Constants of the numpy.ma module#

In addition to the MaskedArray class, the numpy.ma module defines several constants.

numpy.ma.masked#

The masked constant is a special case of MaskedArray, with a float datatype and a null shape. It is used to test whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:

>>> import numpy as np

>>> x = np.ma.array([1, 2, 3], mask=[0, 1, 0])
>>> x[1] is np.ma.masked
True
>>> x[-1] = np.ma.masked
>>> x
masked_array(data=[1, --, --],
             mask=[False,  True,  True],
       fill_value=999999)
numpy.ma.nomask#

Value indicating that a masked array has no invalid entry. nomask is used internally to speed up computations when the mask is not needed. It is represented internally as np.False_.

numpy.ma.masked_print_option#

String used in lieu of missing data when a masked array is printed. By default, this string is '--'.

Use set_display() to change the default string. Example usage: numpy.ma.masked_print_option.set_display('X') replaces missing data with 'X'.

The MaskedArray class#

class numpy.ma.MaskedArray[source]#

A subclass of ndarray designed to manipulate numerical arrays with missing data.

An instance of MaskedArray can be thought as the combination of several elements:

  • The data, as a regular numpy.ndarray of any shape or datatype (the data).

  • A boolean mask with the same shape as the data, where a True value indicates that the corresponding element of the data is invalid. The special value nomask is also acceptable for arrays without named fields, and indicates that no data is invalid.

  • A fill_value, a value that may be used to replace the invalid entries in order to return a standard numpy.ndarray.

Attributes and properties of masked arrays#

See also

Array Attributes

ma.MaskedArray.data#

Returns the underlying data, as a view of the masked array.

If the underlying data is a subclass of numpy.ndarray, it is returned as such.

>>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.data
matrix([[1, 2],
        [3, 4]])

The type of the data can be accessed through the baseclass attribute.

ma.MaskedArray.mask#

Current mask.

ma.MaskedArray.recordmask#

Get or set the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans where entries are True if all the fields are masked, False otherwise:

>>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
...         mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
...        dtype=[('a', int), ('b', int)])
>>> x.recordmask
array([False, False,  True, False, False])
ma.MaskedArray.fill_value#

The filling value of the masked array is a scalar. When setting, None will set to a default based on the data type.

Examples

>>> import numpy as np
>>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
...     np.ma.array([0, 1], dtype=dt).get_fill_value()
...
np.int64(999999)
np.int64(999999)
np.float64(1e+20)
np.complex128(1e+20+0j)
>>> x = np.ma.array([0, 1.], fill_value=-np.inf)
>>> x.fill_value
np.float64(-inf)
>>> x.fill_value = np.pi
>>> x.fill_value
np.float64(3.1415926535897931)

Reset to default:

>>> x.fill_value = None
>>> x.fill_value
np.float64(1e+20)
ma.MaskedArray.baseclass#

Class of the underlying data (read-only).

ma.MaskedArray.sharedmask#

Share status of the mask (read-only).

ma.MaskedArray.hardmask#

Specifies whether values can be unmasked through assignments.

By default, assigning definite values to masked array entries will unmask them. When hardmask is True, the mask will not change through assignments.

Examples

>>> import numpy as np
>>> x = np.arange(10)
>>> m = np.ma.masked_array(x, x>5)
>>> assert not m.hardmask

Since m has a soft mask, assigning an element value unmasks that element:

>>> m[8] = 42
>>> m
masked_array(data=[0, 1, 2, 3, 4, 5, --, --, 42, --],
             mask=[False, False, False, False, False, False,
                   True, True, False, True],
       fill_value=999999)

After hardening, the mask is not affected by assignments:

>>> hardened = np.ma.harden_mask(m)
>>> assert m.hardmask and hardened is m
>>> m[:] = 23
>>> m
masked_array(data=[23, 23, 23, 23, 23, 23, --, --, 23, --],
             mask=[False, False, False, False, False, False,
                   True, True, False, True],
       fill_value=999999)

As MaskedArray is a subclass of ndarray, a masked array also inherits all the attributes and properties of a ndarray instance.

MaskedArray.base

Base object if memory is from some other object.

MaskedArray.ctypes

An object to simplify the interaction of the array with the ctypes module.

MaskedArray.dtype

Data-type of the array's elements.

MaskedArray.flags

Information about the memory layout of the array.

MaskedArray.itemsize

Length of one array element in bytes.

MaskedArray.nbytes

Total bytes consumed by the elements of the array.

MaskedArray.ndim

Number of array dimensions.

MaskedArray.shape

Tuple of array dimensions.

MaskedArray.size

Number of elements in the array.

MaskedArray.strides

Tuple of bytes to step in each dimension when traversing an array.

MaskedArray.imag

The imaginary part of the masked array.

MaskedArray.real

The real part of the masked array.

MaskedArray.flat

Return a flat iterator, or set a flattened version of self to value.

MaskedArray.__array_priority__

MaskedArray methods#

See also

Array methods

Conversion#

MaskedArray.__float__()

Convert to float.

MaskedArray.__int__()

Convert to int.

MaskedArray.view([dtype, type, fill_value])

Return a view of the MaskedArray data.

MaskedArray.astype(dtype[, order, casting, ...])

Copy of the array, cast to a specified type.

MaskedArray.byteswap([inplace])

Swap the bytes of the array elements

MaskedArray.compressed()

Return all the non-masked data as a 1-D array.

MaskedArray.filled([fill_value])

Return a copy of self, with masked values filled with a given value.

MaskedArray.tofile(fid[, sep, format])

Save a masked array to a file in binary format.

MaskedArray.toflex()

Transforms a masked array into a flexible-type array.

MaskedArray.tolist([fill_value])

Return the data portion of the masked array as a hierarchical Python list.

MaskedArray.torecords()

Transforms a masked array into a flexible-type array.

MaskedArray.tostring([fill_value, order])

A compatibility alias for tobytes, with exactly the same behavior.

MaskedArray.tobytes([fill_value, order])

Return the array data as a string containing the raw bytes in the array.

Shape manipulation#

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted as an n-tuple.

MaskedArray.flatten([order])

Return a copy of the array collapsed into one dimension.

MaskedArray.ravel([order])

Returns a 1D version of self, as a view.

MaskedArray.reshape(*s, **kwargs)

Give a new shape to the array without changing its data.

MaskedArray.resize(newshape[, refcheck, order])

MaskedArray.squeeze([axis])

Remove axes of length one from a.

MaskedArray.swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.

MaskedArray.transpose(*axes)

Returns a view of the array with axes transposed.

MaskedArray.T

View of the transposed array.

Item selection and manipulation#

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D array. Any other value for axis represents the dimension along which the operation should proceed.

MaskedArray.argmax([axis, fill_value, out, ...])

Returns array of indices of the maximum values along the given axis.

MaskedArray.argmin([axis, fill_value, out, ...])

Return array of indices to the minimum values along the given axis.

MaskedArray.argsort([axis, kind, order, ...])

Return an ndarray of indices that sort the array along the specified axis.

MaskedArray.choose(choices[, out, mode])

Use an index array to construct a new array from a set of choices.

MaskedArray.compress(condition[, axis, out])

Return a where condition is True.

MaskedArray.diagonal([offset, axis1, axis2])

Return specified diagonals.

MaskedArray.fill(value)

Fill the array with a scalar value.

MaskedArray.item(*args)

Copy an element of an array to a standard Python scalar and return it.

MaskedArray.nonzero()

Return the indices of unmasked elements that are not zero.

MaskedArray.put(indices, values[, mode])

Set storage-indexed locations to corresponding values.

MaskedArray.repeat(repeats[, axis])

Repeat elements of an array.

MaskedArray.searchsorted(v[, side, sorter])

Find indices where elements of v should be inserted in a to maintain order.

MaskedArray.sort([axis, kind, order, ...])

Sort the array, in-place

MaskedArray.take(indices[, axis, out, mode])

Take elements from a masked array along an axis.

Pickling and copy#

MaskedArray.copy([order])

Return a copy of the array.

MaskedArray.dump(file)

Dump a pickle of the array to the specified file.

MaskedArray.dumps()

Returns the pickle of the array as a string.

Calculations#

MaskedArray.all([axis, out, keepdims])

Returns True if all elements evaluate to True.

MaskedArray.anom([axis, dtype])

Compute the anomalies (deviations from the arithmetic mean) along the given axis.

MaskedArray.any([axis, out, keepdims])

Returns True if any of the elements of a evaluate to True.

MaskedArray.clip([min, max, out])

Return an array whose values are limited to [min, max].

MaskedArray.conj()

Complex-conjugate all elements.

MaskedArray.conjugate()

Return the complex conjugate, element-wise.

MaskedArray.cumprod([axis, dtype, out])

Return the cumulative product of the array elements over the given axis.

MaskedArray.cumsum([axis, dtype, out])

Return the cumulative sum of the array elements over the given axis.

MaskedArray.max([axis, out, fill_value, ...])

Return the maximum along a given axis.

MaskedArray.mean([axis, dtype, out, keepdims])

Returns the average of the array elements along given axis.

MaskedArray.min([axis, out, fill_value, ...])

Return the minimum along a given axis.

MaskedArray.prod([axis, dtype, out, keepdims])

Return the product of the array elements over the given axis.

MaskedArray.product([axis, dtype, out, keepdims])

Return the product of the array elements over the given axis.

MaskedArray.ptp([axis, out, fill_value, ...])

Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

MaskedArray.round([decimals, out])

Return each element rounded to the given number of decimals.

MaskedArray.std([axis, dtype, out, ddof, ...])

Returns the standard deviation of the array elements along given axis.

MaskedArray.sum([axis, dtype, out, keepdims])

Return the sum of the array elements over the given axis.

MaskedArray.trace([offset, axis1, axis2, ...])

Return the sum along diagonals of the array.

MaskedArray.var([axis, dtype, out, ddof, ...])

Compute the variance along the specified axis.

Arithmetic and comparison operations#

Comparison operators:#

MaskedArray.__lt__(other)

Return self<value.

MaskedArray.__le__(other)

Return self<=value.

MaskedArray.__gt__(other)

Return self>value.

MaskedArray.__ge__(other)

Return self>=value.

MaskedArray.__eq__(other)

Check whether other equals self elementwise.

MaskedArray.__ne__(other)

Check whether other does not equal self elementwise.

Truth value of an array (bool()):#

MaskedArray.__bool__(/)

True if self else False

Arithmetic:#

MaskedArray.__abs__(self)

MaskedArray.__add__(other)

Add self to other, and return a new masked array.

MaskedArray.__radd__(other)

Add other to self, and return a new masked array.

MaskedArray.__sub__(other)

Subtract other from self, and return a new masked array.

MaskedArray.__rsub__(other)

Subtract self from other, and return a new masked array.

MaskedArray.__mul__(other)

Multiply self by other, and return a new masked array.

MaskedArray.__rmul__(other)

Multiply other by self, and return a new masked array.

MaskedArray.__div__(other)

Divide other into self, and return a new masked array.

MaskedArray.__truediv__(other)

Divide other into self, and return a new masked array.

MaskedArray.__rtruediv__(other)

Divide self into other, and return a new masked array.

MaskedArray.__floordiv__(other)

Divide other into self, and return a new masked array.

MaskedArray.__rfloordiv__(other)

Divide self into other, and return a new masked array.

MaskedArray.__mod__(value, /)

Return self%value.

MaskedArray.__rmod__(value, /)

Return value%self.

MaskedArray.__divmod__(value, /)

Return divmod(self, value).

MaskedArray.__rdivmod__(value, /)

Return divmod(value, self).

MaskedArray.__pow__(other)

Raise self to the power other, masking the potential NaNs/Infs

MaskedArray.__rpow__(other)

Raise other to the power self, masking the potential NaNs/Infs

MaskedArray.__lshift__(value, /)

Return self<<value.

MaskedArray.__rlshift__(value, /)

Return value<<self.

MaskedArray.__rshift__(value, /)

Return self>>value.

MaskedArray.__rrshift__(value, /)

Return value>>self.

MaskedArray.__and__(value, /)

Return self&value.

MaskedArray.__rand__(value, /)

Return value&self.

MaskedArray.__or__(value, /)

Return self|value.

MaskedArray.__ror__(value, /)

Return value|self.

MaskedArray.__xor__(value, /)

Return self^value.

MaskedArray.__rxor__(value, /)

Return value^self.

Arithmetic, in-place:#

MaskedArray.__iadd__(other)

Add other to self in-place.

MaskedArray.__isub__(other)

Subtract other from self in-place.

MaskedArray.__imul__(other)

Multiply self by other in-place.

MaskedArray.__idiv__(other)

Divide self by other in-place.

MaskedArray.__itruediv__(other)

True divide self by other in-place.

MaskedArray.__ifloordiv__(other)

Floor divide self by other in-place.

MaskedArray.__imod__(value, /)

Return self%=value.

MaskedArray.__ipow__(other)

Raise self to the power other, in place.

MaskedArray.__ilshift__(value, /)

Return self<<=value.

MaskedArray.__irshift__(value, /)

Return self>>=value.

MaskedArray.__iand__(value, /)

Return self&=value.

MaskedArray.__ior__(value, /)

Return self|=value.

MaskedArray.__ixor__(value, /)

Return self^=value.

Representation#

MaskedArray.__repr__()

Literal string representation.

MaskedArray.__str__()

Return str(self).

MaskedArray.ids()

Return the addresses of the data and mask areas.

MaskedArray.iscontiguous()

Return a boolean indicating whether the data is contiguous.

Special methods#

For standard library functions:

MaskedArray.__copy__()

Used if copy.copy is called on an array.

MaskedArray.__deepcopy__(memo, /)

Used if copy.deepcopy is called on an array.

MaskedArray.__getstate__()

Return the internal state of the masked array, for pickling purposes.

MaskedArray.__reduce__()

Return a 3-tuple for pickling a MaskedArray.

MaskedArray.__setstate__(state)

Restore the internal state of the masked array, for pickling purposes.

Basic customization:

MaskedArray.__new__(cls[, data, mask, ...])

Create a new masked array from scratch.

MaskedArray.__array__([dtype], *[, copy])

For dtype parameter it returns a new reference to self if dtype is not given or it matches array's data type.

MaskedArray.__array_wrap__(obj[, context, ...])

Special hook for ufuncs.

Container customization: (see Indexing)

MaskedArray.__len__(/)

Return len(self).

MaskedArray.__getitem__(indx)

x.__getitem__(y) <==> x[y]

MaskedArray.__setitem__(indx, value)

x.__setitem__(i, y) <==> x[i]=y

MaskedArray.__delitem__(key, /)

Delete self[key].

MaskedArray.__contains__(key, /)

Return key in self.

Specific methods#

Handling the mask#

The following methods can be used to access information about the mask or to manipulate the mask.

MaskedArray.__setmask__(mask[, copy])

Set the mask.

MaskedArray.harden_mask()

Force the mask to hard, preventing unmasking by assignment.

MaskedArray.soften_mask()

Force the mask to soft (default), allowing unmasking by assignment.

MaskedArray.unshare_mask()

Copy the mask and set the sharedmask flag to False.

MaskedArray.shrink_mask()

Reduce a mask to nomask when possible.

Handling the fill_value#

MaskedArray.get_fill_value()

The filling value of the masked array is a scalar.

MaskedArray.set_fill_value([value])

Counting the missing elements#

MaskedArray.count([axis, keepdims])

Count the non-masked elements of the array along the given axis.