Previous topic

numpy.spacing

Next topic

numpy.reciprocal

This is documentation for an old release of NumPy (version 1.14). Read this page in the documentation of the latest stable release (version 2.2).

numpy.add

numpy.add(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'add'>

Add arguments element-wise.

Parameters:

x1, x2 : array_like

The arrays to be added. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other).

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:

add : ndarray or scalar

The sum of x1 and x2, element-wise. Returns a scalar if both x1 and x2 are scalars.

Notes

Equivalent to x1 + x2 in terms of array broadcasting.

Examples

>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[  0.,   2.,   4.],
       [  3.,   5.,   7.],
       [  6.,   8.,  10.]])