numpy.asarray_chkfinite#
- numpy.asarray_chkfinite(a, dtype=None, order=None)[source]#
Convert the input to an array, checking for NaNs or Infs.
- Parameters:
- aarray_like
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs.
- dtypedata-type, optional
By default, the data-type is inferred from the input data.
- order{‘C’, ‘F’, ‘A’, ‘K’}, optional
The memory layout of the output. ‘C’ gives a row-major layout (C-style), ‘F’ gives a column-major layout (Fortran-style). ‘C’ and ‘F’ will copy if needed to ensure the output format. ‘A’ (any) is equivalent to ‘F’ if input a is non-contiguous or Fortran-contiguous, otherwise, it is equivalent to ‘C’. Unlike ‘C’ or ‘F’, ‘A’ does not ensure that the result is contiguous. ‘K’ (keep) preserves the input order for the output. ‘C’ is the default.
- Returns:
- outndarray
Array interpretation of a. No copy is performed if the input is already an ndarray. If a is a subclass of ndarray, a base class ndarray is returned.
- Raises:
- ValueError
Raises ValueError if a contains NaN (Not a Number) or Inf (Infinity).
See also
asarrayCreate and array.
asanyarraySimilar function which passes through subclasses.
ascontiguousarrayConvert input to a contiguous array.
asfortranarrayConvert input to an ndarray with column-major memory order.
fromiterCreate an array from an iterator.
fromfunctionConstruct an array by executing a function on grid positions.
Examples
>>> import numpy as np
Convert a list into an array. If all elements are finite, then
asarray_chkfiniteis identical toasarray.>>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.])
Raises ValueError if array_like contains Nans or Infs.
>>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print('ValueError') ... ValueError