numpy.strings.slice#
- strings.slice(a, start=None, stop=None, step=None, /)[source]#
Slice the strings in a by slices specified by start, stop, step. Like in the regular Python
slice
object, if only start is specified then it is interpreted as the stop.- Parameters:
- aarray-like, with
StringDType
,bytes_
, orstr_
dtype Input array
- startNone, an integer or an array of integers
The start of the slice, broadcasted to a’s shape
- stopNone, an integer or an array of integers
The end of the slice, broadcasted to a’s shape
- stepNone, an integer or an array of integers
The step for the slice, broadcasted to a’s shape
- aarray-like, with
- Returns:
- outndarray
Output array of
StringDType
,bytes_
orstr_
dtype, depending on input type
Examples
>>> import numpy as np >>> a = np.array(['hello', 'world']) >>> np.strings.slice(a, 2) array(['he', 'wo'], dtype='<U5')
>>> np.strings.slice(a, 1, 5, 2) array(['el', 'ol'], dtype='<U5')
One can specify different start/stop/step for different array entries:
>>> np.strings.slice(a, np.array([1, 2]), np.array([4, 5])) array(['ell', 'rld'], dtype='<U5')
Negative slices have the same meaning as in regular Python:
>>> b = np.array(['hello world', 'γεια σου κόσμε', '你好世界', '👋 🌍'], ... dtype=np.dtypes.StringDType()) >>> np.strings.slice(b, -2) array(['hello wor', 'γεια σου κόσ', '你好', '👋'], dtype=StringDType())
>>> np.strings.slice(b, [3, -10, 2, -3], [-1, -2, -1, 3]) array(['lo worl', ' σου κόσ', '世', '👋 🌍'], dtype=StringDType())
>>> np.strings.slice(b, None, None, -1) array(['dlrow olleh', 'εμσόκ υοσ αιεγ', '界世好你', '🌍 👋'], dtype=StringDType())