numpy.asarray#
- numpy.asarray(a, dtype=None, order=None, *, device=None, copy=None, like=None)#
- Convert the input to an array. - Parameters:
- aarray_like
- Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. 
- dtypedata-type, optional
- By default, the data-type is inferred from the input data. 
- order{‘C’, ‘F’, ‘A’, ‘K’}, optional
- The memory layout of the output. ‘C’ gives a row-major layout (C-style), ‘F’ gives a column-major layout (Fortran-style). ‘C’ and ‘F’ will copy if needed to ensure the output format. ‘A’ (any) is equivalent to ‘F’ if input a is non-contiguous or Fortran-contiguous, otherwise, it is equivalent to ‘C’. Unlike ‘C’ or ‘F’, ‘A’ does not ensure that the result is contiguous. ‘K’ (keep) is the default and preserves the input order for the output. 
- devicestr, optional
- The device on which to place the created array. Default: - None. For Array-API interoperability only, so must be- "cpu"if passed.- New in version 2.0.0. 
- copybool, optional
- If - True, then the object is copied. If- Nonethen the object is copied only if needed, i.e. if- __array__returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (- dtype,- order, etc.). For- Falseit raises a- ValueErrorif a copy cannot be avoided. Default:- None.- New in version 2.0.0. 
- likearray_like, optional
- Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as - likesupports the- __array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.- New in version 1.20.0. 
 
- Returns:
- outndarray
- Array interpretation of - a. No copy is performed if the input is already an ndarray with matching dtype and order. If- ais a subclass of ndarray, a base class ndarray is returned.
 
 - See also - asanyarray
- Similar function which passes through subclasses. 
- ascontiguousarray
- Convert input to a contiguous array. 
- asfortranarray
- Convert input to an ndarray with column-major memory order. 
- asarray_chkfinite
- Similar function which checks input for NaNs and Infs. 
- fromiter
- Create an array from an iterator. 
- fromfunction
- Construct an array by executing a function on grid positions. 
 - Examples - Convert a list into an array: - >>> a = [1, 2] >>> import numpy as np >>> np.asarray(a) array([1, 2]) - Existing arrays are not copied: - >>> a = np.array([1, 2]) >>> np.asarray(a) is a True - If - dtypeis set, array is copied only if dtype does not match:- >>> a = np.array([1, 2], dtype=np.float32) >>> np.shares_memory(np.asarray(a, dtype=np.float32), a) True >>> np.shares_memory(np.asarray(a, dtype=np.float64), a) False - Contrary to - asanyarray, ndarray subclasses are not passed through:- >>> issubclass(np.recarray, np.ndarray) True >>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True