによって、 GitHub上でオープンに開発されていま す.
相互運用性
NumPyは、幅広いハードウェアとコンピューティング・プラットフォームをサポートしており、分散処理、GPU、疎行列ライブラリにも対 応しています。
高パフォーマンス
NumPyの大部分は最適化されたC言語のコードで構成されています。これによりPythonの柔軟性とコンパイルされたコードの高速性の両方 を享受できます。
使いやすさ
NumPyの高水準なシンタックスは、どんなバックグラウンドや経験を持つのプログラマーでも簡単に利用することができ、生産性を高め>ることができます。
NumPy を試す

インタラクティブシェルを使用して、ブラウザ上で Numpy を試してみてください。

""" To try the examples in the browser: 1. Type code in the input cell and press Shift + Enter to execute 2. Or copy paste the code, and click on the "Run" button in the toolbar """ # The standard way to import NumPy: import numpy as np # Create a 2-D array, set every second element in # some rows and find max per row: x = np.arange(15, dtype=np.int64).reshape(3, 5) x[1:, ::2] = -99 x # array([[ 0, 1, 2, 3, 4], # [-99, 6, -99, 8, -99], # [-99, 11, -99, 13, -99]]) x.max(axis=1) # array([ 4, 8, 13]) # Generate normally distributed random numbers: rng = np.random.default_rng() samples = rng.normal(size=2500) samples

NumPyのエコシステム

Pythonを使って働くほとんどの科学者はNumPyの力を利用しています。

Numpy は、 C や Fortran のような言語の計算パフォーマンスを、Pythonにもたらします。 このパワーはNumPyのシンプルさから来ており、NumPyによるソリューションの多くは明確でエレガントになります。

ケーススタディ