numpy.clip#
- numpy.clip(a, a_min=<no value>, a_max=<no value>, out=None, *, min=<no value>, max=<no value>, **kwargs)[source]#
- Clip (limit) the values in an array. - Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of - [0, 1]is specified, values smaller than 0 become 0, and values larger than 1 become 1.- Equivalent to but faster than - np.minimum(a_max, np.maximum(a, a_min)).- No check is performed to ensure - a_min < a_max.- Parameters:
- aarray_like
- Array containing elements to clip. 
- a_min, a_maxarray_like or None
- Minimum and maximum value. If - None, clipping is not performed on the corresponding edge. If both- a_minand- a_maxare- None, the elements of the returned array stay the same. Both are broadcasted against- a.
- outndarray, optional
- The results will be placed in this array. It may be the input array for in-place clipping. out must be of the right shape to hold the output. Its type is preserved. 
- min, maxarray_like or None
- Array API compatible alternatives for - a_minand- a_maxarguments. Either- a_minand- a_maxor- minand- maxcan be passed at the same time. Default:- None.- New in version 2.1.0. 
- **kwargs
- For other keyword-only arguments, see the ufunc docs. 
 
- Returns:
- clipped_arrayndarray
- An array with the elements of a, but where values < a_min are replaced with a_min, and those > a_max with a_max. 
 
 - See also - Notes - When a_min is greater than a_max, - clipreturns an array in which all values are equal to a_max, as shown in the second example.- Examples - >>> import numpy as np >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> np.clip(a, 8, 1) array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])