Previous topic

numpy.frexp

Next topic

numpy.nextafter

This is documentation for an old release of NumPy (version 1.14). Read this page in the documentation of the latest stable release (version 2.2).

numpy.ldexp

numpy.ldexp(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'ldexp'>

Returns x1 * 2**x2, element-wise.

The mantissas x1 and twos exponents x2 are used to construct floating point numbers x1 * 2**x2.

Parameters:

x1 : array_like

Array of multipliers.

x2 : array_like, int

Array of twos exponents.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:

y : ndarray or scalar

The result of x1 * 2**x2.

See also

frexp
Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

ldexp is useful as the inverse of frexp, if used by itself it is more clear to simply use the expression x1 * 2**x2.

Examples

>>> np.ldexp(5, np.arange(4))
array([  5.,  10.,  20.,  40.], dtype=float32)
>>> x = np.arange(6)
>>> np.ldexp(*np.frexp(x))
array([ 0.,  1.,  2.,  3.,  4.,  5.])